X86ISelLowering.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy//
3bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy//                     The LLVM Compiler Infrastructure
4bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy//
5bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy// This file is distributed under the University of Illinois Open Source
6bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy// License. See LICENSE.TXT for details.
7bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy//
8bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy//===----------------------------------------------------------------------===//
9bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy//
10bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy// This file defines the interfaces that X86 uses to lower LLVM code into a
11bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy// selection DAG.
12bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy//
13bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy//===----------------------------------------------------------------------===//
14bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy
15bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "X86ISelLowering.h"
16bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "Utils/X86ShuffleDecode.h"
179d5316e3f56d138504565ff311145ac01621dff4Romain Guy#include "X86CallingConv.h"
189d5316e3f56d138504565ff311145ac01621dff4Romain Guy#include "X86InstrBuilder.h"
19bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "X86MachineFunctionInfo.h"
20bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "X86TargetMachine.h"
219d5316e3f56d138504565ff311145ac01621dff4Romain Guy#include "X86TargetObjectFile.h"
22bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "llvm/ADT/SmallSet.h"
23bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "llvm/ADT/Statistic.h"
24bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "llvm/ADT/StringExtras.h"
25bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "llvm/ADT/StringSwitch.h"
26bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "llvm/ADT/VariadicFunction.h"
27bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "llvm/CodeGen/IntrinsicLowering.h"
28bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "llvm/CodeGen/MachineFrameInfo.h"
29bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "llvm/CodeGen/MachineFunction.h"
30bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "llvm/CodeGen/MachineInstrBuilder.h"
31bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "llvm/CodeGen/MachineJumpTableInfo.h"
32bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "llvm/CodeGen/MachineModuleInfo.h"
339d5316e3f56d138504565ff311145ac01621dff4Romain Guy#include "llvm/CodeGen/MachineRegisterInfo.h"
349d5316e3f56d138504565ff311145ac01621dff4Romain Guy#include "llvm/IR/CallSite.h"
359d5316e3f56d138504565ff311145ac01621dff4Romain Guy#include "llvm/IR/CallingConv.h"
369d5316e3f56d138504565ff311145ac01621dff4Romain Guy#include "llvm/IR/Constants.h"
379d5316e3f56d138504565ff311145ac01621dff4Romain Guy#include "llvm/IR/DerivedTypes.h"
389d5316e3f56d138504565ff311145ac01621dff4Romain Guy#include "llvm/IR/Function.h"
399d5316e3f56d138504565ff311145ac01621dff4Romain Guy#include "llvm/IR/GlobalAlias.h"
409d5316e3f56d138504565ff311145ac01621dff4Romain Guy#include "llvm/IR/GlobalVariable.h"
419d5316e3f56d138504565ff311145ac01621dff4Romain Guy#include "llvm/IR/Instructions.h"
429d5316e3f56d138504565ff311145ac01621dff4Romain Guy#include "llvm/IR/Intrinsics.h"
439d5316e3f56d138504565ff311145ac01621dff4Romain Guy#include "llvm/MC/MCAsmInfo.h"
449d5316e3f56d138504565ff311145ac01621dff4Romain Guy#include "llvm/MC/MCContext.h"
459d5316e3f56d138504565ff311145ac01621dff4Romain Guy#include "llvm/MC/MCExpr.h"
46bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "llvm/MC/MCSymbol.h"
47bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "llvm/Support/Debug.h"
48bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "llvm/Support/ErrorHandling.h"
49bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "llvm/Support/MathExtras.h"
50bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include "llvm/Target/TargetOptions.h"
51bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include <bitset>
52bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#include <cctype>
53bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guyusing namespace llvm;
54bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy
55bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy#define DEBUG_TYPE "x86-isel"
56bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy
57bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain GuySTATISTIC(NumTailCalls, "Number of tail calls");
58bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy
59bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy// Forward declarations.
60bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guystatic SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
61bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy                       SDValue V2);
62bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy
63bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guystatic SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
64bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy                                SelectionDAG &DAG, SDLoc dl,
65bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy                                unsigned vectorWidth) {
66bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  assert((vectorWidth == 128 || vectorWidth == 256) &&
67bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy         "Unsupported vector width");
68bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  EVT VT = Vec.getValueType();
69bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  EVT ElVT = VT.getVectorElementType();
70bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  unsigned Factor = VT.getSizeInBits()/vectorWidth;
71bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
72bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy                                  VT.getVectorNumElements()/Factor);
73bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy
74bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  // Extract from UNDEF is UNDEF.
75bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  if (Vec.getOpcode() == ISD::UNDEF)
76bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy    return DAG.getUNDEF(ResultVT);
77bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy
78bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  // Extract the relevant vectorWidth bits.  Generate an EXTRACT_SUBVECTOR
79bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
80bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy
81bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  // This is the index of the first element of the vectorWidth-bit chunk
82bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  // we want.
83bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth)
84bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy                               * ElemsPerChunk);
85bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy
86bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  // If the input is a buildvector just emit a smaller one.
87bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
88bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
89bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy                       makeArrayRef(Vec->op_begin()+NormalizedIdxVal,
90bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy                                    ElemsPerChunk));
91bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy
92bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
93bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
94bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy                               VecIdx);
95bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy
96bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  return Result;
97bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy
98bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy}
99bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
100bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
101bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
102bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy/// instructions or a simple subregister reference. Idx is an index in the
103bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy/// 128 bits we want.  It need not be aligned to a 128-bit bounday.  That makes
104bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy/// lowering EXTRACT_VECTOR_ELT operations easier.
105bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guystatic SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
106bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy                                   SelectionDAG &DAG, SDLoc dl) {
107bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  assert((Vec.getValueType().is256BitVector() ||
108bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy          Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
109bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  return ExtractSubVector(Vec, IdxVal, DAG, dl, 128);
110bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy}
111bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy
112bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy/// Generate a DAG to grab 256-bits from a 512-bit vector.
113bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guystatic SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal,
114bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy                                   SelectionDAG &DAG, SDLoc dl) {
115bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
116bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  return ExtractSubVector(Vec, IdxVal, DAG, dl, 256);
117bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy}
118bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy
119bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guystatic SDValue InsertSubVector(SDValue Result, SDValue Vec,
120bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy                               unsigned IdxVal, SelectionDAG &DAG,
121bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy                               SDLoc dl, unsigned vectorWidth) {
122bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  assert((vectorWidth == 128 || vectorWidth == 256) &&
123bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy         "Unsupported vector width");
124bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  // Inserting UNDEF is Result
125bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  if (Vec.getOpcode() == ISD::UNDEF)
126bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy    return Result;
127bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  EVT VT = Vec.getValueType();
128bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  EVT ElVT = VT.getVectorElementType();
129bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  EVT ResultVT = Result.getValueType();
130bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy
131bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  // Insert the relevant vectorWidth bits.
132bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
133bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy
134bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  // This is the index of the first element of the vectorWidth-bit chunk
135bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  // we want.
1369d5316e3f56d138504565ff311145ac01621dff4Romain Guy  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth)
137bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy                               * ElemsPerChunk);
138bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy
139bb9524b6bdddc7ac77d8628daa8b366b8a7be4a4Romain Guy  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
140  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
141                     VecIdx);
142}
143/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
144/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
145/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
146/// simple superregister reference.  Idx is an index in the 128 bits
147/// we want.  It need not be aligned to a 128-bit bounday.  That makes
148/// lowering INSERT_VECTOR_ELT operations easier.
149static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
150                                  unsigned IdxVal, SelectionDAG &DAG,
151                                  SDLoc dl) {
152  assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
153  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
154}
155
156static SDValue Insert256BitVector(SDValue Result, SDValue Vec,
157                                  unsigned IdxVal, SelectionDAG &DAG,
158                                  SDLoc dl) {
159  assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
160  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
161}
162
163/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
164/// instructions. This is used because creating CONCAT_VECTOR nodes of
165/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
166/// large BUILD_VECTORS.
167static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
168                                   unsigned NumElems, SelectionDAG &DAG,
169                                   SDLoc dl) {
170  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
171  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
172}
173
174static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
175                                   unsigned NumElems, SelectionDAG &DAG,
176                                   SDLoc dl) {
177  SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
178  return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
179}
180
181static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
182  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
183  bool is64Bit = Subtarget->is64Bit();
184
185  if (Subtarget->isTargetMacho()) {
186    if (is64Bit)
187      return new X86_64MachoTargetObjectFile();
188    return new TargetLoweringObjectFileMachO();
189  }
190
191  if (Subtarget->isTargetLinux())
192    return new X86LinuxTargetObjectFile();
193  if (Subtarget->isTargetELF())
194    return new TargetLoweringObjectFileELF();
195  if (Subtarget->isTargetKnownWindowsMSVC())
196    return new X86WindowsTargetObjectFile();
197  if (Subtarget->isTargetCOFF())
198    return new TargetLoweringObjectFileCOFF();
199  llvm_unreachable("unknown subtarget type");
200}
201
202X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
203  : TargetLowering(TM, createTLOF(TM)) {
204  Subtarget = &TM.getSubtarget<X86Subtarget>();
205  X86ScalarSSEf64 = Subtarget->hasSSE2();
206  X86ScalarSSEf32 = Subtarget->hasSSE1();
207  TD = getDataLayout();
208
209  resetOperationActions();
210}
211
212void X86TargetLowering::resetOperationActions() {
213  const TargetMachine &TM = getTargetMachine();
214  static bool FirstTimeThrough = true;
215
216  // If none of the target options have changed, then we don't need to reset the
217  // operation actions.
218  if (!FirstTimeThrough && TO == TM.Options) return;
219
220  if (!FirstTimeThrough) {
221    // Reinitialize the actions.
222    initActions();
223    FirstTimeThrough = false;
224  }
225
226  TO = TM.Options;
227
228  // Set up the TargetLowering object.
229  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
230
231  // X86 is weird, it always uses i8 for shift amounts and setcc results.
232  setBooleanContents(ZeroOrOneBooleanContent);
233  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
234  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
235
236  // For 64-bit since we have so many registers use the ILP scheduler, for
237  // 32-bit code use the register pressure specific scheduling.
238  // For Atom, always use ILP scheduling.
239  if (Subtarget->isAtom())
240    setSchedulingPreference(Sched::ILP);
241  else if (Subtarget->is64Bit())
242    setSchedulingPreference(Sched::ILP);
243  else
244    setSchedulingPreference(Sched::RegPressure);
245  const X86RegisterInfo *RegInfo =
246    static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
247  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
248
249  // Bypass expensive divides on Atom when compiling with O2
250  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) {
251    addBypassSlowDiv(32, 8);
252    if (Subtarget->is64Bit())
253      addBypassSlowDiv(64, 16);
254  }
255
256  if (Subtarget->isTargetKnownWindowsMSVC()) {
257    // Setup Windows compiler runtime calls.
258    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
259    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
260    setLibcallName(RTLIB::SREM_I64, "_allrem");
261    setLibcallName(RTLIB::UREM_I64, "_aullrem");
262    setLibcallName(RTLIB::MUL_I64, "_allmul");
263    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
264    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
265    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
266    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
267    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
268
269    // The _ftol2 runtime function has an unusual calling conv, which
270    // is modeled by a special pseudo-instruction.
271    setLibcallName(RTLIB::FPTOUINT_F64_I64, nullptr);
272    setLibcallName(RTLIB::FPTOUINT_F32_I64, nullptr);
273    setLibcallName(RTLIB::FPTOUINT_F64_I32, nullptr);
274    setLibcallName(RTLIB::FPTOUINT_F32_I32, nullptr);
275  }
276
277  if (Subtarget->isTargetDarwin()) {
278    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
279    setUseUnderscoreSetJmp(false);
280    setUseUnderscoreLongJmp(false);
281  } else if (Subtarget->isTargetWindowsGNU()) {
282    // MS runtime is weird: it exports _setjmp, but longjmp!
283    setUseUnderscoreSetJmp(true);
284    setUseUnderscoreLongJmp(false);
285  } else {
286    setUseUnderscoreSetJmp(true);
287    setUseUnderscoreLongJmp(true);
288  }
289
290  // Set up the register classes.
291  addRegisterClass(MVT::i8, &X86::GR8RegClass);
292  addRegisterClass(MVT::i16, &X86::GR16RegClass);
293  addRegisterClass(MVT::i32, &X86::GR32RegClass);
294  if (Subtarget->is64Bit())
295    addRegisterClass(MVT::i64, &X86::GR64RegClass);
296
297  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
298
299  // We don't accept any truncstore of integer registers.
300  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
301  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
302  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
303  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
304  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
305  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
306
307  // SETOEQ and SETUNE require checking two conditions.
308  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
309  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
310  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
311  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
312  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
313  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
314
315  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
316  // operation.
317  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
318  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
319  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
320
321  if (Subtarget->is64Bit()) {
322    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
323    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
324  } else if (!TM.Options.UseSoftFloat) {
325    // We have an algorithm for SSE2->double, and we turn this into a
326    // 64-bit FILD followed by conditional FADD for other targets.
327    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
328    // We have an algorithm for SSE2, and we turn this into a 64-bit
329    // FILD for other targets.
330    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
331  }
332
333  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
334  // this operation.
335  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
336  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
337
338  if (!TM.Options.UseSoftFloat) {
339    // SSE has no i16 to fp conversion, only i32
340    if (X86ScalarSSEf32) {
341      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
342      // f32 and f64 cases are Legal, f80 case is not
343      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
344    } else {
345      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
346      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
347    }
348  } else {
349    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
350    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
351  }
352
353  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
354  // are Legal, f80 is custom lowered.
355  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
356  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
357
358  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
359  // this operation.
360  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
361  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
362
363  if (X86ScalarSSEf32) {
364    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
365    // f32 and f64 cases are Legal, f80 case is not
366    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
367  } else {
368    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
369    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
370  }
371
372  // Handle FP_TO_UINT by promoting the destination to a larger signed
373  // conversion.
374  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
375  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
376  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
377
378  if (Subtarget->is64Bit()) {
379    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
380    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
381  } else if (!TM.Options.UseSoftFloat) {
382    // Since AVX is a superset of SSE3, only check for SSE here.
383    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
384      // Expand FP_TO_UINT into a select.
385      // FIXME: We would like to use a Custom expander here eventually to do
386      // the optimal thing for SSE vs. the default expansion in the legalizer.
387      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
388    else
389      // With SSE3 we can use fisttpll to convert to a signed i64; without
390      // SSE, we're stuck with a fistpll.
391      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
392  }
393
394  if (isTargetFTOL()) {
395    // Use the _ftol2 runtime function, which has a pseudo-instruction
396    // to handle its weird calling convention.
397    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
398  }
399
400  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
401  if (!X86ScalarSSEf64) {
402    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
403    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
404    if (Subtarget->is64Bit()) {
405      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
406      // Without SSE, i64->f64 goes through memory.
407      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
408    }
409  }
410
411  // Scalar integer divide and remainder are lowered to use operations that
412  // produce two results, to match the available instructions. This exposes
413  // the two-result form to trivial CSE, which is able to combine x/y and x%y
414  // into a single instruction.
415  //
416  // Scalar integer multiply-high is also lowered to use two-result
417  // operations, to match the available instructions. However, plain multiply
418  // (low) operations are left as Legal, as there are single-result
419  // instructions for this in x86. Using the two-result multiply instructions
420  // when both high and low results are needed must be arranged by dagcombine.
421  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
422    MVT VT = IntVTs[i];
423    setOperationAction(ISD::MULHS, VT, Expand);
424    setOperationAction(ISD::MULHU, VT, Expand);
425    setOperationAction(ISD::SDIV, VT, Expand);
426    setOperationAction(ISD::UDIV, VT, Expand);
427    setOperationAction(ISD::SREM, VT, Expand);
428    setOperationAction(ISD::UREM, VT, Expand);
429
430    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
431    setOperationAction(ISD::ADDC, VT, Custom);
432    setOperationAction(ISD::ADDE, VT, Custom);
433    setOperationAction(ISD::SUBC, VT, Custom);
434    setOperationAction(ISD::SUBE, VT, Custom);
435  }
436
437  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
438  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
439  setOperationAction(ISD::BR_CC            , MVT::f32,   Expand);
440  setOperationAction(ISD::BR_CC            , MVT::f64,   Expand);
441  setOperationAction(ISD::BR_CC            , MVT::f80,   Expand);
442  setOperationAction(ISD::BR_CC            , MVT::i8,    Expand);
443  setOperationAction(ISD::BR_CC            , MVT::i16,   Expand);
444  setOperationAction(ISD::BR_CC            , MVT::i32,   Expand);
445  setOperationAction(ISD::BR_CC            , MVT::i64,   Expand);
446  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
447  if (Subtarget->is64Bit())
448    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
449  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
450  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
451  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
452  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
453  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
454  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
455  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
456  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
457
458  // Promote the i8 variants and force them on up to i32 which has a shorter
459  // encoding.
460  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
461  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
462  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
463  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
464  if (Subtarget->hasBMI()) {
465    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
466    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
467    if (Subtarget->is64Bit())
468      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
469  } else {
470    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
471    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
472    if (Subtarget->is64Bit())
473      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
474  }
475
476  if (Subtarget->hasLZCNT()) {
477    // When promoting the i8 variants, force them to i32 for a shorter
478    // encoding.
479    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
480    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
481    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
482    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
483    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
484    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
485    if (Subtarget->is64Bit())
486      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
487  } else {
488    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
489    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
490    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
491    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
492    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
493    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
494    if (Subtarget->is64Bit()) {
495      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
496      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
497    }
498  }
499
500  if (Subtarget->hasPOPCNT()) {
501    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
502  } else {
503    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
504    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
505    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
506    if (Subtarget->is64Bit())
507      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
508  }
509
510  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
511
512  if (!Subtarget->hasMOVBE())
513    setOperationAction(ISD::BSWAP          , MVT::i16  , Expand);
514
515  // These should be promoted to a larger select which is supported.
516  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
517  // X86 wants to expand cmov itself.
518  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
519  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
520  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
521  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
522  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
523  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
524  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
525  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
526  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
527  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
528  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
529  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
530  if (Subtarget->is64Bit()) {
531    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
532    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
533  }
534  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
535  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
536  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
537  // support continuation, user-level threading, and etc.. As a result, no
538  // other SjLj exception interfaces are implemented and please don't build
539  // your own exception handling based on them.
540  // LLVM/Clang supports zero-cost DWARF exception handling.
541  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
542  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
543
544  // Darwin ABI issue.
545  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
546  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
547  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
548  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
549  if (Subtarget->is64Bit())
550    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
551  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
552  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
553  if (Subtarget->is64Bit()) {
554    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
555    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
556    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
557    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
558    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
559  }
560  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
561  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
562  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
563  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
564  if (Subtarget->is64Bit()) {
565    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
566    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
567    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
568  }
569
570  if (Subtarget->hasSSE1())
571    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
572
573  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
574
575  // Expand certain atomics
576  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
577    MVT VT = IntVTs[i];
578    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
579    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
580    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
581  }
582
583  if (!Subtarget->is64Bit()) {
584    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
585    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
586    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
587    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
588    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
589    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
590    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
591    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
592    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
593    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
594    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
595    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
596  }
597
598  if (Subtarget->hasCmpxchg16b()) {
599    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
600  }
601
602  // FIXME - use subtarget debug flags
603  if (!Subtarget->isTargetDarwin() &&
604      !Subtarget->isTargetELF() &&
605      !Subtarget->isTargetCygMing()) {
606    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
607  }
608
609  if (Subtarget->is64Bit()) {
610    setExceptionPointerRegister(X86::RAX);
611    setExceptionSelectorRegister(X86::RDX);
612  } else {
613    setExceptionPointerRegister(X86::EAX);
614    setExceptionSelectorRegister(X86::EDX);
615  }
616  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
617  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
618
619  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
620  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
621
622  setOperationAction(ISD::TRAP, MVT::Other, Legal);
623  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
624
625  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
626  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
627  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
628  if (Subtarget->is64Bit() && !Subtarget->isTargetWin64()) {
629    // TargetInfo::X86_64ABIBuiltinVaList
630    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
631    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
632  } else {
633    // TargetInfo::CharPtrBuiltinVaList
634    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
635    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
636  }
637
638  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
639  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
640
641  setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
642                     MVT::i64 : MVT::i32, Custom);
643
644  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
645    // f32 and f64 use SSE.
646    // Set up the FP register classes.
647    addRegisterClass(MVT::f32, &X86::FR32RegClass);
648    addRegisterClass(MVT::f64, &X86::FR64RegClass);
649
650    // Use ANDPD to simulate FABS.
651    setOperationAction(ISD::FABS , MVT::f64, Custom);
652    setOperationAction(ISD::FABS , MVT::f32, Custom);
653
654    // Use XORP to simulate FNEG.
655    setOperationAction(ISD::FNEG , MVT::f64, Custom);
656    setOperationAction(ISD::FNEG , MVT::f32, Custom);
657
658    // Use ANDPD and ORPD to simulate FCOPYSIGN.
659    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
660    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
661
662    // Lower this to FGETSIGNx86 plus an AND.
663    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
664    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
665
666    // We don't support sin/cos/fmod
667    setOperationAction(ISD::FSIN   , MVT::f64, Expand);
668    setOperationAction(ISD::FCOS   , MVT::f64, Expand);
669    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
670    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
671    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
672    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
673
674    // Expand FP immediates into loads from the stack, except for the special
675    // cases we handle.
676    addLegalFPImmediate(APFloat(+0.0)); // xorpd
677    addLegalFPImmediate(APFloat(+0.0f)); // xorps
678  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
679    // Use SSE for f32, x87 for f64.
680    // Set up the FP register classes.
681    addRegisterClass(MVT::f32, &X86::FR32RegClass);
682    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
683
684    // Use ANDPS to simulate FABS.
685    setOperationAction(ISD::FABS , MVT::f32, Custom);
686
687    // Use XORP to simulate FNEG.
688    setOperationAction(ISD::FNEG , MVT::f32, Custom);
689
690    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
691
692    // Use ANDPS and ORPS to simulate FCOPYSIGN.
693    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
694    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
695
696    // We don't support sin/cos/fmod
697    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
698    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
699    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
700
701    // Special cases we handle for FP constants.
702    addLegalFPImmediate(APFloat(+0.0f)); // xorps
703    addLegalFPImmediate(APFloat(+0.0)); // FLD0
704    addLegalFPImmediate(APFloat(+1.0)); // FLD1
705    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
706    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
707
708    if (!TM.Options.UnsafeFPMath) {
709      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
710      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
711      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
712    }
713  } else if (!TM.Options.UseSoftFloat) {
714    // f32 and f64 in x87.
715    // Set up the FP register classes.
716    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
717    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
718
719    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
720    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
721    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
722    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
723
724    if (!TM.Options.UnsafeFPMath) {
725      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
726      setOperationAction(ISD::FSIN   , MVT::f32, Expand);
727      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
728      setOperationAction(ISD::FCOS   , MVT::f32, Expand);
729      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
730      setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
731    }
732    addLegalFPImmediate(APFloat(+0.0)); // FLD0
733    addLegalFPImmediate(APFloat(+1.0)); // FLD1
734    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
735    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
736    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
737    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
738    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
739    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
740  }
741
742  // We don't support FMA.
743  setOperationAction(ISD::FMA, MVT::f64, Expand);
744  setOperationAction(ISD::FMA, MVT::f32, Expand);
745
746  // Long double always uses X87.
747  if (!TM.Options.UseSoftFloat) {
748    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
749    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
750    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
751    {
752      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
753      addLegalFPImmediate(TmpFlt);  // FLD0
754      TmpFlt.changeSign();
755      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
756
757      bool ignored;
758      APFloat TmpFlt2(+1.0);
759      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
760                      &ignored);
761      addLegalFPImmediate(TmpFlt2);  // FLD1
762      TmpFlt2.changeSign();
763      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
764    }
765
766    if (!TM.Options.UnsafeFPMath) {
767      setOperationAction(ISD::FSIN   , MVT::f80, Expand);
768      setOperationAction(ISD::FCOS   , MVT::f80, Expand);
769      setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
770    }
771
772    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
773    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
774    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
775    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
776    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
777    setOperationAction(ISD::FMA, MVT::f80, Expand);
778  }
779
780  // Always use a library call for pow.
781  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
782  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
783  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
784
785  setOperationAction(ISD::FLOG, MVT::f80, Expand);
786  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
787  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
788  setOperationAction(ISD::FEXP, MVT::f80, Expand);
789  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
790
791  // First set operation action for all vector types to either promote
792  // (for widening) or expand (for scalarization). Then we will selectively
793  // turn on ones that can be effectively codegen'd.
794  for (int i = MVT::FIRST_VECTOR_VALUETYPE;
795           i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
796    MVT VT = (MVT::SimpleValueType)i;
797    setOperationAction(ISD::ADD , VT, Expand);
798    setOperationAction(ISD::SUB , VT, Expand);
799    setOperationAction(ISD::FADD, VT, Expand);
800    setOperationAction(ISD::FNEG, VT, Expand);
801    setOperationAction(ISD::FSUB, VT, Expand);
802    setOperationAction(ISD::MUL , VT, Expand);
803    setOperationAction(ISD::FMUL, VT, Expand);
804    setOperationAction(ISD::SDIV, VT, Expand);
805    setOperationAction(ISD::UDIV, VT, Expand);
806    setOperationAction(ISD::FDIV, VT, Expand);
807    setOperationAction(ISD::SREM, VT, Expand);
808    setOperationAction(ISD::UREM, VT, Expand);
809    setOperationAction(ISD::LOAD, VT, Expand);
810    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
811    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
812    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
813    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
814    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
815    setOperationAction(ISD::FABS, VT, Expand);
816    setOperationAction(ISD::FSIN, VT, Expand);
817    setOperationAction(ISD::FSINCOS, VT, Expand);
818    setOperationAction(ISD::FCOS, VT, Expand);
819    setOperationAction(ISD::FSINCOS, VT, Expand);
820    setOperationAction(ISD::FREM, VT, Expand);
821    setOperationAction(ISD::FMA,  VT, Expand);
822    setOperationAction(ISD::FPOWI, VT, Expand);
823    setOperationAction(ISD::FSQRT, VT, Expand);
824    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
825    setOperationAction(ISD::FFLOOR, VT, Expand);
826    setOperationAction(ISD::FCEIL, VT, Expand);
827    setOperationAction(ISD::FTRUNC, VT, Expand);
828    setOperationAction(ISD::FRINT, VT, Expand);
829    setOperationAction(ISD::FNEARBYINT, VT, Expand);
830    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
831    setOperationAction(ISD::MULHS, VT, Expand);
832    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
833    setOperationAction(ISD::MULHU, VT, Expand);
834    setOperationAction(ISD::SDIVREM, VT, Expand);
835    setOperationAction(ISD::UDIVREM, VT, Expand);
836    setOperationAction(ISD::FPOW, VT, Expand);
837    setOperationAction(ISD::CTPOP, VT, Expand);
838    setOperationAction(ISD::CTTZ, VT, Expand);
839    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
840    setOperationAction(ISD::CTLZ, VT, Expand);
841    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
842    setOperationAction(ISD::SHL, VT, Expand);
843    setOperationAction(ISD::SRA, VT, Expand);
844    setOperationAction(ISD::SRL, VT, Expand);
845    setOperationAction(ISD::ROTL, VT, Expand);
846    setOperationAction(ISD::ROTR, VT, Expand);
847    setOperationAction(ISD::BSWAP, VT, Expand);
848    setOperationAction(ISD::SETCC, VT, Expand);
849    setOperationAction(ISD::FLOG, VT, Expand);
850    setOperationAction(ISD::FLOG2, VT, Expand);
851    setOperationAction(ISD::FLOG10, VT, Expand);
852    setOperationAction(ISD::FEXP, VT, Expand);
853    setOperationAction(ISD::FEXP2, VT, Expand);
854    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
855    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
856    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
857    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
858    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
859    setOperationAction(ISD::TRUNCATE, VT, Expand);
860    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
861    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
862    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
863    setOperationAction(ISD::VSELECT, VT, Expand);
864    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
865             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
866      setTruncStoreAction(VT,
867                          (MVT::SimpleValueType)InnerVT, Expand);
868    setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
869    setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
870    setLoadExtAction(ISD::EXTLOAD, VT, Expand);
871  }
872
873  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
874  // with -msoft-float, disable use of MMX as well.
875  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
876    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
877    // No operations on x86mmx supported, everything uses intrinsics.
878  }
879
880  // MMX-sized vectors (other than x86mmx) are expected to be expanded
881  // into smaller operations.
882  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
883  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
884  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
885  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
886  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
887  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
888  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
889  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
890  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
891  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
892  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
893  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
894  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
895  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
896  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
897  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
898  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
899  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
900  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
901  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
902  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
903  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
904  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
905  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
906  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
907  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
908  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
909  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
910  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
911
912  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
913    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
914
915    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
916    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
917    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
918    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
919    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
920    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
921    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
922    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
923    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
924    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
925    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
926    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
927  }
928
929  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
930    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
931
932    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
933    // registers cannot be used even for integer operations.
934    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
935    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
936    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
937    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
938
939    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
940    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
941    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
942    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
943    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
944    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
945    setOperationAction(ISD::UMUL_LOHI,          MVT::v4i32, Custom);
946    setOperationAction(ISD::SMUL_LOHI,          MVT::v4i32, Custom);
947    setOperationAction(ISD::MULHU,              MVT::v8i16, Legal);
948    setOperationAction(ISD::MULHS,              MVT::v8i16, Legal);
949    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
950    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
951    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
952    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
953    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
954    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
955    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
956    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
957    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
958    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
959    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
960    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
961
962    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
963    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
964    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
965    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
966
967    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
968    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
969    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
970    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
971    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
972
973    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
974    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
975      MVT VT = (MVT::SimpleValueType)i;
976      // Do not attempt to custom lower non-power-of-2 vectors
977      if (!isPowerOf2_32(VT.getVectorNumElements()))
978        continue;
979      // Do not attempt to custom lower non-128-bit vectors
980      if (!VT.is128BitVector())
981        continue;
982      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
983      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
984      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
985    }
986
987    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
988    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
989    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
990    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
991    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
992    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
993
994    if (Subtarget->is64Bit()) {
995      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
996      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
997    }
998
999    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
1000    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
1001      MVT VT = (MVT::SimpleValueType)i;
1002
1003      // Do not attempt to promote non-128-bit vectors
1004      if (!VT.is128BitVector())
1005        continue;
1006
1007      setOperationAction(ISD::AND,    VT, Promote);
1008      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
1009      setOperationAction(ISD::OR,     VT, Promote);
1010      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
1011      setOperationAction(ISD::XOR,    VT, Promote);
1012      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
1013      setOperationAction(ISD::LOAD,   VT, Promote);
1014      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
1015      setOperationAction(ISD::SELECT, VT, Promote);
1016      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
1017    }
1018
1019    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1020
1021    // Custom lower v2i64 and v2f64 selects.
1022    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
1023    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
1024    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
1025    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
1026
1027    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
1028    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
1029
1030    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
1031    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
1032    // As there is no 64-bit GPR available, we need build a special custom
1033    // sequence to convert from v2i32 to v2f32.
1034    if (!Subtarget->is64Bit())
1035      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
1036
1037    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
1038    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
1039
1040    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
1041
1042    setOperationAction(ISD::BITCAST,            MVT::v2i32, Custom);
1043    setOperationAction(ISD::BITCAST,            MVT::v4i16, Custom);
1044    setOperationAction(ISD::BITCAST,            MVT::v8i8,  Custom);
1045  }
1046
1047  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE41()) {
1048    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
1049    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
1050    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
1051    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
1052    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
1053    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
1054    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
1055    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
1056    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
1057    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
1058
1059    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
1060    setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
1061    setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
1062    setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
1063    setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
1064    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
1065    setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
1066    setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
1067    setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
1068    setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
1069
1070    // FIXME: Do we need to handle scalar-to-vector here?
1071    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
1072
1073    setOperationAction(ISD::VSELECT,            MVT::v2f64, Custom);
1074    setOperationAction(ISD::VSELECT,            MVT::v2i64, Custom);
1075    setOperationAction(ISD::VSELECT,            MVT::v4i32, Custom);
1076    setOperationAction(ISD::VSELECT,            MVT::v4f32, Custom);
1077    setOperationAction(ISD::VSELECT,            MVT::v8i16, Custom);
1078    // There is no BLENDI for byte vectors. We don't need to custom lower
1079    // some vselects for now.
1080    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
1081
1082    // i8 and i16 vectors are custom , because the source register and source
1083    // source memory operand types are not the same width.  f32 vectors are
1084    // custom since the immediate controlling the insert encodes additional
1085    // information.
1086    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1087    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
1088    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
1089    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
1090
1091    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1092    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1093    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1094    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1095
1096    // FIXME: these should be Legal but thats only for the case where
1097    // the index is constant.  For now custom expand to deal with that.
1098    if (Subtarget->is64Bit()) {
1099      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1100      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1101    }
1102  }
1103
1104  if (Subtarget->hasSSE2()) {
1105    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1106    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1107
1108    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1109    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1110
1111    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1112    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1113
1114    // In the customized shift lowering, the legal cases in AVX2 will be
1115    // recognized.
1116    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
1117    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
1118
1119    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
1120    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
1121
1122    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
1123  }
1124
1125  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1126    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1127    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1128    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1129    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1130    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1131    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1132
1133    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1134    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1135    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1136
1137    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1138    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1139    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1140    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1141    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1142    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1143    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1144    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1145    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1146    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1147    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1148    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1149
1150    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1151    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1152    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1153    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1154    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1155    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1156    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1157    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1158    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1159    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1160    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1161    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1162
1163    // (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted
1164    // even though v8i16 is a legal type.
1165    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Promote);
1166    setOperationAction(ISD::FP_TO_UINT,         MVT::v8i16, Promote);
1167    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1168
1169    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i16, Promote);
1170    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1171    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1172
1173    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1174    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1175
1176    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1177
1178    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1179    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1180
1181    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1182    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1183
1184    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1185    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1186
1187    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1188    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1189    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1190    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1191
1192    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1193    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1194    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1195
1196    setOperationAction(ISD::VSELECT,           MVT::v4f64, Custom);
1197    setOperationAction(ISD::VSELECT,           MVT::v4i64, Custom);
1198    setOperationAction(ISD::VSELECT,           MVT::v8i32, Custom);
1199    setOperationAction(ISD::VSELECT,           MVT::v8f32, Custom);
1200
1201    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1202    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1203    setOperationAction(ISD::SIGN_EXTEND,       MVT::v16i16, Custom);
1204    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1205    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1206    setOperationAction(ISD::ZERO_EXTEND,       MVT::v16i16, Custom);
1207    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1208    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1209    setOperationAction(ISD::ANY_EXTEND,        MVT::v16i16, Custom);
1210    setOperationAction(ISD::TRUNCATE,          MVT::v16i8, Custom);
1211    setOperationAction(ISD::TRUNCATE,          MVT::v8i16, Custom);
1212    setOperationAction(ISD::TRUNCATE,          MVT::v4i32, Custom);
1213
1214    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1215      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1216      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1217      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1218      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1219      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1220      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1221    }
1222
1223    if (Subtarget->hasInt256()) {
1224      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1225      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1226      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1227      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1228
1229      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1230      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1231      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1232      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1233
1234      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1235      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1236      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1237      // Don't lower v32i8 because there is no 128-bit byte mul
1238
1239      setOperationAction(ISD::UMUL_LOHI,       MVT::v8i32, Custom);
1240      setOperationAction(ISD::SMUL_LOHI,       MVT::v8i32, Custom);
1241      setOperationAction(ISD::MULHU,           MVT::v16i16, Legal);
1242      setOperationAction(ISD::MULHS,           MVT::v16i16, Legal);
1243
1244      setOperationAction(ISD::VSELECT,         MVT::v16i16, Custom);
1245      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1246    } else {
1247      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1248      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1249      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1250      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1251
1252      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1253      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1254      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1255      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1256
1257      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1258      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1259      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1260      // Don't lower v32i8 because there is no 128-bit byte mul
1261    }
1262
1263    // In the customized shift lowering, the legal cases in AVX2 will be
1264    // recognized.
1265    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1266    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1267
1268    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1269    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1270
1271    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1272
1273    // Custom lower several nodes for 256-bit types.
1274    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1275             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1276      MVT VT = (MVT::SimpleValueType)i;
1277
1278      // Extract subvector is special because the value type
1279      // (result) is 128-bit but the source is 256-bit wide.
1280      if (VT.is128BitVector())
1281        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1282
1283      // Do not attempt to custom lower other non-256-bit vectors
1284      if (!VT.is256BitVector())
1285        continue;
1286
1287      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1288      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1289      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1290      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1291      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1292      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1293      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1294    }
1295
1296    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1297    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1298      MVT VT = (MVT::SimpleValueType)i;
1299
1300      // Do not attempt to promote non-256-bit vectors
1301      if (!VT.is256BitVector())
1302        continue;
1303
1304      setOperationAction(ISD::AND,    VT, Promote);
1305      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1306      setOperationAction(ISD::OR,     VT, Promote);
1307      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1308      setOperationAction(ISD::XOR,    VT, Promote);
1309      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1310      setOperationAction(ISD::LOAD,   VT, Promote);
1311      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1312      setOperationAction(ISD::SELECT, VT, Promote);
1313      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1314    }
1315  }
1316
1317  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512()) {
1318    addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
1319    addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
1320    addRegisterClass(MVT::v8i64,  &X86::VR512RegClass);
1321    addRegisterClass(MVT::v8f64,  &X86::VR512RegClass);
1322
1323    addRegisterClass(MVT::i1,     &X86::VK1RegClass);
1324    addRegisterClass(MVT::v8i1,   &X86::VK8RegClass);
1325    addRegisterClass(MVT::v16i1,  &X86::VK16RegClass);
1326
1327    setOperationAction(ISD::BR_CC,              MVT::i1,    Expand);
1328    setOperationAction(ISD::SETCC,              MVT::i1,    Custom);
1329    setOperationAction(ISD::XOR,                MVT::i1,    Legal);
1330    setOperationAction(ISD::OR,                 MVT::i1,    Legal);
1331    setOperationAction(ISD::AND,                MVT::i1,    Legal);
1332    setLoadExtAction(ISD::EXTLOAD,              MVT::v8f32, Legal);
1333    setOperationAction(ISD::LOAD,               MVT::v16f32, Legal);
1334    setOperationAction(ISD::LOAD,               MVT::v8f64, Legal);
1335    setOperationAction(ISD::LOAD,               MVT::v8i64, Legal);
1336    setOperationAction(ISD::LOAD,               MVT::v16i32, Legal);
1337    setOperationAction(ISD::LOAD,               MVT::v16i1, Legal);
1338
1339    setOperationAction(ISD::FADD,               MVT::v16f32, Legal);
1340    setOperationAction(ISD::FSUB,               MVT::v16f32, Legal);
1341    setOperationAction(ISD::FMUL,               MVT::v16f32, Legal);
1342    setOperationAction(ISD::FDIV,               MVT::v16f32, Legal);
1343    setOperationAction(ISD::FSQRT,              MVT::v16f32, Legal);
1344    setOperationAction(ISD::FNEG,               MVT::v16f32, Custom);
1345
1346    setOperationAction(ISD::FADD,               MVT::v8f64, Legal);
1347    setOperationAction(ISD::FSUB,               MVT::v8f64, Legal);
1348    setOperationAction(ISD::FMUL,               MVT::v8f64, Legal);
1349    setOperationAction(ISD::FDIV,               MVT::v8f64, Legal);
1350    setOperationAction(ISD::FSQRT,              MVT::v8f64, Legal);
1351    setOperationAction(ISD::FNEG,               MVT::v8f64, Custom);
1352    setOperationAction(ISD::FMA,                MVT::v8f64, Legal);
1353    setOperationAction(ISD::FMA,                MVT::v16f32, Legal);
1354
1355    setOperationAction(ISD::FP_TO_SINT,         MVT::i32, Legal);
1356    setOperationAction(ISD::FP_TO_UINT,         MVT::i32, Legal);
1357    setOperationAction(ISD::SINT_TO_FP,         MVT::i32, Legal);
1358    setOperationAction(ISD::UINT_TO_FP,         MVT::i32, Legal);
1359    if (Subtarget->is64Bit()) {
1360      setOperationAction(ISD::FP_TO_UINT,       MVT::i64, Legal);
1361      setOperationAction(ISD::FP_TO_SINT,       MVT::i64, Legal);
1362      setOperationAction(ISD::SINT_TO_FP,       MVT::i64, Legal);
1363      setOperationAction(ISD::UINT_TO_FP,       MVT::i64, Legal);
1364    }
1365    setOperationAction(ISD::FP_TO_SINT,         MVT::v16i32, Legal);
1366    setOperationAction(ISD::FP_TO_UINT,         MVT::v16i32, Legal);
1367    setOperationAction(ISD::FP_TO_UINT,         MVT::v8i32, Legal);
1368    setOperationAction(ISD::FP_TO_UINT,         MVT::v4i32, Legal);
1369    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i32, Legal);
1370    setOperationAction(ISD::UINT_TO_FP,         MVT::v16i32, Legal);
1371    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i32, Legal);
1372    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i32, Legal);
1373    setOperationAction(ISD::FP_ROUND,           MVT::v8f32, Legal);
1374    setOperationAction(ISD::FP_EXTEND,          MVT::v8f32, Legal);
1375
1376    setOperationAction(ISD::TRUNCATE,           MVT::i1, Custom);
1377    setOperationAction(ISD::TRUNCATE,           MVT::v16i8, Custom);
1378    setOperationAction(ISD::TRUNCATE,           MVT::v8i32, Custom);
1379    setOperationAction(ISD::TRUNCATE,           MVT::v8i1, Custom);
1380    setOperationAction(ISD::TRUNCATE,           MVT::v16i1, Custom);
1381    setOperationAction(ISD::TRUNCATE,           MVT::v16i16, Custom);
1382    setOperationAction(ISD::ZERO_EXTEND,        MVT::v16i32, Custom);
1383    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i64, Custom);
1384    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i32, Custom);
1385    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i64, Custom);
1386    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i8, Custom);
1387    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i16, Custom);
1388    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i16, Custom);
1389
1390    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f64,  Custom);
1391    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i64,  Custom);
1392    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16f32,  Custom);
1393    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i32,  Custom);
1394    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i1,    Custom);
1395    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i1, Legal);
1396
1397    setOperationAction(ISD::SETCC,              MVT::v16i1, Custom);
1398    setOperationAction(ISD::SETCC,              MVT::v8i1, Custom);
1399
1400    setOperationAction(ISD::MUL,              MVT::v8i64, Custom);
1401
1402    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i1,  Custom);
1403    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i1, Custom);
1404    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i1, Custom);
1405    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i1, Custom);
1406    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i1, Custom);
1407    setOperationAction(ISD::BUILD_VECTOR,       MVT::v16i1, Custom);
1408    setOperationAction(ISD::SELECT,             MVT::v8f64, Custom);
1409    setOperationAction(ISD::SELECT,             MVT::v8i64, Custom);
1410    setOperationAction(ISD::SELECT,             MVT::v16f32, Custom);
1411
1412    setOperationAction(ISD::ADD,                MVT::v8i64, Legal);
1413    setOperationAction(ISD::ADD,                MVT::v16i32, Legal);
1414
1415    setOperationAction(ISD::SUB,                MVT::v8i64, Legal);
1416    setOperationAction(ISD::SUB,                MVT::v16i32, Legal);
1417
1418    setOperationAction(ISD::MUL,                MVT::v16i32, Legal);
1419
1420    setOperationAction(ISD::SRL,                MVT::v8i64, Custom);
1421    setOperationAction(ISD::SRL,                MVT::v16i32, Custom);
1422
1423    setOperationAction(ISD::SHL,                MVT::v8i64, Custom);
1424    setOperationAction(ISD::SHL,                MVT::v16i32, Custom);
1425
1426    setOperationAction(ISD::SRA,                MVT::v8i64, Custom);
1427    setOperationAction(ISD::SRA,                MVT::v16i32, Custom);
1428
1429    setOperationAction(ISD::AND,                MVT::v8i64, Legal);
1430    setOperationAction(ISD::OR,                 MVT::v8i64, Legal);
1431    setOperationAction(ISD::XOR,                MVT::v8i64, Legal);
1432    setOperationAction(ISD::AND,                MVT::v16i32, Legal);
1433    setOperationAction(ISD::OR,                 MVT::v16i32, Legal);
1434    setOperationAction(ISD::XOR,                MVT::v16i32, Legal);
1435
1436    // Custom lower several nodes.
1437    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1438             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1439      MVT VT = (MVT::SimpleValueType)i;
1440
1441      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1442      // Extract subvector is special because the value type
1443      // (result) is 256/128-bit but the source is 512-bit wide.
1444      if (VT.is128BitVector() || VT.is256BitVector())
1445        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1446
1447      if (VT.getVectorElementType() == MVT::i1)
1448        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
1449
1450      // Do not attempt to custom lower other non-512-bit vectors
1451      if (!VT.is512BitVector())
1452        continue;
1453
1454      if ( EltSize >= 32) {
1455        setOperationAction(ISD::VECTOR_SHUFFLE,      VT, Custom);
1456        setOperationAction(ISD::INSERT_VECTOR_ELT,   VT, Custom);
1457        setOperationAction(ISD::BUILD_VECTOR,        VT, Custom);
1458        setOperationAction(ISD::VSELECT,             VT, Legal);
1459        setOperationAction(ISD::EXTRACT_VECTOR_ELT,  VT, Custom);
1460        setOperationAction(ISD::SCALAR_TO_VECTOR,    VT, Custom);
1461        setOperationAction(ISD::INSERT_SUBVECTOR,    VT, Custom);
1462      }
1463    }
1464    for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
1465      MVT VT = (MVT::SimpleValueType)i;
1466
1467      // Do not attempt to promote non-256-bit vectors
1468      if (!VT.is512BitVector())
1469        continue;
1470
1471      setOperationAction(ISD::SELECT, VT, Promote);
1472      AddPromotedToType (ISD::SELECT, VT, MVT::v8i64);
1473    }
1474  }// has  AVX-512
1475
1476  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1477  // of this type with custom code.
1478  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1479           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1480    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1481                       Custom);
1482  }
1483
1484  // We want to custom lower some of our intrinsics.
1485  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1486  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1487  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1488  if (!Subtarget->is64Bit())
1489    setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
1490
1491  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1492  // handle type legalization for these operations here.
1493  //
1494  // FIXME: We really should do custom legalization for addition and
1495  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1496  // than generic legalization for 64-bit multiplication-with-overflow, though.
1497  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1498    // Add/Sub/Mul with overflow operations are custom lowered.
1499    MVT VT = IntVTs[i];
1500    setOperationAction(ISD::SADDO, VT, Custom);
1501    setOperationAction(ISD::UADDO, VT, Custom);
1502    setOperationAction(ISD::SSUBO, VT, Custom);
1503    setOperationAction(ISD::USUBO, VT, Custom);
1504    setOperationAction(ISD::SMULO, VT, Custom);
1505    setOperationAction(ISD::UMULO, VT, Custom);
1506  }
1507
1508  // There are no 8-bit 3-address imul/mul instructions
1509  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1510  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1511
1512  if (!Subtarget->is64Bit()) {
1513    // These libcalls are not available in 32-bit.
1514    setLibcallName(RTLIB::SHL_I128, nullptr);
1515    setLibcallName(RTLIB::SRL_I128, nullptr);
1516    setLibcallName(RTLIB::SRA_I128, nullptr);
1517  }
1518
1519  // Combine sin / cos into one node or libcall if possible.
1520  if (Subtarget->hasSinCos()) {
1521    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1522    setLibcallName(RTLIB::SINCOS_F64, "sincos");
1523    if (Subtarget->isTargetDarwin()) {
1524      // For MacOSX, we don't want to the normal expansion of a libcall to
1525      // sincos. We want to issue a libcall to __sincos_stret to avoid memory
1526      // traffic.
1527      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1528      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1529    }
1530  }
1531
1532  if (Subtarget->isTargetWin64()) {
1533    setOperationAction(ISD::SDIV, MVT::i128, Custom);
1534    setOperationAction(ISD::UDIV, MVT::i128, Custom);
1535    setOperationAction(ISD::SREM, MVT::i128, Custom);
1536    setOperationAction(ISD::UREM, MVT::i128, Custom);
1537    setOperationAction(ISD::SDIVREM, MVT::i128, Custom);
1538    setOperationAction(ISD::UDIVREM, MVT::i128, Custom);
1539  }
1540
1541  // We have target-specific dag combine patterns for the following nodes:
1542  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1543  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1544  setTargetDAGCombine(ISD::VSELECT);
1545  setTargetDAGCombine(ISD::SELECT);
1546  setTargetDAGCombine(ISD::SHL);
1547  setTargetDAGCombine(ISD::SRA);
1548  setTargetDAGCombine(ISD::SRL);
1549  setTargetDAGCombine(ISD::OR);
1550  setTargetDAGCombine(ISD::AND);
1551  setTargetDAGCombine(ISD::ADD);
1552  setTargetDAGCombine(ISD::FADD);
1553  setTargetDAGCombine(ISD::FSUB);
1554  setTargetDAGCombine(ISD::FMA);
1555  setTargetDAGCombine(ISD::SUB);
1556  setTargetDAGCombine(ISD::LOAD);
1557  setTargetDAGCombine(ISD::STORE);
1558  setTargetDAGCombine(ISD::ZERO_EXTEND);
1559  setTargetDAGCombine(ISD::ANY_EXTEND);
1560  setTargetDAGCombine(ISD::SIGN_EXTEND);
1561  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1562  setTargetDAGCombine(ISD::TRUNCATE);
1563  setTargetDAGCombine(ISD::SINT_TO_FP);
1564  setTargetDAGCombine(ISD::SETCC);
1565  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1566  if (Subtarget->is64Bit())
1567    setTargetDAGCombine(ISD::MUL);
1568  setTargetDAGCombine(ISD::XOR);
1569
1570  computeRegisterProperties();
1571
1572  // On Darwin, -Os means optimize for size without hurting performance,
1573  // do not reduce the limit.
1574  MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1575  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1576  MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1577  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1578  MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1579  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1580  setPrefLoopAlignment(4); // 2^4 bytes.
1581
1582  // Predictable cmov don't hurt on atom because it's in-order.
1583  PredictableSelectIsExpensive = !Subtarget->isAtom();
1584
1585  setPrefFunctionAlignment(4); // 2^4 bytes.
1586}
1587
1588EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
1589  if (!VT.isVector())
1590    return Subtarget->hasAVX512() ? MVT::i1: MVT::i8;
1591
1592  if (Subtarget->hasAVX512())
1593    switch(VT.getVectorNumElements()) {
1594    case  8: return MVT::v8i1;
1595    case 16: return MVT::v16i1;
1596  }
1597
1598  return VT.changeVectorElementTypeToInteger();
1599}
1600
1601/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1602/// the desired ByVal argument alignment.
1603static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1604  if (MaxAlign == 16)
1605    return;
1606  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1607    if (VTy->getBitWidth() == 128)
1608      MaxAlign = 16;
1609  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1610    unsigned EltAlign = 0;
1611    getMaxByValAlign(ATy->getElementType(), EltAlign);
1612    if (EltAlign > MaxAlign)
1613      MaxAlign = EltAlign;
1614  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1615    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1616      unsigned EltAlign = 0;
1617      getMaxByValAlign(STy->getElementType(i), EltAlign);
1618      if (EltAlign > MaxAlign)
1619        MaxAlign = EltAlign;
1620      if (MaxAlign == 16)
1621        break;
1622    }
1623  }
1624}
1625
1626/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1627/// function arguments in the caller parameter area. For X86, aggregates
1628/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1629/// are at 4-byte boundaries.
1630unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1631  if (Subtarget->is64Bit()) {
1632    // Max of 8 and alignment of type.
1633    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1634    if (TyAlign > 8)
1635      return TyAlign;
1636    return 8;
1637  }
1638
1639  unsigned Align = 4;
1640  if (Subtarget->hasSSE1())
1641    getMaxByValAlign(Ty, Align);
1642  return Align;
1643}
1644
1645/// getOptimalMemOpType - Returns the target specific optimal type for load
1646/// and store operations as a result of memset, memcpy, and memmove
1647/// lowering. If DstAlign is zero that means it's safe to destination
1648/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1649/// means there isn't a need to check it against alignment requirement,
1650/// probably because the source does not need to be loaded. If 'IsMemset' is
1651/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1652/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1653/// source is constant so it does not need to be loaded.
1654/// It returns EVT::Other if the type should be determined using generic
1655/// target-independent logic.
1656EVT
1657X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1658                                       unsigned DstAlign, unsigned SrcAlign,
1659                                       bool IsMemset, bool ZeroMemset,
1660                                       bool MemcpyStrSrc,
1661                                       MachineFunction &MF) const {
1662  const Function *F = MF.getFunction();
1663  if ((!IsMemset || ZeroMemset) &&
1664      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1665                                       Attribute::NoImplicitFloat)) {
1666    if (Size >= 16 &&
1667        (Subtarget->isUnalignedMemAccessFast() ||
1668         ((DstAlign == 0 || DstAlign >= 16) &&
1669          (SrcAlign == 0 || SrcAlign >= 16)))) {
1670      if (Size >= 32) {
1671        if (Subtarget->hasInt256())
1672          return MVT::v8i32;
1673        if (Subtarget->hasFp256())
1674          return MVT::v8f32;
1675      }
1676      if (Subtarget->hasSSE2())
1677        return MVT::v4i32;
1678      if (Subtarget->hasSSE1())
1679        return MVT::v4f32;
1680    } else if (!MemcpyStrSrc && Size >= 8 &&
1681               !Subtarget->is64Bit() &&
1682               Subtarget->hasSSE2()) {
1683      // Do not use f64 to lower memcpy if source is string constant. It's
1684      // better to use i32 to avoid the loads.
1685      return MVT::f64;
1686    }
1687  }
1688  if (Subtarget->is64Bit() && Size >= 8)
1689    return MVT::i64;
1690  return MVT::i32;
1691}
1692
1693bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1694  if (VT == MVT::f32)
1695    return X86ScalarSSEf32;
1696  else if (VT == MVT::f64)
1697    return X86ScalarSSEf64;
1698  return true;
1699}
1700
1701bool
1702X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
1703                                                 unsigned,
1704                                                 bool *Fast) const {
1705  if (Fast)
1706    *Fast = Subtarget->isUnalignedMemAccessFast();
1707  return true;
1708}
1709
1710/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1711/// current function.  The returned value is a member of the
1712/// MachineJumpTableInfo::JTEntryKind enum.
1713unsigned X86TargetLowering::getJumpTableEncoding() const {
1714  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1715  // symbol.
1716  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1717      Subtarget->isPICStyleGOT())
1718    return MachineJumpTableInfo::EK_Custom32;
1719
1720  // Otherwise, use the normal jump table encoding heuristics.
1721  return TargetLowering::getJumpTableEncoding();
1722}
1723
1724const MCExpr *
1725X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1726                                             const MachineBasicBlock *MBB,
1727                                             unsigned uid,MCContext &Ctx) const{
1728  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1729         Subtarget->isPICStyleGOT());
1730  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1731  // entries.
1732  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1733                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1734}
1735
1736/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1737/// jumptable.
1738SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1739                                                    SelectionDAG &DAG) const {
1740  if (!Subtarget->is64Bit())
1741    // This doesn't have SDLoc associated with it, but is not really the
1742    // same as a Register.
1743    return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy());
1744  return Table;
1745}
1746
1747/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1748/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1749/// MCExpr.
1750const MCExpr *X86TargetLowering::
1751getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1752                             MCContext &Ctx) const {
1753  // X86-64 uses RIP relative addressing based on the jump table label.
1754  if (Subtarget->isPICStyleRIPRel())
1755    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1756
1757  // Otherwise, the reference is relative to the PIC base.
1758  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1759}
1760
1761// FIXME: Why this routine is here? Move to RegInfo!
1762std::pair<const TargetRegisterClass*, uint8_t>
1763X86TargetLowering::findRepresentativeClass(MVT VT) const{
1764  const TargetRegisterClass *RRC = nullptr;
1765  uint8_t Cost = 1;
1766  switch (VT.SimpleTy) {
1767  default:
1768    return TargetLowering::findRepresentativeClass(VT);
1769  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1770    RRC = Subtarget->is64Bit() ?
1771      (const TargetRegisterClass*)&X86::GR64RegClass :
1772      (const TargetRegisterClass*)&X86::GR32RegClass;
1773    break;
1774  case MVT::x86mmx:
1775    RRC = &X86::VR64RegClass;
1776    break;
1777  case MVT::f32: case MVT::f64:
1778  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1779  case MVT::v4f32: case MVT::v2f64:
1780  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1781  case MVT::v4f64:
1782    RRC = &X86::VR128RegClass;
1783    break;
1784  }
1785  return std::make_pair(RRC, Cost);
1786}
1787
1788bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1789                                               unsigned &Offset) const {
1790  if (!Subtarget->isTargetLinux())
1791    return false;
1792
1793  if (Subtarget->is64Bit()) {
1794    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1795    Offset = 0x28;
1796    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1797      AddressSpace = 256;
1798    else
1799      AddressSpace = 257;
1800  } else {
1801    // %gs:0x14 on i386
1802    Offset = 0x14;
1803    AddressSpace = 256;
1804  }
1805  return true;
1806}
1807
1808bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
1809                                            unsigned DestAS) const {
1810  assert(SrcAS != DestAS && "Expected different address spaces!");
1811
1812  return SrcAS < 256 && DestAS < 256;
1813}
1814
1815//===----------------------------------------------------------------------===//
1816//               Return Value Calling Convention Implementation
1817//===----------------------------------------------------------------------===//
1818
1819#include "X86GenCallingConv.inc"
1820
1821bool
1822X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1823                                  MachineFunction &MF, bool isVarArg,
1824                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1825                        LLVMContext &Context) const {
1826  SmallVector<CCValAssign, 16> RVLocs;
1827  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1828                 RVLocs, Context);
1829  return CCInfo.CheckReturn(Outs, RetCC_X86);
1830}
1831
1832const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
1833  static const MCPhysReg ScratchRegs[] = { X86::R11, 0 };
1834  return ScratchRegs;
1835}
1836
1837SDValue
1838X86TargetLowering::LowerReturn(SDValue Chain,
1839                               CallingConv::ID CallConv, bool isVarArg,
1840                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1841                               const SmallVectorImpl<SDValue> &OutVals,
1842                               SDLoc dl, SelectionDAG &DAG) const {
1843  MachineFunction &MF = DAG.getMachineFunction();
1844  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1845
1846  SmallVector<CCValAssign, 16> RVLocs;
1847  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1848                 RVLocs, *DAG.getContext());
1849  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1850
1851  SDValue Flag;
1852  SmallVector<SDValue, 6> RetOps;
1853  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1854  // Operand #1 = Bytes To Pop
1855  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1856                   MVT::i16));
1857
1858  // Copy the result values into the output registers.
1859  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1860    CCValAssign &VA = RVLocs[i];
1861    assert(VA.isRegLoc() && "Can only return in registers!");
1862    SDValue ValToCopy = OutVals[i];
1863    EVT ValVT = ValToCopy.getValueType();
1864
1865    // Promote values to the appropriate types
1866    if (VA.getLocInfo() == CCValAssign::SExt)
1867      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1868    else if (VA.getLocInfo() == CCValAssign::ZExt)
1869      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1870    else if (VA.getLocInfo() == CCValAssign::AExt)
1871      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1872    else if (VA.getLocInfo() == CCValAssign::BCvt)
1873      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1874
1875    assert(VA.getLocInfo() != CCValAssign::FPExt &&
1876           "Unexpected FP-extend for return value.");
1877
1878    // If this is x86-64, and we disabled SSE, we can't return FP values,
1879    // or SSE or MMX vectors.
1880    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1881         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1882          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1883      report_fatal_error("SSE register return with SSE disabled");
1884    }
1885    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1886    // llvm-gcc has never done it right and no one has noticed, so this
1887    // should be OK for now.
1888    if (ValVT == MVT::f64 &&
1889        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1890      report_fatal_error("SSE2 register return with SSE2 disabled");
1891
1892    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1893    // the RET instruction and handled by the FP Stackifier.
1894    if (VA.getLocReg() == X86::ST0 ||
1895        VA.getLocReg() == X86::ST1) {
1896      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1897      // change the value to the FP stack register class.
1898      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1899        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1900      RetOps.push_back(ValToCopy);
1901      // Don't emit a copytoreg.
1902      continue;
1903    }
1904
1905    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1906    // which is returned in RAX / RDX.
1907    if (Subtarget->is64Bit()) {
1908      if (ValVT == MVT::x86mmx) {
1909        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1910          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1911          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1912                                  ValToCopy);
1913          // If we don't have SSE2 available, convert to v4f32 so the generated
1914          // register is legal.
1915          if (!Subtarget->hasSSE2())
1916            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1917        }
1918      }
1919    }
1920
1921    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1922    Flag = Chain.getValue(1);
1923    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1924  }
1925
1926  // The x86-64 ABIs require that for returning structs by value we copy
1927  // the sret argument into %rax/%eax (depending on ABI) for the return.
1928  // Win32 requires us to put the sret argument to %eax as well.
1929  // We saved the argument into a virtual register in the entry block,
1930  // so now we copy the value out and into %rax/%eax.
1931  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr() &&
1932      (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) {
1933    MachineFunction &MF = DAG.getMachineFunction();
1934    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1935    unsigned Reg = FuncInfo->getSRetReturnReg();
1936    assert(Reg &&
1937           "SRetReturnReg should have been set in LowerFormalArguments().");
1938    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1939
1940    unsigned RetValReg
1941        = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ?
1942          X86::RAX : X86::EAX;
1943    Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
1944    Flag = Chain.getValue(1);
1945
1946    // RAX/EAX now acts like a return value.
1947    RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy()));
1948  }
1949
1950  RetOps[0] = Chain;  // Update chain.
1951
1952  // Add the flag if we have it.
1953  if (Flag.getNode())
1954    RetOps.push_back(Flag);
1955
1956  return DAG.getNode(X86ISD::RET_FLAG, dl, MVT::Other, RetOps);
1957}
1958
1959bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1960  if (N->getNumValues() != 1)
1961    return false;
1962  if (!N->hasNUsesOfValue(1, 0))
1963    return false;
1964
1965  SDValue TCChain = Chain;
1966  SDNode *Copy = *N->use_begin();
1967  if (Copy->getOpcode() == ISD::CopyToReg) {
1968    // If the copy has a glue operand, we conservatively assume it isn't safe to
1969    // perform a tail call.
1970    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1971      return false;
1972    TCChain = Copy->getOperand(0);
1973  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1974    return false;
1975
1976  bool HasRet = false;
1977  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1978       UI != UE; ++UI) {
1979    if (UI->getOpcode() != X86ISD::RET_FLAG)
1980      return false;
1981    HasRet = true;
1982  }
1983
1984  if (!HasRet)
1985    return false;
1986
1987  Chain = TCChain;
1988  return true;
1989}
1990
1991MVT
1992X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
1993                                            ISD::NodeType ExtendKind) const {
1994  MVT ReturnMVT;
1995  // TODO: Is this also valid on 32-bit?
1996  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1997    ReturnMVT = MVT::i8;
1998  else
1999    ReturnMVT = MVT::i32;
2000
2001  MVT MinVT = getRegisterType(ReturnMVT);
2002  return VT.bitsLT(MinVT) ? MinVT : VT;
2003}
2004
2005/// LowerCallResult - Lower the result values of a call into the
2006/// appropriate copies out of appropriate physical registers.
2007///
2008SDValue
2009X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2010                                   CallingConv::ID CallConv, bool isVarArg,
2011                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2012                                   SDLoc dl, SelectionDAG &DAG,
2013                                   SmallVectorImpl<SDValue> &InVals) const {
2014
2015  // Assign locations to each value returned by this call.
2016  SmallVector<CCValAssign, 16> RVLocs;
2017  bool Is64Bit = Subtarget->is64Bit();
2018  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2019                 getTargetMachine(), RVLocs, *DAG.getContext());
2020  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2021
2022  // Copy all of the result registers out of their specified physreg.
2023  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2024    CCValAssign &VA = RVLocs[i];
2025    EVT CopyVT = VA.getValVT();
2026
2027    // If this is x86-64, and we disabled SSE, we can't return FP values
2028    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
2029        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
2030      report_fatal_error("SSE register return with SSE disabled");
2031    }
2032
2033    SDValue Val;
2034
2035    // If this is a call to a function that returns an fp value on the floating
2036    // point stack, we must guarantee the value is popped from the stack, so
2037    // a CopyFromReg is not good enough - the copy instruction may be eliminated
2038    // if the return value is not used. We use the FpPOP_RETVAL instruction
2039    // instead.
2040    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
2041      // If we prefer to use the value in xmm registers, copy it out as f80 and
2042      // use a truncate to move it from fp stack reg to xmm reg.
2043      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
2044      SDValue Ops[] = { Chain, InFlag };
2045      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
2046                                         MVT::Other, MVT::Glue, Ops), 1);
2047      Val = Chain.getValue(0);
2048
2049      // Round the f80 to the right size, which also moves it to the appropriate
2050      // xmm register.
2051      if (CopyVT != VA.getValVT())
2052        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
2053                          // This truncation won't change the value.
2054                          DAG.getIntPtrConstant(1));
2055    } else {
2056      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
2057                                 CopyVT, InFlag).getValue(1);
2058      Val = Chain.getValue(0);
2059    }
2060    InFlag = Chain.getValue(2);
2061    InVals.push_back(Val);
2062  }
2063
2064  return Chain;
2065}
2066
2067//===----------------------------------------------------------------------===//
2068//                C & StdCall & Fast Calling Convention implementation
2069//===----------------------------------------------------------------------===//
2070//  StdCall calling convention seems to be standard for many Windows' API
2071//  routines and around. It differs from C calling convention just a little:
2072//  callee should clean up the stack, not caller. Symbols should be also
2073//  decorated in some fancy way :) It doesn't support any vector arguments.
2074//  For info on fast calling convention see Fast Calling Convention (tail call)
2075//  implementation LowerX86_32FastCCCallTo.
2076
2077/// CallIsStructReturn - Determines whether a call uses struct return
2078/// semantics.
2079enum StructReturnType {
2080  NotStructReturn,
2081  RegStructReturn,
2082  StackStructReturn
2083};
2084static StructReturnType
2085callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
2086  if (Outs.empty())
2087    return NotStructReturn;
2088
2089  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
2090  if (!Flags.isSRet())
2091    return NotStructReturn;
2092  if (Flags.isInReg())
2093    return RegStructReturn;
2094  return StackStructReturn;
2095}
2096
2097/// ArgsAreStructReturn - Determines whether a function uses struct
2098/// return semantics.
2099static StructReturnType
2100argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
2101  if (Ins.empty())
2102    return NotStructReturn;
2103
2104  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
2105  if (!Flags.isSRet())
2106    return NotStructReturn;
2107  if (Flags.isInReg())
2108    return RegStructReturn;
2109  return StackStructReturn;
2110}
2111
2112/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2113/// by "Src" to address "Dst" with size and alignment information specified by
2114/// the specific parameter attribute. The copy will be passed as a byval
2115/// function parameter.
2116static SDValue
2117CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2118                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2119                          SDLoc dl) {
2120  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2121
2122  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2123                       /*isVolatile*/false, /*AlwaysInline=*/true,
2124                       MachinePointerInfo(), MachinePointerInfo());
2125}
2126
2127/// IsTailCallConvention - Return true if the calling convention is one that
2128/// supports tail call optimization.
2129static bool IsTailCallConvention(CallingConv::ID CC) {
2130  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2131          CC == CallingConv::HiPE);
2132}
2133
2134/// \brief Return true if the calling convention is a C calling convention.
2135static bool IsCCallConvention(CallingConv::ID CC) {
2136  return (CC == CallingConv::C || CC == CallingConv::X86_64_Win64 ||
2137          CC == CallingConv::X86_64_SysV);
2138}
2139
2140bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2141  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
2142    return false;
2143
2144  CallSite CS(CI);
2145  CallingConv::ID CalleeCC = CS.getCallingConv();
2146  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
2147    return false;
2148
2149  return true;
2150}
2151
2152/// FuncIsMadeTailCallSafe - Return true if the function is being made into
2153/// a tailcall target by changing its ABI.
2154static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
2155                                   bool GuaranteedTailCallOpt) {
2156  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
2157}
2158
2159SDValue
2160X86TargetLowering::LowerMemArgument(SDValue Chain,
2161                                    CallingConv::ID CallConv,
2162                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2163                                    SDLoc dl, SelectionDAG &DAG,
2164                                    const CCValAssign &VA,
2165                                    MachineFrameInfo *MFI,
2166                                    unsigned i) const {
2167  // Create the nodes corresponding to a load from this parameter slot.
2168  ISD::ArgFlagsTy Flags = Ins[i].Flags;
2169  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
2170                              getTargetMachine().Options.GuaranteedTailCallOpt);
2171  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
2172  EVT ValVT;
2173
2174  // If value is passed by pointer we have address passed instead of the value
2175  // itself.
2176  if (VA.getLocInfo() == CCValAssign::Indirect)
2177    ValVT = VA.getLocVT();
2178  else
2179    ValVT = VA.getValVT();
2180
2181  // FIXME: For now, all byval parameter objects are marked mutable. This can be
2182  // changed with more analysis.
2183  // In case of tail call optimization mark all arguments mutable. Since they
2184  // could be overwritten by lowering of arguments in case of a tail call.
2185  if (Flags.isByVal()) {
2186    unsigned Bytes = Flags.getByValSize();
2187    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2188    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
2189    return DAG.getFrameIndex(FI, getPointerTy());
2190  } else {
2191    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2192                                    VA.getLocMemOffset(), isImmutable);
2193    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2194    return DAG.getLoad(ValVT, dl, Chain, FIN,
2195                       MachinePointerInfo::getFixedStack(FI),
2196                       false, false, false, 0);
2197  }
2198}
2199
2200SDValue
2201X86TargetLowering::LowerFormalArguments(SDValue Chain,
2202                                        CallingConv::ID CallConv,
2203                                        bool isVarArg,
2204                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2205                                        SDLoc dl,
2206                                        SelectionDAG &DAG,
2207                                        SmallVectorImpl<SDValue> &InVals)
2208                                          const {
2209  MachineFunction &MF = DAG.getMachineFunction();
2210  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2211
2212  const Function* Fn = MF.getFunction();
2213  if (Fn->hasExternalLinkage() &&
2214      Subtarget->isTargetCygMing() &&
2215      Fn->getName() == "main")
2216    FuncInfo->setForceFramePointer(true);
2217
2218  MachineFrameInfo *MFI = MF.getFrameInfo();
2219  bool Is64Bit = Subtarget->is64Bit();
2220  bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
2221
2222  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2223         "Var args not supported with calling convention fastcc, ghc or hipe");
2224
2225  // Assign locations to all of the incoming arguments.
2226  SmallVector<CCValAssign, 16> ArgLocs;
2227  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2228                 ArgLocs, *DAG.getContext());
2229
2230  // Allocate shadow area for Win64
2231  if (IsWin64)
2232    CCInfo.AllocateStack(32, 8);
2233
2234  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
2235
2236  unsigned LastVal = ~0U;
2237  SDValue ArgValue;
2238  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2239    CCValAssign &VA = ArgLocs[i];
2240    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
2241    // places.
2242    assert(VA.getValNo() != LastVal &&
2243           "Don't support value assigned to multiple locs yet");
2244    (void)LastVal;
2245    LastVal = VA.getValNo();
2246
2247    if (VA.isRegLoc()) {
2248      EVT RegVT = VA.getLocVT();
2249      const TargetRegisterClass *RC;
2250      if (RegVT == MVT::i32)
2251        RC = &X86::GR32RegClass;
2252      else if (Is64Bit && RegVT == MVT::i64)
2253        RC = &X86::GR64RegClass;
2254      else if (RegVT == MVT::f32)
2255        RC = &X86::FR32RegClass;
2256      else if (RegVT == MVT::f64)
2257        RC = &X86::FR64RegClass;
2258      else if (RegVT.is512BitVector())
2259        RC = &X86::VR512RegClass;
2260      else if (RegVT.is256BitVector())
2261        RC = &X86::VR256RegClass;
2262      else if (RegVT.is128BitVector())
2263        RC = &X86::VR128RegClass;
2264      else if (RegVT == MVT::x86mmx)
2265        RC = &X86::VR64RegClass;
2266      else if (RegVT == MVT::i1)
2267        RC = &X86::VK1RegClass;
2268      else if (RegVT == MVT::v8i1)
2269        RC = &X86::VK8RegClass;
2270      else if (RegVT == MVT::v16i1)
2271        RC = &X86::VK16RegClass;
2272      else
2273        llvm_unreachable("Unknown argument type!");
2274
2275      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2276      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2277
2278      // If this is an 8 or 16-bit value, it is really passed promoted to 32
2279      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
2280      // right size.
2281      if (VA.getLocInfo() == CCValAssign::SExt)
2282        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2283                               DAG.getValueType(VA.getValVT()));
2284      else if (VA.getLocInfo() == CCValAssign::ZExt)
2285        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2286                               DAG.getValueType(VA.getValVT()));
2287      else if (VA.getLocInfo() == CCValAssign::BCvt)
2288        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2289
2290      if (VA.isExtInLoc()) {
2291        // Handle MMX values passed in XMM regs.
2292        if (RegVT.isVector())
2293          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2294        else
2295          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2296      }
2297    } else {
2298      assert(VA.isMemLoc());
2299      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2300    }
2301
2302    // If value is passed via pointer - do a load.
2303    if (VA.getLocInfo() == CCValAssign::Indirect)
2304      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2305                             MachinePointerInfo(), false, false, false, 0);
2306
2307    InVals.push_back(ArgValue);
2308  }
2309
2310  if (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC()) {
2311    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2312      // The x86-64 ABIs require that for returning structs by value we copy
2313      // the sret argument into %rax/%eax (depending on ABI) for the return.
2314      // Win32 requires us to put the sret argument to %eax as well.
2315      // Save the argument into a virtual register so that we can access it
2316      // from the return points.
2317      if (Ins[i].Flags.isSRet()) {
2318        unsigned Reg = FuncInfo->getSRetReturnReg();
2319        if (!Reg) {
2320          MVT PtrTy = getPointerTy();
2321          Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
2322          FuncInfo->setSRetReturnReg(Reg);
2323        }
2324        SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
2325        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2326        break;
2327      }
2328    }
2329  }
2330
2331  unsigned StackSize = CCInfo.getNextStackOffset();
2332  // Align stack specially for tail calls.
2333  if (FuncIsMadeTailCallSafe(CallConv,
2334                             MF.getTarget().Options.GuaranteedTailCallOpt))
2335    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2336
2337  // If the function takes variable number of arguments, make a frame index for
2338  // the start of the first vararg value... for expansion of llvm.va_start.
2339  if (isVarArg) {
2340    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2341                    CallConv != CallingConv::X86_ThisCall)) {
2342      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2343    }
2344    if (Is64Bit) {
2345      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2346
2347      // FIXME: We should really autogenerate these arrays
2348      static const MCPhysReg GPR64ArgRegsWin64[] = {
2349        X86::RCX, X86::RDX, X86::R8,  X86::R9
2350      };
2351      static const MCPhysReg GPR64ArgRegs64Bit[] = {
2352        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2353      };
2354      static const MCPhysReg XMMArgRegs64Bit[] = {
2355        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2356        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2357      };
2358      const MCPhysReg *GPR64ArgRegs;
2359      unsigned NumXMMRegs = 0;
2360
2361      if (IsWin64) {
2362        // The XMM registers which might contain var arg parameters are shadowed
2363        // in their paired GPR.  So we only need to save the GPR to their home
2364        // slots.
2365        TotalNumIntRegs = 4;
2366        GPR64ArgRegs = GPR64ArgRegsWin64;
2367      } else {
2368        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2369        GPR64ArgRegs = GPR64ArgRegs64Bit;
2370
2371        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2372                                                TotalNumXMMRegs);
2373      }
2374      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2375                                                       TotalNumIntRegs);
2376
2377      bool NoImplicitFloatOps = Fn->getAttributes().
2378        hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
2379      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2380             "SSE register cannot be used when SSE is disabled!");
2381      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2382               NoImplicitFloatOps) &&
2383             "SSE register cannot be used when SSE is disabled!");
2384      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2385          !Subtarget->hasSSE1())
2386        // Kernel mode asks for SSE to be disabled, so don't push them
2387        // on the stack.
2388        TotalNumXMMRegs = 0;
2389
2390      if (IsWin64) {
2391        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2392        // Get to the caller-allocated home save location.  Add 8 to account
2393        // for the return address.
2394        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2395        FuncInfo->setRegSaveFrameIndex(
2396          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2397        // Fixup to set vararg frame on shadow area (4 x i64).
2398        if (NumIntRegs < 4)
2399          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2400      } else {
2401        // For X86-64, if there are vararg parameters that are passed via
2402        // registers, then we must store them to their spots on the stack so
2403        // they may be loaded by deferencing the result of va_next.
2404        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2405        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2406        FuncInfo->setRegSaveFrameIndex(
2407          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2408                               false));
2409      }
2410
2411      // Store the integer parameter registers.
2412      SmallVector<SDValue, 8> MemOps;
2413      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2414                                        getPointerTy());
2415      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2416      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2417        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2418                                  DAG.getIntPtrConstant(Offset));
2419        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2420                                     &X86::GR64RegClass);
2421        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2422        SDValue Store =
2423          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2424                       MachinePointerInfo::getFixedStack(
2425                         FuncInfo->getRegSaveFrameIndex(), Offset),
2426                       false, false, 0);
2427        MemOps.push_back(Store);
2428        Offset += 8;
2429      }
2430
2431      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2432        // Now store the XMM (fp + vector) parameter registers.
2433        SmallVector<SDValue, 11> SaveXMMOps;
2434        SaveXMMOps.push_back(Chain);
2435
2436        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2437        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2438        SaveXMMOps.push_back(ALVal);
2439
2440        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2441                               FuncInfo->getRegSaveFrameIndex()));
2442        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2443                               FuncInfo->getVarArgsFPOffset()));
2444
2445        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2446          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2447                                       &X86::VR128RegClass);
2448          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2449          SaveXMMOps.push_back(Val);
2450        }
2451        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2452                                     MVT::Other, SaveXMMOps));
2453      }
2454
2455      if (!MemOps.empty())
2456        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
2457    }
2458  }
2459
2460  // Some CCs need callee pop.
2461  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2462                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2463    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2464  } else {
2465    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2466    // If this is an sret function, the return should pop the hidden pointer.
2467    if (!Is64Bit && !IsTailCallConvention(CallConv) &&
2468        !Subtarget->getTargetTriple().isOSMSVCRT() &&
2469        argsAreStructReturn(Ins) == StackStructReturn)
2470      FuncInfo->setBytesToPopOnReturn(4);
2471  }
2472
2473  if (!Is64Bit) {
2474    // RegSaveFrameIndex is X86-64 only.
2475    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2476    if (CallConv == CallingConv::X86_FastCall ||
2477        CallConv == CallingConv::X86_ThisCall)
2478      // fastcc functions can't have varargs.
2479      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2480  }
2481
2482  FuncInfo->setArgumentStackSize(StackSize);
2483
2484  return Chain;
2485}
2486
2487SDValue
2488X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2489                                    SDValue StackPtr, SDValue Arg,
2490                                    SDLoc dl, SelectionDAG &DAG,
2491                                    const CCValAssign &VA,
2492                                    ISD::ArgFlagsTy Flags) const {
2493  unsigned LocMemOffset = VA.getLocMemOffset();
2494  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2495  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2496  if (Flags.isByVal())
2497    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2498
2499  return DAG.getStore(Chain, dl, Arg, PtrOff,
2500                      MachinePointerInfo::getStack(LocMemOffset),
2501                      false, false, 0);
2502}
2503
2504/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2505/// optimization is performed and it is required.
2506SDValue
2507X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2508                                           SDValue &OutRetAddr, SDValue Chain,
2509                                           bool IsTailCall, bool Is64Bit,
2510                                           int FPDiff, SDLoc dl) const {
2511  // Adjust the Return address stack slot.
2512  EVT VT = getPointerTy();
2513  OutRetAddr = getReturnAddressFrameIndex(DAG);
2514
2515  // Load the "old" Return address.
2516  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2517                           false, false, false, 0);
2518  return SDValue(OutRetAddr.getNode(), 1);
2519}
2520
2521/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2522/// optimization is performed and it is required (FPDiff!=0).
2523static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF,
2524                                        SDValue Chain, SDValue RetAddrFrIdx,
2525                                        EVT PtrVT, unsigned SlotSize,
2526                                        int FPDiff, SDLoc dl) {
2527  // Store the return address to the appropriate stack slot.
2528  if (!FPDiff) return Chain;
2529  // Calculate the new stack slot for the return address.
2530  int NewReturnAddrFI =
2531    MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
2532                                         false);
2533  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2534  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2535                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2536                       false, false, 0);
2537  return Chain;
2538}
2539
2540SDValue
2541X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2542                             SmallVectorImpl<SDValue> &InVals) const {
2543  SelectionDAG &DAG                     = CLI.DAG;
2544  SDLoc &dl                             = CLI.DL;
2545  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2546  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2547  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2548  SDValue Chain                         = CLI.Chain;
2549  SDValue Callee                        = CLI.Callee;
2550  CallingConv::ID CallConv              = CLI.CallConv;
2551  bool &isTailCall                      = CLI.IsTailCall;
2552  bool isVarArg                         = CLI.IsVarArg;
2553
2554  MachineFunction &MF = DAG.getMachineFunction();
2555  bool Is64Bit        = Subtarget->is64Bit();
2556  bool IsWin64        = Subtarget->isCallingConvWin64(CallConv);
2557  StructReturnType SR = callIsStructReturn(Outs);
2558  bool IsSibcall      = false;
2559
2560  if (MF.getTarget().Options.DisableTailCalls)
2561    isTailCall = false;
2562
2563  bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall();
2564  if (IsMustTail) {
2565    // Force this to be a tail call.  The verifier rules are enough to ensure
2566    // that we can lower this successfully without moving the return address
2567    // around.
2568    isTailCall = true;
2569  } else if (isTailCall) {
2570    // Check if it's really possible to do a tail call.
2571    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2572                    isVarArg, SR != NotStructReturn,
2573                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2574                    Outs, OutVals, Ins, DAG);
2575
2576    // Sibcalls are automatically detected tailcalls which do not require
2577    // ABI changes.
2578    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2579      IsSibcall = true;
2580
2581    if (isTailCall)
2582      ++NumTailCalls;
2583  }
2584
2585  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2586         "Var args not supported with calling convention fastcc, ghc or hipe");
2587
2588  // Analyze operands of the call, assigning locations to each operand.
2589  SmallVector<CCValAssign, 16> ArgLocs;
2590  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2591                 ArgLocs, *DAG.getContext());
2592
2593  // Allocate shadow area for Win64
2594  if (IsWin64)
2595    CCInfo.AllocateStack(32, 8);
2596
2597  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2598
2599  // Get a count of how many bytes are to be pushed on the stack.
2600  unsigned NumBytes = CCInfo.getNextStackOffset();
2601  if (IsSibcall)
2602    // This is a sibcall. The memory operands are available in caller's
2603    // own caller's stack.
2604    NumBytes = 0;
2605  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2606           IsTailCallConvention(CallConv))
2607    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2608
2609  int FPDiff = 0;
2610  if (isTailCall && !IsSibcall && !IsMustTail) {
2611    // Lower arguments at fp - stackoffset + fpdiff.
2612    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2613    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2614
2615    FPDiff = NumBytesCallerPushed - NumBytes;
2616
2617    // Set the delta of movement of the returnaddr stackslot.
2618    // But only set if delta is greater than previous delta.
2619    if (FPDiff < X86Info->getTCReturnAddrDelta())
2620      X86Info->setTCReturnAddrDelta(FPDiff);
2621  }
2622
2623  unsigned NumBytesToPush = NumBytes;
2624  unsigned NumBytesToPop = NumBytes;
2625
2626  // If we have an inalloca argument, all stack space has already been allocated
2627  // for us and be right at the top of the stack.  We don't support multiple
2628  // arguments passed in memory when using inalloca.
2629  if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
2630    NumBytesToPush = 0;
2631    assert(ArgLocs.back().getLocMemOffset() == 0 &&
2632           "an inalloca argument must be the only memory argument");
2633  }
2634
2635  if (!IsSibcall)
2636    Chain = DAG.getCALLSEQ_START(
2637        Chain, DAG.getIntPtrConstant(NumBytesToPush, true), dl);
2638
2639  SDValue RetAddrFrIdx;
2640  // Load return address for tail calls.
2641  if (isTailCall && FPDiff)
2642    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2643                                    Is64Bit, FPDiff, dl);
2644
2645  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2646  SmallVector<SDValue, 8> MemOpChains;
2647  SDValue StackPtr;
2648
2649  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2650  // of tail call optimization arguments are handle later.
2651  const X86RegisterInfo *RegInfo =
2652    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
2653  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2654    // Skip inalloca arguments, they have already been written.
2655    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2656    if (Flags.isInAlloca())
2657      continue;
2658
2659    CCValAssign &VA = ArgLocs[i];
2660    EVT RegVT = VA.getLocVT();
2661    SDValue Arg = OutVals[i];
2662    bool isByVal = Flags.isByVal();
2663
2664    // Promote the value if needed.
2665    switch (VA.getLocInfo()) {
2666    default: llvm_unreachable("Unknown loc info!");
2667    case CCValAssign::Full: break;
2668    case CCValAssign::SExt:
2669      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2670      break;
2671    case CCValAssign::ZExt:
2672      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2673      break;
2674    case CCValAssign::AExt:
2675      if (RegVT.is128BitVector()) {
2676        // Special case: passing MMX values in XMM registers.
2677        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2678        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2679        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2680      } else
2681        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2682      break;
2683    case CCValAssign::BCvt:
2684      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2685      break;
2686    case CCValAssign::Indirect: {
2687      // Store the argument.
2688      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2689      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2690      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2691                           MachinePointerInfo::getFixedStack(FI),
2692                           false, false, 0);
2693      Arg = SpillSlot;
2694      break;
2695    }
2696    }
2697
2698    if (VA.isRegLoc()) {
2699      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2700      if (isVarArg && IsWin64) {
2701        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2702        // shadow reg if callee is a varargs function.
2703        unsigned ShadowReg = 0;
2704        switch (VA.getLocReg()) {
2705        case X86::XMM0: ShadowReg = X86::RCX; break;
2706        case X86::XMM1: ShadowReg = X86::RDX; break;
2707        case X86::XMM2: ShadowReg = X86::R8; break;
2708        case X86::XMM3: ShadowReg = X86::R9; break;
2709        }
2710        if (ShadowReg)
2711          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2712      }
2713    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2714      assert(VA.isMemLoc());
2715      if (!StackPtr.getNode())
2716        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2717                                      getPointerTy());
2718      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2719                                             dl, DAG, VA, Flags));
2720    }
2721  }
2722
2723  if (!MemOpChains.empty())
2724    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2725
2726  if (Subtarget->isPICStyleGOT()) {
2727    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2728    // GOT pointer.
2729    if (!isTailCall) {
2730      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2731               DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy())));
2732    } else {
2733      // If we are tail calling and generating PIC/GOT style code load the
2734      // address of the callee into ECX. The value in ecx is used as target of
2735      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2736      // for tail calls on PIC/GOT architectures. Normally we would just put the
2737      // address of GOT into ebx and then call target@PLT. But for tail calls
2738      // ebx would be restored (since ebx is callee saved) before jumping to the
2739      // target@PLT.
2740
2741      // Note: The actual moving to ECX is done further down.
2742      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2743      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2744          !G->getGlobal()->hasProtectedVisibility())
2745        Callee = LowerGlobalAddress(Callee, DAG);
2746      else if (isa<ExternalSymbolSDNode>(Callee))
2747        Callee = LowerExternalSymbol(Callee, DAG);
2748    }
2749  }
2750
2751  if (Is64Bit && isVarArg && !IsWin64) {
2752    // From AMD64 ABI document:
2753    // For calls that may call functions that use varargs or stdargs
2754    // (prototype-less calls or calls to functions containing ellipsis (...) in
2755    // the declaration) %al is used as hidden argument to specify the number
2756    // of SSE registers used. The contents of %al do not need to match exactly
2757    // the number of registers, but must be an ubound on the number of SSE
2758    // registers used and is in the range 0 - 8 inclusive.
2759
2760    // Count the number of XMM registers allocated.
2761    static const MCPhysReg XMMArgRegs[] = {
2762      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2763      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2764    };
2765    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2766    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2767           && "SSE registers cannot be used when SSE is disabled");
2768
2769    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2770                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2771  }
2772
2773  // For tail calls lower the arguments to the 'real' stack slots.  Sibcalls
2774  // don't need this because the eligibility check rejects calls that require
2775  // shuffling arguments passed in memory.
2776  if (!IsSibcall && isTailCall) {
2777    // Force all the incoming stack arguments to be loaded from the stack
2778    // before any new outgoing arguments are stored to the stack, because the
2779    // outgoing stack slots may alias the incoming argument stack slots, and
2780    // the alias isn't otherwise explicit. This is slightly more conservative
2781    // than necessary, because it means that each store effectively depends
2782    // on every argument instead of just those arguments it would clobber.
2783    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2784
2785    SmallVector<SDValue, 8> MemOpChains2;
2786    SDValue FIN;
2787    int FI = 0;
2788    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2789      CCValAssign &VA = ArgLocs[i];
2790      if (VA.isRegLoc())
2791        continue;
2792      assert(VA.isMemLoc());
2793      SDValue Arg = OutVals[i];
2794      ISD::ArgFlagsTy Flags = Outs[i].Flags;
2795      // Skip inalloca arguments.  They don't require any work.
2796      if (Flags.isInAlloca())
2797        continue;
2798      // Create frame index.
2799      int32_t Offset = VA.getLocMemOffset()+FPDiff;
2800      uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2801      FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2802      FIN = DAG.getFrameIndex(FI, getPointerTy());
2803
2804      if (Flags.isByVal()) {
2805        // Copy relative to framepointer.
2806        SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2807        if (!StackPtr.getNode())
2808          StackPtr = DAG.getCopyFromReg(Chain, dl,
2809                                        RegInfo->getStackRegister(),
2810                                        getPointerTy());
2811        Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2812
2813        MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2814                                                         ArgChain,
2815                                                         Flags, DAG, dl));
2816      } else {
2817        // Store relative to framepointer.
2818        MemOpChains2.push_back(
2819          DAG.getStore(ArgChain, dl, Arg, FIN,
2820                       MachinePointerInfo::getFixedStack(FI),
2821                       false, false, 0));
2822      }
2823    }
2824
2825    if (!MemOpChains2.empty())
2826      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
2827
2828    // Store the return address to the appropriate stack slot.
2829    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2830                                     getPointerTy(), RegInfo->getSlotSize(),
2831                                     FPDiff, dl);
2832  }
2833
2834  // Build a sequence of copy-to-reg nodes chained together with token chain
2835  // and flag operands which copy the outgoing args into registers.
2836  SDValue InFlag;
2837  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2838    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2839                             RegsToPass[i].second, InFlag);
2840    InFlag = Chain.getValue(1);
2841  }
2842
2843  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2844    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2845    // In the 64-bit large code model, we have to make all calls
2846    // through a register, since the call instruction's 32-bit
2847    // pc-relative offset may not be large enough to hold the whole
2848    // address.
2849  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2850    // If the callee is a GlobalAddress node (quite common, every direct call
2851    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2852    // it.
2853
2854    // We should use extra load for direct calls to dllimported functions in
2855    // non-JIT mode.
2856    const GlobalValue *GV = G->getGlobal();
2857    if (!GV->hasDLLImportStorageClass()) {
2858      unsigned char OpFlags = 0;
2859      bool ExtraLoad = false;
2860      unsigned WrapperKind = ISD::DELETED_NODE;
2861
2862      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2863      // external symbols most go through the PLT in PIC mode.  If the symbol
2864      // has hidden or protected visibility, or if it is static or local, then
2865      // we don't need to use the PLT - we can directly call it.
2866      if (Subtarget->isTargetELF() &&
2867          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2868          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2869        OpFlags = X86II::MO_PLT;
2870      } else if (Subtarget->isPICStyleStubAny() &&
2871                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2872                 (!Subtarget->getTargetTriple().isMacOSX() ||
2873                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2874        // PC-relative references to external symbols should go through $stub,
2875        // unless we're building with the leopard linker or later, which
2876        // automatically synthesizes these stubs.
2877        OpFlags = X86II::MO_DARWIN_STUB;
2878      } else if (Subtarget->isPICStyleRIPRel() &&
2879                 isa<Function>(GV) &&
2880                 cast<Function>(GV)->getAttributes().
2881                   hasAttribute(AttributeSet::FunctionIndex,
2882                                Attribute::NonLazyBind)) {
2883        // If the function is marked as non-lazy, generate an indirect call
2884        // which loads from the GOT directly. This avoids runtime overhead
2885        // at the cost of eager binding (and one extra byte of encoding).
2886        OpFlags = X86II::MO_GOTPCREL;
2887        WrapperKind = X86ISD::WrapperRIP;
2888        ExtraLoad = true;
2889      }
2890
2891      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2892                                          G->getOffset(), OpFlags);
2893
2894      // Add a wrapper if needed.
2895      if (WrapperKind != ISD::DELETED_NODE)
2896        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2897      // Add extra indirection if needed.
2898      if (ExtraLoad)
2899        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2900                             MachinePointerInfo::getGOT(),
2901                             false, false, false, 0);
2902    }
2903  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2904    unsigned char OpFlags = 0;
2905
2906    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2907    // external symbols should go through the PLT.
2908    if (Subtarget->isTargetELF() &&
2909        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2910      OpFlags = X86II::MO_PLT;
2911    } else if (Subtarget->isPICStyleStubAny() &&
2912               (!Subtarget->getTargetTriple().isMacOSX() ||
2913                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2914      // PC-relative references to external symbols should go through $stub,
2915      // unless we're building with the leopard linker or later, which
2916      // automatically synthesizes these stubs.
2917      OpFlags = X86II::MO_DARWIN_STUB;
2918    }
2919
2920    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2921                                         OpFlags);
2922  }
2923
2924  // Returns a chain & a flag for retval copy to use.
2925  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2926  SmallVector<SDValue, 8> Ops;
2927
2928  if (!IsSibcall && isTailCall) {
2929    Chain = DAG.getCALLSEQ_END(Chain,
2930                               DAG.getIntPtrConstant(NumBytesToPop, true),
2931                               DAG.getIntPtrConstant(0, true), InFlag, dl);
2932    InFlag = Chain.getValue(1);
2933  }
2934
2935  Ops.push_back(Chain);
2936  Ops.push_back(Callee);
2937
2938  if (isTailCall)
2939    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2940
2941  // Add argument registers to the end of the list so that they are known live
2942  // into the call.
2943  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2944    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2945                                  RegsToPass[i].second.getValueType()));
2946
2947  // Add a register mask operand representing the call-preserved registers.
2948  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2949  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2950  assert(Mask && "Missing call preserved mask for calling convention");
2951  Ops.push_back(DAG.getRegisterMask(Mask));
2952
2953  if (InFlag.getNode())
2954    Ops.push_back(InFlag);
2955
2956  if (isTailCall) {
2957    // We used to do:
2958    //// If this is the first return lowered for this function, add the regs
2959    //// to the liveout set for the function.
2960    // This isn't right, although it's probably harmless on x86; liveouts
2961    // should be computed from returns not tail calls.  Consider a void
2962    // function making a tail call to a function returning int.
2963    return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops);
2964  }
2965
2966  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops);
2967  InFlag = Chain.getValue(1);
2968
2969  // Create the CALLSEQ_END node.
2970  unsigned NumBytesForCalleeToPop;
2971  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2972                       getTargetMachine().Options.GuaranteedTailCallOpt))
2973    NumBytesForCalleeToPop = NumBytes;    // Callee pops everything
2974  else if (!Is64Bit && !IsTailCallConvention(CallConv) &&
2975           !Subtarget->getTargetTriple().isOSMSVCRT() &&
2976           SR == StackStructReturn)
2977    // If this is a call to a struct-return function, the callee
2978    // pops the hidden struct pointer, so we have to push it back.
2979    // This is common for Darwin/X86, Linux & Mingw32 targets.
2980    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2981    NumBytesForCalleeToPop = 4;
2982  else
2983    NumBytesForCalleeToPop = 0;  // Callee pops nothing.
2984
2985  // Returns a flag for retval copy to use.
2986  if (!IsSibcall) {
2987    Chain = DAG.getCALLSEQ_END(Chain,
2988                               DAG.getIntPtrConstant(NumBytesToPop, true),
2989                               DAG.getIntPtrConstant(NumBytesForCalleeToPop,
2990                                                     true),
2991                               InFlag, dl);
2992    InFlag = Chain.getValue(1);
2993  }
2994
2995  // Handle result values, copying them out of physregs into vregs that we
2996  // return.
2997  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2998                         Ins, dl, DAG, InVals);
2999}
3000
3001//===----------------------------------------------------------------------===//
3002//                Fast Calling Convention (tail call) implementation
3003//===----------------------------------------------------------------------===//
3004
3005//  Like std call, callee cleans arguments, convention except that ECX is
3006//  reserved for storing the tail called function address. Only 2 registers are
3007//  free for argument passing (inreg). Tail call optimization is performed
3008//  provided:
3009//                * tailcallopt is enabled
3010//                * caller/callee are fastcc
3011//  On X86_64 architecture with GOT-style position independent code only local
3012//  (within module) calls are supported at the moment.
3013//  To keep the stack aligned according to platform abi the function
3014//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
3015//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
3016//  If a tail called function callee has more arguments than the caller the
3017//  caller needs to make sure that there is room to move the RETADDR to. This is
3018//  achieved by reserving an area the size of the argument delta right after the
3019//  original REtADDR, but before the saved framepointer or the spilled registers
3020//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
3021//  stack layout:
3022//    arg1
3023//    arg2
3024//    RETADDR
3025//    [ new RETADDR
3026//      move area ]
3027//    (possible EBP)
3028//    ESI
3029//    EDI
3030//    local1 ..
3031
3032/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
3033/// for a 16 byte align requirement.
3034unsigned
3035X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
3036                                               SelectionDAG& DAG) const {
3037  MachineFunction &MF = DAG.getMachineFunction();
3038  const TargetMachine &TM = MF.getTarget();
3039  const X86RegisterInfo *RegInfo =
3040    static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
3041  const TargetFrameLowering &TFI = *TM.getFrameLowering();
3042  unsigned StackAlignment = TFI.getStackAlignment();
3043  uint64_t AlignMask = StackAlignment - 1;
3044  int64_t Offset = StackSize;
3045  unsigned SlotSize = RegInfo->getSlotSize();
3046  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
3047    // Number smaller than 12 so just add the difference.
3048    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
3049  } else {
3050    // Mask out lower bits, add stackalignment once plus the 12 bytes.
3051    Offset = ((~AlignMask) & Offset) + StackAlignment +
3052      (StackAlignment-SlotSize);
3053  }
3054  return Offset;
3055}
3056
3057/// MatchingStackOffset - Return true if the given stack call argument is
3058/// already available in the same position (relatively) of the caller's
3059/// incoming argument stack.
3060static
3061bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
3062                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
3063                         const X86InstrInfo *TII) {
3064  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
3065  int FI = INT_MAX;
3066  if (Arg.getOpcode() == ISD::CopyFromReg) {
3067    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
3068    if (!TargetRegisterInfo::isVirtualRegister(VR))
3069      return false;
3070    MachineInstr *Def = MRI->getVRegDef(VR);
3071    if (!Def)
3072      return false;
3073    if (!Flags.isByVal()) {
3074      if (!TII->isLoadFromStackSlot(Def, FI))
3075        return false;
3076    } else {
3077      unsigned Opcode = Def->getOpcode();
3078      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
3079          Def->getOperand(1).isFI()) {
3080        FI = Def->getOperand(1).getIndex();
3081        Bytes = Flags.getByValSize();
3082      } else
3083        return false;
3084    }
3085  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
3086    if (Flags.isByVal())
3087      // ByVal argument is passed in as a pointer but it's now being
3088      // dereferenced. e.g.
3089      // define @foo(%struct.X* %A) {
3090      //   tail call @bar(%struct.X* byval %A)
3091      // }
3092      return false;
3093    SDValue Ptr = Ld->getBasePtr();
3094    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
3095    if (!FINode)
3096      return false;
3097    FI = FINode->getIndex();
3098  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
3099    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
3100    FI = FINode->getIndex();
3101    Bytes = Flags.getByValSize();
3102  } else
3103    return false;
3104
3105  assert(FI != INT_MAX);
3106  if (!MFI->isFixedObjectIndex(FI))
3107    return false;
3108  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
3109}
3110
3111/// IsEligibleForTailCallOptimization - Check whether the call is eligible
3112/// for tail call optimization. Targets which want to do tail call
3113/// optimization should implement this function.
3114bool
3115X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
3116                                                     CallingConv::ID CalleeCC,
3117                                                     bool isVarArg,
3118                                                     bool isCalleeStructRet,
3119                                                     bool isCallerStructRet,
3120                                                     Type *RetTy,
3121                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3122                                    const SmallVectorImpl<SDValue> &OutVals,
3123                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3124                                                     SelectionDAG &DAG) const {
3125  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
3126    return false;
3127
3128  // If -tailcallopt is specified, make fastcc functions tail-callable.
3129  const MachineFunction &MF = DAG.getMachineFunction();
3130  const Function *CallerF = MF.getFunction();
3131
3132  // If the function return type is x86_fp80 and the callee return type is not,
3133  // then the FP_EXTEND of the call result is not a nop. It's not safe to
3134  // perform a tailcall optimization here.
3135  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
3136    return false;
3137
3138  CallingConv::ID CallerCC = CallerF->getCallingConv();
3139  bool CCMatch = CallerCC == CalleeCC;
3140  bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);
3141  bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC);
3142
3143  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
3144    if (IsTailCallConvention(CalleeCC) && CCMatch)
3145      return true;
3146    return false;
3147  }
3148
3149  // Look for obvious safe cases to perform tail call optimization that do not
3150  // require ABI changes. This is what gcc calls sibcall.
3151
3152  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
3153  // emit a special epilogue.
3154  const X86RegisterInfo *RegInfo =
3155    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
3156  if (RegInfo->needsStackRealignment(MF))
3157    return false;
3158
3159  // Also avoid sibcall optimization if either caller or callee uses struct
3160  // return semantics.
3161  if (isCalleeStructRet || isCallerStructRet)
3162    return false;
3163
3164  // An stdcall/thiscall caller is expected to clean up its arguments; the
3165  // callee isn't going to do that.
3166  // FIXME: this is more restrictive than needed. We could produce a tailcall
3167  // when the stack adjustment matches. For example, with a thiscall that takes
3168  // only one argument.
3169  if (!CCMatch && (CallerCC == CallingConv::X86_StdCall ||
3170                   CallerCC == CallingConv::X86_ThisCall))
3171    return false;
3172
3173  // Do not sibcall optimize vararg calls unless all arguments are passed via
3174  // registers.
3175  if (isVarArg && !Outs.empty()) {
3176
3177    // Optimizing for varargs on Win64 is unlikely to be safe without
3178    // additional testing.
3179    if (IsCalleeWin64 || IsCallerWin64)
3180      return false;
3181
3182    SmallVector<CCValAssign, 16> ArgLocs;
3183    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
3184                   getTargetMachine(), ArgLocs, *DAG.getContext());
3185
3186    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3187    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
3188      if (!ArgLocs[i].isRegLoc())
3189        return false;
3190  }
3191
3192  // If the call result is in ST0 / ST1, it needs to be popped off the x87
3193  // stack.  Therefore, if it's not used by the call it is not safe to optimize
3194  // this into a sibcall.
3195  bool Unused = false;
3196  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3197    if (!Ins[i].Used) {
3198      Unused = true;
3199      break;
3200    }
3201  }
3202  if (Unused) {
3203    SmallVector<CCValAssign, 16> RVLocs;
3204    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
3205                   getTargetMachine(), RVLocs, *DAG.getContext());
3206    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
3207    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3208      CCValAssign &VA = RVLocs[i];
3209      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
3210        return false;
3211    }
3212  }
3213
3214  // If the calling conventions do not match, then we'd better make sure the
3215  // results are returned in the same way as what the caller expects.
3216  if (!CCMatch) {
3217    SmallVector<CCValAssign, 16> RVLocs1;
3218    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
3219                    getTargetMachine(), RVLocs1, *DAG.getContext());
3220    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
3221
3222    SmallVector<CCValAssign, 16> RVLocs2;
3223    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
3224                    getTargetMachine(), RVLocs2, *DAG.getContext());
3225    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
3226
3227    if (RVLocs1.size() != RVLocs2.size())
3228      return false;
3229    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
3230      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
3231        return false;
3232      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
3233        return false;
3234      if (RVLocs1[i].isRegLoc()) {
3235        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
3236          return false;
3237      } else {
3238        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
3239          return false;
3240      }
3241    }
3242  }
3243
3244  // If the callee takes no arguments then go on to check the results of the
3245  // call.
3246  if (!Outs.empty()) {
3247    // Check if stack adjustment is needed. For now, do not do this if any
3248    // argument is passed on the stack.
3249    SmallVector<CCValAssign, 16> ArgLocs;
3250    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
3251                   getTargetMachine(), ArgLocs, *DAG.getContext());
3252
3253    // Allocate shadow area for Win64
3254    if (IsCalleeWin64)
3255      CCInfo.AllocateStack(32, 8);
3256
3257    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3258    if (CCInfo.getNextStackOffset()) {
3259      MachineFunction &MF = DAG.getMachineFunction();
3260      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
3261        return false;
3262
3263      // Check if the arguments are already laid out in the right way as
3264      // the caller's fixed stack objects.
3265      MachineFrameInfo *MFI = MF.getFrameInfo();
3266      const MachineRegisterInfo *MRI = &MF.getRegInfo();
3267      const X86InstrInfo *TII =
3268        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
3269      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3270        CCValAssign &VA = ArgLocs[i];
3271        SDValue Arg = OutVals[i];
3272        ISD::ArgFlagsTy Flags = Outs[i].Flags;
3273        if (VA.getLocInfo() == CCValAssign::Indirect)
3274          return false;
3275        if (!VA.isRegLoc()) {
3276          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
3277                                   MFI, MRI, TII))
3278            return false;
3279        }
3280      }
3281    }
3282
3283    // If the tailcall address may be in a register, then make sure it's
3284    // possible to register allocate for it. In 32-bit, the call address can
3285    // only target EAX, EDX, or ECX since the tail call must be scheduled after
3286    // callee-saved registers are restored. These happen to be the same
3287    // registers used to pass 'inreg' arguments so watch out for those.
3288    if (!Subtarget->is64Bit() &&
3289        ((!isa<GlobalAddressSDNode>(Callee) &&
3290          !isa<ExternalSymbolSDNode>(Callee)) ||
3291         getTargetMachine().getRelocationModel() == Reloc::PIC_)) {
3292      unsigned NumInRegs = 0;
3293      // In PIC we need an extra register to formulate the address computation
3294      // for the callee.
3295      unsigned MaxInRegs =
3296          (getTargetMachine().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
3297
3298      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3299        CCValAssign &VA = ArgLocs[i];
3300        if (!VA.isRegLoc())
3301          continue;
3302        unsigned Reg = VA.getLocReg();
3303        switch (Reg) {
3304        default: break;
3305        case X86::EAX: case X86::EDX: case X86::ECX:
3306          if (++NumInRegs == MaxInRegs)
3307            return false;
3308          break;
3309        }
3310      }
3311    }
3312  }
3313
3314  return true;
3315}
3316
3317FastISel *
3318X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
3319                                  const TargetLibraryInfo *libInfo) const {
3320  return X86::createFastISel(funcInfo, libInfo);
3321}
3322
3323//===----------------------------------------------------------------------===//
3324//                           Other Lowering Hooks
3325//===----------------------------------------------------------------------===//
3326
3327static bool MayFoldLoad(SDValue Op) {
3328  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
3329}
3330
3331static bool MayFoldIntoStore(SDValue Op) {
3332  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
3333}
3334
3335static bool isTargetShuffle(unsigned Opcode) {
3336  switch(Opcode) {
3337  default: return false;
3338  case X86ISD::PSHUFD:
3339  case X86ISD::PSHUFHW:
3340  case X86ISD::PSHUFLW:
3341  case X86ISD::SHUFP:
3342  case X86ISD::PALIGNR:
3343  case X86ISD::MOVLHPS:
3344  case X86ISD::MOVLHPD:
3345  case X86ISD::MOVHLPS:
3346  case X86ISD::MOVLPS:
3347  case X86ISD::MOVLPD:
3348  case X86ISD::MOVSHDUP:
3349  case X86ISD::MOVSLDUP:
3350  case X86ISD::MOVDDUP:
3351  case X86ISD::MOVSS:
3352  case X86ISD::MOVSD:
3353  case X86ISD::UNPCKL:
3354  case X86ISD::UNPCKH:
3355  case X86ISD::VPERMILP:
3356  case X86ISD::VPERM2X128:
3357  case X86ISD::VPERMI:
3358    return true;
3359  }
3360}
3361
3362static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3363                                    SDValue V1, SelectionDAG &DAG) {
3364  switch(Opc) {
3365  default: llvm_unreachable("Unknown x86 shuffle node");
3366  case X86ISD::MOVSHDUP:
3367  case X86ISD::MOVSLDUP:
3368  case X86ISD::MOVDDUP:
3369    return DAG.getNode(Opc, dl, VT, V1);
3370  }
3371}
3372
3373static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3374                                    SDValue V1, unsigned TargetMask,
3375                                    SelectionDAG &DAG) {
3376  switch(Opc) {
3377  default: llvm_unreachable("Unknown x86 shuffle node");
3378  case X86ISD::PSHUFD:
3379  case X86ISD::PSHUFHW:
3380  case X86ISD::PSHUFLW:
3381  case X86ISD::VPERMILP:
3382  case X86ISD::VPERMI:
3383    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3384  }
3385}
3386
3387static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3388                                    SDValue V1, SDValue V2, unsigned TargetMask,
3389                                    SelectionDAG &DAG) {
3390  switch(Opc) {
3391  default: llvm_unreachable("Unknown x86 shuffle node");
3392  case X86ISD::PALIGNR:
3393  case X86ISD::SHUFP:
3394  case X86ISD::VPERM2X128:
3395    return DAG.getNode(Opc, dl, VT, V1, V2,
3396                       DAG.getConstant(TargetMask, MVT::i8));
3397  }
3398}
3399
3400static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3401                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3402  switch(Opc) {
3403  default: llvm_unreachable("Unknown x86 shuffle node");
3404  case X86ISD::MOVLHPS:
3405  case X86ISD::MOVLHPD:
3406  case X86ISD::MOVHLPS:
3407  case X86ISD::MOVLPS:
3408  case X86ISD::MOVLPD:
3409  case X86ISD::MOVSS:
3410  case X86ISD::MOVSD:
3411  case X86ISD::UNPCKL:
3412  case X86ISD::UNPCKH:
3413    return DAG.getNode(Opc, dl, VT, V1, V2);
3414  }
3415}
3416
3417SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3418  MachineFunction &MF = DAG.getMachineFunction();
3419  const X86RegisterInfo *RegInfo =
3420    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
3421  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3422  int ReturnAddrIndex = FuncInfo->getRAIndex();
3423
3424  if (ReturnAddrIndex == 0) {
3425    // Set up a frame object for the return address.
3426    unsigned SlotSize = RegInfo->getSlotSize();
3427    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3428                                                           -(int64_t)SlotSize,
3429                                                           false);
3430    FuncInfo->setRAIndex(ReturnAddrIndex);
3431  }
3432
3433  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3434}
3435
3436bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3437                                       bool hasSymbolicDisplacement) {
3438  // Offset should fit into 32 bit immediate field.
3439  if (!isInt<32>(Offset))
3440    return false;
3441
3442  // If we don't have a symbolic displacement - we don't have any extra
3443  // restrictions.
3444  if (!hasSymbolicDisplacement)
3445    return true;
3446
3447  // FIXME: Some tweaks might be needed for medium code model.
3448  if (M != CodeModel::Small && M != CodeModel::Kernel)
3449    return false;
3450
3451  // For small code model we assume that latest object is 16MB before end of 31
3452  // bits boundary. We may also accept pretty large negative constants knowing
3453  // that all objects are in the positive half of address space.
3454  if (M == CodeModel::Small && Offset < 16*1024*1024)
3455    return true;
3456
3457  // For kernel code model we know that all object resist in the negative half
3458  // of 32bits address space. We may not accept negative offsets, since they may
3459  // be just off and we may accept pretty large positive ones.
3460  if (M == CodeModel::Kernel && Offset > 0)
3461    return true;
3462
3463  return false;
3464}
3465
3466/// isCalleePop - Determines whether the callee is required to pop its
3467/// own arguments. Callee pop is necessary to support tail calls.
3468bool X86::isCalleePop(CallingConv::ID CallingConv,
3469                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3470  if (IsVarArg)
3471    return false;
3472
3473  switch (CallingConv) {
3474  default:
3475    return false;
3476  case CallingConv::X86_StdCall:
3477    return !is64Bit;
3478  case CallingConv::X86_FastCall:
3479    return !is64Bit;
3480  case CallingConv::X86_ThisCall:
3481    return !is64Bit;
3482  case CallingConv::Fast:
3483    return TailCallOpt;
3484  case CallingConv::GHC:
3485    return TailCallOpt;
3486  case CallingConv::HiPE:
3487    return TailCallOpt;
3488  }
3489}
3490
3491/// \brief Return true if the condition is an unsigned comparison operation.
3492static bool isX86CCUnsigned(unsigned X86CC) {
3493  switch (X86CC) {
3494  default: llvm_unreachable("Invalid integer condition!");
3495  case X86::COND_E:     return true;
3496  case X86::COND_G:     return false;
3497  case X86::COND_GE:    return false;
3498  case X86::COND_L:     return false;
3499  case X86::COND_LE:    return false;
3500  case X86::COND_NE:    return true;
3501  case X86::COND_B:     return true;
3502  case X86::COND_A:     return true;
3503  case X86::COND_BE:    return true;
3504  case X86::COND_AE:    return true;
3505  }
3506  llvm_unreachable("covered switch fell through?!");
3507}
3508
3509/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3510/// specific condition code, returning the condition code and the LHS/RHS of the
3511/// comparison to make.
3512static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3513                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3514  if (!isFP) {
3515    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3516      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3517        // X > -1   -> X == 0, jump !sign.
3518        RHS = DAG.getConstant(0, RHS.getValueType());
3519        return X86::COND_NS;
3520      }
3521      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3522        // X < 0   -> X == 0, jump on sign.
3523        return X86::COND_S;
3524      }
3525      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3526        // X < 1   -> X <= 0
3527        RHS = DAG.getConstant(0, RHS.getValueType());
3528        return X86::COND_LE;
3529      }
3530    }
3531
3532    switch (SetCCOpcode) {
3533    default: llvm_unreachable("Invalid integer condition!");
3534    case ISD::SETEQ:  return X86::COND_E;
3535    case ISD::SETGT:  return X86::COND_G;
3536    case ISD::SETGE:  return X86::COND_GE;
3537    case ISD::SETLT:  return X86::COND_L;
3538    case ISD::SETLE:  return X86::COND_LE;
3539    case ISD::SETNE:  return X86::COND_NE;
3540    case ISD::SETULT: return X86::COND_B;
3541    case ISD::SETUGT: return X86::COND_A;
3542    case ISD::SETULE: return X86::COND_BE;
3543    case ISD::SETUGE: return X86::COND_AE;
3544    }
3545  }
3546
3547  // First determine if it is required or is profitable to flip the operands.
3548
3549  // If LHS is a foldable load, but RHS is not, flip the condition.
3550  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3551      !ISD::isNON_EXTLoad(RHS.getNode())) {
3552    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3553    std::swap(LHS, RHS);
3554  }
3555
3556  switch (SetCCOpcode) {
3557  default: break;
3558  case ISD::SETOLT:
3559  case ISD::SETOLE:
3560  case ISD::SETUGT:
3561  case ISD::SETUGE:
3562    std::swap(LHS, RHS);
3563    break;
3564  }
3565
3566  // On a floating point condition, the flags are set as follows:
3567  // ZF  PF  CF   op
3568  //  0 | 0 | 0 | X > Y
3569  //  0 | 0 | 1 | X < Y
3570  //  1 | 0 | 0 | X == Y
3571  //  1 | 1 | 1 | unordered
3572  switch (SetCCOpcode) {
3573  default: llvm_unreachable("Condcode should be pre-legalized away");
3574  case ISD::SETUEQ:
3575  case ISD::SETEQ:   return X86::COND_E;
3576  case ISD::SETOLT:              // flipped
3577  case ISD::SETOGT:
3578  case ISD::SETGT:   return X86::COND_A;
3579  case ISD::SETOLE:              // flipped
3580  case ISD::SETOGE:
3581  case ISD::SETGE:   return X86::COND_AE;
3582  case ISD::SETUGT:              // flipped
3583  case ISD::SETULT:
3584  case ISD::SETLT:   return X86::COND_B;
3585  case ISD::SETUGE:              // flipped
3586  case ISD::SETULE:
3587  case ISD::SETLE:   return X86::COND_BE;
3588  case ISD::SETONE:
3589  case ISD::SETNE:   return X86::COND_NE;
3590  case ISD::SETUO:   return X86::COND_P;
3591  case ISD::SETO:    return X86::COND_NP;
3592  case ISD::SETOEQ:
3593  case ISD::SETUNE:  return X86::COND_INVALID;
3594  }
3595}
3596
3597/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3598/// code. Current x86 isa includes the following FP cmov instructions:
3599/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3600static bool hasFPCMov(unsigned X86CC) {
3601  switch (X86CC) {
3602  default:
3603    return false;
3604  case X86::COND_B:
3605  case X86::COND_BE:
3606  case X86::COND_E:
3607  case X86::COND_P:
3608  case X86::COND_A:
3609  case X86::COND_AE:
3610  case X86::COND_NE:
3611  case X86::COND_NP:
3612    return true;
3613  }
3614}
3615
3616/// isFPImmLegal - Returns true if the target can instruction select the
3617/// specified FP immediate natively. If false, the legalizer will
3618/// materialize the FP immediate as a load from a constant pool.
3619bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3620  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3621    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3622      return true;
3623  }
3624  return false;
3625}
3626
3627/// \brief Returns true if it is beneficial to convert a load of a constant
3628/// to just the constant itself.
3629bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
3630                                                          Type *Ty) const {
3631  assert(Ty->isIntegerTy());
3632
3633  unsigned BitSize = Ty->getPrimitiveSizeInBits();
3634  if (BitSize == 0 || BitSize > 64)
3635    return false;
3636  return true;
3637}
3638
3639/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3640/// the specified range (L, H].
3641static bool isUndefOrInRange(int Val, int Low, int Hi) {
3642  return (Val < 0) || (Val >= Low && Val < Hi);
3643}
3644
3645/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3646/// specified value.
3647static bool isUndefOrEqual(int Val, int CmpVal) {
3648  return (Val < 0 || Val == CmpVal);
3649}
3650
3651/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3652/// from position Pos and ending in Pos+Size, falls within the specified
3653/// sequential range (L, L+Pos]. or is undef.
3654static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3655                                       unsigned Pos, unsigned Size, int Low) {
3656  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3657    if (!isUndefOrEqual(Mask[i], Low))
3658      return false;
3659  return true;
3660}
3661
3662/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3663/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3664/// the second operand.
3665static bool isPSHUFDMask(ArrayRef<int> Mask, MVT VT) {
3666  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3667    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3668  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3669    return (Mask[0] < 2 && Mask[1] < 2);
3670  return false;
3671}
3672
3673/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3674/// is suitable for input to PSHUFHW.
3675static bool isPSHUFHWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
3676  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3677    return false;
3678
3679  // Lower quadword copied in order or undef.
3680  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3681    return false;
3682
3683  // Upper quadword shuffled.
3684  for (unsigned i = 4; i != 8; ++i)
3685    if (!isUndefOrInRange(Mask[i], 4, 8))
3686      return false;
3687
3688  if (VT == MVT::v16i16) {
3689    // Lower quadword copied in order or undef.
3690    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3691      return false;
3692
3693    // Upper quadword shuffled.
3694    for (unsigned i = 12; i != 16; ++i)
3695      if (!isUndefOrInRange(Mask[i], 12, 16))
3696        return false;
3697  }
3698
3699  return true;
3700}
3701
3702/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3703/// is suitable for input to PSHUFLW.
3704static bool isPSHUFLWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
3705  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3706    return false;
3707
3708  // Upper quadword copied in order.
3709  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3710    return false;
3711
3712  // Lower quadword shuffled.
3713  for (unsigned i = 0; i != 4; ++i)
3714    if (!isUndefOrInRange(Mask[i], 0, 4))
3715      return false;
3716
3717  if (VT == MVT::v16i16) {
3718    // Upper quadword copied in order.
3719    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3720      return false;
3721
3722    // Lower quadword shuffled.
3723    for (unsigned i = 8; i != 12; ++i)
3724      if (!isUndefOrInRange(Mask[i], 8, 12))
3725        return false;
3726  }
3727
3728  return true;
3729}
3730
3731/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3732/// is suitable for input to PALIGNR.
3733static bool isPALIGNRMask(ArrayRef<int> Mask, MVT VT,
3734                          const X86Subtarget *Subtarget) {
3735  if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
3736      (VT.is256BitVector() && !Subtarget->hasInt256()))
3737    return false;
3738
3739  unsigned NumElts = VT.getVectorNumElements();
3740  unsigned NumLanes = VT.is512BitVector() ? 1: VT.getSizeInBits()/128;
3741  unsigned NumLaneElts = NumElts/NumLanes;
3742
3743  // Do not handle 64-bit element shuffles with palignr.
3744  if (NumLaneElts == 2)
3745    return false;
3746
3747  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3748    unsigned i;
3749    for (i = 0; i != NumLaneElts; ++i) {
3750      if (Mask[i+l] >= 0)
3751        break;
3752    }
3753
3754    // Lane is all undef, go to next lane
3755    if (i == NumLaneElts)
3756      continue;
3757
3758    int Start = Mask[i+l];
3759
3760    // Make sure its in this lane in one of the sources
3761    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3762        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3763      return false;
3764
3765    // If not lane 0, then we must match lane 0
3766    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3767      return false;
3768
3769    // Correct second source to be contiguous with first source
3770    if (Start >= (int)NumElts)
3771      Start -= NumElts - NumLaneElts;
3772
3773    // Make sure we're shifting in the right direction.
3774    if (Start <= (int)(i+l))
3775      return false;
3776
3777    Start -= i;
3778
3779    // Check the rest of the elements to see if they are consecutive.
3780    for (++i; i != NumLaneElts; ++i) {
3781      int Idx = Mask[i+l];
3782
3783      // Make sure its in this lane
3784      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3785          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3786        return false;
3787
3788      // If not lane 0, then we must match lane 0
3789      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3790        return false;
3791
3792      if (Idx >= (int)NumElts)
3793        Idx -= NumElts - NumLaneElts;
3794
3795      if (!isUndefOrEqual(Idx, Start+i))
3796        return false;
3797
3798    }
3799  }
3800
3801  return true;
3802}
3803
3804/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3805/// the two vector operands have swapped position.
3806static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3807                                     unsigned NumElems) {
3808  for (unsigned i = 0; i != NumElems; ++i) {
3809    int idx = Mask[i];
3810    if (idx < 0)
3811      continue;
3812    else if (idx < (int)NumElems)
3813      Mask[i] = idx + NumElems;
3814    else
3815      Mask[i] = idx - NumElems;
3816  }
3817}
3818
3819/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3820/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3821/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3822/// reverse of what x86 shuffles want.
3823static bool isSHUFPMask(ArrayRef<int> Mask, MVT VT, bool Commuted = false) {
3824
3825  unsigned NumElems = VT.getVectorNumElements();
3826  unsigned NumLanes = VT.getSizeInBits()/128;
3827  unsigned NumLaneElems = NumElems/NumLanes;
3828
3829  if (NumLaneElems != 2 && NumLaneElems != 4)
3830    return false;
3831
3832  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3833  bool symetricMaskRequired =
3834    (VT.getSizeInBits() >= 256) && (EltSize == 32);
3835
3836  // VSHUFPSY divides the resulting vector into 4 chunks.
3837  // The sources are also splitted into 4 chunks, and each destination
3838  // chunk must come from a different source chunk.
3839  //
3840  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3841  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3842  //
3843  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3844  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3845  //
3846  // VSHUFPDY divides the resulting vector into 4 chunks.
3847  // The sources are also splitted into 4 chunks, and each destination
3848  // chunk must come from a different source chunk.
3849  //
3850  //  SRC1 =>      X3       X2       X1       X0
3851  //  SRC2 =>      Y3       Y2       Y1       Y0
3852  //
3853  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3854  //
3855  SmallVector<int, 4> MaskVal(NumLaneElems, -1);
3856  unsigned HalfLaneElems = NumLaneElems/2;
3857  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3858    for (unsigned i = 0; i != NumLaneElems; ++i) {
3859      int Idx = Mask[i+l];
3860      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3861      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3862        return false;
3863      // For VSHUFPSY, the mask of the second half must be the same as the
3864      // first but with the appropriate offsets. This works in the same way as
3865      // VPERMILPS works with masks.
3866      if (!symetricMaskRequired || Idx < 0)
3867        continue;
3868      if (MaskVal[i] < 0) {
3869        MaskVal[i] = Idx - l;
3870        continue;
3871      }
3872      if ((signed)(Idx - l) != MaskVal[i])
3873        return false;
3874    }
3875  }
3876
3877  return true;
3878}
3879
3880/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3881/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3882static bool isMOVHLPSMask(ArrayRef<int> Mask, MVT VT) {
3883  if (!VT.is128BitVector())
3884    return false;
3885
3886  unsigned NumElems = VT.getVectorNumElements();
3887
3888  if (NumElems != 4)
3889    return false;
3890
3891  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3892  return isUndefOrEqual(Mask[0], 6) &&
3893         isUndefOrEqual(Mask[1], 7) &&
3894         isUndefOrEqual(Mask[2], 2) &&
3895         isUndefOrEqual(Mask[3], 3);
3896}
3897
3898/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3899/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3900/// <2, 3, 2, 3>
3901static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, MVT VT) {
3902  if (!VT.is128BitVector())
3903    return false;
3904
3905  unsigned NumElems = VT.getVectorNumElements();
3906
3907  if (NumElems != 4)
3908    return false;
3909
3910  return isUndefOrEqual(Mask[0], 2) &&
3911         isUndefOrEqual(Mask[1], 3) &&
3912         isUndefOrEqual(Mask[2], 2) &&
3913         isUndefOrEqual(Mask[3], 3);
3914}
3915
3916/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3917/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3918static bool isMOVLPMask(ArrayRef<int> Mask, MVT VT) {
3919  if (!VT.is128BitVector())
3920    return false;
3921
3922  unsigned NumElems = VT.getVectorNumElements();
3923
3924  if (NumElems != 2 && NumElems != 4)
3925    return false;
3926
3927  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3928    if (!isUndefOrEqual(Mask[i], i + NumElems))
3929      return false;
3930
3931  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3932    if (!isUndefOrEqual(Mask[i], i))
3933      return false;
3934
3935  return true;
3936}
3937
3938/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3939/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3940static bool isMOVLHPSMask(ArrayRef<int> Mask, MVT VT) {
3941  if (!VT.is128BitVector())
3942    return false;
3943
3944  unsigned NumElems = VT.getVectorNumElements();
3945
3946  if (NumElems != 2 && NumElems != 4)
3947    return false;
3948
3949  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3950    if (!isUndefOrEqual(Mask[i], i))
3951      return false;
3952
3953  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3954    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3955      return false;
3956
3957  return true;
3958}
3959
3960/// isINSERTPSMask - Return true if the specified VECTOR_SHUFFLE operand
3961/// specifies a shuffle of elements that is suitable for input to INSERTPS.
3962/// i. e: If all but one element come from the same vector.
3963static bool isINSERTPSMask(ArrayRef<int> Mask, MVT VT) {
3964  // TODO: Deal with AVX's VINSERTPS
3965  if (!VT.is128BitVector() || (VT != MVT::v4f32 && VT != MVT::v4i32))
3966    return false;
3967
3968  unsigned CorrectPosV1 = 0;
3969  unsigned CorrectPosV2 = 0;
3970  for (int i = 0, e = (int)VT.getVectorNumElements(); i != e; ++i)
3971    if (Mask[i] == i)
3972      ++CorrectPosV1;
3973    else if (Mask[i] == i + 4)
3974      ++CorrectPosV2;
3975
3976  if (CorrectPosV1 == 3 || CorrectPosV2 == 3)
3977    // We have 3 elements from one vector, and one from another.
3978    return true;
3979
3980  return false;
3981}
3982
3983//
3984// Some special combinations that can be optimized.
3985//
3986static
3987SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3988                               SelectionDAG &DAG) {
3989  MVT VT = SVOp->getSimpleValueType(0);
3990  SDLoc dl(SVOp);
3991
3992  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3993    return SDValue();
3994
3995  ArrayRef<int> Mask = SVOp->getMask();
3996
3997  // These are the special masks that may be optimized.
3998  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3999  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
4000  bool MatchEvenMask = true;
4001  bool MatchOddMask  = true;
4002  for (int i=0; i<8; ++i) {
4003    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
4004      MatchEvenMask = false;
4005    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
4006      MatchOddMask = false;
4007  }
4008
4009  if (!MatchEvenMask && !MatchOddMask)
4010    return SDValue();
4011
4012  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
4013
4014  SDValue Op0 = SVOp->getOperand(0);
4015  SDValue Op1 = SVOp->getOperand(1);
4016
4017  if (MatchEvenMask) {
4018    // Shift the second operand right to 32 bits.
4019    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
4020    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
4021  } else {
4022    // Shift the first operand left to 32 bits.
4023    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
4024    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
4025  }
4026  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
4027  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
4028}
4029
4030/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
4031/// specifies a shuffle of elements that is suitable for input to UNPCKL.
4032static bool isUNPCKLMask(ArrayRef<int> Mask, MVT VT,
4033                         bool HasInt256, bool V2IsSplat = false) {
4034
4035  assert(VT.getSizeInBits() >= 128 &&
4036         "Unsupported vector type for unpckl");
4037
4038  // AVX defines UNPCK* to operate independently on 128-bit lanes.
4039  unsigned NumLanes;
4040  unsigned NumOf256BitLanes;
4041  unsigned NumElts = VT.getVectorNumElements();
4042  if (VT.is256BitVector()) {
4043    if (NumElts != 4 && NumElts != 8 &&
4044        (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4045    return false;
4046    NumLanes = 2;
4047    NumOf256BitLanes = 1;
4048  } else if (VT.is512BitVector()) {
4049    assert(VT.getScalarType().getSizeInBits() >= 32 &&
4050           "Unsupported vector type for unpckh");
4051    NumLanes = 2;
4052    NumOf256BitLanes = 2;
4053  } else {
4054    NumLanes = 1;
4055    NumOf256BitLanes = 1;
4056  }
4057
4058  unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
4059  unsigned NumLaneElts = NumEltsInStride/NumLanes;
4060
4061  for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
4062    for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
4063      for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
4064        int BitI  = Mask[l256*NumEltsInStride+l+i];
4065        int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
4066        if (!isUndefOrEqual(BitI, j+l256*NumElts))
4067          return false;
4068        if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
4069          return false;
4070        if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
4071          return false;
4072      }
4073    }
4074  }
4075  return true;
4076}
4077
4078/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
4079/// specifies a shuffle of elements that is suitable for input to UNPCKH.
4080static bool isUNPCKHMask(ArrayRef<int> Mask, MVT VT,
4081                         bool HasInt256, bool V2IsSplat = false) {
4082  assert(VT.getSizeInBits() >= 128 &&
4083         "Unsupported vector type for unpckh");
4084
4085  // AVX defines UNPCK* to operate independently on 128-bit lanes.
4086  unsigned NumLanes;
4087  unsigned NumOf256BitLanes;
4088  unsigned NumElts = VT.getVectorNumElements();
4089  if (VT.is256BitVector()) {
4090    if (NumElts != 4 && NumElts != 8 &&
4091        (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4092    return false;
4093    NumLanes = 2;
4094    NumOf256BitLanes = 1;
4095  } else if (VT.is512BitVector()) {
4096    assert(VT.getScalarType().getSizeInBits() >= 32 &&
4097           "Unsupported vector type for unpckh");
4098    NumLanes = 2;
4099    NumOf256BitLanes = 2;
4100  } else {
4101    NumLanes = 1;
4102    NumOf256BitLanes = 1;
4103  }
4104
4105  unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
4106  unsigned NumLaneElts = NumEltsInStride/NumLanes;
4107
4108  for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
4109    for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
4110      for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
4111        int BitI  = Mask[l256*NumEltsInStride+l+i];
4112        int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
4113        if (!isUndefOrEqual(BitI, j+l256*NumElts))
4114          return false;
4115        if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
4116          return false;
4117        if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
4118          return false;
4119      }
4120    }
4121  }
4122  return true;
4123}
4124
4125/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
4126/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
4127/// <0, 0, 1, 1>
4128static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
4129  unsigned NumElts = VT.getVectorNumElements();
4130  bool Is256BitVec = VT.is256BitVector();
4131
4132  if (VT.is512BitVector())
4133    return false;
4134  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4135         "Unsupported vector type for unpckh");
4136
4137  if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
4138      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4139    return false;
4140
4141  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
4142  // FIXME: Need a better way to get rid of this, there's no latency difference
4143  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
4144  // the former later. We should also remove the "_undef" special mask.
4145  if (NumElts == 4 && Is256BitVec)
4146    return false;
4147
4148  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
4149  // independently on 128-bit lanes.
4150  unsigned NumLanes = VT.getSizeInBits()/128;
4151  unsigned NumLaneElts = NumElts/NumLanes;
4152
4153  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
4154    for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
4155      int BitI  = Mask[l+i];
4156      int BitI1 = Mask[l+i+1];
4157
4158      if (!isUndefOrEqual(BitI, j))
4159        return false;
4160      if (!isUndefOrEqual(BitI1, j))
4161        return false;
4162    }
4163  }
4164
4165  return true;
4166}
4167
4168/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
4169/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
4170/// <2, 2, 3, 3>
4171static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
4172  unsigned NumElts = VT.getVectorNumElements();
4173
4174  if (VT.is512BitVector())
4175    return false;
4176
4177  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4178         "Unsupported vector type for unpckh");
4179
4180  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
4181      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4182    return false;
4183
4184  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
4185  // independently on 128-bit lanes.
4186  unsigned NumLanes = VT.getSizeInBits()/128;
4187  unsigned NumLaneElts = NumElts/NumLanes;
4188
4189  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
4190    for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
4191      int BitI  = Mask[l+i];
4192      int BitI1 = Mask[l+i+1];
4193      if (!isUndefOrEqual(BitI, j))
4194        return false;
4195      if (!isUndefOrEqual(BitI1, j))
4196        return false;
4197    }
4198  }
4199  return true;
4200}
4201
4202// Match for INSERTI64x4 INSERTF64x4 instructions (src0[0], src1[0]) or
4203// (src1[0], src0[1]), manipulation with 256-bit sub-vectors
4204static bool isINSERT64x4Mask(ArrayRef<int> Mask, MVT VT, unsigned int *Imm) {
4205  if (!VT.is512BitVector())
4206    return false;
4207
4208  unsigned NumElts = VT.getVectorNumElements();
4209  unsigned HalfSize = NumElts/2;
4210  if (isSequentialOrUndefInRange(Mask, 0, HalfSize, 0)) {
4211    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, NumElts)) {
4212      *Imm = 1;
4213      return true;
4214    }
4215  }
4216  if (isSequentialOrUndefInRange(Mask, 0, HalfSize, NumElts)) {
4217    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, HalfSize)) {
4218      *Imm = 0;
4219      return true;
4220    }
4221  }
4222  return false;
4223}
4224
4225/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
4226/// specifies a shuffle of elements that is suitable for input to MOVSS,
4227/// MOVSD, and MOVD, i.e. setting the lowest element.
4228static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
4229  if (VT.getVectorElementType().getSizeInBits() < 32)
4230    return false;
4231  if (!VT.is128BitVector())
4232    return false;
4233
4234  unsigned NumElts = VT.getVectorNumElements();
4235
4236  if (!isUndefOrEqual(Mask[0], NumElts))
4237    return false;
4238
4239  for (unsigned i = 1; i != NumElts; ++i)
4240    if (!isUndefOrEqual(Mask[i], i))
4241      return false;
4242
4243  return true;
4244}
4245
4246/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
4247/// as permutations between 128-bit chunks or halves. As an example: this
4248/// shuffle bellow:
4249///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
4250/// The first half comes from the second half of V1 and the second half from the
4251/// the second half of V2.
4252static bool isVPERM2X128Mask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
4253  if (!HasFp256 || !VT.is256BitVector())
4254    return false;
4255
4256  // The shuffle result is divided into half A and half B. In total the two
4257  // sources have 4 halves, namely: C, D, E, F. The final values of A and
4258  // B must come from C, D, E or F.
4259  unsigned HalfSize = VT.getVectorNumElements()/2;
4260  bool MatchA = false, MatchB = false;
4261
4262  // Check if A comes from one of C, D, E, F.
4263  for (unsigned Half = 0; Half != 4; ++Half) {
4264    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
4265      MatchA = true;
4266      break;
4267    }
4268  }
4269
4270  // Check if B comes from one of C, D, E, F.
4271  for (unsigned Half = 0; Half != 4; ++Half) {
4272    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
4273      MatchB = true;
4274      break;
4275    }
4276  }
4277
4278  return MatchA && MatchB;
4279}
4280
4281/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
4282/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
4283static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
4284  MVT VT = SVOp->getSimpleValueType(0);
4285
4286  unsigned HalfSize = VT.getVectorNumElements()/2;
4287
4288  unsigned FstHalf = 0, SndHalf = 0;
4289  for (unsigned i = 0; i < HalfSize; ++i) {
4290    if (SVOp->getMaskElt(i) > 0) {
4291      FstHalf = SVOp->getMaskElt(i)/HalfSize;
4292      break;
4293    }
4294  }
4295  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
4296    if (SVOp->getMaskElt(i) > 0) {
4297      SndHalf = SVOp->getMaskElt(i)/HalfSize;
4298      break;
4299    }
4300  }
4301
4302  return (FstHalf | (SndHalf << 4));
4303}
4304
4305// Symetric in-lane mask. Each lane has 4 elements (for imm8)
4306static bool isPermImmMask(ArrayRef<int> Mask, MVT VT, unsigned& Imm8) {
4307  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4308  if (EltSize < 32)
4309    return false;
4310
4311  unsigned NumElts = VT.getVectorNumElements();
4312  Imm8 = 0;
4313  if (VT.is128BitVector() || (VT.is256BitVector() && EltSize == 64)) {
4314    for (unsigned i = 0; i != NumElts; ++i) {
4315      if (Mask[i] < 0)
4316        continue;
4317      Imm8 |= Mask[i] << (i*2);
4318    }
4319    return true;
4320  }
4321
4322  unsigned LaneSize = 4;
4323  SmallVector<int, 4> MaskVal(LaneSize, -1);
4324
4325  for (unsigned l = 0; l != NumElts; l += LaneSize) {
4326    for (unsigned i = 0; i != LaneSize; ++i) {
4327      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
4328        return false;
4329      if (Mask[i+l] < 0)
4330        continue;
4331      if (MaskVal[i] < 0) {
4332        MaskVal[i] = Mask[i+l] - l;
4333        Imm8 |= MaskVal[i] << (i*2);
4334        continue;
4335      }
4336      if (Mask[i+l] != (signed)(MaskVal[i]+l))
4337        return false;
4338    }
4339  }
4340  return true;
4341}
4342
4343/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
4344/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
4345/// Note that VPERMIL mask matching is different depending whether theunderlying
4346/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
4347/// to the same elements of the low, but to the higher half of the source.
4348/// In VPERMILPD the two lanes could be shuffled independently of each other
4349/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
4350static bool isVPERMILPMask(ArrayRef<int> Mask, MVT VT) {
4351  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4352  if (VT.getSizeInBits() < 256 || EltSize < 32)
4353    return false;
4354  bool symetricMaskRequired = (EltSize == 32);
4355  unsigned NumElts = VT.getVectorNumElements();
4356
4357  unsigned NumLanes = VT.getSizeInBits()/128;
4358  unsigned LaneSize = NumElts/NumLanes;
4359  // 2 or 4 elements in one lane
4360
4361  SmallVector<int, 4> ExpectedMaskVal(LaneSize, -1);
4362  for (unsigned l = 0; l != NumElts; l += LaneSize) {
4363    for (unsigned i = 0; i != LaneSize; ++i) {
4364      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
4365        return false;
4366      if (symetricMaskRequired) {
4367        if (ExpectedMaskVal[i] < 0 && Mask[i+l] >= 0) {
4368          ExpectedMaskVal[i] = Mask[i+l] - l;
4369          continue;
4370        }
4371        if (!isUndefOrEqual(Mask[i+l], ExpectedMaskVal[i]+l))
4372          return false;
4373      }
4374    }
4375  }
4376  return true;
4377}
4378
4379/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
4380/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
4381/// element of vector 2 and the other elements to come from vector 1 in order.
4382static bool isCommutedMOVLMask(ArrayRef<int> Mask, MVT VT,
4383                               bool V2IsSplat = false, bool V2IsUndef = false) {
4384  if (!VT.is128BitVector())
4385    return false;
4386
4387  unsigned NumOps = VT.getVectorNumElements();
4388  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
4389    return false;
4390
4391  if (!isUndefOrEqual(Mask[0], 0))
4392    return false;
4393
4394  for (unsigned i = 1; i != NumOps; ++i)
4395    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
4396          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
4397          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
4398      return false;
4399
4400  return true;
4401}
4402
4403/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4404/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
4405/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
4406static bool isMOVSHDUPMask(ArrayRef<int> Mask, MVT VT,
4407                           const X86Subtarget *Subtarget) {
4408  if (!Subtarget->hasSSE3())
4409    return false;
4410
4411  unsigned NumElems = VT.getVectorNumElements();
4412
4413  if ((VT.is128BitVector() && NumElems != 4) ||
4414      (VT.is256BitVector() && NumElems != 8) ||
4415      (VT.is512BitVector() && NumElems != 16))
4416    return false;
4417
4418  // "i+1" is the value the indexed mask element must have
4419  for (unsigned i = 0; i != NumElems; i += 2)
4420    if (!isUndefOrEqual(Mask[i], i+1) ||
4421        !isUndefOrEqual(Mask[i+1], i+1))
4422      return false;
4423
4424  return true;
4425}
4426
4427/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4428/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
4429/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
4430static bool isMOVSLDUPMask(ArrayRef<int> Mask, MVT VT,
4431                           const X86Subtarget *Subtarget) {
4432  if (!Subtarget->hasSSE3())
4433    return false;
4434
4435  unsigned NumElems = VT.getVectorNumElements();
4436
4437  if ((VT.is128BitVector() && NumElems != 4) ||
4438      (VT.is256BitVector() && NumElems != 8) ||
4439      (VT.is512BitVector() && NumElems != 16))
4440    return false;
4441
4442  // "i" is the value the indexed mask element must have
4443  for (unsigned i = 0; i != NumElems; i += 2)
4444    if (!isUndefOrEqual(Mask[i], i) ||
4445        !isUndefOrEqual(Mask[i+1], i))
4446      return false;
4447
4448  return true;
4449}
4450
4451/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
4452/// specifies a shuffle of elements that is suitable for input to 256-bit
4453/// version of MOVDDUP.
4454static bool isMOVDDUPYMask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
4455  if (!HasFp256 || !VT.is256BitVector())
4456    return false;
4457
4458  unsigned NumElts = VT.getVectorNumElements();
4459  if (NumElts != 4)
4460    return false;
4461
4462  for (unsigned i = 0; i != NumElts/2; ++i)
4463    if (!isUndefOrEqual(Mask[i], 0))
4464      return false;
4465  for (unsigned i = NumElts/2; i != NumElts; ++i)
4466    if (!isUndefOrEqual(Mask[i], NumElts/2))
4467      return false;
4468  return true;
4469}
4470
4471/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4472/// specifies a shuffle of elements that is suitable for input to 128-bit
4473/// version of MOVDDUP.
4474static bool isMOVDDUPMask(ArrayRef<int> Mask, MVT VT) {
4475  if (!VT.is128BitVector())
4476    return false;
4477
4478  unsigned e = VT.getVectorNumElements() / 2;
4479  for (unsigned i = 0; i != e; ++i)
4480    if (!isUndefOrEqual(Mask[i], i))
4481      return false;
4482  for (unsigned i = 0; i != e; ++i)
4483    if (!isUndefOrEqual(Mask[e+i], i))
4484      return false;
4485  return true;
4486}
4487
4488/// isVEXTRACTIndex - Return true if the specified
4489/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4490/// suitable for instruction that extract 128 or 256 bit vectors
4491static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
4492  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
4493  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4494    return false;
4495
4496  // The index should be aligned on a vecWidth-bit boundary.
4497  uint64_t Index =
4498    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4499
4500  MVT VT = N->getSimpleValueType(0);
4501  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4502  bool Result = (Index * ElSize) % vecWidth == 0;
4503
4504  return Result;
4505}
4506
4507/// isVINSERTIndex - Return true if the specified INSERT_SUBVECTOR
4508/// operand specifies a subvector insert that is suitable for input to
4509/// insertion of 128 or 256-bit subvectors
4510static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
4511  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
4512  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4513    return false;
4514  // The index should be aligned on a vecWidth-bit boundary.
4515  uint64_t Index =
4516    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4517
4518  MVT VT = N->getSimpleValueType(0);
4519  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4520  bool Result = (Index * ElSize) % vecWidth == 0;
4521
4522  return Result;
4523}
4524
4525bool X86::isVINSERT128Index(SDNode *N) {
4526  return isVINSERTIndex(N, 128);
4527}
4528
4529bool X86::isVINSERT256Index(SDNode *N) {
4530  return isVINSERTIndex(N, 256);
4531}
4532
4533bool X86::isVEXTRACT128Index(SDNode *N) {
4534  return isVEXTRACTIndex(N, 128);
4535}
4536
4537bool X86::isVEXTRACT256Index(SDNode *N) {
4538  return isVEXTRACTIndex(N, 256);
4539}
4540
4541/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4542/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4543/// Handles 128-bit and 256-bit.
4544static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4545  MVT VT = N->getSimpleValueType(0);
4546
4547  assert((VT.getSizeInBits() >= 128) &&
4548         "Unsupported vector type for PSHUF/SHUFP");
4549
4550  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4551  // independently on 128-bit lanes.
4552  unsigned NumElts = VT.getVectorNumElements();
4553  unsigned NumLanes = VT.getSizeInBits()/128;
4554  unsigned NumLaneElts = NumElts/NumLanes;
4555
4556  assert((NumLaneElts == 2 || NumLaneElts == 4 || NumLaneElts == 8) &&
4557         "Only supports 2, 4 or 8 elements per lane");
4558
4559  unsigned Shift = (NumLaneElts >= 4) ? 1 : 0;
4560  unsigned Mask = 0;
4561  for (unsigned i = 0; i != NumElts; ++i) {
4562    int Elt = N->getMaskElt(i);
4563    if (Elt < 0) continue;
4564    Elt &= NumLaneElts - 1;
4565    unsigned ShAmt = (i << Shift) % 8;
4566    Mask |= Elt << ShAmt;
4567  }
4568
4569  return Mask;
4570}
4571
4572/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4573/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4574static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4575  MVT VT = N->getSimpleValueType(0);
4576
4577  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4578         "Unsupported vector type for PSHUFHW");
4579
4580  unsigned NumElts = VT.getVectorNumElements();
4581
4582  unsigned Mask = 0;
4583  for (unsigned l = 0; l != NumElts; l += 8) {
4584    // 8 nodes per lane, but we only care about the last 4.
4585    for (unsigned i = 0; i < 4; ++i) {
4586      int Elt = N->getMaskElt(l+i+4);
4587      if (Elt < 0) continue;
4588      Elt &= 0x3; // only 2-bits.
4589      Mask |= Elt << (i * 2);
4590    }
4591  }
4592
4593  return Mask;
4594}
4595
4596/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4597/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4598static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4599  MVT VT = N->getSimpleValueType(0);
4600
4601  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4602         "Unsupported vector type for PSHUFHW");
4603
4604  unsigned NumElts = VT.getVectorNumElements();
4605
4606  unsigned Mask = 0;
4607  for (unsigned l = 0; l != NumElts; l += 8) {
4608    // 8 nodes per lane, but we only care about the first 4.
4609    for (unsigned i = 0; i < 4; ++i) {
4610      int Elt = N->getMaskElt(l+i);
4611      if (Elt < 0) continue;
4612      Elt &= 0x3; // only 2-bits
4613      Mask |= Elt << (i * 2);
4614    }
4615  }
4616
4617  return Mask;
4618}
4619
4620/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4621/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4622static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4623  MVT VT = SVOp->getSimpleValueType(0);
4624  unsigned EltSize = VT.is512BitVector() ? 1 :
4625    VT.getVectorElementType().getSizeInBits() >> 3;
4626
4627  unsigned NumElts = VT.getVectorNumElements();
4628  unsigned NumLanes = VT.is512BitVector() ? 1 : VT.getSizeInBits()/128;
4629  unsigned NumLaneElts = NumElts/NumLanes;
4630
4631  int Val = 0;
4632  unsigned i;
4633  for (i = 0; i != NumElts; ++i) {
4634    Val = SVOp->getMaskElt(i);
4635    if (Val >= 0)
4636      break;
4637  }
4638  if (Val >= (int)NumElts)
4639    Val -= NumElts - NumLaneElts;
4640
4641  assert(Val - i > 0 && "PALIGNR imm should be positive");
4642  return (Val - i) * EltSize;
4643}
4644
4645static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
4646  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
4647  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4648    llvm_unreachable("Illegal extract subvector for VEXTRACT");
4649
4650  uint64_t Index =
4651    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4652
4653  MVT VecVT = N->getOperand(0).getSimpleValueType();
4654  MVT ElVT = VecVT.getVectorElementType();
4655
4656  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
4657  return Index / NumElemsPerChunk;
4658}
4659
4660static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
4661  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
4662  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4663    llvm_unreachable("Illegal insert subvector for VINSERT");
4664
4665  uint64_t Index =
4666    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4667
4668  MVT VecVT = N->getSimpleValueType(0);
4669  MVT ElVT = VecVT.getVectorElementType();
4670
4671  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
4672  return Index / NumElemsPerChunk;
4673}
4674
4675/// getExtractVEXTRACT128Immediate - Return the appropriate immediate
4676/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4677/// and VINSERTI128 instructions.
4678unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
4679  return getExtractVEXTRACTImmediate(N, 128);
4680}
4681
4682/// getExtractVEXTRACT256Immediate - Return the appropriate immediate
4683/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF64x4
4684/// and VINSERTI64x4 instructions.
4685unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
4686  return getExtractVEXTRACTImmediate(N, 256);
4687}
4688
4689/// getInsertVINSERT128Immediate - Return the appropriate immediate
4690/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4691/// and VINSERTI128 instructions.
4692unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
4693  return getInsertVINSERTImmediate(N, 128);
4694}
4695
4696/// getInsertVINSERT256Immediate - Return the appropriate immediate
4697/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF46x4
4698/// and VINSERTI64x4 instructions.
4699unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
4700  return getInsertVINSERTImmediate(N, 256);
4701}
4702
4703/// isZero - Returns true if Elt is a constant integer zero
4704static bool isZero(SDValue V) {
4705  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
4706  return C && C->isNullValue();
4707}
4708
4709/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4710/// constant +0.0.
4711bool X86::isZeroNode(SDValue Elt) {
4712  if (isZero(Elt))
4713    return true;
4714  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
4715    return CFP->getValueAPF().isPosZero();
4716  return false;
4717}
4718
4719/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4720/// their permute mask.
4721static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4722                                    SelectionDAG &DAG) {
4723  MVT VT = SVOp->getSimpleValueType(0);
4724  unsigned NumElems = VT.getVectorNumElements();
4725  SmallVector<int, 8> MaskVec;
4726
4727  for (unsigned i = 0; i != NumElems; ++i) {
4728    int Idx = SVOp->getMaskElt(i);
4729    if (Idx >= 0) {
4730      if (Idx < (int)NumElems)
4731        Idx += NumElems;
4732      else
4733        Idx -= NumElems;
4734    }
4735    MaskVec.push_back(Idx);
4736  }
4737  return DAG.getVectorShuffle(VT, SDLoc(SVOp), SVOp->getOperand(1),
4738                              SVOp->getOperand(0), &MaskVec[0]);
4739}
4740
4741/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4742/// match movhlps. The lower half elements should come from upper half of
4743/// V1 (and in order), and the upper half elements should come from the upper
4744/// half of V2 (and in order).
4745static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, MVT VT) {
4746  if (!VT.is128BitVector())
4747    return false;
4748  if (VT.getVectorNumElements() != 4)
4749    return false;
4750  for (unsigned i = 0, e = 2; i != e; ++i)
4751    if (!isUndefOrEqual(Mask[i], i+2))
4752      return false;
4753  for (unsigned i = 2; i != 4; ++i)
4754    if (!isUndefOrEqual(Mask[i], i+4))
4755      return false;
4756  return true;
4757}
4758
4759/// isScalarLoadToVector - Returns true if the node is a scalar load that
4760/// is promoted to a vector. It also returns the LoadSDNode by reference if
4761/// required.
4762static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = nullptr) {
4763  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4764    return false;
4765  N = N->getOperand(0).getNode();
4766  if (!ISD::isNON_EXTLoad(N))
4767    return false;
4768  if (LD)
4769    *LD = cast<LoadSDNode>(N);
4770  return true;
4771}
4772
4773// Test whether the given value is a vector value which will be legalized
4774// into a load.
4775static bool WillBeConstantPoolLoad(SDNode *N) {
4776  if (N->getOpcode() != ISD::BUILD_VECTOR)
4777    return false;
4778
4779  // Check for any non-constant elements.
4780  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4781    switch (N->getOperand(i).getNode()->getOpcode()) {
4782    case ISD::UNDEF:
4783    case ISD::ConstantFP:
4784    case ISD::Constant:
4785      break;
4786    default:
4787      return false;
4788    }
4789
4790  // Vectors of all-zeros and all-ones are materialized with special
4791  // instructions rather than being loaded.
4792  return !ISD::isBuildVectorAllZeros(N) &&
4793         !ISD::isBuildVectorAllOnes(N);
4794}
4795
4796/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4797/// match movlp{s|d}. The lower half elements should come from lower half of
4798/// V1 (and in order), and the upper half elements should come from the upper
4799/// half of V2 (and in order). And since V1 will become the source of the
4800/// MOVLP, it must be either a vector load or a scalar load to vector.
4801static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4802                               ArrayRef<int> Mask, MVT VT) {
4803  if (!VT.is128BitVector())
4804    return false;
4805
4806  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4807    return false;
4808  // Is V2 is a vector load, don't do this transformation. We will try to use
4809  // load folding shufps op.
4810  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4811    return false;
4812
4813  unsigned NumElems = VT.getVectorNumElements();
4814
4815  if (NumElems != 2 && NumElems != 4)
4816    return false;
4817  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4818    if (!isUndefOrEqual(Mask[i], i))
4819      return false;
4820  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4821    if (!isUndefOrEqual(Mask[i], i+NumElems))
4822      return false;
4823  return true;
4824}
4825
4826/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4827/// all the same.
4828static bool isSplatVector(SDNode *N) {
4829  if (N->getOpcode() != ISD::BUILD_VECTOR)
4830    return false;
4831
4832  SDValue SplatValue = N->getOperand(0);
4833  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4834    if (N->getOperand(i) != SplatValue)
4835      return false;
4836  return true;
4837}
4838
4839/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4840/// to an zero vector.
4841/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4842static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4843  SDValue V1 = N->getOperand(0);
4844  SDValue V2 = N->getOperand(1);
4845  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4846  for (unsigned i = 0; i != NumElems; ++i) {
4847    int Idx = N->getMaskElt(i);
4848    if (Idx >= (int)NumElems) {
4849      unsigned Opc = V2.getOpcode();
4850      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4851        continue;
4852      if (Opc != ISD::BUILD_VECTOR ||
4853          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4854        return false;
4855    } else if (Idx >= 0) {
4856      unsigned Opc = V1.getOpcode();
4857      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4858        continue;
4859      if (Opc != ISD::BUILD_VECTOR ||
4860          !X86::isZeroNode(V1.getOperand(Idx)))
4861        return false;
4862    }
4863  }
4864  return true;
4865}
4866
4867/// getZeroVector - Returns a vector of specified type with all zero elements.
4868///
4869static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4870                             SelectionDAG &DAG, SDLoc dl) {
4871  assert(VT.isVector() && "Expected a vector type");
4872
4873  // Always build SSE zero vectors as <4 x i32> bitcasted
4874  // to their dest type. This ensures they get CSE'd.
4875  SDValue Vec;
4876  if (VT.is128BitVector()) {  // SSE
4877    if (Subtarget->hasSSE2()) {  // SSE2
4878      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4879      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4880    } else { // SSE1
4881      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4882      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4883    }
4884  } else if (VT.is256BitVector()) { // AVX
4885    if (Subtarget->hasInt256()) { // AVX2
4886      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4887      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4888      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
4889    } else {
4890      // 256-bit logic and arithmetic instructions in AVX are all
4891      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4892      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4893      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4894      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops);
4895    }
4896  } else if (VT.is512BitVector()) { // AVX-512
4897      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4898      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
4899                        Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4900      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops);
4901  } else if (VT.getScalarType() == MVT::i1) {
4902    assert(VT.getVectorNumElements() <= 16 && "Unexpected vector type");
4903    SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
4904    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
4905    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
4906  } else
4907    llvm_unreachable("Unexpected vector type");
4908
4909  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4910}
4911
4912/// getOnesVector - Returns a vector of specified type with all bits set.
4913/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4914/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4915/// Then bitcast to their original type, ensuring they get CSE'd.
4916static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
4917                             SDLoc dl) {
4918  assert(VT.isVector() && "Expected a vector type");
4919
4920  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4921  SDValue Vec;
4922  if (VT.is256BitVector()) {
4923    if (HasInt256) { // AVX2
4924      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4925      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
4926    } else { // AVX
4927      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4928      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4929    }
4930  } else if (VT.is128BitVector()) {
4931    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4932  } else
4933    llvm_unreachable("Unexpected vector type");
4934
4935  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4936}
4937
4938/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4939/// that point to V2 points to its first element.
4940static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4941  for (unsigned i = 0; i != NumElems; ++i) {
4942    if (Mask[i] > (int)NumElems) {
4943      Mask[i] = NumElems;
4944    }
4945  }
4946}
4947
4948/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4949/// operation of specified width.
4950static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
4951                       SDValue V2) {
4952  unsigned NumElems = VT.getVectorNumElements();
4953  SmallVector<int, 8> Mask;
4954  Mask.push_back(NumElems);
4955  for (unsigned i = 1; i != NumElems; ++i)
4956    Mask.push_back(i);
4957  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4958}
4959
4960/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4961static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4962                          SDValue V2) {
4963  unsigned NumElems = VT.getVectorNumElements();
4964  SmallVector<int, 8> Mask;
4965  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4966    Mask.push_back(i);
4967    Mask.push_back(i + NumElems);
4968  }
4969  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4970}
4971
4972/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4973static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4974                          SDValue V2) {
4975  unsigned NumElems = VT.getVectorNumElements();
4976  SmallVector<int, 8> Mask;
4977  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4978    Mask.push_back(i + Half);
4979    Mask.push_back(i + NumElems + Half);
4980  }
4981  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4982}
4983
4984// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4985// a generic shuffle instruction because the target has no such instructions.
4986// Generate shuffles which repeat i16 and i8 several times until they can be
4987// represented by v4f32 and then be manipulated by target suported shuffles.
4988static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4989  MVT VT = V.getSimpleValueType();
4990  int NumElems = VT.getVectorNumElements();
4991  SDLoc dl(V);
4992
4993  while (NumElems > 4) {
4994    if (EltNo < NumElems/2) {
4995      V = getUnpackl(DAG, dl, VT, V, V);
4996    } else {
4997      V = getUnpackh(DAG, dl, VT, V, V);
4998      EltNo -= NumElems/2;
4999    }
5000    NumElems >>= 1;
5001  }
5002  return V;
5003}
5004
5005/// getLegalSplat - Generate a legal splat with supported x86 shuffles
5006static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
5007  MVT VT = V.getSimpleValueType();
5008  SDLoc dl(V);
5009
5010  if (VT.is128BitVector()) {
5011    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
5012    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
5013    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
5014                             &SplatMask[0]);
5015  } else if (VT.is256BitVector()) {
5016    // To use VPERMILPS to splat scalars, the second half of indicies must
5017    // refer to the higher part, which is a duplication of the lower one,
5018    // because VPERMILPS can only handle in-lane permutations.
5019    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
5020                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
5021
5022    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
5023    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
5024                             &SplatMask[0]);
5025  } else
5026    llvm_unreachable("Vector size not supported");
5027
5028  return DAG.getNode(ISD::BITCAST, dl, VT, V);
5029}
5030
5031/// PromoteSplat - Splat is promoted to target supported vector shuffles.
5032static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
5033  MVT SrcVT = SV->getSimpleValueType(0);
5034  SDValue V1 = SV->getOperand(0);
5035  SDLoc dl(SV);
5036
5037  int EltNo = SV->getSplatIndex();
5038  int NumElems = SrcVT.getVectorNumElements();
5039  bool Is256BitVec = SrcVT.is256BitVector();
5040
5041  assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
5042         "Unknown how to promote splat for type");
5043
5044  // Extract the 128-bit part containing the splat element and update
5045  // the splat element index when it refers to the higher register.
5046  if (Is256BitVec) {
5047    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
5048    if (EltNo >= NumElems/2)
5049      EltNo -= NumElems/2;
5050  }
5051
5052  // All i16 and i8 vector types can't be used directly by a generic shuffle
5053  // instruction because the target has no such instruction. Generate shuffles
5054  // which repeat i16 and i8 several times until they fit in i32, and then can
5055  // be manipulated by target suported shuffles.
5056  MVT EltVT = SrcVT.getVectorElementType();
5057  if (EltVT == MVT::i8 || EltVT == MVT::i16)
5058    V1 = PromoteSplati8i16(V1, DAG, EltNo);
5059
5060  // Recreate the 256-bit vector and place the same 128-bit vector
5061  // into the low and high part. This is necessary because we want
5062  // to use VPERM* to shuffle the vectors
5063  if (Is256BitVec) {
5064    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
5065  }
5066
5067  return getLegalSplat(DAG, V1, EltNo);
5068}
5069
5070/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
5071/// vector of zero or undef vector.  This produces a shuffle where the low
5072/// element of V2 is swizzled into the zero/undef vector, landing at element
5073/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
5074static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
5075                                           bool IsZero,
5076                                           const X86Subtarget *Subtarget,
5077                                           SelectionDAG &DAG) {
5078  MVT VT = V2.getSimpleValueType();
5079  SDValue V1 = IsZero
5080    ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
5081  unsigned NumElems = VT.getVectorNumElements();
5082  SmallVector<int, 16> MaskVec;
5083  for (unsigned i = 0; i != NumElems; ++i)
5084    // If this is the insertion idx, put the low elt of V2 here.
5085    MaskVec.push_back(i == Idx ? NumElems : i);
5086  return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
5087}
5088
5089/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
5090/// target specific opcode. Returns true if the Mask could be calculated.
5091/// Sets IsUnary to true if only uses one source.
5092static bool getTargetShuffleMask(SDNode *N, MVT VT,
5093                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
5094  unsigned NumElems = VT.getVectorNumElements();
5095  SDValue ImmN;
5096
5097  IsUnary = false;
5098  switch(N->getOpcode()) {
5099  case X86ISD::SHUFP:
5100    ImmN = N->getOperand(N->getNumOperands()-1);
5101    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5102    break;
5103  case X86ISD::UNPCKH:
5104    DecodeUNPCKHMask(VT, Mask);
5105    break;
5106  case X86ISD::UNPCKL:
5107    DecodeUNPCKLMask(VT, Mask);
5108    break;
5109  case X86ISD::MOVHLPS:
5110    DecodeMOVHLPSMask(NumElems, Mask);
5111    break;
5112  case X86ISD::MOVLHPS:
5113    DecodeMOVLHPSMask(NumElems, Mask);
5114    break;
5115  case X86ISD::PALIGNR:
5116    ImmN = N->getOperand(N->getNumOperands()-1);
5117    DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5118    break;
5119  case X86ISD::PSHUFD:
5120  case X86ISD::VPERMILP:
5121    ImmN = N->getOperand(N->getNumOperands()-1);
5122    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5123    IsUnary = true;
5124    break;
5125  case X86ISD::PSHUFHW:
5126    ImmN = N->getOperand(N->getNumOperands()-1);
5127    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5128    IsUnary = true;
5129    break;
5130  case X86ISD::PSHUFLW:
5131    ImmN = N->getOperand(N->getNumOperands()-1);
5132    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5133    IsUnary = true;
5134    break;
5135  case X86ISD::VPERMI:
5136    ImmN = N->getOperand(N->getNumOperands()-1);
5137    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5138    IsUnary = true;
5139    break;
5140  case X86ISD::MOVSS:
5141  case X86ISD::MOVSD: {
5142    // The index 0 always comes from the first element of the second source,
5143    // this is why MOVSS and MOVSD are used in the first place. The other
5144    // elements come from the other positions of the first source vector
5145    Mask.push_back(NumElems);
5146    for (unsigned i = 1; i != NumElems; ++i) {
5147      Mask.push_back(i);
5148    }
5149    break;
5150  }
5151  case X86ISD::VPERM2X128:
5152    ImmN = N->getOperand(N->getNumOperands()-1);
5153    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
5154    if (Mask.empty()) return false;
5155    break;
5156  case X86ISD::MOVDDUP:
5157  case X86ISD::MOVLHPD:
5158  case X86ISD::MOVLPD:
5159  case X86ISD::MOVLPS:
5160  case X86ISD::MOVSHDUP:
5161  case X86ISD::MOVSLDUP:
5162    // Not yet implemented
5163    return false;
5164  default: llvm_unreachable("unknown target shuffle node");
5165  }
5166
5167  return true;
5168}
5169
5170/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5171/// element of the result of the vector shuffle.
5172static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
5173                                   unsigned Depth) {
5174  if (Depth == 6)
5175    return SDValue();  // Limit search depth.
5176
5177  SDValue V = SDValue(N, 0);
5178  EVT VT = V.getValueType();
5179  unsigned Opcode = V.getOpcode();
5180
5181  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
5182  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
5183    int Elt = SV->getMaskElt(Index);
5184
5185    if (Elt < 0)
5186      return DAG.getUNDEF(VT.getVectorElementType());
5187
5188    unsigned NumElems = VT.getVectorNumElements();
5189    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
5190                                         : SV->getOperand(1);
5191    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
5192  }
5193
5194  // Recurse into target specific vector shuffles to find scalars.
5195  if (isTargetShuffle(Opcode)) {
5196    MVT ShufVT = V.getSimpleValueType();
5197    unsigned NumElems = ShufVT.getVectorNumElements();
5198    SmallVector<int, 16> ShuffleMask;
5199    bool IsUnary;
5200
5201    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
5202      return SDValue();
5203
5204    int Elt = ShuffleMask[Index];
5205    if (Elt < 0)
5206      return DAG.getUNDEF(ShufVT.getVectorElementType());
5207
5208    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
5209                                         : N->getOperand(1);
5210    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
5211                               Depth+1);
5212  }
5213
5214  // Actual nodes that may contain scalar elements
5215  if (Opcode == ISD::BITCAST) {
5216    V = V.getOperand(0);
5217    EVT SrcVT = V.getValueType();
5218    unsigned NumElems = VT.getVectorNumElements();
5219
5220    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
5221      return SDValue();
5222  }
5223
5224  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5225    return (Index == 0) ? V.getOperand(0)
5226                        : DAG.getUNDEF(VT.getVectorElementType());
5227
5228  if (V.getOpcode() == ISD::BUILD_VECTOR)
5229    return V.getOperand(Index);
5230
5231  return SDValue();
5232}
5233
5234/// getNumOfConsecutiveZeros - Return the number of elements of a vector
5235/// shuffle operation which come from a consecutively from a zero. The
5236/// search can start in two different directions, from left or right.
5237/// We count undefs as zeros until PreferredNum is reached.
5238static unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp,
5239                                         unsigned NumElems, bool ZerosFromLeft,
5240                                         SelectionDAG &DAG,
5241                                         unsigned PreferredNum = -1U) {
5242  unsigned NumZeros = 0;
5243  for (unsigned i = 0; i != NumElems; ++i) {
5244    unsigned Index = ZerosFromLeft ? i : NumElems - i - 1;
5245    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
5246    if (!Elt.getNode())
5247      break;
5248
5249    if (X86::isZeroNode(Elt))
5250      ++NumZeros;
5251    else if (Elt.getOpcode() == ISD::UNDEF) // Undef as zero up to PreferredNum.
5252      NumZeros = std::min(NumZeros + 1, PreferredNum);
5253    else
5254      break;
5255  }
5256
5257  return NumZeros;
5258}
5259
5260/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
5261/// correspond consecutively to elements from one of the vector operands,
5262/// starting from its index OpIdx. Also tell OpNum which source vector operand.
5263static
5264bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
5265                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
5266                              unsigned NumElems, unsigned &OpNum) {
5267  bool SeenV1 = false;
5268  bool SeenV2 = false;
5269
5270  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
5271    int Idx = SVOp->getMaskElt(i);
5272    // Ignore undef indicies
5273    if (Idx < 0)
5274      continue;
5275
5276    if (Idx < (int)NumElems)
5277      SeenV1 = true;
5278    else
5279      SeenV2 = true;
5280
5281    // Only accept consecutive elements from the same vector
5282    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
5283      return false;
5284  }
5285
5286  OpNum = SeenV1 ? 0 : 1;
5287  return true;
5288}
5289
5290/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
5291/// logical left shift of a vector.
5292static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5293                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5294  unsigned NumElems =
5295    SVOp->getSimpleValueType(0).getVectorNumElements();
5296  unsigned NumZeros = getNumOfConsecutiveZeros(
5297      SVOp, NumElems, false /* check zeros from right */, DAG,
5298      SVOp->getMaskElt(0));
5299  unsigned OpSrc;
5300
5301  if (!NumZeros)
5302    return false;
5303
5304  // Considering the elements in the mask that are not consecutive zeros,
5305  // check if they consecutively come from only one of the source vectors.
5306  //
5307  //               V1 = {X, A, B, C}     0
5308  //                         \  \  \    /
5309  //   vector_shuffle V1, V2 <1, 2, 3, X>
5310  //
5311  if (!isShuffleMaskConsecutive(SVOp,
5312            0,                   // Mask Start Index
5313            NumElems-NumZeros,   // Mask End Index(exclusive)
5314            NumZeros,            // Where to start looking in the src vector
5315            NumElems,            // Number of elements in vector
5316            OpSrc))              // Which source operand ?
5317    return false;
5318
5319  isLeft = false;
5320  ShAmt = NumZeros;
5321  ShVal = SVOp->getOperand(OpSrc);
5322  return true;
5323}
5324
5325/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
5326/// logical left shift of a vector.
5327static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5328                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5329  unsigned NumElems =
5330    SVOp->getSimpleValueType(0).getVectorNumElements();
5331  unsigned NumZeros = getNumOfConsecutiveZeros(
5332      SVOp, NumElems, true /* check zeros from left */, DAG,
5333      NumElems - SVOp->getMaskElt(NumElems - 1) - 1);
5334  unsigned OpSrc;
5335
5336  if (!NumZeros)
5337    return false;
5338
5339  // Considering the elements in the mask that are not consecutive zeros,
5340  // check if they consecutively come from only one of the source vectors.
5341  //
5342  //                           0    { A, B, X, X } = V2
5343  //                          / \    /  /
5344  //   vector_shuffle V1, V2 <X, X, 4, 5>
5345  //
5346  if (!isShuffleMaskConsecutive(SVOp,
5347            NumZeros,     // Mask Start Index
5348            NumElems,     // Mask End Index(exclusive)
5349            0,            // Where to start looking in the src vector
5350            NumElems,     // Number of elements in vector
5351            OpSrc))       // Which source operand ?
5352    return false;
5353
5354  isLeft = true;
5355  ShAmt = NumZeros;
5356  ShVal = SVOp->getOperand(OpSrc);
5357  return true;
5358}
5359
5360/// isVectorShift - Returns true if the shuffle can be implemented as a
5361/// logical left or right shift of a vector.
5362static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5363                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5364  // Although the logic below support any bitwidth size, there are no
5365  // shift instructions which handle more than 128-bit vectors.
5366  if (!SVOp->getSimpleValueType(0).is128BitVector())
5367    return false;
5368
5369  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
5370      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
5371    return true;
5372
5373  return false;
5374}
5375
5376/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
5377///
5378static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
5379                                       unsigned NumNonZero, unsigned NumZero,
5380                                       SelectionDAG &DAG,
5381                                       const X86Subtarget* Subtarget,
5382                                       const TargetLowering &TLI) {
5383  if (NumNonZero > 8)
5384    return SDValue();
5385
5386  SDLoc dl(Op);
5387  SDValue V;
5388  bool First = true;
5389  for (unsigned i = 0; i < 16; ++i) {
5390    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
5391    if (ThisIsNonZero && First) {
5392      if (NumZero)
5393        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
5394      else
5395        V = DAG.getUNDEF(MVT::v8i16);
5396      First = false;
5397    }
5398
5399    if ((i & 1) != 0) {
5400      SDValue ThisElt, LastElt;
5401      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
5402      if (LastIsNonZero) {
5403        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
5404                              MVT::i16, Op.getOperand(i-1));
5405      }
5406      if (ThisIsNonZero) {
5407        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
5408        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
5409                              ThisElt, DAG.getConstant(8, MVT::i8));
5410        if (LastIsNonZero)
5411          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
5412      } else
5413        ThisElt = LastElt;
5414
5415      if (ThisElt.getNode())
5416        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
5417                        DAG.getIntPtrConstant(i/2));
5418    }
5419  }
5420
5421  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
5422}
5423
5424/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
5425///
5426static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
5427                                     unsigned NumNonZero, unsigned NumZero,
5428                                     SelectionDAG &DAG,
5429                                     const X86Subtarget* Subtarget,
5430                                     const TargetLowering &TLI) {
5431  if (NumNonZero > 4)
5432    return SDValue();
5433
5434  SDLoc dl(Op);
5435  SDValue V;
5436  bool First = true;
5437  for (unsigned i = 0; i < 8; ++i) {
5438    bool isNonZero = (NonZeros & (1 << i)) != 0;
5439    if (isNonZero) {
5440      if (First) {
5441        if (NumZero)
5442          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
5443        else
5444          V = DAG.getUNDEF(MVT::v8i16);
5445        First = false;
5446      }
5447      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
5448                      MVT::v8i16, V, Op.getOperand(i),
5449                      DAG.getIntPtrConstant(i));
5450    }
5451  }
5452
5453  return V;
5454}
5455
5456/// LowerBuildVectorv4x32 - Custom lower build_vector of v4i32 or v4f32.
5457static SDValue LowerBuildVectorv4x32(SDValue Op, unsigned NumElems,
5458                                     unsigned NonZeros, unsigned NumNonZero,
5459                                     unsigned NumZero, SelectionDAG &DAG,
5460                                     const X86Subtarget *Subtarget,
5461                                     const TargetLowering &TLI) {
5462  // We know there's at least one non-zero element
5463  unsigned FirstNonZeroIdx = 0;
5464  SDValue FirstNonZero = Op->getOperand(FirstNonZeroIdx);
5465  while (FirstNonZero.getOpcode() == ISD::UNDEF ||
5466         X86::isZeroNode(FirstNonZero)) {
5467    ++FirstNonZeroIdx;
5468    FirstNonZero = Op->getOperand(FirstNonZeroIdx);
5469  }
5470
5471  if (FirstNonZero.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5472      !isa<ConstantSDNode>(FirstNonZero.getOperand(1)))
5473    return SDValue();
5474
5475  SDValue V = FirstNonZero.getOperand(0);
5476  MVT VVT = V.getSimpleValueType();
5477  if (!Subtarget->hasSSE41() || (VVT != MVT::v4f32 && VVT != MVT::v4i32))
5478    return SDValue();
5479
5480  unsigned FirstNonZeroDst =
5481      cast<ConstantSDNode>(FirstNonZero.getOperand(1))->getZExtValue();
5482  unsigned CorrectIdx = FirstNonZeroDst == FirstNonZeroIdx;
5483  unsigned IncorrectIdx = CorrectIdx ? -1U : FirstNonZeroIdx;
5484  unsigned IncorrectDst = CorrectIdx ? -1U : FirstNonZeroDst;
5485
5486  for (unsigned Idx = FirstNonZeroIdx + 1; Idx < NumElems; ++Idx) {
5487    SDValue Elem = Op.getOperand(Idx);
5488    if (Elem.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elem))
5489      continue;
5490
5491    // TODO: What else can be here? Deal with it.
5492    if (Elem.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5493      return SDValue();
5494
5495    // TODO: Some optimizations are still possible here
5496    // ex: Getting one element from a vector, and the rest from another.
5497    if (Elem.getOperand(0) != V)
5498      return SDValue();
5499
5500    unsigned Dst = cast<ConstantSDNode>(Elem.getOperand(1))->getZExtValue();
5501    if (Dst == Idx)
5502      ++CorrectIdx;
5503    else if (IncorrectIdx == -1U) {
5504      IncorrectIdx = Idx;
5505      IncorrectDst = Dst;
5506    } else
5507      // There was already one element with an incorrect index.
5508      // We can't optimize this case to an insertps.
5509      return SDValue();
5510  }
5511
5512  if (NumNonZero == CorrectIdx || NumNonZero == CorrectIdx + 1) {
5513    SDLoc dl(Op);
5514    EVT VT = Op.getSimpleValueType();
5515    unsigned ElementMoveMask = 0;
5516    if (IncorrectIdx == -1U)
5517      ElementMoveMask = FirstNonZeroIdx << 6 | FirstNonZeroIdx << 4;
5518    else
5519      ElementMoveMask = IncorrectDst << 6 | IncorrectIdx << 4;
5520
5521    SDValue InsertpsMask =
5522        DAG.getIntPtrConstant(ElementMoveMask | (~NonZeros & 0xf));
5523    return DAG.getNode(X86ISD::INSERTPS, dl, VT, V, V, InsertpsMask);
5524  }
5525
5526  return SDValue();
5527}
5528
5529/// getVShift - Return a vector logical shift node.
5530///
5531static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
5532                         unsigned NumBits, SelectionDAG &DAG,
5533                         const TargetLowering &TLI, SDLoc dl) {
5534  assert(VT.is128BitVector() && "Unknown type for VShift");
5535  EVT ShVT = MVT::v2i64;
5536  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
5537  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
5538  return DAG.getNode(ISD::BITCAST, dl, VT,
5539                     DAG.getNode(Opc, dl, ShVT, SrcOp,
5540                             DAG.getConstant(NumBits,
5541                                  TLI.getScalarShiftAmountTy(SrcOp.getValueType()))));
5542}
5543
5544static SDValue
5545LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) {
5546
5547  // Check if the scalar load can be widened into a vector load. And if
5548  // the address is "base + cst" see if the cst can be "absorbed" into
5549  // the shuffle mask.
5550  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
5551    SDValue Ptr = LD->getBasePtr();
5552    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
5553      return SDValue();
5554    EVT PVT = LD->getValueType(0);
5555    if (PVT != MVT::i32 && PVT != MVT::f32)
5556      return SDValue();
5557
5558    int FI = -1;
5559    int64_t Offset = 0;
5560    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
5561      FI = FINode->getIndex();
5562      Offset = 0;
5563    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
5564               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
5565      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5566      Offset = Ptr.getConstantOperandVal(1);
5567      Ptr = Ptr.getOperand(0);
5568    } else {
5569      return SDValue();
5570    }
5571
5572    // FIXME: 256-bit vector instructions don't require a strict alignment,
5573    // improve this code to support it better.
5574    unsigned RequiredAlign = VT.getSizeInBits()/8;
5575    SDValue Chain = LD->getChain();
5576    // Make sure the stack object alignment is at least 16 or 32.
5577    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5578    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
5579      if (MFI->isFixedObjectIndex(FI)) {
5580        // Can't change the alignment. FIXME: It's possible to compute
5581        // the exact stack offset and reference FI + adjust offset instead.
5582        // If someone *really* cares about this. That's the way to implement it.
5583        return SDValue();
5584      } else {
5585        MFI->setObjectAlignment(FI, RequiredAlign);
5586      }
5587    }
5588
5589    // (Offset % 16 or 32) must be multiple of 4. Then address is then
5590    // Ptr + (Offset & ~15).
5591    if (Offset < 0)
5592      return SDValue();
5593    if ((Offset % RequiredAlign) & 3)
5594      return SDValue();
5595    int64_t StartOffset = Offset & ~(RequiredAlign-1);
5596    if (StartOffset)
5597      Ptr = DAG.getNode(ISD::ADD, SDLoc(Ptr), Ptr.getValueType(),
5598                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
5599
5600    int EltNo = (Offset - StartOffset) >> 2;
5601    unsigned NumElems = VT.getVectorNumElements();
5602
5603    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
5604    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
5605                             LD->getPointerInfo().getWithOffset(StartOffset),
5606                             false, false, false, 0);
5607
5608    SmallVector<int, 8> Mask;
5609    for (unsigned i = 0; i != NumElems; ++i)
5610      Mask.push_back(EltNo);
5611
5612    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
5613  }
5614
5615  return SDValue();
5616}
5617
5618/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5619/// vector of type 'VT', see if the elements can be replaced by a single large
5620/// load which has the same value as a build_vector whose operands are 'elts'.
5621///
5622/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5623///
5624/// FIXME: we'd also like to handle the case where the last elements are zero
5625/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5626/// There's even a handy isZeroNode for that purpose.
5627static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5628                                        SDLoc &DL, SelectionDAG &DAG,
5629                                        bool isAfterLegalize) {
5630  EVT EltVT = VT.getVectorElementType();
5631  unsigned NumElems = Elts.size();
5632
5633  LoadSDNode *LDBase = nullptr;
5634  unsigned LastLoadedElt = -1U;
5635
5636  // For each element in the initializer, see if we've found a load or an undef.
5637  // If we don't find an initial load element, or later load elements are
5638  // non-consecutive, bail out.
5639  for (unsigned i = 0; i < NumElems; ++i) {
5640    SDValue Elt = Elts[i];
5641
5642    if (!Elt.getNode() ||
5643        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5644      return SDValue();
5645    if (!LDBase) {
5646      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5647        return SDValue();
5648      LDBase = cast<LoadSDNode>(Elt.getNode());
5649      LastLoadedElt = i;
5650      continue;
5651    }
5652    if (Elt.getOpcode() == ISD::UNDEF)
5653      continue;
5654
5655    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5656    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5657      return SDValue();
5658    LastLoadedElt = i;
5659  }
5660
5661  // If we have found an entire vector of loads and undefs, then return a large
5662  // load of the entire vector width starting at the base pointer.  If we found
5663  // consecutive loads for the low half, generate a vzext_load node.
5664  if (LastLoadedElt == NumElems - 1) {
5665
5666    if (isAfterLegalize &&
5667        !DAG.getTargetLoweringInfo().isOperationLegal(ISD::LOAD, VT))
5668      return SDValue();
5669
5670    SDValue NewLd = SDValue();
5671
5672    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5673      NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5674                          LDBase->getPointerInfo(),
5675                          LDBase->isVolatile(), LDBase->isNonTemporal(),
5676                          LDBase->isInvariant(), 0);
5677    NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5678                        LDBase->getPointerInfo(),
5679                        LDBase->isVolatile(), LDBase->isNonTemporal(),
5680                        LDBase->isInvariant(), LDBase->getAlignment());
5681
5682    if (LDBase->hasAnyUseOfValue(1)) {
5683      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5684                                     SDValue(LDBase, 1),
5685                                     SDValue(NewLd.getNode(), 1));
5686      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5687      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5688                             SDValue(NewLd.getNode(), 1));
5689    }
5690
5691    return NewLd;
5692  }
5693  if (NumElems == 4 && LastLoadedElt == 1 &&
5694      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5695    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5696    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5697    SDValue ResNode =
5698        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, MVT::i64,
5699                                LDBase->getPointerInfo(),
5700                                LDBase->getAlignment(),
5701                                false/*isVolatile*/, true/*ReadMem*/,
5702                                false/*WriteMem*/);
5703
5704    // Make sure the newly-created LOAD is in the same position as LDBase in
5705    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5706    // update uses of LDBase's output chain to use the TokenFactor.
5707    if (LDBase->hasAnyUseOfValue(1)) {
5708      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5709                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5710      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5711      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5712                             SDValue(ResNode.getNode(), 1));
5713    }
5714
5715    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5716  }
5717  return SDValue();
5718}
5719
5720/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5721/// to generate a splat value for the following cases:
5722/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5723/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5724/// a scalar load, or a constant.
5725/// The VBROADCAST node is returned when a pattern is found,
5726/// or SDValue() otherwise.
5727static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
5728                                    SelectionDAG &DAG) {
5729  if (!Subtarget->hasFp256())
5730    return SDValue();
5731
5732  MVT VT = Op.getSimpleValueType();
5733  SDLoc dl(Op);
5734
5735  assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
5736         "Unsupported vector type for broadcast.");
5737
5738  SDValue Ld;
5739  bool ConstSplatVal;
5740
5741  switch (Op.getOpcode()) {
5742    default:
5743      // Unknown pattern found.
5744      return SDValue();
5745
5746    case ISD::BUILD_VECTOR: {
5747      // The BUILD_VECTOR node must be a splat.
5748      if (!isSplatVector(Op.getNode()))
5749        return SDValue();
5750
5751      Ld = Op.getOperand(0);
5752      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5753                     Ld.getOpcode() == ISD::ConstantFP);
5754
5755      // The suspected load node has several users. Make sure that all
5756      // of its users are from the BUILD_VECTOR node.
5757      // Constants may have multiple users.
5758      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5759        return SDValue();
5760      break;
5761    }
5762
5763    case ISD::VECTOR_SHUFFLE: {
5764      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5765
5766      // Shuffles must have a splat mask where the first element is
5767      // broadcasted.
5768      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5769        return SDValue();
5770
5771      SDValue Sc = Op.getOperand(0);
5772      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5773          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5774
5775        if (!Subtarget->hasInt256())
5776          return SDValue();
5777
5778        // Use the register form of the broadcast instruction available on AVX2.
5779        if (VT.getSizeInBits() >= 256)
5780          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5781        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5782      }
5783
5784      Ld = Sc.getOperand(0);
5785      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5786                       Ld.getOpcode() == ISD::ConstantFP);
5787
5788      // The scalar_to_vector node and the suspected
5789      // load node must have exactly one user.
5790      // Constants may have multiple users.
5791
5792      // AVX-512 has register version of the broadcast
5793      bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() &&
5794        Ld.getValueType().getSizeInBits() >= 32;
5795      if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) &&
5796          !hasRegVer))
5797        return SDValue();
5798      break;
5799    }
5800  }
5801
5802  bool IsGE256 = (VT.getSizeInBits() >= 256);
5803
5804  // Handle the broadcasting a single constant scalar from the constant pool
5805  // into a vector. On Sandybridge it is still better to load a constant vector
5806  // from the constant pool and not to broadcast it from a scalar.
5807  if (ConstSplatVal && Subtarget->hasInt256()) {
5808    EVT CVT = Ld.getValueType();
5809    assert(!CVT.isVector() && "Must not broadcast a vector type");
5810    unsigned ScalarSize = CVT.getSizeInBits();
5811
5812    if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)) {
5813      const Constant *C = nullptr;
5814      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5815        C = CI->getConstantIntValue();
5816      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5817        C = CF->getConstantFPValue();
5818
5819      assert(C && "Invalid constant type");
5820
5821      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5822      SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
5823      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5824      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5825                       MachinePointerInfo::getConstantPool(),
5826                       false, false, false, Alignment);
5827
5828      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5829    }
5830  }
5831
5832  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5833  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5834
5835  // Handle AVX2 in-register broadcasts.
5836  if (!IsLoad && Subtarget->hasInt256() &&
5837      (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
5838    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5839
5840  // The scalar source must be a normal load.
5841  if (!IsLoad)
5842    return SDValue();
5843
5844  if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))
5845    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5846
5847  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5848  // double since there is no vbroadcastsd xmm
5849  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5850    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5851      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5852  }
5853
5854  // Unsupported broadcast.
5855  return SDValue();
5856}
5857
5858/// \brief For an EXTRACT_VECTOR_ELT with a constant index return the real
5859/// underlying vector and index.
5860///
5861/// Modifies \p ExtractedFromVec to the real vector and returns the real
5862/// index.
5863static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec,
5864                                         SDValue ExtIdx) {
5865  int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5866  if (!isa<ShuffleVectorSDNode>(ExtractedFromVec))
5867    return Idx;
5868
5869  // For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already
5870  // lowered this:
5871  //   (extract_vector_elt (v8f32 %vreg1), Constant<6>)
5872  // to:
5873  //   (extract_vector_elt (vector_shuffle<2,u,u,u>
5874  //                           (extract_subvector (v8f32 %vreg0), Constant<4>),
5875  //                           undef)
5876  //                       Constant<0>)
5877  // In this case the vector is the extract_subvector expression and the index
5878  // is 2, as specified by the shuffle.
5879  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec);
5880  SDValue ShuffleVec = SVOp->getOperand(0);
5881  MVT ShuffleVecVT = ShuffleVec.getSimpleValueType();
5882  assert(ShuffleVecVT.getVectorElementType() ==
5883         ExtractedFromVec.getSimpleValueType().getVectorElementType());
5884
5885  int ShuffleIdx = SVOp->getMaskElt(Idx);
5886  if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) {
5887    ExtractedFromVec = ShuffleVec;
5888    return ShuffleIdx;
5889  }
5890  return Idx;
5891}
5892
5893static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
5894  MVT VT = Op.getSimpleValueType();
5895
5896  // Skip if insert_vec_elt is not supported.
5897  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5898  if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5899    return SDValue();
5900
5901  SDLoc DL(Op);
5902  unsigned NumElems = Op.getNumOperands();
5903
5904  SDValue VecIn1;
5905  SDValue VecIn2;
5906  SmallVector<unsigned, 4> InsertIndices;
5907  SmallVector<int, 8> Mask(NumElems, -1);
5908
5909  for (unsigned i = 0; i != NumElems; ++i) {
5910    unsigned Opc = Op.getOperand(i).getOpcode();
5911
5912    if (Opc == ISD::UNDEF)
5913      continue;
5914
5915    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5916      // Quit if more than 1 elements need inserting.
5917      if (InsertIndices.size() > 1)
5918        return SDValue();
5919
5920      InsertIndices.push_back(i);
5921      continue;
5922    }
5923
5924    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5925    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5926    // Quit if non-constant index.
5927    if (!isa<ConstantSDNode>(ExtIdx))
5928      return SDValue();
5929    int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx);
5930
5931    // Quit if extracted from vector of different type.
5932    if (ExtractedFromVec.getValueType() != VT)
5933      return SDValue();
5934
5935    if (!VecIn1.getNode())
5936      VecIn1 = ExtractedFromVec;
5937    else if (VecIn1 != ExtractedFromVec) {
5938      if (!VecIn2.getNode())
5939        VecIn2 = ExtractedFromVec;
5940      else if (VecIn2 != ExtractedFromVec)
5941        // Quit if more than 2 vectors to shuffle
5942        return SDValue();
5943    }
5944
5945    if (ExtractedFromVec == VecIn1)
5946      Mask[i] = Idx;
5947    else if (ExtractedFromVec == VecIn2)
5948      Mask[i] = Idx + NumElems;
5949  }
5950
5951  if (!VecIn1.getNode())
5952    return SDValue();
5953
5954  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5955  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5956  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5957    unsigned Idx = InsertIndices[i];
5958    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5959                     DAG.getIntPtrConstant(Idx));
5960  }
5961
5962  return NV;
5963}
5964
5965// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
5966SDValue
5967X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
5968
5969  MVT VT = Op.getSimpleValueType();
5970  assert((VT.getVectorElementType() == MVT::i1) && (VT.getSizeInBits() <= 16) &&
5971         "Unexpected type in LowerBUILD_VECTORvXi1!");
5972
5973  SDLoc dl(Op);
5974  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5975    SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
5976    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
5977    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5978  }
5979
5980  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5981    SDValue Cst = DAG.getTargetConstant(1, MVT::i1);
5982    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
5983    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5984  }
5985
5986  bool AllContants = true;
5987  uint64_t Immediate = 0;
5988  int NonConstIdx = -1;
5989  bool IsSplat = true;
5990  unsigned NumNonConsts = 0;
5991  unsigned NumConsts = 0;
5992  for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
5993    SDValue In = Op.getOperand(idx);
5994    if (In.getOpcode() == ISD::UNDEF)
5995      continue;
5996    if (!isa<ConstantSDNode>(In)) {
5997      AllContants = false;
5998      NonConstIdx = idx;
5999      NumNonConsts++;
6000    }
6001    else {
6002      NumConsts++;
6003      if (cast<ConstantSDNode>(In)->getZExtValue())
6004      Immediate |= (1ULL << idx);
6005    }
6006    if (In != Op.getOperand(0))
6007      IsSplat = false;
6008  }
6009
6010  if (AllContants) {
6011    SDValue FullMask = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1,
6012      DAG.getConstant(Immediate, MVT::i16));
6013    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, FullMask,
6014                       DAG.getIntPtrConstant(0));
6015  }
6016
6017  if (NumNonConsts == 1 && NonConstIdx != 0) {
6018    SDValue DstVec;
6019    if (NumConsts) {
6020      SDValue VecAsImm = DAG.getConstant(Immediate,
6021                                         MVT::getIntegerVT(VT.getSizeInBits()));
6022      DstVec = DAG.getNode(ISD::BITCAST, dl, VT, VecAsImm);
6023    }
6024    else
6025      DstVec = DAG.getUNDEF(VT);
6026    return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
6027                       Op.getOperand(NonConstIdx),
6028                       DAG.getIntPtrConstant(NonConstIdx));
6029  }
6030  if (!IsSplat && (NonConstIdx != 0))
6031    llvm_unreachable("Unsupported BUILD_VECTOR operation");
6032  MVT SelectVT = (VT == MVT::v16i1)? MVT::i16 : MVT::i8;
6033  SDValue Select;
6034  if (IsSplat)
6035    Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0),
6036                          DAG.getConstant(-1, SelectVT),
6037                          DAG.getConstant(0, SelectVT));
6038  else
6039    Select = DAG.getNode(ISD::SELECT, dl, SelectVT, Op.getOperand(0),
6040                         DAG.getConstant((Immediate | 1), SelectVT),
6041                         DAG.getConstant(Immediate, SelectVT));
6042  return DAG.getNode(ISD::BITCAST, dl, VT, Select);
6043}
6044
6045SDValue
6046X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6047  SDLoc dl(Op);
6048
6049  MVT VT = Op.getSimpleValueType();
6050  MVT ExtVT = VT.getVectorElementType();
6051  unsigned NumElems = Op.getNumOperands();
6052
6053  // Generate vectors for predicate vectors.
6054  if (VT.getScalarType() == MVT::i1 && Subtarget->hasAVX512())
6055    return LowerBUILD_VECTORvXi1(Op, DAG);
6056
6057  // Vectors containing all zeros can be matched by pxor and xorps later
6058  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
6059    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
6060    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
6061    if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
6062      return Op;
6063
6064    return getZeroVector(VT, Subtarget, DAG, dl);
6065  }
6066
6067  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
6068  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
6069  // vpcmpeqd on 256-bit vectors.
6070  if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
6071    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
6072      return Op;
6073
6074    if (!VT.is512BitVector())
6075      return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
6076  }
6077
6078  SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
6079  if (Broadcast.getNode())
6080    return Broadcast;
6081
6082  unsigned EVTBits = ExtVT.getSizeInBits();
6083
6084  unsigned NumZero  = 0;
6085  unsigned NumNonZero = 0;
6086  unsigned NonZeros = 0;
6087  bool IsAllConstants = true;
6088  SmallSet<SDValue, 8> Values;
6089  for (unsigned i = 0; i < NumElems; ++i) {
6090    SDValue Elt = Op.getOperand(i);
6091    if (Elt.getOpcode() == ISD::UNDEF)
6092      continue;
6093    Values.insert(Elt);
6094    if (Elt.getOpcode() != ISD::Constant &&
6095        Elt.getOpcode() != ISD::ConstantFP)
6096      IsAllConstants = false;
6097    if (X86::isZeroNode(Elt))
6098      NumZero++;
6099    else {
6100      NonZeros |= (1 << i);
6101      NumNonZero++;
6102    }
6103  }
6104
6105  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
6106  if (NumNonZero == 0)
6107    return DAG.getUNDEF(VT);
6108
6109  // Special case for single non-zero, non-undef, element.
6110  if (NumNonZero == 1) {
6111    unsigned Idx = countTrailingZeros(NonZeros);
6112    SDValue Item = Op.getOperand(Idx);
6113
6114    // If this is an insertion of an i64 value on x86-32, and if the top bits of
6115    // the value are obviously zero, truncate the value to i32 and do the
6116    // insertion that way.  Only do this if the value is non-constant or if the
6117    // value is a constant being inserted into element 0.  It is cheaper to do
6118    // a constant pool load than it is to do a movd + shuffle.
6119    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
6120        (!IsAllConstants || Idx == 0)) {
6121      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
6122        // Handle SSE only.
6123        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
6124        EVT VecVT = MVT::v4i32;
6125        unsigned VecElts = 4;
6126
6127        // Truncate the value (which may itself be a constant) to i32, and
6128        // convert it to a vector with movd (S2V+shuffle to zero extend).
6129        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
6130        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
6131        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
6132
6133        // Now we have our 32-bit value zero extended in the low element of
6134        // a vector.  If Idx != 0, swizzle it into place.
6135        if (Idx != 0) {
6136          SmallVector<int, 4> Mask;
6137          Mask.push_back(Idx);
6138          for (unsigned i = 1; i != VecElts; ++i)
6139            Mask.push_back(i);
6140          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
6141                                      &Mask[0]);
6142        }
6143        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
6144      }
6145    }
6146
6147    // If we have a constant or non-constant insertion into the low element of
6148    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
6149    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
6150    // depending on what the source datatype is.
6151    if (Idx == 0) {
6152      if (NumZero == 0)
6153        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
6154
6155      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
6156          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
6157        if (VT.is256BitVector() || VT.is512BitVector()) {
6158          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
6159          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
6160                             Item, DAG.getIntPtrConstant(0));
6161        }
6162        assert(VT.is128BitVector() && "Expected an SSE value type!");
6163        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
6164        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
6165        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
6166      }
6167
6168      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
6169        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
6170        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
6171        if (VT.is256BitVector()) {
6172          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
6173          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
6174        } else {
6175          assert(VT.is128BitVector() && "Expected an SSE value type!");
6176          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
6177        }
6178        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
6179      }
6180    }
6181
6182    // Is it a vector logical left shift?
6183    if (NumElems == 2 && Idx == 1 &&
6184        X86::isZeroNode(Op.getOperand(0)) &&
6185        !X86::isZeroNode(Op.getOperand(1))) {
6186      unsigned NumBits = VT.getSizeInBits();
6187      return getVShift(true, VT,
6188                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6189                                   VT, Op.getOperand(1)),
6190                       NumBits/2, DAG, *this, dl);
6191    }
6192
6193    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
6194      return SDValue();
6195
6196    // Otherwise, if this is a vector with i32 or f32 elements, and the element
6197    // is a non-constant being inserted into an element other than the low one,
6198    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
6199    // movd/movss) to move this into the low element, then shuffle it into
6200    // place.
6201    if (EVTBits == 32) {
6202      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
6203
6204      // Turn it into a shuffle of zero and zero-extended scalar to vector.
6205      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
6206      SmallVector<int, 8> MaskVec;
6207      for (unsigned i = 0; i != NumElems; ++i)
6208        MaskVec.push_back(i == Idx ? 0 : 1);
6209      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
6210    }
6211  }
6212
6213  // Splat is obviously ok. Let legalizer expand it to a shuffle.
6214  if (Values.size() == 1) {
6215    if (EVTBits == 32) {
6216      // Instead of a shuffle like this:
6217      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
6218      // Check if it's possible to issue this instead.
6219      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
6220      unsigned Idx = countTrailingZeros(NonZeros);
6221      SDValue Item = Op.getOperand(Idx);
6222      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
6223        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
6224    }
6225    return SDValue();
6226  }
6227
6228  // A vector full of immediates; various special cases are already
6229  // handled, so this is best done with a single constant-pool load.
6230  if (IsAllConstants)
6231    return SDValue();
6232
6233  // For AVX-length vectors, build the individual 128-bit pieces and use
6234  // shuffles to put them in place.
6235  if (VT.is256BitVector() || VT.is512BitVector()) {
6236    SmallVector<SDValue, 64> V;
6237    for (unsigned i = 0; i != NumElems; ++i)
6238      V.push_back(Op.getOperand(i));
6239
6240    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
6241
6242    // Build both the lower and upper subvector.
6243    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT,
6244                                makeArrayRef(&V[0], NumElems/2));
6245    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT,
6246                                makeArrayRef(&V[NumElems / 2], NumElems/2));
6247
6248    // Recreate the wider vector with the lower and upper part.
6249    if (VT.is256BitVector())
6250      return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
6251    return Concat256BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
6252  }
6253
6254  // Let legalizer expand 2-wide build_vectors.
6255  if (EVTBits == 64) {
6256    if (NumNonZero == 1) {
6257      // One half is zero or undef.
6258      unsigned Idx = countTrailingZeros(NonZeros);
6259      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
6260                                 Op.getOperand(Idx));
6261      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
6262    }
6263    return SDValue();
6264  }
6265
6266  // If element VT is < 32 bits, convert it to inserts into a zero vector.
6267  if (EVTBits == 8 && NumElems == 16) {
6268    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
6269                                        Subtarget, *this);
6270    if (V.getNode()) return V;
6271  }
6272
6273  if (EVTBits == 16 && NumElems == 8) {
6274    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
6275                                      Subtarget, *this);
6276    if (V.getNode()) return V;
6277  }
6278
6279  // If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS
6280  if (EVTBits == 32 && NumElems == 4) {
6281    SDValue V = LowerBuildVectorv4x32(Op, NumElems, NonZeros, NumNonZero,
6282                                      NumZero, DAG, Subtarget, *this);
6283    if (V.getNode())
6284      return V;
6285  }
6286
6287  // If element VT is == 32 bits, turn it into a number of shuffles.
6288  SmallVector<SDValue, 8> V(NumElems);
6289  if (NumElems == 4 && NumZero > 0) {
6290    for (unsigned i = 0; i < 4; ++i) {
6291      bool isZero = !(NonZeros & (1 << i));
6292      if (isZero)
6293        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
6294      else
6295        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
6296    }
6297
6298    for (unsigned i = 0; i < 2; ++i) {
6299      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
6300        default: break;
6301        case 0:
6302          V[i] = V[i*2];  // Must be a zero vector.
6303          break;
6304        case 1:
6305          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
6306          break;
6307        case 2:
6308          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
6309          break;
6310        case 3:
6311          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
6312          break;
6313      }
6314    }
6315
6316    bool Reverse1 = (NonZeros & 0x3) == 2;
6317    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
6318    int MaskVec[] = {
6319      Reverse1 ? 1 : 0,
6320      Reverse1 ? 0 : 1,
6321      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
6322      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
6323    };
6324    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
6325  }
6326
6327  if (Values.size() > 1 && VT.is128BitVector()) {
6328    // Check for a build vector of consecutive loads.
6329    for (unsigned i = 0; i < NumElems; ++i)
6330      V[i] = Op.getOperand(i);
6331
6332    // Check for elements which are consecutive loads.
6333    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false);
6334    if (LD.getNode())
6335      return LD;
6336
6337    // Check for a build vector from mostly shuffle plus few inserting.
6338    SDValue Sh = buildFromShuffleMostly(Op, DAG);
6339    if (Sh.getNode())
6340      return Sh;
6341
6342    // For SSE 4.1, use insertps to put the high elements into the low element.
6343    if (getSubtarget()->hasSSE41()) {
6344      SDValue Result;
6345      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
6346        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
6347      else
6348        Result = DAG.getUNDEF(VT);
6349
6350      for (unsigned i = 1; i < NumElems; ++i) {
6351        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
6352        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
6353                             Op.getOperand(i), DAG.getIntPtrConstant(i));
6354      }
6355      return Result;
6356    }
6357
6358    // Otherwise, expand into a number of unpckl*, start by extending each of
6359    // our (non-undef) elements to the full vector width with the element in the
6360    // bottom slot of the vector (which generates no code for SSE).
6361    for (unsigned i = 0; i < NumElems; ++i) {
6362      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
6363        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
6364      else
6365        V[i] = DAG.getUNDEF(VT);
6366    }
6367
6368    // Next, we iteratively mix elements, e.g. for v4f32:
6369    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
6370    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
6371    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
6372    unsigned EltStride = NumElems >> 1;
6373    while (EltStride != 0) {
6374      for (unsigned i = 0; i < EltStride; ++i) {
6375        // If V[i+EltStride] is undef and this is the first round of mixing,
6376        // then it is safe to just drop this shuffle: V[i] is already in the
6377        // right place, the one element (since it's the first round) being
6378        // inserted as undef can be dropped.  This isn't safe for successive
6379        // rounds because they will permute elements within both vectors.
6380        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
6381            EltStride == NumElems/2)
6382          continue;
6383
6384        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
6385      }
6386      EltStride >>= 1;
6387    }
6388    return V[0];
6389  }
6390  return SDValue();
6391}
6392
6393// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
6394// to create 256-bit vectors from two other 128-bit ones.
6395static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6396  SDLoc dl(Op);
6397  MVT ResVT = Op.getSimpleValueType();
6398
6399  assert((ResVT.is256BitVector() ||
6400          ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
6401
6402  SDValue V1 = Op.getOperand(0);
6403  SDValue V2 = Op.getOperand(1);
6404  unsigned NumElems = ResVT.getVectorNumElements();
6405  if(ResVT.is256BitVector())
6406    return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
6407
6408  if (Op.getNumOperands() == 4) {
6409    MVT HalfVT = MVT::getVectorVT(ResVT.getScalarType(),
6410                                ResVT.getVectorNumElements()/2);
6411    SDValue V3 = Op.getOperand(2);
6412    SDValue V4 = Op.getOperand(3);
6413    return Concat256BitVectors(Concat128BitVectors(V1, V2, HalfVT, NumElems/2, DAG, dl),
6414      Concat128BitVectors(V3, V4, HalfVT, NumElems/2, DAG, dl), ResVT, NumElems, DAG, dl);
6415  }
6416  return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
6417}
6418
6419static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6420  MVT LLVM_ATTRIBUTE_UNUSED VT = Op.getSimpleValueType();
6421  assert((VT.is256BitVector() && Op.getNumOperands() == 2) ||
6422         (VT.is512BitVector() && (Op.getNumOperands() == 2 ||
6423          Op.getNumOperands() == 4)));
6424
6425  // AVX can use the vinsertf128 instruction to create 256-bit vectors
6426  // from two other 128-bit ones.
6427
6428  // 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors
6429  return LowerAVXCONCAT_VECTORS(Op, DAG);
6430}
6431
6432// Try to lower a shuffle node into a simple blend instruction.
6433static SDValue
6434LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
6435                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
6436  SDValue V1 = SVOp->getOperand(0);
6437  SDValue V2 = SVOp->getOperand(1);
6438  SDLoc dl(SVOp);
6439  MVT VT = SVOp->getSimpleValueType(0);
6440  MVT EltVT = VT.getVectorElementType();
6441  unsigned NumElems = VT.getVectorNumElements();
6442
6443  // There is no blend with immediate in AVX-512.
6444  if (VT.is512BitVector())
6445    return SDValue();
6446
6447  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
6448    return SDValue();
6449  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
6450    return SDValue();
6451
6452  // Check the mask for BLEND and build the value.
6453  unsigned MaskValue = 0;
6454  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
6455  unsigned NumLanes = (NumElems-1)/8 + 1;
6456  unsigned NumElemsInLane = NumElems / NumLanes;
6457
6458  // Blend for v16i16 should be symetric for the both lanes.
6459  for (unsigned i = 0; i < NumElemsInLane; ++i) {
6460
6461    int SndLaneEltIdx = (NumLanes == 2) ?
6462      SVOp->getMaskElt(i + NumElemsInLane) : -1;
6463    int EltIdx = SVOp->getMaskElt(i);
6464
6465    if ((EltIdx < 0 || EltIdx == (int)i) &&
6466        (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
6467      continue;
6468
6469    if (((unsigned)EltIdx == (i + NumElems)) &&
6470        (SndLaneEltIdx < 0 ||
6471         (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
6472      MaskValue |= (1<<i);
6473    else
6474      return SDValue();
6475  }
6476
6477  // Convert i32 vectors to floating point if it is not AVX2.
6478  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
6479  MVT BlendVT = VT;
6480  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
6481    BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
6482                               NumElems);
6483    V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
6484    V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
6485  }
6486
6487  SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
6488                            DAG.getConstant(MaskValue, MVT::i32));
6489  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
6490}
6491
6492/// In vector type \p VT, return true if the element at index \p InputIdx
6493/// falls on a different 128-bit lane than \p OutputIdx.
6494static bool ShuffleCrosses128bitLane(MVT VT, unsigned InputIdx,
6495                                     unsigned OutputIdx) {
6496  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6497  return InputIdx * EltSize / 128 != OutputIdx * EltSize / 128;
6498}
6499
6500/// Generate a PSHUFB if possible.  Selects elements from \p V1 according to
6501/// \p MaskVals.  MaskVals[OutputIdx] = InputIdx specifies that we want to
6502/// shuffle the element at InputIdx in V1 to OutputIdx in the result.  If \p
6503/// MaskVals refers to elements outside of \p V1 or is undef (-1), insert a
6504/// zero.
6505static SDValue getPSHUFB(ArrayRef<int> MaskVals, SDValue V1, SDLoc &dl,
6506                         SelectionDAG &DAG) {
6507  MVT VT = V1.getSimpleValueType();
6508  assert(VT.is128BitVector() || VT.is256BitVector());
6509
6510  MVT EltVT = VT.getVectorElementType();
6511  unsigned EltSizeInBytes = EltVT.getSizeInBits() / 8;
6512  unsigned NumElts = VT.getVectorNumElements();
6513
6514  SmallVector<SDValue, 32> PshufbMask;
6515  for (unsigned OutputIdx = 0; OutputIdx < NumElts; ++OutputIdx) {
6516    int InputIdx = MaskVals[OutputIdx];
6517    unsigned InputByteIdx;
6518
6519    if (InputIdx < 0 || NumElts <= (unsigned)InputIdx)
6520      InputByteIdx = 0x80;
6521    else {
6522      // Cross lane is not allowed.
6523      if (ShuffleCrosses128bitLane(VT, InputIdx, OutputIdx))
6524        return SDValue();
6525      InputByteIdx = InputIdx * EltSizeInBytes;
6526      // Index is an byte offset within the 128-bit lane.
6527      InputByteIdx &= 0xf;
6528    }
6529
6530    for (unsigned j = 0; j < EltSizeInBytes; ++j) {
6531      PshufbMask.push_back(DAG.getConstant(InputByteIdx, MVT::i8));
6532      if (InputByteIdx != 0x80)
6533        ++InputByteIdx;
6534    }
6535  }
6536
6537  MVT ShufVT = MVT::getVectorVT(MVT::i8, PshufbMask.size());
6538  if (ShufVT != VT)
6539    V1 = DAG.getNode(ISD::BITCAST, dl, ShufVT, V1);
6540  return DAG.getNode(X86ISD::PSHUFB, dl, ShufVT, V1,
6541                     DAG.getNode(ISD::BUILD_VECTOR, dl, ShufVT, PshufbMask));
6542}
6543
6544// v8i16 shuffles - Prefer shuffles in the following order:
6545// 1. [all]   pshuflw, pshufhw, optional move
6546// 2. [ssse3] 1 x pshufb
6547// 3. [ssse3] 2 x pshufb + 1 x por
6548// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
6549static SDValue
6550LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
6551                         SelectionDAG &DAG) {
6552  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6553  SDValue V1 = SVOp->getOperand(0);
6554  SDValue V2 = SVOp->getOperand(1);
6555  SDLoc dl(SVOp);
6556  SmallVector<int, 8> MaskVals;
6557
6558  // Determine if more than 1 of the words in each of the low and high quadwords
6559  // of the result come from the same quadword of one of the two inputs.  Undef
6560  // mask values count as coming from any quadword, for better codegen.
6561  //
6562  // Lo/HiQuad[i] = j indicates how many words from the ith quad of the input
6563  // feeds this quad.  For i, 0 and 1 refer to V1, 2 and 3 refer to V2.
6564  unsigned LoQuad[] = { 0, 0, 0, 0 };
6565  unsigned HiQuad[] = { 0, 0, 0, 0 };
6566  // Indices of quads used.
6567  std::bitset<4> InputQuads;
6568  for (unsigned i = 0; i < 8; ++i) {
6569    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
6570    int EltIdx = SVOp->getMaskElt(i);
6571    MaskVals.push_back(EltIdx);
6572    if (EltIdx < 0) {
6573      ++Quad[0];
6574      ++Quad[1];
6575      ++Quad[2];
6576      ++Quad[3];
6577      continue;
6578    }
6579    ++Quad[EltIdx / 4];
6580    InputQuads.set(EltIdx / 4);
6581  }
6582
6583  int BestLoQuad = -1;
6584  unsigned MaxQuad = 1;
6585  for (unsigned i = 0; i < 4; ++i) {
6586    if (LoQuad[i] > MaxQuad) {
6587      BestLoQuad = i;
6588      MaxQuad = LoQuad[i];
6589    }
6590  }
6591
6592  int BestHiQuad = -1;
6593  MaxQuad = 1;
6594  for (unsigned i = 0; i < 4; ++i) {
6595    if (HiQuad[i] > MaxQuad) {
6596      BestHiQuad = i;
6597      MaxQuad = HiQuad[i];
6598    }
6599  }
6600
6601  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
6602  // of the two input vectors, shuffle them into one input vector so only a
6603  // single pshufb instruction is necessary. If there are more than 2 input
6604  // quads, disable the next transformation since it does not help SSSE3.
6605  bool V1Used = InputQuads[0] || InputQuads[1];
6606  bool V2Used = InputQuads[2] || InputQuads[3];
6607  if (Subtarget->hasSSSE3()) {
6608    if (InputQuads.count() == 2 && V1Used && V2Used) {
6609      BestLoQuad = InputQuads[0] ? 0 : 1;
6610      BestHiQuad = InputQuads[2] ? 2 : 3;
6611    }
6612    if (InputQuads.count() > 2) {
6613      BestLoQuad = -1;
6614      BestHiQuad = -1;
6615    }
6616  }
6617
6618  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
6619  // the shuffle mask.  If a quad is scored as -1, that means that it contains
6620  // words from all 4 input quadwords.
6621  SDValue NewV;
6622  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
6623    int MaskV[] = {
6624      BestLoQuad < 0 ? 0 : BestLoQuad,
6625      BestHiQuad < 0 ? 1 : BestHiQuad
6626    };
6627    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
6628                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
6629                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
6630    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
6631
6632    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
6633    // source words for the shuffle, to aid later transformations.
6634    bool AllWordsInNewV = true;
6635    bool InOrder[2] = { true, true };
6636    for (unsigned i = 0; i != 8; ++i) {
6637      int idx = MaskVals[i];
6638      if (idx != (int)i)
6639        InOrder[i/4] = false;
6640      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
6641        continue;
6642      AllWordsInNewV = false;
6643      break;
6644    }
6645
6646    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
6647    if (AllWordsInNewV) {
6648      for (int i = 0; i != 8; ++i) {
6649        int idx = MaskVals[i];
6650        if (idx < 0)
6651          continue;
6652        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
6653        if ((idx != i) && idx < 4)
6654          pshufhw = false;
6655        if ((idx != i) && idx > 3)
6656          pshuflw = false;
6657      }
6658      V1 = NewV;
6659      V2Used = false;
6660      BestLoQuad = 0;
6661      BestHiQuad = 1;
6662    }
6663
6664    // If we've eliminated the use of V2, and the new mask is a pshuflw or
6665    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
6666    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
6667      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
6668      unsigned TargetMask = 0;
6669      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
6670                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
6671      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6672      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
6673                             getShufflePSHUFLWImmediate(SVOp);
6674      V1 = NewV.getOperand(0);
6675      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
6676    }
6677  }
6678
6679  // Promote splats to a larger type which usually leads to more efficient code.
6680  // FIXME: Is this true if pshufb is available?
6681  if (SVOp->isSplat())
6682    return PromoteSplat(SVOp, DAG);
6683
6684  // If we have SSSE3, and all words of the result are from 1 input vector,
6685  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
6686  // is present, fall back to case 4.
6687  if (Subtarget->hasSSSE3()) {
6688    SmallVector<SDValue,16> pshufbMask;
6689
6690    // If we have elements from both input vectors, set the high bit of the
6691    // shuffle mask element to zero out elements that come from V2 in the V1
6692    // mask, and elements that come from V1 in the V2 mask, so that the two
6693    // results can be OR'd together.
6694    bool TwoInputs = V1Used && V2Used;
6695    V1 = getPSHUFB(MaskVals, V1, dl, DAG);
6696    if (!TwoInputs)
6697      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6698
6699    // Calculate the shuffle mask for the second input, shuffle it, and
6700    // OR it with the first shuffled input.
6701    CommuteVectorShuffleMask(MaskVals, 8);
6702    V2 = getPSHUFB(MaskVals, V2, dl, DAG);
6703    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6704    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6705  }
6706
6707  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
6708  // and update MaskVals with new element order.
6709  std::bitset<8> InOrder;
6710  if (BestLoQuad >= 0) {
6711    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
6712    for (int i = 0; i != 4; ++i) {
6713      int idx = MaskVals[i];
6714      if (idx < 0) {
6715        InOrder.set(i);
6716      } else if ((idx / 4) == BestLoQuad) {
6717        MaskV[i] = idx & 3;
6718        InOrder.set(i);
6719      }
6720    }
6721    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
6722                                &MaskV[0]);
6723
6724    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSE2()) {
6725      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6726      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
6727                                  NewV.getOperand(0),
6728                                  getShufflePSHUFLWImmediate(SVOp), DAG);
6729    }
6730  }
6731
6732  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
6733  // and update MaskVals with the new element order.
6734  if (BestHiQuad >= 0) {
6735    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
6736    for (unsigned i = 4; i != 8; ++i) {
6737      int idx = MaskVals[i];
6738      if (idx < 0) {
6739        InOrder.set(i);
6740      } else if ((idx / 4) == BestHiQuad) {
6741        MaskV[i] = (idx & 3) + 4;
6742        InOrder.set(i);
6743      }
6744    }
6745    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
6746                                &MaskV[0]);
6747
6748    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSE2()) {
6749      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6750      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
6751                                  NewV.getOperand(0),
6752                                  getShufflePSHUFHWImmediate(SVOp), DAG);
6753    }
6754  }
6755
6756  // In case BestHi & BestLo were both -1, which means each quadword has a word
6757  // from each of the four input quadwords, calculate the InOrder bitvector now
6758  // before falling through to the insert/extract cleanup.
6759  if (BestLoQuad == -1 && BestHiQuad == -1) {
6760    NewV = V1;
6761    for (int i = 0; i != 8; ++i)
6762      if (MaskVals[i] < 0 || MaskVals[i] == i)
6763        InOrder.set(i);
6764  }
6765
6766  // The other elements are put in the right place using pextrw and pinsrw.
6767  for (unsigned i = 0; i != 8; ++i) {
6768    if (InOrder[i])
6769      continue;
6770    int EltIdx = MaskVals[i];
6771    if (EltIdx < 0)
6772      continue;
6773    SDValue ExtOp = (EltIdx < 8) ?
6774      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
6775                  DAG.getIntPtrConstant(EltIdx)) :
6776      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
6777                  DAG.getIntPtrConstant(EltIdx - 8));
6778    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
6779                       DAG.getIntPtrConstant(i));
6780  }
6781  return NewV;
6782}
6783
6784/// \brief v16i16 shuffles
6785///
6786/// FIXME: We only support generation of a single pshufb currently.  We can
6787/// generalize the other applicable cases from LowerVECTOR_SHUFFLEv8i16 as
6788/// well (e.g 2 x pshufb + 1 x por).
6789static SDValue
6790LowerVECTOR_SHUFFLEv16i16(SDValue Op, SelectionDAG &DAG) {
6791  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6792  SDValue V1 = SVOp->getOperand(0);
6793  SDValue V2 = SVOp->getOperand(1);
6794  SDLoc dl(SVOp);
6795
6796  if (V2.getOpcode() != ISD::UNDEF)
6797    return SDValue();
6798
6799  SmallVector<int, 16> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6800  return getPSHUFB(MaskVals, V1, dl, DAG);
6801}
6802
6803// v16i8 shuffles - Prefer shuffles in the following order:
6804// 1. [ssse3] 1 x pshufb
6805// 2. [ssse3] 2 x pshufb + 1 x por
6806// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
6807static SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
6808                                        const X86Subtarget* Subtarget,
6809                                        SelectionDAG &DAG) {
6810  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6811  SDValue V1 = SVOp->getOperand(0);
6812  SDValue V2 = SVOp->getOperand(1);
6813  SDLoc dl(SVOp);
6814  ArrayRef<int> MaskVals = SVOp->getMask();
6815
6816  // Promote splats to a larger type which usually leads to more efficient code.
6817  // FIXME: Is this true if pshufb is available?
6818  if (SVOp->isSplat())
6819    return PromoteSplat(SVOp, DAG);
6820
6821  // If we have SSSE3, case 1 is generated when all result bytes come from
6822  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
6823  // present, fall back to case 3.
6824
6825  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
6826  if (Subtarget->hasSSSE3()) {
6827    SmallVector<SDValue,16> pshufbMask;
6828
6829    // If all result elements are from one input vector, then only translate
6830    // undef mask values to 0x80 (zero out result) in the pshufb mask.
6831    //
6832    // Otherwise, we have elements from both input vectors, and must zero out
6833    // elements that come from V2 in the first mask, and V1 in the second mask
6834    // so that we can OR them together.
6835    for (unsigned i = 0; i != 16; ++i) {
6836      int EltIdx = MaskVals[i];
6837      if (EltIdx < 0 || EltIdx >= 16)
6838        EltIdx = 0x80;
6839      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6840    }
6841    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
6842                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6843                                 MVT::v16i8, pshufbMask));
6844
6845    // As PSHUFB will zero elements with negative indices, it's safe to ignore
6846    // the 2nd operand if it's undefined or zero.
6847    if (V2.getOpcode() == ISD::UNDEF ||
6848        ISD::isBuildVectorAllZeros(V2.getNode()))
6849      return V1;
6850
6851    // Calculate the shuffle mask for the second input, shuffle it, and
6852    // OR it with the first shuffled input.
6853    pshufbMask.clear();
6854    for (unsigned i = 0; i != 16; ++i) {
6855      int EltIdx = MaskVals[i];
6856      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6857      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6858    }
6859    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6860                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6861                                 MVT::v16i8, pshufbMask));
6862    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6863  }
6864
6865  // No SSSE3 - Calculate in place words and then fix all out of place words
6866  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
6867  // the 16 different words that comprise the two doublequadword input vectors.
6868  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6869  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
6870  SDValue NewV = V1;
6871  for (int i = 0; i != 8; ++i) {
6872    int Elt0 = MaskVals[i*2];
6873    int Elt1 = MaskVals[i*2+1];
6874
6875    // This word of the result is all undef, skip it.
6876    if (Elt0 < 0 && Elt1 < 0)
6877      continue;
6878
6879    // This word of the result is already in the correct place, skip it.
6880    if ((Elt0 == i*2) && (Elt1 == i*2+1))
6881      continue;
6882
6883    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6884    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6885    SDValue InsElt;
6886
6887    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6888    // using a single extract together, load it and store it.
6889    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6890      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6891                           DAG.getIntPtrConstant(Elt1 / 2));
6892      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6893                        DAG.getIntPtrConstant(i));
6894      continue;
6895    }
6896
6897    // If Elt1 is defined, extract it from the appropriate source.  If the
6898    // source byte is not also odd, shift the extracted word left 8 bits
6899    // otherwise clear the bottom 8 bits if we need to do an or.
6900    if (Elt1 >= 0) {
6901      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6902                           DAG.getIntPtrConstant(Elt1 / 2));
6903      if ((Elt1 & 1) == 0)
6904        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6905                             DAG.getConstant(8,
6906                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6907      else if (Elt0 >= 0)
6908        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6909                             DAG.getConstant(0xFF00, MVT::i16));
6910    }
6911    // If Elt0 is defined, extract it from the appropriate source.  If the
6912    // source byte is not also even, shift the extracted word right 8 bits. If
6913    // Elt1 was also defined, OR the extracted values together before
6914    // inserting them in the result.
6915    if (Elt0 >= 0) {
6916      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6917                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6918      if ((Elt0 & 1) != 0)
6919        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6920                              DAG.getConstant(8,
6921                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6922      else if (Elt1 >= 0)
6923        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6924                             DAG.getConstant(0x00FF, MVT::i16));
6925      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6926                         : InsElt0;
6927    }
6928    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6929                       DAG.getIntPtrConstant(i));
6930  }
6931  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6932}
6933
6934// v32i8 shuffles - Translate to VPSHUFB if possible.
6935static
6936SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6937                                 const X86Subtarget *Subtarget,
6938                                 SelectionDAG &DAG) {
6939  MVT VT = SVOp->getSimpleValueType(0);
6940  SDValue V1 = SVOp->getOperand(0);
6941  SDValue V2 = SVOp->getOperand(1);
6942  SDLoc dl(SVOp);
6943  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6944
6945  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6946  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6947  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6948
6949  // VPSHUFB may be generated if
6950  // (1) one of input vector is undefined or zeroinitializer.
6951  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6952  // And (2) the mask indexes don't cross the 128-bit lane.
6953  if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
6954      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6955    return SDValue();
6956
6957  if (V1IsAllZero && !V2IsAllZero) {
6958    CommuteVectorShuffleMask(MaskVals, 32);
6959    V1 = V2;
6960  }
6961  return getPSHUFB(MaskVals, V1, dl, DAG);
6962}
6963
6964/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6965/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6966/// done when every pair / quad of shuffle mask elements point to elements in
6967/// the right sequence. e.g.
6968/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6969static
6970SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6971                                 SelectionDAG &DAG) {
6972  MVT VT = SVOp->getSimpleValueType(0);
6973  SDLoc dl(SVOp);
6974  unsigned NumElems = VT.getVectorNumElements();
6975  MVT NewVT;
6976  unsigned Scale;
6977  switch (VT.SimpleTy) {
6978  default: llvm_unreachable("Unexpected!");
6979  case MVT::v2i64:
6980  case MVT::v2f64:
6981           return SDValue(SVOp, 0);
6982  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6983  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6984  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6985  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6986  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6987  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6988  }
6989
6990  SmallVector<int, 8> MaskVec;
6991  for (unsigned i = 0; i != NumElems; i += Scale) {
6992    int StartIdx = -1;
6993    for (unsigned j = 0; j != Scale; ++j) {
6994      int EltIdx = SVOp->getMaskElt(i+j);
6995      if (EltIdx < 0)
6996        continue;
6997      if (StartIdx < 0)
6998        StartIdx = (EltIdx / Scale);
6999      if (EltIdx != (int)(StartIdx*Scale + j))
7000        return SDValue();
7001    }
7002    MaskVec.push_back(StartIdx);
7003  }
7004
7005  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
7006  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
7007  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
7008}
7009
7010/// getVZextMovL - Return a zero-extending vector move low node.
7011///
7012static SDValue getVZextMovL(MVT VT, MVT OpVT,
7013                            SDValue SrcOp, SelectionDAG &DAG,
7014                            const X86Subtarget *Subtarget, SDLoc dl) {
7015  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
7016    LoadSDNode *LD = nullptr;
7017    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
7018      LD = dyn_cast<LoadSDNode>(SrcOp);
7019    if (!LD) {
7020      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
7021      // instead.
7022      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
7023      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
7024          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
7025          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
7026          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
7027        // PR2108
7028        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
7029        return DAG.getNode(ISD::BITCAST, dl, VT,
7030                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
7031                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7032                                                   OpVT,
7033                                                   SrcOp.getOperand(0)
7034                                                          .getOperand(0))));
7035      }
7036    }
7037  }
7038
7039  return DAG.getNode(ISD::BITCAST, dl, VT,
7040                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
7041                                 DAG.getNode(ISD::BITCAST, dl,
7042                                             OpVT, SrcOp)));
7043}
7044
7045/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
7046/// which could not be matched by any known target speficic shuffle
7047static SDValue
7048LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
7049
7050  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
7051  if (NewOp.getNode())
7052    return NewOp;
7053
7054  MVT VT = SVOp->getSimpleValueType(0);
7055
7056  unsigned NumElems = VT.getVectorNumElements();
7057  unsigned NumLaneElems = NumElems / 2;
7058
7059  SDLoc dl(SVOp);
7060  MVT EltVT = VT.getVectorElementType();
7061  MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
7062  SDValue Output[2];
7063
7064  SmallVector<int, 16> Mask;
7065  for (unsigned l = 0; l < 2; ++l) {
7066    // Build a shuffle mask for the output, discovering on the fly which
7067    // input vectors to use as shuffle operands (recorded in InputUsed).
7068    // If building a suitable shuffle vector proves too hard, then bail
7069    // out with UseBuildVector set.
7070    bool UseBuildVector = false;
7071    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
7072    unsigned LaneStart = l * NumLaneElems;
7073    for (unsigned i = 0; i != NumLaneElems; ++i) {
7074      // The mask element.  This indexes into the input.
7075      int Idx = SVOp->getMaskElt(i+LaneStart);
7076      if (Idx < 0) {
7077        // the mask element does not index into any input vector.
7078        Mask.push_back(-1);
7079        continue;
7080      }
7081
7082      // The input vector this mask element indexes into.
7083      int Input = Idx / NumLaneElems;
7084
7085      // Turn the index into an offset from the start of the input vector.
7086      Idx -= Input * NumLaneElems;
7087
7088      // Find or create a shuffle vector operand to hold this input.
7089      unsigned OpNo;
7090      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
7091        if (InputUsed[OpNo] == Input)
7092          // This input vector is already an operand.
7093          break;
7094        if (InputUsed[OpNo] < 0) {
7095          // Create a new operand for this input vector.
7096          InputUsed[OpNo] = Input;
7097          break;
7098        }
7099      }
7100
7101      if (OpNo >= array_lengthof(InputUsed)) {
7102        // More than two input vectors used!  Give up on trying to create a
7103        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
7104        UseBuildVector = true;
7105        break;
7106      }
7107
7108      // Add the mask index for the new shuffle vector.
7109      Mask.push_back(Idx + OpNo * NumLaneElems);
7110    }
7111
7112    if (UseBuildVector) {
7113      SmallVector<SDValue, 16> SVOps;
7114      for (unsigned i = 0; i != NumLaneElems; ++i) {
7115        // The mask element.  This indexes into the input.
7116        int Idx = SVOp->getMaskElt(i+LaneStart);
7117        if (Idx < 0) {
7118          SVOps.push_back(DAG.getUNDEF(EltVT));
7119          continue;
7120        }
7121
7122        // The input vector this mask element indexes into.
7123        int Input = Idx / NumElems;
7124
7125        // Turn the index into an offset from the start of the input vector.
7126        Idx -= Input * NumElems;
7127
7128        // Extract the vector element by hand.
7129        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
7130                                    SVOp->getOperand(Input),
7131                                    DAG.getIntPtrConstant(Idx)));
7132      }
7133
7134      // Construct the output using a BUILD_VECTOR.
7135      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, SVOps);
7136    } else if (InputUsed[0] < 0) {
7137      // No input vectors were used! The result is undefined.
7138      Output[l] = DAG.getUNDEF(NVT);
7139    } else {
7140      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
7141                                        (InputUsed[0] % 2) * NumLaneElems,
7142                                        DAG, dl);
7143      // If only one input was used, use an undefined vector for the other.
7144      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
7145        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
7146                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
7147      // At least one input vector was used. Create a new shuffle vector.
7148      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
7149    }
7150
7151    Mask.clear();
7152  }
7153
7154  // Concatenate the result back
7155  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
7156}
7157
7158/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
7159/// 4 elements, and match them with several different shuffle types.
7160static SDValue
7161LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
7162  SDValue V1 = SVOp->getOperand(0);
7163  SDValue V2 = SVOp->getOperand(1);
7164  SDLoc dl(SVOp);
7165  MVT VT = SVOp->getSimpleValueType(0);
7166
7167  assert(VT.is128BitVector() && "Unsupported vector size");
7168
7169  std::pair<int, int> Locs[4];
7170  int Mask1[] = { -1, -1, -1, -1 };
7171  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
7172
7173  unsigned NumHi = 0;
7174  unsigned NumLo = 0;
7175  for (unsigned i = 0; i != 4; ++i) {
7176    int Idx = PermMask[i];
7177    if (Idx < 0) {
7178      Locs[i] = std::make_pair(-1, -1);
7179    } else {
7180      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
7181      if (Idx < 4) {
7182        Locs[i] = std::make_pair(0, NumLo);
7183        Mask1[NumLo] = Idx;
7184        NumLo++;
7185      } else {
7186        Locs[i] = std::make_pair(1, NumHi);
7187        if (2+NumHi < 4)
7188          Mask1[2+NumHi] = Idx;
7189        NumHi++;
7190      }
7191    }
7192  }
7193
7194  if (NumLo <= 2 && NumHi <= 2) {
7195    // If no more than two elements come from either vector. This can be
7196    // implemented with two shuffles. First shuffle gather the elements.
7197    // The second shuffle, which takes the first shuffle as both of its
7198    // vector operands, put the elements into the right order.
7199    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
7200
7201    int Mask2[] = { -1, -1, -1, -1 };
7202
7203    for (unsigned i = 0; i != 4; ++i)
7204      if (Locs[i].first != -1) {
7205        unsigned Idx = (i < 2) ? 0 : 4;
7206        Idx += Locs[i].first * 2 + Locs[i].second;
7207        Mask2[i] = Idx;
7208      }
7209
7210    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
7211  }
7212
7213  if (NumLo == 3 || NumHi == 3) {
7214    // Otherwise, we must have three elements from one vector, call it X, and
7215    // one element from the other, call it Y.  First, use a shufps to build an
7216    // intermediate vector with the one element from Y and the element from X
7217    // that will be in the same half in the final destination (the indexes don't
7218    // matter). Then, use a shufps to build the final vector, taking the half
7219    // containing the element from Y from the intermediate, and the other half
7220    // from X.
7221    if (NumHi == 3) {
7222      // Normalize it so the 3 elements come from V1.
7223      CommuteVectorShuffleMask(PermMask, 4);
7224      std::swap(V1, V2);
7225    }
7226
7227    // Find the element from V2.
7228    unsigned HiIndex;
7229    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
7230      int Val = PermMask[HiIndex];
7231      if (Val < 0)
7232        continue;
7233      if (Val >= 4)
7234        break;
7235    }
7236
7237    Mask1[0] = PermMask[HiIndex];
7238    Mask1[1] = -1;
7239    Mask1[2] = PermMask[HiIndex^1];
7240    Mask1[3] = -1;
7241    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
7242
7243    if (HiIndex >= 2) {
7244      Mask1[0] = PermMask[0];
7245      Mask1[1] = PermMask[1];
7246      Mask1[2] = HiIndex & 1 ? 6 : 4;
7247      Mask1[3] = HiIndex & 1 ? 4 : 6;
7248      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
7249    }
7250
7251    Mask1[0] = HiIndex & 1 ? 2 : 0;
7252    Mask1[1] = HiIndex & 1 ? 0 : 2;
7253    Mask1[2] = PermMask[2];
7254    Mask1[3] = PermMask[3];
7255    if (Mask1[2] >= 0)
7256      Mask1[2] += 4;
7257    if (Mask1[3] >= 0)
7258      Mask1[3] += 4;
7259    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
7260  }
7261
7262  // Break it into (shuffle shuffle_hi, shuffle_lo).
7263  int LoMask[] = { -1, -1, -1, -1 };
7264  int HiMask[] = { -1, -1, -1, -1 };
7265
7266  int *MaskPtr = LoMask;
7267  unsigned MaskIdx = 0;
7268  unsigned LoIdx = 0;
7269  unsigned HiIdx = 2;
7270  for (unsigned i = 0; i != 4; ++i) {
7271    if (i == 2) {
7272      MaskPtr = HiMask;
7273      MaskIdx = 1;
7274      LoIdx = 0;
7275      HiIdx = 2;
7276    }
7277    int Idx = PermMask[i];
7278    if (Idx < 0) {
7279      Locs[i] = std::make_pair(-1, -1);
7280    } else if (Idx < 4) {
7281      Locs[i] = std::make_pair(MaskIdx, LoIdx);
7282      MaskPtr[LoIdx] = Idx;
7283      LoIdx++;
7284    } else {
7285      Locs[i] = std::make_pair(MaskIdx, HiIdx);
7286      MaskPtr[HiIdx] = Idx;
7287      HiIdx++;
7288    }
7289  }
7290
7291  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
7292  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
7293  int MaskOps[] = { -1, -1, -1, -1 };
7294  for (unsigned i = 0; i != 4; ++i)
7295    if (Locs[i].first != -1)
7296      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
7297  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
7298}
7299
7300static bool MayFoldVectorLoad(SDValue V) {
7301  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
7302    V = V.getOperand(0);
7303
7304  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
7305    V = V.getOperand(0);
7306  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
7307      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
7308    // BUILD_VECTOR (load), undef
7309    V = V.getOperand(0);
7310
7311  return MayFoldLoad(V);
7312}
7313
7314static
7315SDValue getMOVDDup(SDValue &Op, SDLoc &dl, SDValue V1, SelectionDAG &DAG) {
7316  MVT VT = Op.getSimpleValueType();
7317
7318  // Canonizalize to v2f64.
7319  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
7320  return DAG.getNode(ISD::BITCAST, dl, VT,
7321                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
7322                                          V1, DAG));
7323}
7324
7325static
7326SDValue getMOVLowToHigh(SDValue &Op, SDLoc &dl, SelectionDAG &DAG,
7327                        bool HasSSE2) {
7328  SDValue V1 = Op.getOperand(0);
7329  SDValue V2 = Op.getOperand(1);
7330  MVT VT = Op.getSimpleValueType();
7331
7332  assert(VT != MVT::v2i64 && "unsupported shuffle type");
7333
7334  if (HasSSE2 && VT == MVT::v2f64)
7335    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
7336
7337  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
7338  return DAG.getNode(ISD::BITCAST, dl, VT,
7339                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
7340                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
7341                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
7342}
7343
7344static
7345SDValue getMOVHighToLow(SDValue &Op, SDLoc &dl, SelectionDAG &DAG) {
7346  SDValue V1 = Op.getOperand(0);
7347  SDValue V2 = Op.getOperand(1);
7348  MVT VT = Op.getSimpleValueType();
7349
7350  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
7351         "unsupported shuffle type");
7352
7353  if (V2.getOpcode() == ISD::UNDEF)
7354    V2 = V1;
7355
7356  // v4i32 or v4f32
7357  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
7358}
7359
7360static
7361SDValue getMOVLP(SDValue &Op, SDLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
7362  SDValue V1 = Op.getOperand(0);
7363  SDValue V2 = Op.getOperand(1);
7364  MVT VT = Op.getSimpleValueType();
7365  unsigned NumElems = VT.getVectorNumElements();
7366
7367  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
7368  // operand of these instructions is only memory, so check if there's a
7369  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
7370  // same masks.
7371  bool CanFoldLoad = false;
7372
7373  // Trivial case, when V2 comes from a load.
7374  if (MayFoldVectorLoad(V2))
7375    CanFoldLoad = true;
7376
7377  // When V1 is a load, it can be folded later into a store in isel, example:
7378  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
7379  //    turns into:
7380  //  (MOVLPSmr addr:$src1, VR128:$src2)
7381  // So, recognize this potential and also use MOVLPS or MOVLPD
7382  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
7383    CanFoldLoad = true;
7384
7385  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7386  if (CanFoldLoad) {
7387    if (HasSSE2 && NumElems == 2)
7388      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
7389
7390    if (NumElems == 4)
7391      // If we don't care about the second element, proceed to use movss.
7392      if (SVOp->getMaskElt(1) != -1)
7393        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
7394  }
7395
7396  // movl and movlp will both match v2i64, but v2i64 is never matched by
7397  // movl earlier because we make it strict to avoid messing with the movlp load
7398  // folding logic (see the code above getMOVLP call). Match it here then,
7399  // this is horrible, but will stay like this until we move all shuffle
7400  // matching to x86 specific nodes. Note that for the 1st condition all
7401  // types are matched with movsd.
7402  if (HasSSE2) {
7403    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
7404    // as to remove this logic from here, as much as possible
7405    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
7406      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
7407    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
7408  }
7409
7410  assert(VT != MVT::v4i32 && "unsupported shuffle type");
7411
7412  // Invert the operand order and use SHUFPS to match it.
7413  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
7414                              getShuffleSHUFImmediate(SVOp), DAG);
7415}
7416
7417static SDValue NarrowVectorLoadToElement(LoadSDNode *Load, unsigned Index,
7418                                         SelectionDAG &DAG) {
7419  SDLoc dl(Load);
7420  MVT VT = Load->getSimpleValueType(0);
7421  MVT EVT = VT.getVectorElementType();
7422  SDValue Addr = Load->getOperand(1);
7423  SDValue NewAddr = DAG.getNode(
7424      ISD::ADD, dl, Addr.getSimpleValueType(), Addr,
7425      DAG.getConstant(Index * EVT.getStoreSize(), Addr.getSimpleValueType()));
7426
7427  SDValue NewLoad =
7428      DAG.getLoad(EVT, dl, Load->getChain(), NewAddr,
7429                  DAG.getMachineFunction().getMachineMemOperand(
7430                      Load->getMemOperand(), 0, EVT.getStoreSize()));
7431  return NewLoad;
7432}
7433
7434// It is only safe to call this function if isINSERTPSMask is true for
7435// this shufflevector mask.
7436static SDValue getINSERTPS(ShuffleVectorSDNode *SVOp, SDLoc &dl,
7437                           SelectionDAG &DAG) {
7438  // Generate an insertps instruction when inserting an f32 from memory onto a
7439  // v4f32 or when copying a member from one v4f32 to another.
7440  // We also use it for transferring i32 from one register to another,
7441  // since it simply copies the same bits.
7442  // If we're transferring an i32 from memory to a specific element in a
7443  // register, we output a generic DAG that will match the PINSRD
7444  // instruction.
7445  MVT VT = SVOp->getSimpleValueType(0);
7446  MVT EVT = VT.getVectorElementType();
7447  SDValue V1 = SVOp->getOperand(0);
7448  SDValue V2 = SVOp->getOperand(1);
7449  auto Mask = SVOp->getMask();
7450  assert((VT == MVT::v4f32 || VT == MVT::v4i32) &&
7451         "unsupported vector type for insertps/pinsrd");
7452
7453  int FromV1 = std::count_if(Mask.begin(), Mask.end(),
7454                             [](const int &i) { return i < 4; });
7455
7456  SDValue From;
7457  SDValue To;
7458  unsigned DestIndex;
7459  if (FromV1 == 1) {
7460    From = V1;
7461    To = V2;
7462    DestIndex = std::find_if(Mask.begin(), Mask.end(),
7463                             [](const int &i) { return i < 4; }) -
7464                Mask.begin();
7465  } else {
7466    From = V2;
7467    To = V1;
7468    DestIndex = std::find_if(Mask.begin(), Mask.end(),
7469                             [](const int &i) { return i >= 4; }) -
7470                Mask.begin();
7471  }
7472
7473  if (MayFoldLoad(From)) {
7474    // Trivial case, when From comes from a load and is only used by the
7475    // shuffle. Make it use insertps from the vector that we need from that
7476    // load.
7477    SDValue NewLoad =
7478        NarrowVectorLoadToElement(cast<LoadSDNode>(From), DestIndex, DAG);
7479    if (!NewLoad.getNode())
7480      return SDValue();
7481
7482    if (EVT == MVT::f32) {
7483      // Create this as a scalar to vector to match the instruction pattern.
7484      SDValue LoadScalarToVector =
7485          DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, NewLoad);
7486      SDValue InsertpsMask = DAG.getIntPtrConstant(DestIndex << 4);
7487      return DAG.getNode(X86ISD::INSERTPS, dl, VT, To, LoadScalarToVector,
7488                         InsertpsMask);
7489    } else { // EVT == MVT::i32
7490      // If we're getting an i32 from memory, use an INSERT_VECTOR_ELT
7491      // instruction, to match the PINSRD instruction, which loads an i32 to a
7492      // certain vector element.
7493      return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, To, NewLoad,
7494                         DAG.getConstant(DestIndex, MVT::i32));
7495    }
7496  }
7497
7498  // Vector-element-to-vector
7499  unsigned SrcIndex = Mask[DestIndex] % 4;
7500  SDValue InsertpsMask = DAG.getIntPtrConstant(DestIndex << 4 | SrcIndex << 6);
7501  return DAG.getNode(X86ISD::INSERTPS, dl, VT, To, From, InsertpsMask);
7502}
7503
7504// Reduce a vector shuffle to zext.
7505static SDValue LowerVectorIntExtend(SDValue Op, const X86Subtarget *Subtarget,
7506                                    SelectionDAG &DAG) {
7507  // PMOVZX is only available from SSE41.
7508  if (!Subtarget->hasSSE41())
7509    return SDValue();
7510
7511  MVT VT = Op.getSimpleValueType();
7512
7513  // Only AVX2 support 256-bit vector integer extending.
7514  if (!Subtarget->hasInt256() && VT.is256BitVector())
7515    return SDValue();
7516
7517  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7518  SDLoc DL(Op);
7519  SDValue V1 = Op.getOperand(0);
7520  SDValue V2 = Op.getOperand(1);
7521  unsigned NumElems = VT.getVectorNumElements();
7522
7523  // Extending is an unary operation and the element type of the source vector
7524  // won't be equal to or larger than i64.
7525  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
7526      VT.getVectorElementType() == MVT::i64)
7527    return SDValue();
7528
7529  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
7530  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
7531  while ((1U << Shift) < NumElems) {
7532    if (SVOp->getMaskElt(1U << Shift) == 1)
7533      break;
7534    Shift += 1;
7535    // The maximal ratio is 8, i.e. from i8 to i64.
7536    if (Shift > 3)
7537      return SDValue();
7538  }
7539
7540  // Check the shuffle mask.
7541  unsigned Mask = (1U << Shift) - 1;
7542  for (unsigned i = 0; i != NumElems; ++i) {
7543    int EltIdx = SVOp->getMaskElt(i);
7544    if ((i & Mask) != 0 && EltIdx != -1)
7545      return SDValue();
7546    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
7547      return SDValue();
7548  }
7549
7550  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
7551  MVT NeVT = MVT::getIntegerVT(NBits);
7552  MVT NVT = MVT::getVectorVT(NeVT, NumElems >> Shift);
7553
7554  if (!DAG.getTargetLoweringInfo().isTypeLegal(NVT))
7555    return SDValue();
7556
7557  // Simplify the operand as it's prepared to be fed into shuffle.
7558  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
7559  if (V1.getOpcode() == ISD::BITCAST &&
7560      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
7561      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7562      V1.getOperand(0).getOperand(0)
7563        .getSimpleValueType().getSizeInBits() == SignificantBits) {
7564    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
7565    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
7566    ConstantSDNode *CIdx =
7567      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
7568    // If it's foldable, i.e. normal load with single use, we will let code
7569    // selection to fold it. Otherwise, we will short the conversion sequence.
7570    if (CIdx && CIdx->getZExtValue() == 0 &&
7571        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) {
7572      MVT FullVT = V.getSimpleValueType();
7573      MVT V1VT = V1.getSimpleValueType();
7574      if (FullVT.getSizeInBits() > V1VT.getSizeInBits()) {
7575        // The "ext_vec_elt" node is wider than the result node.
7576        // In this case we should extract subvector from V.
7577        // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)).
7578        unsigned Ratio = FullVT.getSizeInBits() / V1VT.getSizeInBits();
7579        MVT SubVecVT = MVT::getVectorVT(FullVT.getVectorElementType(),
7580                                        FullVT.getVectorNumElements()/Ratio);
7581        V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
7582                        DAG.getIntPtrConstant(0));
7583      }
7584      V1 = DAG.getNode(ISD::BITCAST, DL, V1VT, V);
7585    }
7586  }
7587
7588  return DAG.getNode(ISD::BITCAST, DL, VT,
7589                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
7590}
7591
7592static SDValue NormalizeVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
7593                                      SelectionDAG &DAG) {
7594  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7595  MVT VT = Op.getSimpleValueType();
7596  SDLoc dl(Op);
7597  SDValue V1 = Op.getOperand(0);
7598  SDValue V2 = Op.getOperand(1);
7599
7600  if (isZeroShuffle(SVOp))
7601    return getZeroVector(VT, Subtarget, DAG, dl);
7602
7603  // Handle splat operations
7604  if (SVOp->isSplat()) {
7605    // Use vbroadcast whenever the splat comes from a foldable load
7606    SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
7607    if (Broadcast.getNode())
7608      return Broadcast;
7609  }
7610
7611  // Check integer expanding shuffles.
7612  SDValue NewOp = LowerVectorIntExtend(Op, Subtarget, DAG);
7613  if (NewOp.getNode())
7614    return NewOp;
7615
7616  // If the shuffle can be profitably rewritten as a narrower shuffle, then
7617  // do it!
7618  if (VT == MVT::v8i16 || VT == MVT::v16i8 || VT == MVT::v16i16 ||
7619      VT == MVT::v32i8) {
7620    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
7621    if (NewOp.getNode())
7622      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
7623  } else if (VT.is128BitVector() && Subtarget->hasSSE2()) {
7624    // FIXME: Figure out a cleaner way to do this.
7625    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
7626      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
7627      if (NewOp.getNode()) {
7628        MVT NewVT = NewOp.getSimpleValueType();
7629        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
7630                               NewVT, true, false))
7631          return getVZextMovL(VT, NewVT, NewOp.getOperand(0), DAG, Subtarget,
7632                              dl);
7633      }
7634    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
7635      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
7636      if (NewOp.getNode()) {
7637        MVT NewVT = NewOp.getSimpleValueType();
7638        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
7639          return getVZextMovL(VT, NewVT, NewOp.getOperand(1), DAG, Subtarget,
7640                              dl);
7641      }
7642    }
7643  }
7644  return SDValue();
7645}
7646
7647SDValue
7648X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
7649  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7650  SDValue V1 = Op.getOperand(0);
7651  SDValue V2 = Op.getOperand(1);
7652  MVT VT = Op.getSimpleValueType();
7653  SDLoc dl(Op);
7654  unsigned NumElems = VT.getVectorNumElements();
7655  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
7656  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
7657  bool V1IsSplat = false;
7658  bool V2IsSplat = false;
7659  bool HasSSE2 = Subtarget->hasSSE2();
7660  bool HasFp256    = Subtarget->hasFp256();
7661  bool HasInt256   = Subtarget->hasInt256();
7662  MachineFunction &MF = DAG.getMachineFunction();
7663  bool OptForSize = MF.getFunction()->getAttributes().
7664    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
7665
7666  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
7667
7668  if (V1IsUndef && V2IsUndef)
7669    return DAG.getUNDEF(VT);
7670
7671  // When we create a shuffle node we put the UNDEF node to second operand,
7672  // but in some cases the first operand may be transformed to UNDEF.
7673  // In this case we should just commute the node.
7674  if (V1IsUndef)
7675    return CommuteVectorShuffle(SVOp, DAG);
7676
7677  // Vector shuffle lowering takes 3 steps:
7678  //
7679  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
7680  //    narrowing and commutation of operands should be handled.
7681  // 2) Matching of shuffles with known shuffle masks to x86 target specific
7682  //    shuffle nodes.
7683  // 3) Rewriting of unmatched masks into new generic shuffle operations,
7684  //    so the shuffle can be broken into other shuffles and the legalizer can
7685  //    try the lowering again.
7686  //
7687  // The general idea is that no vector_shuffle operation should be left to
7688  // be matched during isel, all of them must be converted to a target specific
7689  // node here.
7690
7691  // Normalize the input vectors. Here splats, zeroed vectors, profitable
7692  // narrowing and commutation of operands should be handled. The actual code
7693  // doesn't include all of those, work in progress...
7694  SDValue NewOp = NormalizeVectorShuffle(Op, Subtarget, DAG);
7695  if (NewOp.getNode())
7696    return NewOp;
7697
7698  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
7699
7700  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
7701  // unpckh_undef). Only use pshufd if speed is more important than size.
7702  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
7703    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7704  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
7705    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7706
7707  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
7708      V2IsUndef && MayFoldVectorLoad(V1))
7709    return getMOVDDup(Op, dl, V1, DAG);
7710
7711  if (isMOVHLPS_v_undef_Mask(M, VT))
7712    return getMOVHighToLow(Op, dl, DAG);
7713
7714  // Use to match splats
7715  if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
7716      (VT == MVT::v2f64 || VT == MVT::v2i64))
7717    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7718
7719  if (isPSHUFDMask(M, VT)) {
7720    // The actual implementation will match the mask in the if above and then
7721    // during isel it can match several different instructions, not only pshufd
7722    // as its name says, sad but true, emulate the behavior for now...
7723    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
7724      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
7725
7726    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
7727
7728    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
7729      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
7730
7731    if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
7732      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
7733                                  DAG);
7734
7735    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
7736                                TargetMask, DAG);
7737  }
7738
7739  if (isPALIGNRMask(M, VT, Subtarget))
7740    return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
7741                                getShufflePALIGNRImmediate(SVOp),
7742                                DAG);
7743
7744  // Check if this can be converted into a logical shift.
7745  bool isLeft = false;
7746  unsigned ShAmt = 0;
7747  SDValue ShVal;
7748  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
7749  if (isShift && ShVal.hasOneUse()) {
7750    // If the shifted value has multiple uses, it may be cheaper to use
7751    // v_set0 + movlhps or movhlps, etc.
7752    MVT EltVT = VT.getVectorElementType();
7753    ShAmt *= EltVT.getSizeInBits();
7754    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
7755  }
7756
7757  if (isMOVLMask(M, VT)) {
7758    if (ISD::isBuildVectorAllZeros(V1.getNode()))
7759      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
7760    if (!isMOVLPMask(M, VT)) {
7761      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
7762        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
7763
7764      if (VT == MVT::v4i32 || VT == MVT::v4f32)
7765        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
7766    }
7767  }
7768
7769  // FIXME: fold these into legal mask.
7770  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
7771    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
7772
7773  if (isMOVHLPSMask(M, VT))
7774    return getMOVHighToLow(Op, dl, DAG);
7775
7776  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
7777    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
7778
7779  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
7780    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
7781
7782  if (isMOVLPMask(M, VT))
7783    return getMOVLP(Op, dl, DAG, HasSSE2);
7784
7785  if (ShouldXformToMOVHLPS(M, VT) ||
7786      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
7787    return CommuteVectorShuffle(SVOp, DAG);
7788
7789  if (isShift) {
7790    // No better options. Use a vshldq / vsrldq.
7791    MVT EltVT = VT.getVectorElementType();
7792    ShAmt *= EltVT.getSizeInBits();
7793    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
7794  }
7795
7796  bool Commuted = false;
7797  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
7798  // 1,1,1,1 -> v8i16 though.
7799  V1IsSplat = isSplatVector(V1.getNode());
7800  V2IsSplat = isSplatVector(V2.getNode());
7801
7802  // Canonicalize the splat or undef, if present, to be on the RHS.
7803  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
7804    CommuteVectorShuffleMask(M, NumElems);
7805    std::swap(V1, V2);
7806    std::swap(V1IsSplat, V2IsSplat);
7807    Commuted = true;
7808  }
7809
7810  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
7811    // Shuffling low element of v1 into undef, just return v1.
7812    if (V2IsUndef)
7813      return V1;
7814    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
7815    // the instruction selector will not match, so get a canonical MOVL with
7816    // swapped operands to undo the commute.
7817    return getMOVL(DAG, dl, VT, V2, V1);
7818  }
7819
7820  if (isUNPCKLMask(M, VT, HasInt256))
7821    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7822
7823  if (isUNPCKHMask(M, VT, HasInt256))
7824    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7825
7826  if (V2IsSplat) {
7827    // Normalize mask so all entries that point to V2 points to its first
7828    // element then try to match unpck{h|l} again. If match, return a
7829    // new vector_shuffle with the corrected mask.p
7830    SmallVector<int, 8> NewMask(M.begin(), M.end());
7831    NormalizeMask(NewMask, NumElems);
7832    if (isUNPCKLMask(NewMask, VT, HasInt256, true))
7833      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7834    if (isUNPCKHMask(NewMask, VT, HasInt256, true))
7835      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7836  }
7837
7838  if (Commuted) {
7839    // Commute is back and try unpck* again.
7840    // FIXME: this seems wrong.
7841    CommuteVectorShuffleMask(M, NumElems);
7842    std::swap(V1, V2);
7843    std::swap(V1IsSplat, V2IsSplat);
7844
7845    if (isUNPCKLMask(M, VT, HasInt256))
7846      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7847
7848    if (isUNPCKHMask(M, VT, HasInt256))
7849      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7850  }
7851
7852  // Normalize the node to match x86 shuffle ops if needed
7853  if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true)))
7854    return CommuteVectorShuffle(SVOp, DAG);
7855
7856  // The checks below are all present in isShuffleMaskLegal, but they are
7857  // inlined here right now to enable us to directly emit target specific
7858  // nodes, and remove one by one until they don't return Op anymore.
7859
7860  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
7861      SVOp->getSplatIndex() == 0 && V2IsUndef) {
7862    if (VT == MVT::v2f64 || VT == MVT::v2i64)
7863      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7864  }
7865
7866  if (isPSHUFHWMask(M, VT, HasInt256))
7867    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
7868                                getShufflePSHUFHWImmediate(SVOp),
7869                                DAG);
7870
7871  if (isPSHUFLWMask(M, VT, HasInt256))
7872    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
7873                                getShufflePSHUFLWImmediate(SVOp),
7874                                DAG);
7875
7876  if (isSHUFPMask(M, VT))
7877    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
7878                                getShuffleSHUFImmediate(SVOp), DAG);
7879
7880  if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
7881    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7882  if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
7883    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7884
7885  //===--------------------------------------------------------------------===//
7886  // Generate target specific nodes for 128 or 256-bit shuffles only
7887  // supported in the AVX instruction set.
7888  //
7889
7890  // Handle VMOVDDUPY permutations
7891  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
7892    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
7893
7894  // Handle VPERMILPS/D* permutations
7895  if (isVPERMILPMask(M, VT)) {
7896    if ((HasInt256 && VT == MVT::v8i32) || VT == MVT::v16i32)
7897      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
7898                                  getShuffleSHUFImmediate(SVOp), DAG);
7899    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
7900                                getShuffleSHUFImmediate(SVOp), DAG);
7901  }
7902
7903  unsigned Idx;
7904  if (VT.is512BitVector() && isINSERT64x4Mask(M, VT, &Idx))
7905    return Insert256BitVector(V1, Extract256BitVector(V2, 0, DAG, dl),
7906                              Idx*(NumElems/2), DAG, dl);
7907
7908  // Handle VPERM2F128/VPERM2I128 permutations
7909  if (isVPERM2X128Mask(M, VT, HasFp256))
7910    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
7911                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
7912
7913  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
7914  if (BlendOp.getNode())
7915    return BlendOp;
7916
7917  if (Subtarget->hasSSE41() && isINSERTPSMask(M, VT))
7918    return getINSERTPS(SVOp, dl, DAG);
7919
7920  unsigned Imm8;
7921  if (V2IsUndef && HasInt256 && isPermImmMask(M, VT, Imm8))
7922    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1, Imm8, DAG);
7923
7924  if ((V2IsUndef && HasInt256 && VT.is256BitVector() && NumElems == 8) ||
7925      VT.is512BitVector()) {
7926    MVT MaskEltVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
7927    MVT MaskVectorVT = MVT::getVectorVT(MaskEltVT, NumElems);
7928    SmallVector<SDValue, 16> permclMask;
7929    for (unsigned i = 0; i != NumElems; ++i) {
7930      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MaskEltVT));
7931    }
7932
7933    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVectorVT, permclMask);
7934    if (V2IsUndef)
7935      // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
7936      return DAG.getNode(X86ISD::VPERMV, dl, VT,
7937                          DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
7938    return DAG.getNode(X86ISD::VPERMV3, dl, VT, V1,
7939                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V2);
7940  }
7941
7942  //===--------------------------------------------------------------------===//
7943  // Since no target specific shuffle was selected for this generic one,
7944  // lower it into other known shuffles. FIXME: this isn't true yet, but
7945  // this is the plan.
7946  //
7947
7948  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
7949  if (VT == MVT::v8i16) {
7950    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
7951    if (NewOp.getNode())
7952      return NewOp;
7953  }
7954
7955  if (VT == MVT::v16i16 && Subtarget->hasInt256()) {
7956    SDValue NewOp = LowerVECTOR_SHUFFLEv16i16(Op, DAG);
7957    if (NewOp.getNode())
7958      return NewOp;
7959  }
7960
7961  if (VT == MVT::v16i8) {
7962    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, Subtarget, DAG);
7963    if (NewOp.getNode())
7964      return NewOp;
7965  }
7966
7967  if (VT == MVT::v32i8) {
7968    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
7969    if (NewOp.getNode())
7970      return NewOp;
7971  }
7972
7973  // Handle all 128-bit wide vectors with 4 elements, and match them with
7974  // several different shuffle types.
7975  if (NumElems == 4 && VT.is128BitVector())
7976    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7977
7978  // Handle general 256-bit shuffles
7979  if (VT.is256BitVector())
7980    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7981
7982  return SDValue();
7983}
7984
7985// This function assumes its argument is a BUILD_VECTOR of constants or
7986// undef SDNodes. i.e: ISD::isBuildVectorOfConstantSDNodes(BuildVector) is
7987// true.
7988static bool BUILD_VECTORtoBlendMask(BuildVectorSDNode *BuildVector,
7989                                    unsigned &MaskValue) {
7990  MaskValue = 0;
7991  unsigned NumElems = BuildVector->getNumOperands();
7992  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
7993  unsigned NumLanes = (NumElems - 1) / 8 + 1;
7994  unsigned NumElemsInLane = NumElems / NumLanes;
7995
7996  // Blend for v16i16 should be symetric for the both lanes.
7997  for (unsigned i = 0; i < NumElemsInLane; ++i) {
7998    SDValue EltCond = BuildVector->getOperand(i);
7999    SDValue SndLaneEltCond =
8000        (NumLanes == 2) ? BuildVector->getOperand(i + NumElemsInLane) : EltCond;
8001
8002    int Lane1Cond = -1, Lane2Cond = -1;
8003    if (isa<ConstantSDNode>(EltCond))
8004      Lane1Cond = !isZero(EltCond);
8005    if (isa<ConstantSDNode>(SndLaneEltCond))
8006      Lane2Cond = !isZero(SndLaneEltCond);
8007
8008    if (Lane1Cond == Lane2Cond || Lane2Cond < 0)
8009      // Lane1Cond != 0, means we want the first argument.
8010      // Lane1Cond == 0, means we want the second argument.
8011      // The encoding of this argument is 0 for the first argument, 1
8012      // for the second. Therefore, invert the condition.
8013      MaskValue |= !Lane1Cond << i;
8014    else if (Lane1Cond < 0)
8015      MaskValue |= !Lane2Cond << i;
8016    else
8017      return false;
8018  }
8019  return true;
8020}
8021
8022// Try to lower a vselect node into a simple blend instruction.
8023static SDValue LowerVSELECTtoBlend(SDValue Op, const X86Subtarget *Subtarget,
8024                                   SelectionDAG &DAG) {
8025  SDValue Cond = Op.getOperand(0);
8026  SDValue LHS = Op.getOperand(1);
8027  SDValue RHS = Op.getOperand(2);
8028  SDLoc dl(Op);
8029  MVT VT = Op.getSimpleValueType();
8030  MVT EltVT = VT.getVectorElementType();
8031  unsigned NumElems = VT.getVectorNumElements();
8032
8033  // There is no blend with immediate in AVX-512.
8034  if (VT.is512BitVector())
8035    return SDValue();
8036
8037  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
8038    return SDValue();
8039  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
8040    return SDValue();
8041
8042  if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
8043    return SDValue();
8044
8045  // Check the mask for BLEND and build the value.
8046  unsigned MaskValue = 0;
8047  if (!BUILD_VECTORtoBlendMask(cast<BuildVectorSDNode>(Cond), MaskValue))
8048    return SDValue();
8049
8050  // Convert i32 vectors to floating point if it is not AVX2.
8051  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
8052  MVT BlendVT = VT;
8053  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
8054    BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
8055                               NumElems);
8056    LHS = DAG.getNode(ISD::BITCAST, dl, VT, LHS);
8057    RHS = DAG.getNode(ISD::BITCAST, dl, VT, RHS);
8058  }
8059
8060  SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, LHS, RHS,
8061                            DAG.getConstant(MaskValue, MVT::i32));
8062  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
8063}
8064
8065SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
8066  SDValue BlendOp = LowerVSELECTtoBlend(Op, Subtarget, DAG);
8067  if (BlendOp.getNode())
8068    return BlendOp;
8069
8070  // Some types for vselect were previously set to Expand, not Legal or
8071  // Custom. Return an empty SDValue so we fall-through to Expand, after
8072  // the Custom lowering phase.
8073  MVT VT = Op.getSimpleValueType();
8074  switch (VT.SimpleTy) {
8075  default:
8076    break;
8077  case MVT::v8i16:
8078  case MVT::v16i16:
8079    return SDValue();
8080  }
8081
8082  // We couldn't create a "Blend with immediate" node.
8083  // This node should still be legal, but we'll have to emit a blendv*
8084  // instruction.
8085  return Op;
8086}
8087
8088static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
8089  MVT VT = Op.getSimpleValueType();
8090  SDLoc dl(Op);
8091
8092  if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
8093    return SDValue();
8094
8095  if (VT.getSizeInBits() == 8) {
8096    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
8097                                  Op.getOperand(0), Op.getOperand(1));
8098    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
8099                                  DAG.getValueType(VT));
8100    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
8101  }
8102
8103  if (VT.getSizeInBits() == 16) {
8104    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8105    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
8106    if (Idx == 0)
8107      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
8108                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
8109                                     DAG.getNode(ISD::BITCAST, dl,
8110                                                 MVT::v4i32,
8111                                                 Op.getOperand(0)),
8112                                     Op.getOperand(1)));
8113    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
8114                                  Op.getOperand(0), Op.getOperand(1));
8115    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
8116                                  DAG.getValueType(VT));
8117    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
8118  }
8119
8120  if (VT == MVT::f32) {
8121    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
8122    // the result back to FR32 register. It's only worth matching if the
8123    // result has a single use which is a store or a bitcast to i32.  And in
8124    // the case of a store, it's not worth it if the index is a constant 0,
8125    // because a MOVSSmr can be used instead, which is smaller and faster.
8126    if (!Op.hasOneUse())
8127      return SDValue();
8128    SDNode *User = *Op.getNode()->use_begin();
8129    if ((User->getOpcode() != ISD::STORE ||
8130         (isa<ConstantSDNode>(Op.getOperand(1)) &&
8131          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
8132        (User->getOpcode() != ISD::BITCAST ||
8133         User->getValueType(0) != MVT::i32))
8134      return SDValue();
8135    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
8136                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
8137                                              Op.getOperand(0)),
8138                                              Op.getOperand(1));
8139    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
8140  }
8141
8142  if (VT == MVT::i32 || VT == MVT::i64) {
8143    // ExtractPS/pextrq works with constant index.
8144    if (isa<ConstantSDNode>(Op.getOperand(1)))
8145      return Op;
8146  }
8147  return SDValue();
8148}
8149
8150/// Extract one bit from mask vector, like v16i1 or v8i1.
8151/// AVX-512 feature.
8152SDValue
8153X86TargetLowering::ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const {
8154  SDValue Vec = Op.getOperand(0);
8155  SDLoc dl(Vec);
8156  MVT VecVT = Vec.getSimpleValueType();
8157  SDValue Idx = Op.getOperand(1);
8158  MVT EltVT = Op.getSimpleValueType();
8159
8160  assert((EltVT == MVT::i1) && "Unexpected operands in ExtractBitFromMaskVector");
8161
8162  // variable index can't be handled in mask registers,
8163  // extend vector to VR512
8164  if (!isa<ConstantSDNode>(Idx)) {
8165    MVT ExtVT = (VecVT == MVT::v8i1 ?  MVT::v8i64 : MVT::v16i32);
8166    SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec);
8167    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
8168                              ExtVT.getVectorElementType(), Ext, Idx);
8169    return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
8170  }
8171
8172  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
8173  const TargetRegisterClass* rc = getRegClassFor(VecVT);
8174  unsigned MaxSift = rc->getSize()*8 - 1;
8175  Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec,
8176                    DAG.getConstant(MaxSift - IdxVal, MVT::i8));
8177  Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec,
8178                    DAG.getConstant(MaxSift, MVT::i8));
8179  return DAG.getNode(X86ISD::VEXTRACT, dl, MVT::i1, Vec,
8180                       DAG.getIntPtrConstant(0));
8181}
8182
8183SDValue
8184X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
8185                                           SelectionDAG &DAG) const {
8186  SDLoc dl(Op);
8187  SDValue Vec = Op.getOperand(0);
8188  MVT VecVT = Vec.getSimpleValueType();
8189  SDValue Idx = Op.getOperand(1);
8190
8191  if (Op.getSimpleValueType() == MVT::i1)
8192    return ExtractBitFromMaskVector(Op, DAG);
8193
8194  if (!isa<ConstantSDNode>(Idx)) {
8195    if (VecVT.is512BitVector() ||
8196        (VecVT.is256BitVector() && Subtarget->hasInt256() &&
8197         VecVT.getVectorElementType().getSizeInBits() == 32)) {
8198
8199      MVT MaskEltVT =
8200        MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits());
8201      MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() /
8202                                    MaskEltVT.getSizeInBits());
8203
8204      Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT);
8205      SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT,
8206                                getZeroVector(MaskVT, Subtarget, DAG, dl),
8207                                Idx, DAG.getConstant(0, getPointerTy()));
8208      SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec);
8209      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(),
8210                        Perm, DAG.getConstant(0, getPointerTy()));
8211    }
8212    return SDValue();
8213  }
8214
8215  // If this is a 256-bit vector result, first extract the 128-bit vector and
8216  // then extract the element from the 128-bit vector.
8217  if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
8218
8219    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
8220    // Get the 128-bit vector.
8221    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
8222    MVT EltVT = VecVT.getVectorElementType();
8223
8224    unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
8225
8226    //if (IdxVal >= NumElems/2)
8227    //  IdxVal -= NumElems/2;
8228    IdxVal -= (IdxVal/ElemsPerChunk)*ElemsPerChunk;
8229    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
8230                       DAG.getConstant(IdxVal, MVT::i32));
8231  }
8232
8233  assert(VecVT.is128BitVector() && "Unexpected vector length");
8234
8235  if (Subtarget->hasSSE41()) {
8236    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
8237    if (Res.getNode())
8238      return Res;
8239  }
8240
8241  MVT VT = Op.getSimpleValueType();
8242  // TODO: handle v16i8.
8243  if (VT.getSizeInBits() == 16) {
8244    SDValue Vec = Op.getOperand(0);
8245    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8246    if (Idx == 0)
8247      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
8248                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
8249                                     DAG.getNode(ISD::BITCAST, dl,
8250                                                 MVT::v4i32, Vec),
8251                                     Op.getOperand(1)));
8252    // Transform it so it match pextrw which produces a 32-bit result.
8253    MVT EltVT = MVT::i32;
8254    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
8255                                  Op.getOperand(0), Op.getOperand(1));
8256    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
8257                                  DAG.getValueType(VT));
8258    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
8259  }
8260
8261  if (VT.getSizeInBits() == 32) {
8262    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8263    if (Idx == 0)
8264      return Op;
8265
8266    // SHUFPS the element to the lowest double word, then movss.
8267    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
8268    MVT VVT = Op.getOperand(0).getSimpleValueType();
8269    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
8270                                       DAG.getUNDEF(VVT), Mask);
8271    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
8272                       DAG.getIntPtrConstant(0));
8273  }
8274
8275  if (VT.getSizeInBits() == 64) {
8276    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
8277    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
8278    //        to match extract_elt for f64.
8279    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8280    if (Idx == 0)
8281      return Op;
8282
8283    // UNPCKHPD the element to the lowest double word, then movsd.
8284    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
8285    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
8286    int Mask[2] = { 1, -1 };
8287    MVT VVT = Op.getOperand(0).getSimpleValueType();
8288    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
8289                                       DAG.getUNDEF(VVT), Mask);
8290    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
8291                       DAG.getIntPtrConstant(0));
8292  }
8293
8294  return SDValue();
8295}
8296
8297static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
8298  MVT VT = Op.getSimpleValueType();
8299  MVT EltVT = VT.getVectorElementType();
8300  SDLoc dl(Op);
8301
8302  SDValue N0 = Op.getOperand(0);
8303  SDValue N1 = Op.getOperand(1);
8304  SDValue N2 = Op.getOperand(2);
8305
8306  if (!VT.is128BitVector())
8307    return SDValue();
8308
8309  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
8310      isa<ConstantSDNode>(N2)) {
8311    unsigned Opc;
8312    if (VT == MVT::v8i16)
8313      Opc = X86ISD::PINSRW;
8314    else if (VT == MVT::v16i8)
8315      Opc = X86ISD::PINSRB;
8316    else
8317      Opc = X86ISD::PINSRB;
8318
8319    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
8320    // argument.
8321    if (N1.getValueType() != MVT::i32)
8322      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
8323    if (N2.getValueType() != MVT::i32)
8324      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
8325    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
8326  }
8327
8328  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
8329    // Bits [7:6] of the constant are the source select.  This will always be
8330    //  zero here.  The DAG Combiner may combine an extract_elt index into these
8331    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
8332    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
8333    // Bits [5:4] of the constant are the destination select.  This is the
8334    //  value of the incoming immediate.
8335    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
8336    //   combine either bitwise AND or insert of float 0.0 to set these bits.
8337    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
8338    // Create this as a scalar to vector..
8339    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
8340    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
8341  }
8342
8343  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
8344    // PINSR* works with constant index.
8345    return Op;
8346  }
8347  return SDValue();
8348}
8349
8350/// Insert one bit to mask vector, like v16i1 or v8i1.
8351/// AVX-512 feature.
8352SDValue
8353X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const {
8354  SDLoc dl(Op);
8355  SDValue Vec = Op.getOperand(0);
8356  SDValue Elt = Op.getOperand(1);
8357  SDValue Idx = Op.getOperand(2);
8358  MVT VecVT = Vec.getSimpleValueType();
8359
8360  if (!isa<ConstantSDNode>(Idx)) {
8361    // Non constant index. Extend source and destination,
8362    // insert element and then truncate the result.
8363    MVT ExtVecVT = (VecVT == MVT::v8i1 ?  MVT::v8i64 : MVT::v16i32);
8364    MVT ExtEltVT = (VecVT == MVT::v8i1 ?  MVT::i64 : MVT::i32);
8365    SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT,
8366      DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVecVT, Vec),
8367      DAG.getNode(ISD::ZERO_EXTEND, dl, ExtEltVT, Elt), Idx);
8368    return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp);
8369  }
8370
8371  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
8372  SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Elt);
8373  if (Vec.getOpcode() == ISD::UNDEF)
8374    return DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
8375                       DAG.getConstant(IdxVal, MVT::i8));
8376  const TargetRegisterClass* rc = getRegClassFor(VecVT);
8377  unsigned MaxSift = rc->getSize()*8 - 1;
8378  EltInVec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
8379                    DAG.getConstant(MaxSift, MVT::i8));
8380  EltInVec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, EltInVec,
8381                    DAG.getConstant(MaxSift - IdxVal, MVT::i8));
8382  return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec);
8383}
8384SDValue
8385X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
8386  MVT VT = Op.getSimpleValueType();
8387  MVT EltVT = VT.getVectorElementType();
8388
8389  if (EltVT == MVT::i1)
8390    return InsertBitToMaskVector(Op, DAG);
8391
8392  SDLoc dl(Op);
8393  SDValue N0 = Op.getOperand(0);
8394  SDValue N1 = Op.getOperand(1);
8395  SDValue N2 = Op.getOperand(2);
8396
8397  // If this is a 256-bit vector result, first extract the 128-bit vector,
8398  // insert the element into the extracted half and then place it back.
8399  if (VT.is256BitVector() || VT.is512BitVector()) {
8400    if (!isa<ConstantSDNode>(N2))
8401      return SDValue();
8402
8403    // Get the desired 128-bit vector half.
8404    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
8405    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
8406
8407    // Insert the element into the desired half.
8408    unsigned NumEltsIn128 = 128/EltVT.getSizeInBits();
8409    unsigned IdxIn128 = IdxVal - (IdxVal/NumEltsIn128) * NumEltsIn128;
8410
8411    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
8412                    DAG.getConstant(IdxIn128, MVT::i32));
8413
8414    // Insert the changed part back to the 256-bit vector
8415    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
8416  }
8417
8418  if (Subtarget->hasSSE41())
8419    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
8420
8421  if (EltVT == MVT::i8)
8422    return SDValue();
8423
8424  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
8425    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
8426    // as its second argument.
8427    if (N1.getValueType() != MVT::i32)
8428      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
8429    if (N2.getValueType() != MVT::i32)
8430      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
8431    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
8432  }
8433  return SDValue();
8434}
8435
8436static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
8437  SDLoc dl(Op);
8438  MVT OpVT = Op.getSimpleValueType();
8439
8440  // If this is a 256-bit vector result, first insert into a 128-bit
8441  // vector and then insert into the 256-bit vector.
8442  if (!OpVT.is128BitVector()) {
8443    // Insert into a 128-bit vector.
8444    unsigned SizeFactor = OpVT.getSizeInBits()/128;
8445    MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
8446                                 OpVT.getVectorNumElements() / SizeFactor);
8447
8448    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
8449
8450    // Insert the 128-bit vector.
8451    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
8452  }
8453
8454  if (OpVT == MVT::v1i64 &&
8455      Op.getOperand(0).getValueType() == MVT::i64)
8456    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
8457
8458  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
8459  assert(OpVT.is128BitVector() && "Expected an SSE type!");
8460  return DAG.getNode(ISD::BITCAST, dl, OpVT,
8461                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
8462}
8463
8464// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
8465// a simple subregister reference or explicit instructions to grab
8466// upper bits of a vector.
8467static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
8468                                      SelectionDAG &DAG) {
8469  SDLoc dl(Op);
8470  SDValue In =  Op.getOperand(0);
8471  SDValue Idx = Op.getOperand(1);
8472  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
8473  MVT ResVT   = Op.getSimpleValueType();
8474  MVT InVT    = In.getSimpleValueType();
8475
8476  if (Subtarget->hasFp256()) {
8477    if (ResVT.is128BitVector() &&
8478        (InVT.is256BitVector() || InVT.is512BitVector()) &&
8479        isa<ConstantSDNode>(Idx)) {
8480      return Extract128BitVector(In, IdxVal, DAG, dl);
8481    }
8482    if (ResVT.is256BitVector() && InVT.is512BitVector() &&
8483        isa<ConstantSDNode>(Idx)) {
8484      return Extract256BitVector(In, IdxVal, DAG, dl);
8485    }
8486  }
8487  return SDValue();
8488}
8489
8490// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
8491// simple superregister reference or explicit instructions to insert
8492// the upper bits of a vector.
8493static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
8494                                     SelectionDAG &DAG) {
8495  if (Subtarget->hasFp256()) {
8496    SDLoc dl(Op.getNode());
8497    SDValue Vec = Op.getNode()->getOperand(0);
8498    SDValue SubVec = Op.getNode()->getOperand(1);
8499    SDValue Idx = Op.getNode()->getOperand(2);
8500
8501    if ((Op.getNode()->getSimpleValueType(0).is256BitVector() ||
8502         Op.getNode()->getSimpleValueType(0).is512BitVector()) &&
8503        SubVec.getNode()->getSimpleValueType(0).is128BitVector() &&
8504        isa<ConstantSDNode>(Idx)) {
8505      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
8506      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
8507    }
8508
8509    if (Op.getNode()->getSimpleValueType(0).is512BitVector() &&
8510        SubVec.getNode()->getSimpleValueType(0).is256BitVector() &&
8511        isa<ConstantSDNode>(Idx)) {
8512      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
8513      return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
8514    }
8515  }
8516  return SDValue();
8517}
8518
8519// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
8520// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
8521// one of the above mentioned nodes. It has to be wrapped because otherwise
8522// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
8523// be used to form addressing mode. These wrapped nodes will be selected
8524// into MOV32ri.
8525SDValue
8526X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
8527  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
8528
8529  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
8530  // global base reg.
8531  unsigned char OpFlag = 0;
8532  unsigned WrapperKind = X86ISD::Wrapper;
8533  CodeModel::Model M = getTargetMachine().getCodeModel();
8534
8535  if (Subtarget->isPICStyleRIPRel() &&
8536      (M == CodeModel::Small || M == CodeModel::Kernel))
8537    WrapperKind = X86ISD::WrapperRIP;
8538  else if (Subtarget->isPICStyleGOT())
8539    OpFlag = X86II::MO_GOTOFF;
8540  else if (Subtarget->isPICStyleStubPIC())
8541    OpFlag = X86II::MO_PIC_BASE_OFFSET;
8542
8543  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
8544                                             CP->getAlignment(),
8545                                             CP->getOffset(), OpFlag);
8546  SDLoc DL(CP);
8547  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
8548  // With PIC, the address is actually $g + Offset.
8549  if (OpFlag) {
8550    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8551                         DAG.getNode(X86ISD::GlobalBaseReg,
8552                                     SDLoc(), getPointerTy()),
8553                         Result);
8554  }
8555
8556  return Result;
8557}
8558
8559SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
8560  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
8561
8562  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
8563  // global base reg.
8564  unsigned char OpFlag = 0;
8565  unsigned WrapperKind = X86ISD::Wrapper;
8566  CodeModel::Model M = getTargetMachine().getCodeModel();
8567
8568  if (Subtarget->isPICStyleRIPRel() &&
8569      (M == CodeModel::Small || M == CodeModel::Kernel))
8570    WrapperKind = X86ISD::WrapperRIP;
8571  else if (Subtarget->isPICStyleGOT())
8572    OpFlag = X86II::MO_GOTOFF;
8573  else if (Subtarget->isPICStyleStubPIC())
8574    OpFlag = X86II::MO_PIC_BASE_OFFSET;
8575
8576  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
8577                                          OpFlag);
8578  SDLoc DL(JT);
8579  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
8580
8581  // With PIC, the address is actually $g + Offset.
8582  if (OpFlag)
8583    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8584                         DAG.getNode(X86ISD::GlobalBaseReg,
8585                                     SDLoc(), getPointerTy()),
8586                         Result);
8587
8588  return Result;
8589}
8590
8591SDValue
8592X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
8593  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8594
8595  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
8596  // global base reg.
8597  unsigned char OpFlag = 0;
8598  unsigned WrapperKind = X86ISD::Wrapper;
8599  CodeModel::Model M = getTargetMachine().getCodeModel();
8600
8601  if (Subtarget->isPICStyleRIPRel() &&
8602      (M == CodeModel::Small || M == CodeModel::Kernel)) {
8603    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
8604      OpFlag = X86II::MO_GOTPCREL;
8605    WrapperKind = X86ISD::WrapperRIP;
8606  } else if (Subtarget->isPICStyleGOT()) {
8607    OpFlag = X86II::MO_GOT;
8608  } else if (Subtarget->isPICStyleStubPIC()) {
8609    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
8610  } else if (Subtarget->isPICStyleStubNoDynamic()) {
8611    OpFlag = X86II::MO_DARWIN_NONLAZY;
8612  }
8613
8614  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
8615
8616  SDLoc DL(Op);
8617  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
8618
8619  // With PIC, the address is actually $g + Offset.
8620  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
8621      !Subtarget->is64Bit()) {
8622    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8623                         DAG.getNode(X86ISD::GlobalBaseReg,
8624                                     SDLoc(), getPointerTy()),
8625                         Result);
8626  }
8627
8628  // For symbols that require a load from a stub to get the address, emit the
8629  // load.
8630  if (isGlobalStubReference(OpFlag))
8631    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
8632                         MachinePointerInfo::getGOT(), false, false, false, 0);
8633
8634  return Result;
8635}
8636
8637SDValue
8638X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
8639  // Create the TargetBlockAddressAddress node.
8640  unsigned char OpFlags =
8641    Subtarget->ClassifyBlockAddressReference();
8642  CodeModel::Model M = getTargetMachine().getCodeModel();
8643  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
8644  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
8645  SDLoc dl(Op);
8646  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
8647                                             OpFlags);
8648
8649  if (Subtarget->isPICStyleRIPRel() &&
8650      (M == CodeModel::Small || M == CodeModel::Kernel))
8651    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
8652  else
8653    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
8654
8655  // With PIC, the address is actually $g + Offset.
8656  if (isGlobalRelativeToPICBase(OpFlags)) {
8657    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
8658                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
8659                         Result);
8660  }
8661
8662  return Result;
8663}
8664
8665SDValue
8666X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
8667                                      int64_t Offset, SelectionDAG &DAG) const {
8668  // Create the TargetGlobalAddress node, folding in the constant
8669  // offset if it is legal.
8670  unsigned char OpFlags =
8671    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
8672  CodeModel::Model M = getTargetMachine().getCodeModel();
8673  SDValue Result;
8674  if (OpFlags == X86II::MO_NO_FLAG &&
8675      X86::isOffsetSuitableForCodeModel(Offset, M)) {
8676    // A direct static reference to a global.
8677    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
8678    Offset = 0;
8679  } else {
8680    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
8681  }
8682
8683  if (Subtarget->isPICStyleRIPRel() &&
8684      (M == CodeModel::Small || M == CodeModel::Kernel))
8685    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
8686  else
8687    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
8688
8689  // With PIC, the address is actually $g + Offset.
8690  if (isGlobalRelativeToPICBase(OpFlags)) {
8691    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
8692                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
8693                         Result);
8694  }
8695
8696  // For globals that require a load from a stub to get the address, emit the
8697  // load.
8698  if (isGlobalStubReference(OpFlags))
8699    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
8700                         MachinePointerInfo::getGOT(), false, false, false, 0);
8701
8702  // If there was a non-zero offset that we didn't fold, create an explicit
8703  // addition for it.
8704  if (Offset != 0)
8705    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
8706                         DAG.getConstant(Offset, getPointerTy()));
8707
8708  return Result;
8709}
8710
8711SDValue
8712X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
8713  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
8714  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
8715  return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
8716}
8717
8718static SDValue
8719GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
8720           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
8721           unsigned char OperandFlags, bool LocalDynamic = false) {
8722  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8723  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8724  SDLoc dl(GA);
8725  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8726                                           GA->getValueType(0),
8727                                           GA->getOffset(),
8728                                           OperandFlags);
8729
8730  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
8731                                           : X86ISD::TLSADDR;
8732
8733  if (InFlag) {
8734    SDValue Ops[] = { Chain,  TGA, *InFlag };
8735    Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
8736  } else {
8737    SDValue Ops[]  = { Chain, TGA };
8738    Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
8739  }
8740
8741  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8742  MFI->setAdjustsStack(true);
8743
8744  SDValue Flag = Chain.getValue(1);
8745  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
8746}
8747
8748// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
8749static SDValue
8750LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
8751                                const EVT PtrVT) {
8752  SDValue InFlag;
8753  SDLoc dl(GA);  // ? function entry point might be better
8754  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
8755                                   DAG.getNode(X86ISD::GlobalBaseReg,
8756                                               SDLoc(), PtrVT), InFlag);
8757  InFlag = Chain.getValue(1);
8758
8759  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
8760}
8761
8762// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
8763static SDValue
8764LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
8765                                const EVT PtrVT) {
8766  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT,
8767                    X86::RAX, X86II::MO_TLSGD);
8768}
8769
8770static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
8771                                           SelectionDAG &DAG,
8772                                           const EVT PtrVT,
8773                                           bool is64Bit) {
8774  SDLoc dl(GA);
8775
8776  // Get the start address of the TLS block for this module.
8777  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
8778      .getInfo<X86MachineFunctionInfo>();
8779  MFI->incNumLocalDynamicTLSAccesses();
8780
8781  SDValue Base;
8782  if (is64Bit) {
8783    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX,
8784                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
8785  } else {
8786    SDValue InFlag;
8787    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
8788        DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
8789    InFlag = Chain.getValue(1);
8790    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
8791                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
8792  }
8793
8794  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
8795  // of Base.
8796
8797  // Build x@dtpoff.
8798  unsigned char OperandFlags = X86II::MO_DTPOFF;
8799  unsigned WrapperKind = X86ISD::Wrapper;
8800  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8801                                           GA->getValueType(0),
8802                                           GA->getOffset(), OperandFlags);
8803  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
8804
8805  // Add x@dtpoff with the base.
8806  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
8807}
8808
8809// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
8810static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
8811                                   const EVT PtrVT, TLSModel::Model model,
8812                                   bool is64Bit, bool isPIC) {
8813  SDLoc dl(GA);
8814
8815  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
8816  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
8817                                                         is64Bit ? 257 : 256));
8818
8819  SDValue ThreadPointer =
8820      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0),
8821                  MachinePointerInfo(Ptr), false, false, false, 0);
8822
8823  unsigned char OperandFlags = 0;
8824  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
8825  // initialexec.
8826  unsigned WrapperKind = X86ISD::Wrapper;
8827  if (model == TLSModel::LocalExec) {
8828    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
8829  } else if (model == TLSModel::InitialExec) {
8830    if (is64Bit) {
8831      OperandFlags = X86II::MO_GOTTPOFF;
8832      WrapperKind = X86ISD::WrapperRIP;
8833    } else {
8834      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
8835    }
8836  } else {
8837    llvm_unreachable("Unexpected model");
8838  }
8839
8840  // emit "addl x@ntpoff,%eax" (local exec)
8841  // or "addl x@indntpoff,%eax" (initial exec)
8842  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
8843  SDValue TGA =
8844      DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
8845                                 GA->getOffset(), OperandFlags);
8846  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
8847
8848  if (model == TLSModel::InitialExec) {
8849    if (isPIC && !is64Bit) {
8850      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
8851                           DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
8852                           Offset);
8853    }
8854
8855    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
8856                         MachinePointerInfo::getGOT(), false, false, false, 0);
8857  }
8858
8859  // The address of the thread local variable is the add of the thread
8860  // pointer with the offset of the variable.
8861  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
8862}
8863
8864SDValue
8865X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
8866
8867  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
8868  const GlobalValue *GV = GA->getGlobal();
8869
8870  if (Subtarget->isTargetELF()) {
8871    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
8872
8873    switch (model) {
8874      case TLSModel::GeneralDynamic:
8875        if (Subtarget->is64Bit())
8876          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
8877        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
8878      case TLSModel::LocalDynamic:
8879        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
8880                                           Subtarget->is64Bit());
8881      case TLSModel::InitialExec:
8882      case TLSModel::LocalExec:
8883        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
8884                                   Subtarget->is64Bit(),
8885                        getTargetMachine().getRelocationModel() == Reloc::PIC_);
8886    }
8887    llvm_unreachable("Unknown TLS model.");
8888  }
8889
8890  if (Subtarget->isTargetDarwin()) {
8891    // Darwin only has one model of TLS.  Lower to that.
8892    unsigned char OpFlag = 0;
8893    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
8894                           X86ISD::WrapperRIP : X86ISD::Wrapper;
8895
8896    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
8897    // global base reg.
8898    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
8899                  !Subtarget->is64Bit();
8900    if (PIC32)
8901      OpFlag = X86II::MO_TLVP_PIC_BASE;
8902    else
8903      OpFlag = X86II::MO_TLVP;
8904    SDLoc DL(Op);
8905    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
8906                                                GA->getValueType(0),
8907                                                GA->getOffset(), OpFlag);
8908    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
8909
8910    // With PIC32, the address is actually $g + Offset.
8911    if (PIC32)
8912      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8913                           DAG.getNode(X86ISD::GlobalBaseReg,
8914                                       SDLoc(), getPointerTy()),
8915                           Offset);
8916
8917    // Lowering the machine isd will make sure everything is in the right
8918    // location.
8919    SDValue Chain = DAG.getEntryNode();
8920    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8921    SDValue Args[] = { Chain, Offset };
8922    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args);
8923
8924    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
8925    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8926    MFI->setAdjustsStack(true);
8927
8928    // And our return value (tls address) is in the standard call return value
8929    // location.
8930    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
8931    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
8932                              Chain.getValue(1));
8933  }
8934
8935  if (Subtarget->isTargetKnownWindowsMSVC() ||
8936      Subtarget->isTargetWindowsGNU()) {
8937    // Just use the implicit TLS architecture
8938    // Need to generate someting similar to:
8939    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
8940    //                                  ; from TEB
8941    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
8942    //   mov     rcx, qword [rdx+rcx*8]
8943    //   mov     eax, .tls$:tlsvar
8944    //   [rax+rcx] contains the address
8945    // Windows 64bit: gs:0x58
8946    // Windows 32bit: fs:__tls_array
8947
8948    SDLoc dl(GA);
8949    SDValue Chain = DAG.getEntryNode();
8950
8951    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
8952    // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
8953    // use its literal value of 0x2C.
8954    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
8955                                        ? Type::getInt8PtrTy(*DAG.getContext(),
8956                                                             256)
8957                                        : Type::getInt32PtrTy(*DAG.getContext(),
8958                                                              257));
8959
8960    SDValue TlsArray =
8961        Subtarget->is64Bit()
8962            ? DAG.getIntPtrConstant(0x58)
8963            : (Subtarget->isTargetWindowsGNU()
8964                   ? DAG.getIntPtrConstant(0x2C)
8965                   : DAG.getExternalSymbol("_tls_array", getPointerTy()));
8966
8967    SDValue ThreadPointer =
8968        DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
8969                    MachinePointerInfo(Ptr), false, false, false, 0);
8970
8971    // Load the _tls_index variable
8972    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
8973    if (Subtarget->is64Bit())
8974      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
8975                           IDX, MachinePointerInfo(), MVT::i32,
8976                           false, false, 0);
8977    else
8978      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
8979                        false, false, false, 0);
8980
8981    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
8982                                    getPointerTy());
8983    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
8984
8985    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
8986    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
8987                      false, false, false, 0);
8988
8989    // Get the offset of start of .tls section
8990    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8991                                             GA->getValueType(0),
8992                                             GA->getOffset(), X86II::MO_SECREL);
8993    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
8994
8995    // The address of the thread local variable is the add of the thread
8996    // pointer with the offset of the variable.
8997    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
8998  }
8999
9000  llvm_unreachable("TLS not implemented for this target.");
9001}
9002
9003/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
9004/// and take a 2 x i32 value to shift plus a shift amount.
9005static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
9006  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
9007  MVT VT = Op.getSimpleValueType();
9008  unsigned VTBits = VT.getSizeInBits();
9009  SDLoc dl(Op);
9010  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
9011  SDValue ShOpLo = Op.getOperand(0);
9012  SDValue ShOpHi = Op.getOperand(1);
9013  SDValue ShAmt  = Op.getOperand(2);
9014  // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the
9015  // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away
9016  // during isel.
9017  SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
9018                                  DAG.getConstant(VTBits - 1, MVT::i8));
9019  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
9020                                     DAG.getConstant(VTBits - 1, MVT::i8))
9021                       : DAG.getConstant(0, VT);
9022
9023  SDValue Tmp2, Tmp3;
9024  if (Op.getOpcode() == ISD::SHL_PARTS) {
9025    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
9026    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
9027  } else {
9028    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
9029    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
9030  }
9031
9032  // If the shift amount is larger or equal than the width of a part we can't
9033  // rely on the results of shld/shrd. Insert a test and select the appropriate
9034  // values for large shift amounts.
9035  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
9036                                DAG.getConstant(VTBits, MVT::i8));
9037  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9038                             AndNode, DAG.getConstant(0, MVT::i8));
9039
9040  SDValue Hi, Lo;
9041  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9042  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
9043  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
9044
9045  if (Op.getOpcode() == ISD::SHL_PARTS) {
9046    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
9047    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
9048  } else {
9049    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
9050    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
9051  }
9052
9053  SDValue Ops[2] = { Lo, Hi };
9054  return DAG.getMergeValues(Ops, dl);
9055}
9056
9057SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
9058                                           SelectionDAG &DAG) const {
9059  MVT SrcVT = Op.getOperand(0).getSimpleValueType();
9060
9061  if (SrcVT.isVector())
9062    return SDValue();
9063
9064  assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
9065         "Unknown SINT_TO_FP to lower!");
9066
9067  // These are really Legal; return the operand so the caller accepts it as
9068  // Legal.
9069  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
9070    return Op;
9071  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
9072      Subtarget->is64Bit()) {
9073    return Op;
9074  }
9075
9076  SDLoc dl(Op);
9077  unsigned Size = SrcVT.getSizeInBits()/8;
9078  MachineFunction &MF = DAG.getMachineFunction();
9079  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
9080  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9081  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
9082                               StackSlot,
9083                               MachinePointerInfo::getFixedStack(SSFI),
9084                               false, false, 0);
9085  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
9086}
9087
9088SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
9089                                     SDValue StackSlot,
9090                                     SelectionDAG &DAG) const {
9091  // Build the FILD
9092  SDLoc DL(Op);
9093  SDVTList Tys;
9094  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
9095  if (useSSE)
9096    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
9097  else
9098    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
9099
9100  unsigned ByteSize = SrcVT.getSizeInBits()/8;
9101
9102  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
9103  MachineMemOperand *MMO;
9104  if (FI) {
9105    int SSFI = FI->getIndex();
9106    MMO =
9107      DAG.getMachineFunction()
9108      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9109                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
9110  } else {
9111    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
9112    StackSlot = StackSlot.getOperand(1);
9113  }
9114  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
9115  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
9116                                           X86ISD::FILD, DL,
9117                                           Tys, Ops, SrcVT, MMO);
9118
9119  if (useSSE) {
9120    Chain = Result.getValue(1);
9121    SDValue InFlag = Result.getValue(2);
9122
9123    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
9124    // shouldn't be necessary except that RFP cannot be live across
9125    // multiple blocks. When stackifier is fixed, they can be uncoupled.
9126    MachineFunction &MF = DAG.getMachineFunction();
9127    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
9128    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
9129    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9130    Tys = DAG.getVTList(MVT::Other);
9131    SDValue Ops[] = {
9132      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
9133    };
9134    MachineMemOperand *MMO =
9135      DAG.getMachineFunction()
9136      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9137                            MachineMemOperand::MOStore, SSFISize, SSFISize);
9138
9139    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
9140                                    Ops, Op.getValueType(), MMO);
9141    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
9142                         MachinePointerInfo::getFixedStack(SSFI),
9143                         false, false, false, 0);
9144  }
9145
9146  return Result;
9147}
9148
9149// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
9150SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
9151                                               SelectionDAG &DAG) const {
9152  // This algorithm is not obvious. Here it is what we're trying to output:
9153  /*
9154     movq       %rax,  %xmm0
9155     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
9156     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
9157     #ifdef __SSE3__
9158       haddpd   %xmm0, %xmm0
9159     #else
9160       pshufd   $0x4e, %xmm0, %xmm1
9161       addpd    %xmm1, %xmm0
9162     #endif
9163  */
9164
9165  SDLoc dl(Op);
9166  LLVMContext *Context = DAG.getContext();
9167
9168  // Build some magic constants.
9169  static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
9170  Constant *C0 = ConstantDataVector::get(*Context, CV0);
9171  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
9172
9173  SmallVector<Constant*,2> CV1;
9174  CV1.push_back(
9175    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
9176                                      APInt(64, 0x4330000000000000ULL))));
9177  CV1.push_back(
9178    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
9179                                      APInt(64, 0x4530000000000000ULL))));
9180  Constant *C1 = ConstantVector::get(CV1);
9181  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
9182
9183  // Load the 64-bit value into an XMM register.
9184  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
9185                            Op.getOperand(0));
9186  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
9187                              MachinePointerInfo::getConstantPool(),
9188                              false, false, false, 16);
9189  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
9190                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
9191                              CLod0);
9192
9193  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
9194                              MachinePointerInfo::getConstantPool(),
9195                              false, false, false, 16);
9196  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
9197  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
9198  SDValue Result;
9199
9200  if (Subtarget->hasSSE3()) {
9201    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
9202    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
9203  } else {
9204    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
9205    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
9206                                           S2F, 0x4E, DAG);
9207    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
9208                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
9209                         Sub);
9210  }
9211
9212  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
9213                     DAG.getIntPtrConstant(0));
9214}
9215
9216// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
9217SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
9218                                               SelectionDAG &DAG) const {
9219  SDLoc dl(Op);
9220  // FP constant to bias correct the final result.
9221  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
9222                                   MVT::f64);
9223
9224  // Load the 32-bit value into an XMM register.
9225  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
9226                             Op.getOperand(0));
9227
9228  // Zero out the upper parts of the register.
9229  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
9230
9231  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
9232                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
9233                     DAG.getIntPtrConstant(0));
9234
9235  // Or the load with the bias.
9236  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
9237                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
9238                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
9239                                                   MVT::v2f64, Load)),
9240                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
9241                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
9242                                                   MVT::v2f64, Bias)));
9243  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
9244                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
9245                   DAG.getIntPtrConstant(0));
9246
9247  // Subtract the bias.
9248  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
9249
9250  // Handle final rounding.
9251  EVT DestVT = Op.getValueType();
9252
9253  if (DestVT.bitsLT(MVT::f64))
9254    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
9255                       DAG.getIntPtrConstant(0));
9256  if (DestVT.bitsGT(MVT::f64))
9257    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
9258
9259  // Handle final rounding.
9260  return Sub;
9261}
9262
9263SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
9264                                               SelectionDAG &DAG) const {
9265  SDValue N0 = Op.getOperand(0);
9266  MVT SVT = N0.getSimpleValueType();
9267  SDLoc dl(Op);
9268
9269  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
9270          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
9271         "Custom UINT_TO_FP is not supported!");
9272
9273  MVT NVT = MVT::getVectorVT(MVT::i32, SVT.getVectorNumElements());
9274  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
9275                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
9276}
9277
9278SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
9279                                           SelectionDAG &DAG) const {
9280  SDValue N0 = Op.getOperand(0);
9281  SDLoc dl(Op);
9282
9283  if (Op.getValueType().isVector())
9284    return lowerUINT_TO_FP_vec(Op, DAG);
9285
9286  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
9287  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
9288  // the optimization here.
9289  if (DAG.SignBitIsZero(N0))
9290    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
9291
9292  MVT SrcVT = N0.getSimpleValueType();
9293  MVT DstVT = Op.getSimpleValueType();
9294  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
9295    return LowerUINT_TO_FP_i64(Op, DAG);
9296  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
9297    return LowerUINT_TO_FP_i32(Op, DAG);
9298  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
9299    return SDValue();
9300
9301  // Make a 64-bit buffer, and use it to build an FILD.
9302  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
9303  if (SrcVT == MVT::i32) {
9304    SDValue WordOff = DAG.getConstant(4, getPointerTy());
9305    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
9306                                     getPointerTy(), StackSlot, WordOff);
9307    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
9308                                  StackSlot, MachinePointerInfo(),
9309                                  false, false, 0);
9310    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
9311                                  OffsetSlot, MachinePointerInfo(),
9312                                  false, false, 0);
9313    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
9314    return Fild;
9315  }
9316
9317  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
9318  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
9319                               StackSlot, MachinePointerInfo(),
9320                               false, false, 0);
9321  // For i64 source, we need to add the appropriate power of 2 if the input
9322  // was negative.  This is the same as the optimization in
9323  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
9324  // we must be careful to do the computation in x87 extended precision, not
9325  // in SSE. (The generic code can't know it's OK to do this, or how to.)
9326  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
9327  MachineMemOperand *MMO =
9328    DAG.getMachineFunction()
9329    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9330                          MachineMemOperand::MOLoad, 8, 8);
9331
9332  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
9333  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
9334  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
9335                                         MVT::i64, MMO);
9336
9337  APInt FF(32, 0x5F800000ULL);
9338
9339  // Check whether the sign bit is set.
9340  SDValue SignSet = DAG.getSetCC(dl,
9341                                 getSetCCResultType(*DAG.getContext(), MVT::i64),
9342                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
9343                                 ISD::SETLT);
9344
9345  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
9346  SDValue FudgePtr = DAG.getConstantPool(
9347                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
9348                                         getPointerTy());
9349
9350  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
9351  SDValue Zero = DAG.getIntPtrConstant(0);
9352  SDValue Four = DAG.getIntPtrConstant(4);
9353  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
9354                               Zero, Four);
9355  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
9356
9357  // Load the value out, extending it from f32 to f80.
9358  // FIXME: Avoid the extend by constructing the right constant pool?
9359  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
9360                                 FudgePtr, MachinePointerInfo::getConstantPool(),
9361                                 MVT::f32, false, false, 4);
9362  // Extend everything to 80 bits to force it to be done on x87.
9363  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
9364  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
9365}
9366
9367std::pair<SDValue,SDValue>
9368X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
9369                                    bool IsSigned, bool IsReplace) const {
9370  SDLoc DL(Op);
9371
9372  EVT DstTy = Op.getValueType();
9373
9374  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
9375    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
9376    DstTy = MVT::i64;
9377  }
9378
9379  assert(DstTy.getSimpleVT() <= MVT::i64 &&
9380         DstTy.getSimpleVT() >= MVT::i16 &&
9381         "Unknown FP_TO_INT to lower!");
9382
9383  // These are really Legal.
9384  if (DstTy == MVT::i32 &&
9385      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
9386    return std::make_pair(SDValue(), SDValue());
9387  if (Subtarget->is64Bit() &&
9388      DstTy == MVT::i64 &&
9389      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
9390    return std::make_pair(SDValue(), SDValue());
9391
9392  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
9393  // stack slot, or into the FTOL runtime function.
9394  MachineFunction &MF = DAG.getMachineFunction();
9395  unsigned MemSize = DstTy.getSizeInBits()/8;
9396  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
9397  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9398
9399  unsigned Opc;
9400  if (!IsSigned && isIntegerTypeFTOL(DstTy))
9401    Opc = X86ISD::WIN_FTOL;
9402  else
9403    switch (DstTy.getSimpleVT().SimpleTy) {
9404    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
9405    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
9406    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
9407    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
9408    }
9409
9410  SDValue Chain = DAG.getEntryNode();
9411  SDValue Value = Op.getOperand(0);
9412  EVT TheVT = Op.getOperand(0).getValueType();
9413  // FIXME This causes a redundant load/store if the SSE-class value is already
9414  // in memory, such as if it is on the callstack.
9415  if (isScalarFPTypeInSSEReg(TheVT)) {
9416    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
9417    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
9418                         MachinePointerInfo::getFixedStack(SSFI),
9419                         false, false, 0);
9420    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
9421    SDValue Ops[] = {
9422      Chain, StackSlot, DAG.getValueType(TheVT)
9423    };
9424
9425    MachineMemOperand *MMO =
9426      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9427                              MachineMemOperand::MOLoad, MemSize, MemSize);
9428    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO);
9429    Chain = Value.getValue(1);
9430    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
9431    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9432  }
9433
9434  MachineMemOperand *MMO =
9435    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9436                            MachineMemOperand::MOStore, MemSize, MemSize);
9437
9438  if (Opc != X86ISD::WIN_FTOL) {
9439    // Build the FP_TO_INT*_IN_MEM
9440    SDValue Ops[] = { Chain, Value, StackSlot };
9441    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
9442                                           Ops, DstTy, MMO);
9443    return std::make_pair(FIST, StackSlot);
9444  } else {
9445    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
9446      DAG.getVTList(MVT::Other, MVT::Glue),
9447      Chain, Value);
9448    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
9449      MVT::i32, ftol.getValue(1));
9450    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
9451      MVT::i32, eax.getValue(2));
9452    SDValue Ops[] = { eax, edx };
9453    SDValue pair = IsReplace
9454      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops)
9455      : DAG.getMergeValues(Ops, DL);
9456    return std::make_pair(pair, SDValue());
9457  }
9458}
9459
9460static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
9461                              const X86Subtarget *Subtarget) {
9462  MVT VT = Op->getSimpleValueType(0);
9463  SDValue In = Op->getOperand(0);
9464  MVT InVT = In.getSimpleValueType();
9465  SDLoc dl(Op);
9466
9467  // Optimize vectors in AVX mode:
9468  //
9469  //   v8i16 -> v8i32
9470  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
9471  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
9472  //   Concat upper and lower parts.
9473  //
9474  //   v4i32 -> v4i64
9475  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
9476  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
9477  //   Concat upper and lower parts.
9478  //
9479
9480  if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) &&
9481      ((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
9482      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
9483    return SDValue();
9484
9485  if (Subtarget->hasInt256())
9486    return DAG.getNode(X86ISD::VZEXT, dl, VT, In);
9487
9488  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
9489  SDValue Undef = DAG.getUNDEF(InVT);
9490  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
9491  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
9492  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
9493
9494  MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
9495                             VT.getVectorNumElements()/2);
9496
9497  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
9498  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
9499
9500  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
9501}
9502
9503static  SDValue LowerZERO_EXTEND_AVX512(SDValue Op,
9504                                        SelectionDAG &DAG) {
9505  MVT VT = Op->getSimpleValueType(0);
9506  SDValue In = Op->getOperand(0);
9507  MVT InVT = In.getSimpleValueType();
9508  SDLoc DL(Op);
9509  unsigned int NumElts = VT.getVectorNumElements();
9510  if (NumElts != 8 && NumElts != 16)
9511    return SDValue();
9512
9513  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
9514    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
9515
9516  EVT ExtVT = (NumElts == 8)? MVT::v8i64 : MVT::v16i32;
9517  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9518  // Now we have only mask extension
9519  assert(InVT.getVectorElementType() == MVT::i1);
9520  SDValue Cst = DAG.getTargetConstant(1, ExtVT.getScalarType());
9521  const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
9522  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
9523  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
9524  SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
9525                           MachinePointerInfo::getConstantPool(),
9526                           false, false, false, Alignment);
9527
9528  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, DL, ExtVT, In, Ld);
9529  if (VT.is512BitVector())
9530    return Brcst;
9531  return DAG.getNode(X86ISD::VTRUNC, DL, VT, Brcst);
9532}
9533
9534static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
9535                               SelectionDAG &DAG) {
9536  if (Subtarget->hasFp256()) {
9537    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
9538    if (Res.getNode())
9539      return Res;
9540  }
9541
9542  return SDValue();
9543}
9544
9545static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
9546                                SelectionDAG &DAG) {
9547  SDLoc DL(Op);
9548  MVT VT = Op.getSimpleValueType();
9549  SDValue In = Op.getOperand(0);
9550  MVT SVT = In.getSimpleValueType();
9551
9552  if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1)
9553    return LowerZERO_EXTEND_AVX512(Op, DAG);
9554
9555  if (Subtarget->hasFp256()) {
9556    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
9557    if (Res.getNode())
9558      return Res;
9559  }
9560
9561  assert(!VT.is256BitVector() || !SVT.is128BitVector() ||
9562         VT.getVectorNumElements() != SVT.getVectorNumElements());
9563  return SDValue();
9564}
9565
9566SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
9567  SDLoc DL(Op);
9568  MVT VT = Op.getSimpleValueType();
9569  SDValue In = Op.getOperand(0);
9570  MVT InVT = In.getSimpleValueType();
9571
9572  if (VT == MVT::i1) {
9573    assert((InVT.isInteger() && (InVT.getSizeInBits() <= 64)) &&
9574           "Invalid scalar TRUNCATE operation");
9575    if (InVT == MVT::i32)
9576      return SDValue();
9577    if (InVT.getSizeInBits() == 64)
9578      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::i32, In);
9579    else if (InVT.getSizeInBits() < 32)
9580      In = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, In);
9581    return DAG.getNode(ISD::TRUNCATE, DL, VT, In);
9582  }
9583  assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
9584         "Invalid TRUNCATE operation");
9585
9586  if (InVT.is512BitVector() || VT.getVectorElementType() == MVT::i1) {
9587    if (VT.getVectorElementType().getSizeInBits() >=8)
9588      return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
9589
9590    assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
9591    unsigned NumElts = InVT.getVectorNumElements();
9592    assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type");
9593    if (InVT.getSizeInBits() < 512) {
9594      MVT ExtVT = (NumElts == 16)? MVT::v16i32 : MVT::v8i64;
9595      In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
9596      InVT = ExtVT;
9597    }
9598
9599    SDValue Cst = DAG.getTargetConstant(1, InVT.getVectorElementType());
9600    const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
9601    SDValue CP = DAG.getConstantPool(C, getPointerTy());
9602    unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
9603    SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
9604                           MachinePointerInfo::getConstantPool(),
9605                           false, false, false, Alignment);
9606    SDValue OneV = DAG.getNode(X86ISD::VBROADCAST, DL, InVT, Ld);
9607    SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In);
9608    return DAG.getNode(X86ISD::TESTM, DL, VT, And, And);
9609  }
9610
9611  if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
9612    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
9613    if (Subtarget->hasInt256()) {
9614      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
9615      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
9616      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
9617                                ShufMask);
9618      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
9619                         DAG.getIntPtrConstant(0));
9620    }
9621
9622    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
9623                               DAG.getIntPtrConstant(0));
9624    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
9625                               DAG.getIntPtrConstant(2));
9626    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
9627    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
9628    static const int ShufMask[] = {0, 2, 4, 6};
9629    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask);
9630  }
9631
9632  if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
9633    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
9634    if (Subtarget->hasInt256()) {
9635      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
9636
9637      SmallVector<SDValue,32> pshufbMask;
9638      for (unsigned i = 0; i < 2; ++i) {
9639        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
9640        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
9641        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
9642        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
9643        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
9644        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
9645        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
9646        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
9647        for (unsigned j = 0; j < 8; ++j)
9648          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
9649      }
9650      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, pshufbMask);
9651      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
9652      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
9653
9654      static const int ShufMask[] = {0,  2,  -1,  -1};
9655      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
9656                                &ShufMask[0]);
9657      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
9658                       DAG.getIntPtrConstant(0));
9659      return DAG.getNode(ISD::BITCAST, DL, VT, In);
9660    }
9661
9662    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
9663                               DAG.getIntPtrConstant(0));
9664
9665    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
9666                               DAG.getIntPtrConstant(4));
9667
9668    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
9669    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
9670
9671    // The PSHUFB mask:
9672    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
9673                                   -1, -1, -1, -1, -1, -1, -1, -1};
9674
9675    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
9676    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
9677    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
9678
9679    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
9680    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
9681
9682    // The MOVLHPS Mask:
9683    static const int ShufMask2[] = {0, 1, 4, 5};
9684    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
9685    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
9686  }
9687
9688  // Handle truncation of V256 to V128 using shuffles.
9689  if (!VT.is128BitVector() || !InVT.is256BitVector())
9690    return SDValue();
9691
9692  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
9693
9694  unsigned NumElems = VT.getVectorNumElements();
9695  MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2);
9696
9697  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
9698  // Prepare truncation shuffle mask
9699  for (unsigned i = 0; i != NumElems; ++i)
9700    MaskVec[i] = i * 2;
9701  SDValue V = DAG.getVectorShuffle(NVT, DL,
9702                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
9703                                   DAG.getUNDEF(NVT), &MaskVec[0]);
9704  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
9705                     DAG.getIntPtrConstant(0));
9706}
9707
9708SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
9709                                           SelectionDAG &DAG) const {
9710  assert(!Op.getSimpleValueType().isVector());
9711
9712  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
9713    /*IsSigned=*/ true, /*IsReplace=*/ false);
9714  SDValue FIST = Vals.first, StackSlot = Vals.second;
9715  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
9716  if (!FIST.getNode()) return Op;
9717
9718  if (StackSlot.getNode())
9719    // Load the result.
9720    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
9721                       FIST, StackSlot, MachinePointerInfo(),
9722                       false, false, false, 0);
9723
9724  // The node is the result.
9725  return FIST;
9726}
9727
9728SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
9729                                           SelectionDAG &DAG) const {
9730  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
9731    /*IsSigned=*/ false, /*IsReplace=*/ false);
9732  SDValue FIST = Vals.first, StackSlot = Vals.second;
9733  assert(FIST.getNode() && "Unexpected failure");
9734
9735  if (StackSlot.getNode())
9736    // Load the result.
9737    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
9738                       FIST, StackSlot, MachinePointerInfo(),
9739                       false, false, false, 0);
9740
9741  // The node is the result.
9742  return FIST;
9743}
9744
9745static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
9746  SDLoc DL(Op);
9747  MVT VT = Op.getSimpleValueType();
9748  SDValue In = Op.getOperand(0);
9749  MVT SVT = In.getSimpleValueType();
9750
9751  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
9752
9753  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
9754                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
9755                                 In, DAG.getUNDEF(SVT)));
9756}
9757
9758static SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) {
9759  LLVMContext *Context = DAG.getContext();
9760  SDLoc dl(Op);
9761  MVT VT = Op.getSimpleValueType();
9762  MVT EltVT = VT;
9763  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
9764  if (VT.isVector()) {
9765    EltVT = VT.getVectorElementType();
9766    NumElts = VT.getVectorNumElements();
9767  }
9768  Constant *C;
9769  if (EltVT == MVT::f64)
9770    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
9771                                          APInt(64, ~(1ULL << 63))));
9772  else
9773    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
9774                                          APInt(32, ~(1U << 31))));
9775  C = ConstantVector::getSplat(NumElts, C);
9776  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9777  SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy());
9778  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9779  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9780                             MachinePointerInfo::getConstantPool(),
9781                             false, false, false, Alignment);
9782  if (VT.isVector()) {
9783    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
9784    return DAG.getNode(ISD::BITCAST, dl, VT,
9785                       DAG.getNode(ISD::AND, dl, ANDVT,
9786                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
9787                                               Op.getOperand(0)),
9788                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
9789  }
9790  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
9791}
9792
9793static SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) {
9794  LLVMContext *Context = DAG.getContext();
9795  SDLoc dl(Op);
9796  MVT VT = Op.getSimpleValueType();
9797  MVT EltVT = VT;
9798  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
9799  if (VT.isVector()) {
9800    EltVT = VT.getVectorElementType();
9801    NumElts = VT.getVectorNumElements();
9802  }
9803  Constant *C;
9804  if (EltVT == MVT::f64)
9805    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
9806                                          APInt(64, 1ULL << 63)));
9807  else
9808    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
9809                                          APInt(32, 1U << 31)));
9810  C = ConstantVector::getSplat(NumElts, C);
9811  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9812  SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy());
9813  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9814  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9815                             MachinePointerInfo::getConstantPool(),
9816                             false, false, false, Alignment);
9817  if (VT.isVector()) {
9818    MVT XORVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits()/64);
9819    return DAG.getNode(ISD::BITCAST, dl, VT,
9820                       DAG.getNode(ISD::XOR, dl, XORVT,
9821                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
9822                                               Op.getOperand(0)),
9823                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
9824  }
9825
9826  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
9827}
9828
9829static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
9830  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9831  LLVMContext *Context = DAG.getContext();
9832  SDValue Op0 = Op.getOperand(0);
9833  SDValue Op1 = Op.getOperand(1);
9834  SDLoc dl(Op);
9835  MVT VT = Op.getSimpleValueType();
9836  MVT SrcVT = Op1.getSimpleValueType();
9837
9838  // If second operand is smaller, extend it first.
9839  if (SrcVT.bitsLT(VT)) {
9840    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
9841    SrcVT = VT;
9842  }
9843  // And if it is bigger, shrink it first.
9844  if (SrcVT.bitsGT(VT)) {
9845    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
9846    SrcVT = VT;
9847  }
9848
9849  // At this point the operands and the result should have the same
9850  // type, and that won't be f80 since that is not custom lowered.
9851
9852  // First get the sign bit of second operand.
9853  SmallVector<Constant*,4> CV;
9854  if (SrcVT == MVT::f64) {
9855    const fltSemantics &Sem = APFloat::IEEEdouble;
9856    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
9857    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
9858  } else {
9859    const fltSemantics &Sem = APFloat::IEEEsingle;
9860    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
9861    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9862    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9863    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9864  }
9865  Constant *C = ConstantVector::get(CV);
9866  SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16);
9867  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
9868                              MachinePointerInfo::getConstantPool(),
9869                              false, false, false, 16);
9870  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
9871
9872  // Shift sign bit right or left if the two operands have different types.
9873  if (SrcVT.bitsGT(VT)) {
9874    // Op0 is MVT::f32, Op1 is MVT::f64.
9875    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
9876    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
9877                          DAG.getConstant(32, MVT::i32));
9878    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
9879    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
9880                          DAG.getIntPtrConstant(0));
9881  }
9882
9883  // Clear first operand sign bit.
9884  CV.clear();
9885  if (VT == MVT::f64) {
9886    const fltSemantics &Sem = APFloat::IEEEdouble;
9887    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
9888                                                   APInt(64, ~(1ULL << 63)))));
9889    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
9890  } else {
9891    const fltSemantics &Sem = APFloat::IEEEsingle;
9892    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
9893                                                   APInt(32, ~(1U << 31)))));
9894    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9895    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9896    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9897  }
9898  C = ConstantVector::get(CV);
9899  CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(), 16);
9900  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9901                              MachinePointerInfo::getConstantPool(),
9902                              false, false, false, 16);
9903  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
9904
9905  // Or the value with the sign bit.
9906  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
9907}
9908
9909static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
9910  SDValue N0 = Op.getOperand(0);
9911  SDLoc dl(Op);
9912  MVT VT = Op.getSimpleValueType();
9913
9914  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
9915  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
9916                                  DAG.getConstant(1, VT));
9917  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
9918}
9919
9920// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
9921//
9922static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget,
9923                                      SelectionDAG &DAG) {
9924  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
9925
9926  if (!Subtarget->hasSSE41())
9927    return SDValue();
9928
9929  if (!Op->hasOneUse())
9930    return SDValue();
9931
9932  SDNode *N = Op.getNode();
9933  SDLoc DL(N);
9934
9935  SmallVector<SDValue, 8> Opnds;
9936  DenseMap<SDValue, unsigned> VecInMap;
9937  SmallVector<SDValue, 8> VecIns;
9938  EVT VT = MVT::Other;
9939
9940  // Recognize a special case where a vector is casted into wide integer to
9941  // test all 0s.
9942  Opnds.push_back(N->getOperand(0));
9943  Opnds.push_back(N->getOperand(1));
9944
9945  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
9946    SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
9947    // BFS traverse all OR'd operands.
9948    if (I->getOpcode() == ISD::OR) {
9949      Opnds.push_back(I->getOperand(0));
9950      Opnds.push_back(I->getOperand(1));
9951      // Re-evaluate the number of nodes to be traversed.
9952      e += 2; // 2 more nodes (LHS and RHS) are pushed.
9953      continue;
9954    }
9955
9956    // Quit if a non-EXTRACT_VECTOR_ELT
9957    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9958      return SDValue();
9959
9960    // Quit if without a constant index.
9961    SDValue Idx = I->getOperand(1);
9962    if (!isa<ConstantSDNode>(Idx))
9963      return SDValue();
9964
9965    SDValue ExtractedFromVec = I->getOperand(0);
9966    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
9967    if (M == VecInMap.end()) {
9968      VT = ExtractedFromVec.getValueType();
9969      // Quit if not 128/256-bit vector.
9970      if (!VT.is128BitVector() && !VT.is256BitVector())
9971        return SDValue();
9972      // Quit if not the same type.
9973      if (VecInMap.begin() != VecInMap.end() &&
9974          VT != VecInMap.begin()->first.getValueType())
9975        return SDValue();
9976      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
9977      VecIns.push_back(ExtractedFromVec);
9978    }
9979    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
9980  }
9981
9982  assert((VT.is128BitVector() || VT.is256BitVector()) &&
9983         "Not extracted from 128-/256-bit vector.");
9984
9985  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
9986
9987  for (DenseMap<SDValue, unsigned>::const_iterator
9988        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
9989    // Quit if not all elements are used.
9990    if (I->second != FullMask)
9991      return SDValue();
9992  }
9993
9994  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
9995
9996  // Cast all vectors into TestVT for PTEST.
9997  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
9998    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
9999
10000  // If more than one full vectors are evaluated, OR them first before PTEST.
10001  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
10002    // Each iteration will OR 2 nodes and append the result until there is only
10003    // 1 node left, i.e. the final OR'd value of all vectors.
10004    SDValue LHS = VecIns[Slot];
10005    SDValue RHS = VecIns[Slot + 1];
10006    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
10007  }
10008
10009  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
10010                     VecIns.back(), VecIns.back());
10011}
10012
10013/// \brief return true if \c Op has a use that doesn't just read flags.
10014static bool hasNonFlagsUse(SDValue Op) {
10015  for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE;
10016       ++UI) {
10017    SDNode *User = *UI;
10018    unsigned UOpNo = UI.getOperandNo();
10019    if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
10020      // Look pass truncate.
10021      UOpNo = User->use_begin().getOperandNo();
10022      User = *User->use_begin();
10023    }
10024
10025    if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC &&
10026        !(User->getOpcode() == ISD::SELECT && UOpNo == 0))
10027      return true;
10028  }
10029  return false;
10030}
10031
10032/// Emit nodes that will be selected as "test Op0,Op0", or something
10033/// equivalent.
10034SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl,
10035                                    SelectionDAG &DAG) const {
10036  if (Op.getValueType() == MVT::i1)
10037    // KORTEST instruction should be selected
10038    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
10039                       DAG.getConstant(0, Op.getValueType()));
10040
10041  // CF and OF aren't always set the way we want. Determine which
10042  // of these we need.
10043  bool NeedCF = false;
10044  bool NeedOF = false;
10045  switch (X86CC) {
10046  default: break;
10047  case X86::COND_A: case X86::COND_AE:
10048  case X86::COND_B: case X86::COND_BE:
10049    NeedCF = true;
10050    break;
10051  case X86::COND_G: case X86::COND_GE:
10052  case X86::COND_L: case X86::COND_LE:
10053  case X86::COND_O: case X86::COND_NO:
10054    NeedOF = true;
10055    break;
10056  }
10057  // See if we can use the EFLAGS value from the operand instead of
10058  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
10059  // we prove that the arithmetic won't overflow, we can't use OF or CF.
10060  if (Op.getResNo() != 0 || NeedOF || NeedCF) {
10061    // Emit a CMP with 0, which is the TEST pattern.
10062    //if (Op.getValueType() == MVT::i1)
10063    //  return DAG.getNode(X86ISD::CMP, dl, MVT::i1, Op,
10064    //                     DAG.getConstant(0, MVT::i1));
10065    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
10066                       DAG.getConstant(0, Op.getValueType()));
10067  }
10068  unsigned Opcode = 0;
10069  unsigned NumOperands = 0;
10070
10071  // Truncate operations may prevent the merge of the SETCC instruction
10072  // and the arithmetic instruction before it. Attempt to truncate the operands
10073  // of the arithmetic instruction and use a reduced bit-width instruction.
10074  bool NeedTruncation = false;
10075  SDValue ArithOp = Op;
10076  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
10077    SDValue Arith = Op->getOperand(0);
10078    // Both the trunc and the arithmetic op need to have one user each.
10079    if (Arith->hasOneUse())
10080      switch (Arith.getOpcode()) {
10081        default: break;
10082        case ISD::ADD:
10083        case ISD::SUB:
10084        case ISD::AND:
10085        case ISD::OR:
10086        case ISD::XOR: {
10087          NeedTruncation = true;
10088          ArithOp = Arith;
10089        }
10090      }
10091  }
10092
10093  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
10094  // which may be the result of a CAST.  We use the variable 'Op', which is the
10095  // non-casted variable when we check for possible users.
10096  switch (ArithOp.getOpcode()) {
10097  case ISD::ADD:
10098    // Due to an isel shortcoming, be conservative if this add is likely to be
10099    // selected as part of a load-modify-store instruction. When the root node
10100    // in a match is a store, isel doesn't know how to remap non-chain non-flag
10101    // uses of other nodes in the match, such as the ADD in this case. This
10102    // leads to the ADD being left around and reselected, with the result being
10103    // two adds in the output.  Alas, even if none our users are stores, that
10104    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
10105    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
10106    // climbing the DAG back to the root, and it doesn't seem to be worth the
10107    // effort.
10108    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
10109         UE = Op.getNode()->use_end(); UI != UE; ++UI)
10110      if (UI->getOpcode() != ISD::CopyToReg &&
10111          UI->getOpcode() != ISD::SETCC &&
10112          UI->getOpcode() != ISD::STORE)
10113        goto default_case;
10114
10115    if (ConstantSDNode *C =
10116        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
10117      // An add of one will be selected as an INC.
10118      if (C->getAPIntValue() == 1) {
10119        Opcode = X86ISD::INC;
10120        NumOperands = 1;
10121        break;
10122      }
10123
10124      // An add of negative one (subtract of one) will be selected as a DEC.
10125      if (C->getAPIntValue().isAllOnesValue()) {
10126        Opcode = X86ISD::DEC;
10127        NumOperands = 1;
10128        break;
10129      }
10130    }
10131
10132    // Otherwise use a regular EFLAGS-setting add.
10133    Opcode = X86ISD::ADD;
10134    NumOperands = 2;
10135    break;
10136  case ISD::SHL:
10137  case ISD::SRL:
10138    // If we have a constant logical shift that's only used in a comparison
10139    // against zero turn it into an equivalent AND. This allows turning it into
10140    // a TEST instruction later.
10141    if ((X86CC == X86::COND_E || X86CC == X86::COND_NE) &&
10142        isa<ConstantSDNode>(Op->getOperand(1)) && !hasNonFlagsUse(Op)) {
10143      EVT VT = Op.getValueType();
10144      unsigned BitWidth = VT.getSizeInBits();
10145      unsigned ShAmt = Op->getConstantOperandVal(1);
10146      if (ShAmt >= BitWidth) // Avoid undefined shifts.
10147        break;
10148      APInt Mask = ArithOp.getOpcode() == ISD::SRL
10149                       ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)
10150                       : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt);
10151      if (!Mask.isSignedIntN(32)) // Avoid large immediates.
10152        break;
10153      SDValue New = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0),
10154                                DAG.getConstant(Mask, VT));
10155      DAG.ReplaceAllUsesWith(Op, New);
10156      Op = New;
10157    }
10158    break;
10159
10160  case ISD::AND:
10161    // If the primary and result isn't used, don't bother using X86ISD::AND,
10162    // because a TEST instruction will be better.
10163    if (!hasNonFlagsUse(Op))
10164      break;
10165    // FALL THROUGH
10166  case ISD::SUB:
10167  case ISD::OR:
10168  case ISD::XOR:
10169    // Due to the ISEL shortcoming noted above, be conservative if this op is
10170    // likely to be selected as part of a load-modify-store instruction.
10171    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
10172           UE = Op.getNode()->use_end(); UI != UE; ++UI)
10173      if (UI->getOpcode() == ISD::STORE)
10174        goto default_case;
10175
10176    // Otherwise use a regular EFLAGS-setting instruction.
10177    switch (ArithOp.getOpcode()) {
10178    default: llvm_unreachable("unexpected operator!");
10179    case ISD::SUB: Opcode = X86ISD::SUB; break;
10180    case ISD::XOR: Opcode = X86ISD::XOR; break;
10181    case ISD::AND: Opcode = X86ISD::AND; break;
10182    case ISD::OR: {
10183      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
10184        SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG);
10185        if (EFLAGS.getNode())
10186          return EFLAGS;
10187      }
10188      Opcode = X86ISD::OR;
10189      break;
10190    }
10191    }
10192
10193    NumOperands = 2;
10194    break;
10195  case X86ISD::ADD:
10196  case X86ISD::SUB:
10197  case X86ISD::INC:
10198  case X86ISD::DEC:
10199  case X86ISD::OR:
10200  case X86ISD::XOR:
10201  case X86ISD::AND:
10202    return SDValue(Op.getNode(), 1);
10203  default:
10204  default_case:
10205    break;
10206  }
10207
10208  // If we found that truncation is beneficial, perform the truncation and
10209  // update 'Op'.
10210  if (NeedTruncation) {
10211    EVT VT = Op.getValueType();
10212    SDValue WideVal = Op->getOperand(0);
10213    EVT WideVT = WideVal.getValueType();
10214    unsigned ConvertedOp = 0;
10215    // Use a target machine opcode to prevent further DAGCombine
10216    // optimizations that may separate the arithmetic operations
10217    // from the setcc node.
10218    switch (WideVal.getOpcode()) {
10219      default: break;
10220      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
10221      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
10222      case ISD::AND: ConvertedOp = X86ISD::AND; break;
10223      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
10224      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
10225    }
10226
10227    if (ConvertedOp) {
10228      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10229      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
10230        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
10231        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
10232        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
10233      }
10234    }
10235  }
10236
10237  if (Opcode == 0)
10238    // Emit a CMP with 0, which is the TEST pattern.
10239    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
10240                       DAG.getConstant(0, Op.getValueType()));
10241
10242  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10243  SmallVector<SDValue, 4> Ops;
10244  for (unsigned i = 0; i != NumOperands; ++i)
10245    Ops.push_back(Op.getOperand(i));
10246
10247  SDValue New = DAG.getNode(Opcode, dl, VTs, Ops);
10248  DAG.ReplaceAllUsesWith(Op, New);
10249  return SDValue(New.getNode(), 1);
10250}
10251
10252/// Emit nodes that will be selected as "cmp Op0,Op1", or something
10253/// equivalent.
10254SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
10255                                   SDLoc dl, SelectionDAG &DAG) const {
10256  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1)) {
10257    if (C->getAPIntValue() == 0)
10258      return EmitTest(Op0, X86CC, dl, DAG);
10259
10260     if (Op0.getValueType() == MVT::i1)
10261       llvm_unreachable("Unexpected comparison operation for MVT::i1 operands");
10262  }
10263
10264  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
10265       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
10266    // Do the comparison at i32 if it's smaller, besides the Atom case.
10267    // This avoids subregister aliasing issues. Keep the smaller reference
10268    // if we're optimizing for size, however, as that'll allow better folding
10269    // of memory operations.
10270    if (Op0.getValueType() != MVT::i32 && Op0.getValueType() != MVT::i64 &&
10271        !DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
10272             AttributeSet::FunctionIndex, Attribute::MinSize) &&
10273        !Subtarget->isAtom()) {
10274      unsigned ExtendOp =
10275          isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
10276      Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0);
10277      Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1);
10278    }
10279    // Use SUB instead of CMP to enable CSE between SUB and CMP.
10280    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
10281    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
10282                              Op0, Op1);
10283    return SDValue(Sub.getNode(), 1);
10284  }
10285  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
10286}
10287
10288/// Convert a comparison if required by the subtarget.
10289SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
10290                                                 SelectionDAG &DAG) const {
10291  // If the subtarget does not support the FUCOMI instruction, floating-point
10292  // comparisons have to be converted.
10293  if (Subtarget->hasCMov() ||
10294      Cmp.getOpcode() != X86ISD::CMP ||
10295      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
10296      !Cmp.getOperand(1).getValueType().isFloatingPoint())
10297    return Cmp;
10298
10299  // The instruction selector will select an FUCOM instruction instead of
10300  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
10301  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
10302  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
10303  SDLoc dl(Cmp);
10304  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
10305  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
10306  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
10307                            DAG.getConstant(8, MVT::i8));
10308  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
10309  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
10310}
10311
10312static bool isAllOnes(SDValue V) {
10313  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
10314  return C && C->isAllOnesValue();
10315}
10316
10317/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
10318/// if it's possible.
10319SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
10320                                     SDLoc dl, SelectionDAG &DAG) const {
10321  SDValue Op0 = And.getOperand(0);
10322  SDValue Op1 = And.getOperand(1);
10323  if (Op0.getOpcode() == ISD::TRUNCATE)
10324    Op0 = Op0.getOperand(0);
10325  if (Op1.getOpcode() == ISD::TRUNCATE)
10326    Op1 = Op1.getOperand(0);
10327
10328  SDValue LHS, RHS;
10329  if (Op1.getOpcode() == ISD::SHL)
10330    std::swap(Op0, Op1);
10331  if (Op0.getOpcode() == ISD::SHL) {
10332    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
10333      if (And00C->getZExtValue() == 1) {
10334        // If we looked past a truncate, check that it's only truncating away
10335        // known zeros.
10336        unsigned BitWidth = Op0.getValueSizeInBits();
10337        unsigned AndBitWidth = And.getValueSizeInBits();
10338        if (BitWidth > AndBitWidth) {
10339          APInt Zeros, Ones;
10340          DAG.computeKnownBits(Op0, Zeros, Ones);
10341          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
10342            return SDValue();
10343        }
10344        LHS = Op1;
10345        RHS = Op0.getOperand(1);
10346      }
10347  } else if (Op1.getOpcode() == ISD::Constant) {
10348    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
10349    uint64_t AndRHSVal = AndRHS->getZExtValue();
10350    SDValue AndLHS = Op0;
10351
10352    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
10353      LHS = AndLHS.getOperand(0);
10354      RHS = AndLHS.getOperand(1);
10355    }
10356
10357    // Use BT if the immediate can't be encoded in a TEST instruction.
10358    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
10359      LHS = AndLHS;
10360      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
10361    }
10362  }
10363
10364  if (LHS.getNode()) {
10365    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
10366    // instruction.  Since the shift amount is in-range-or-undefined, we know
10367    // that doing a bittest on the i32 value is ok.  We extend to i32 because
10368    // the encoding for the i16 version is larger than the i32 version.
10369    // Also promote i16 to i32 for performance / code size reason.
10370    if (LHS.getValueType() == MVT::i8 ||
10371        LHS.getValueType() == MVT::i16)
10372      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
10373
10374    // If the operand types disagree, extend the shift amount to match.  Since
10375    // BT ignores high bits (like shifts) we can use anyextend.
10376    if (LHS.getValueType() != RHS.getValueType())
10377      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
10378
10379    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
10380    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
10381    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10382                       DAG.getConstant(Cond, MVT::i8), BT);
10383  }
10384
10385  return SDValue();
10386}
10387
10388/// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point
10389/// mask CMPs.
10390static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
10391                              SDValue &Op1) {
10392  unsigned SSECC;
10393  bool Swap = false;
10394
10395  // SSE Condition code mapping:
10396  //  0 - EQ
10397  //  1 - LT
10398  //  2 - LE
10399  //  3 - UNORD
10400  //  4 - NEQ
10401  //  5 - NLT
10402  //  6 - NLE
10403  //  7 - ORD
10404  switch (SetCCOpcode) {
10405  default: llvm_unreachable("Unexpected SETCC condition");
10406  case ISD::SETOEQ:
10407  case ISD::SETEQ:  SSECC = 0; break;
10408  case ISD::SETOGT:
10409  case ISD::SETGT:  Swap = true; // Fallthrough
10410  case ISD::SETLT:
10411  case ISD::SETOLT: SSECC = 1; break;
10412  case ISD::SETOGE:
10413  case ISD::SETGE:  Swap = true; // Fallthrough
10414  case ISD::SETLE:
10415  case ISD::SETOLE: SSECC = 2; break;
10416  case ISD::SETUO:  SSECC = 3; break;
10417  case ISD::SETUNE:
10418  case ISD::SETNE:  SSECC = 4; break;
10419  case ISD::SETULE: Swap = true; // Fallthrough
10420  case ISD::SETUGE: SSECC = 5; break;
10421  case ISD::SETULT: Swap = true; // Fallthrough
10422  case ISD::SETUGT: SSECC = 6; break;
10423  case ISD::SETO:   SSECC = 7; break;
10424  case ISD::SETUEQ:
10425  case ISD::SETONE: SSECC = 8; break;
10426  }
10427  if (Swap)
10428    std::swap(Op0, Op1);
10429
10430  return SSECC;
10431}
10432
10433// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
10434// ones, and then concatenate the result back.
10435static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
10436  MVT VT = Op.getSimpleValueType();
10437
10438  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
10439         "Unsupported value type for operation");
10440
10441  unsigned NumElems = VT.getVectorNumElements();
10442  SDLoc dl(Op);
10443  SDValue CC = Op.getOperand(2);
10444
10445  // Extract the LHS vectors
10446  SDValue LHS = Op.getOperand(0);
10447  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10448  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10449
10450  // Extract the RHS vectors
10451  SDValue RHS = Op.getOperand(1);
10452  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
10453  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
10454
10455  // Issue the operation on the smaller types and concatenate the result back
10456  MVT EltVT = VT.getVectorElementType();
10457  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10458  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10459                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
10460                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
10461}
10462
10463static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG,
10464                                     const X86Subtarget *Subtarget) {
10465  SDValue Op0 = Op.getOperand(0);
10466  SDValue Op1 = Op.getOperand(1);
10467  SDValue CC = Op.getOperand(2);
10468  MVT VT = Op.getSimpleValueType();
10469  SDLoc dl(Op);
10470
10471  assert(Op0.getValueType().getVectorElementType().getSizeInBits() >= 32 &&
10472         Op.getValueType().getScalarType() == MVT::i1 &&
10473         "Cannot set masked compare for this operation");
10474
10475  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
10476  unsigned  Opc = 0;
10477  bool Unsigned = false;
10478  bool Swap = false;
10479  unsigned SSECC;
10480  switch (SetCCOpcode) {
10481  default: llvm_unreachable("Unexpected SETCC condition");
10482  case ISD::SETNE:  SSECC = 4; break;
10483  case ISD::SETEQ:  Opc = X86ISD::PCMPEQM; break;
10484  case ISD::SETUGT: SSECC = 6; Unsigned = true; break;
10485  case ISD::SETLT:  Swap = true; //fall-through
10486  case ISD::SETGT:  Opc = X86ISD::PCMPGTM; break;
10487  case ISD::SETULT: SSECC = 1; Unsigned = true; break;
10488  case ISD::SETUGE: SSECC = 5; Unsigned = true; break; //NLT
10489  case ISD::SETGE:  Swap = true; SSECC = 2; break; // LE + swap
10490  case ISD::SETULE: Unsigned = true; //fall-through
10491  case ISD::SETLE:  SSECC = 2; break;
10492  }
10493
10494  if (Swap)
10495    std::swap(Op0, Op1);
10496  if (Opc)
10497    return DAG.getNode(Opc, dl, VT, Op0, Op1);
10498  Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
10499  return DAG.getNode(Opc, dl, VT, Op0, Op1,
10500                     DAG.getConstant(SSECC, MVT::i8));
10501}
10502
10503/// \brief Try to turn a VSETULT into a VSETULE by modifying its second
10504/// operand \p Op1.  If non-trivial (for example because it's not constant)
10505/// return an empty value.
10506static SDValue ChangeVSETULTtoVSETULE(SDLoc dl, SDValue Op1, SelectionDAG &DAG)
10507{
10508  BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode());
10509  if (!BV)
10510    return SDValue();
10511
10512  MVT VT = Op1.getSimpleValueType();
10513  MVT EVT = VT.getVectorElementType();
10514  unsigned n = VT.getVectorNumElements();
10515  SmallVector<SDValue, 8> ULTOp1;
10516
10517  for (unsigned i = 0; i < n; ++i) {
10518    ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i));
10519    if (!Elt || Elt->isOpaque() || Elt->getValueType(0) != EVT)
10520      return SDValue();
10521
10522    // Avoid underflow.
10523    APInt Val = Elt->getAPIntValue();
10524    if (Val == 0)
10525      return SDValue();
10526
10527    ULTOp1.push_back(DAG.getConstant(Val - 1, EVT));
10528  }
10529
10530  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, ULTOp1);
10531}
10532
10533static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
10534                           SelectionDAG &DAG) {
10535  SDValue Op0 = Op.getOperand(0);
10536  SDValue Op1 = Op.getOperand(1);
10537  SDValue CC = Op.getOperand(2);
10538  MVT VT = Op.getSimpleValueType();
10539  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
10540  bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
10541  SDLoc dl(Op);
10542
10543  if (isFP) {
10544#ifndef NDEBUG
10545    MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
10546    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
10547#endif
10548
10549    unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
10550    unsigned Opc = X86ISD::CMPP;
10551    if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) {
10552      assert(VT.getVectorNumElements() <= 16);
10553      Opc = X86ISD::CMPM;
10554    }
10555    // In the two special cases we can't handle, emit two comparisons.
10556    if (SSECC == 8) {
10557      unsigned CC0, CC1;
10558      unsigned CombineOpc;
10559      if (SetCCOpcode == ISD::SETUEQ) {
10560        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
10561      } else {
10562        assert(SetCCOpcode == ISD::SETONE);
10563        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
10564      }
10565
10566      SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
10567                                 DAG.getConstant(CC0, MVT::i8));
10568      SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
10569                                 DAG.getConstant(CC1, MVT::i8));
10570      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
10571    }
10572    // Handle all other FP comparisons here.
10573    return DAG.getNode(Opc, dl, VT, Op0, Op1,
10574                       DAG.getConstant(SSECC, MVT::i8));
10575  }
10576
10577  // Break 256-bit integer vector compare into smaller ones.
10578  if (VT.is256BitVector() && !Subtarget->hasInt256())
10579    return Lower256IntVSETCC(Op, DAG);
10580
10581  bool MaskResult = (VT.getVectorElementType() == MVT::i1);
10582  EVT OpVT = Op1.getValueType();
10583  if (Subtarget->hasAVX512()) {
10584    if (Op1.getValueType().is512BitVector() ||
10585        (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32))
10586      return LowerIntVSETCC_AVX512(Op, DAG, Subtarget);
10587
10588    // In AVX-512 architecture setcc returns mask with i1 elements,
10589    // But there is no compare instruction for i8 and i16 elements.
10590    // We are not talking about 512-bit operands in this case, these
10591    // types are illegal.
10592    if (MaskResult &&
10593        (OpVT.getVectorElementType().getSizeInBits() < 32 &&
10594         OpVT.getVectorElementType().getSizeInBits() >= 8))
10595      return DAG.getNode(ISD::TRUNCATE, dl, VT,
10596                         DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC));
10597  }
10598
10599  // We are handling one of the integer comparisons here.  Since SSE only has
10600  // GT and EQ comparisons for integer, swapping operands and multiple
10601  // operations may be required for some comparisons.
10602  unsigned Opc;
10603  bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
10604  bool Subus = false;
10605
10606  switch (SetCCOpcode) {
10607  default: llvm_unreachable("Unexpected SETCC condition");
10608  case ISD::SETNE:  Invert = true;
10609  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
10610  case ISD::SETLT:  Swap = true;
10611  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
10612  case ISD::SETGE:  Swap = true;
10613  case ISD::SETLE:  Opc = X86ISD::PCMPGT;
10614                    Invert = true; break;
10615  case ISD::SETULT: Swap = true;
10616  case ISD::SETUGT: Opc = X86ISD::PCMPGT;
10617                    FlipSigns = true; break;
10618  case ISD::SETUGE: Swap = true;
10619  case ISD::SETULE: Opc = X86ISD::PCMPGT;
10620                    FlipSigns = true; Invert = true; break;
10621  }
10622
10623  // Special case: Use min/max operations for SETULE/SETUGE
10624  MVT VET = VT.getVectorElementType();
10625  bool hasMinMax =
10626       (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
10627    || (Subtarget->hasSSE2()  && (VET == MVT::i8));
10628
10629  if (hasMinMax) {
10630    switch (SetCCOpcode) {
10631    default: break;
10632    case ISD::SETULE: Opc = X86ISD::UMIN; MinMax = true; break;
10633    case ISD::SETUGE: Opc = X86ISD::UMAX; MinMax = true; break;
10634    }
10635
10636    if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
10637  }
10638
10639  bool hasSubus = Subtarget->hasSSE2() && (VET == MVT::i8 || VET == MVT::i16);
10640  if (!MinMax && hasSubus) {
10641    // As another special case, use PSUBUS[BW] when it's profitable. E.g. for
10642    // Op0 u<= Op1:
10643    //   t = psubus Op0, Op1
10644    //   pcmpeq t, <0..0>
10645    switch (SetCCOpcode) {
10646    default: break;
10647    case ISD::SETULT: {
10648      // If the comparison is against a constant we can turn this into a
10649      // setule.  With psubus, setule does not require a swap.  This is
10650      // beneficial because the constant in the register is no longer
10651      // destructed as the destination so it can be hoisted out of a loop.
10652      // Only do this pre-AVX since vpcmp* is no longer destructive.
10653      if (Subtarget->hasAVX())
10654        break;
10655      SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG);
10656      if (ULEOp1.getNode()) {
10657        Op1 = ULEOp1;
10658        Subus = true; Invert = false; Swap = false;
10659      }
10660      break;
10661    }
10662    // Psubus is better than flip-sign because it requires no inversion.
10663    case ISD::SETUGE: Subus = true; Invert = false; Swap = true;  break;
10664    case ISD::SETULE: Subus = true; Invert = false; Swap = false; break;
10665    }
10666
10667    if (Subus) {
10668      Opc = X86ISD::SUBUS;
10669      FlipSigns = false;
10670    }
10671  }
10672
10673  if (Swap)
10674    std::swap(Op0, Op1);
10675
10676  // Check that the operation in question is available (most are plain SSE2,
10677  // but PCMPGTQ and PCMPEQQ have different requirements).
10678  if (VT == MVT::v2i64) {
10679    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) {
10680      assert(Subtarget->hasSSE2() && "Don't know how to lower!");
10681
10682      // First cast everything to the right type.
10683      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
10684      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
10685
10686      // Since SSE has no unsigned integer comparisons, we need to flip the sign
10687      // bits of the inputs before performing those operations. The lower
10688      // compare is always unsigned.
10689      SDValue SB;
10690      if (FlipSigns) {
10691        SB = DAG.getConstant(0x80000000U, MVT::v4i32);
10692      } else {
10693        SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32);
10694        SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32);
10695        SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
10696                         Sign, Zero, Sign, Zero);
10697      }
10698      Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
10699      Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
10700
10701      // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
10702      SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
10703      SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
10704
10705      // Create masks for only the low parts/high parts of the 64 bit integers.
10706      static const int MaskHi[] = { 1, 1, 3, 3 };
10707      static const int MaskLo[] = { 0, 0, 2, 2 };
10708      SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
10709      SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
10710      SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
10711
10712      SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
10713      Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
10714
10715      if (Invert)
10716        Result = DAG.getNOT(dl, Result, MVT::v4i32);
10717
10718      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
10719    }
10720
10721    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
10722      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
10723      // pcmpeqd + pshufd + pand.
10724      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
10725
10726      // First cast everything to the right type.
10727      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
10728      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
10729
10730      // Do the compare.
10731      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
10732
10733      // Make sure the lower and upper halves are both all-ones.
10734      static const int Mask[] = { 1, 0, 3, 2 };
10735      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
10736      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
10737
10738      if (Invert)
10739        Result = DAG.getNOT(dl, Result, MVT::v4i32);
10740
10741      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
10742    }
10743  }
10744
10745  // Since SSE has no unsigned integer comparisons, we need to flip the sign
10746  // bits of the inputs before performing those operations.
10747  if (FlipSigns) {
10748    EVT EltVT = VT.getVectorElementType();
10749    SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT);
10750    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
10751    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
10752  }
10753
10754  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
10755
10756  // If the logical-not of the result is required, perform that now.
10757  if (Invert)
10758    Result = DAG.getNOT(dl, Result, VT);
10759
10760  if (MinMax)
10761    Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
10762
10763  if (Subus)
10764    Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result,
10765                         getZeroVector(VT, Subtarget, DAG, dl));
10766
10767  return Result;
10768}
10769
10770SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
10771
10772  MVT VT = Op.getSimpleValueType();
10773
10774  if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
10775
10776  assert(((!Subtarget->hasAVX512() && VT == MVT::i8) || (VT == MVT::i1))
10777         && "SetCC type must be 8-bit or 1-bit integer");
10778  SDValue Op0 = Op.getOperand(0);
10779  SDValue Op1 = Op.getOperand(1);
10780  SDLoc dl(Op);
10781  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10782
10783  // Optimize to BT if possible.
10784  // Lower (X & (1 << N)) == 0 to BT(X, N).
10785  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
10786  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
10787  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
10788      Op1.getOpcode() == ISD::Constant &&
10789      cast<ConstantSDNode>(Op1)->isNullValue() &&
10790      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
10791    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
10792    if (NewSetCC.getNode())
10793      return NewSetCC;
10794  }
10795
10796  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
10797  // these.
10798  if (Op1.getOpcode() == ISD::Constant &&
10799      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
10800       cast<ConstantSDNode>(Op1)->isNullValue()) &&
10801      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
10802
10803    // If the input is a setcc, then reuse the input setcc or use a new one with
10804    // the inverted condition.
10805    if (Op0.getOpcode() == X86ISD::SETCC) {
10806      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
10807      bool Invert = (CC == ISD::SETNE) ^
10808        cast<ConstantSDNode>(Op1)->isNullValue();
10809      if (!Invert)
10810        return Op0;
10811
10812      CCode = X86::GetOppositeBranchCondition(CCode);
10813      SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10814                                  DAG.getConstant(CCode, MVT::i8),
10815                                  Op0.getOperand(1));
10816      if (VT == MVT::i1)
10817        return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
10818      return SetCC;
10819    }
10820  }
10821  if ((Op0.getValueType() == MVT::i1) && (Op1.getOpcode() == ISD::Constant) &&
10822      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1) &&
10823      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
10824
10825    ISD::CondCode NewCC = ISD::getSetCCInverse(CC, true);
10826    return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, MVT::i1), NewCC);
10827  }
10828
10829  bool isFP = Op1.getSimpleValueType().isFloatingPoint();
10830  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
10831  if (X86CC == X86::COND_INVALID)
10832    return SDValue();
10833
10834  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG);
10835  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
10836  SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10837                              DAG.getConstant(X86CC, MVT::i8), EFLAGS);
10838  if (VT == MVT::i1)
10839    return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
10840  return SetCC;
10841}
10842
10843// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
10844static bool isX86LogicalCmp(SDValue Op) {
10845  unsigned Opc = Op.getNode()->getOpcode();
10846  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
10847      Opc == X86ISD::SAHF)
10848    return true;
10849  if (Op.getResNo() == 1 &&
10850      (Opc == X86ISD::ADD ||
10851       Opc == X86ISD::SUB ||
10852       Opc == X86ISD::ADC ||
10853       Opc == X86ISD::SBB ||
10854       Opc == X86ISD::SMUL ||
10855       Opc == X86ISD::UMUL ||
10856       Opc == X86ISD::INC ||
10857       Opc == X86ISD::DEC ||
10858       Opc == X86ISD::OR ||
10859       Opc == X86ISD::XOR ||
10860       Opc == X86ISD::AND))
10861    return true;
10862
10863  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
10864    return true;
10865
10866  return false;
10867}
10868
10869static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
10870  if (V.getOpcode() != ISD::TRUNCATE)
10871    return false;
10872
10873  SDValue VOp0 = V.getOperand(0);
10874  unsigned InBits = VOp0.getValueSizeInBits();
10875  unsigned Bits = V.getValueSizeInBits();
10876  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
10877}
10878
10879SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
10880  bool addTest = true;
10881  SDValue Cond  = Op.getOperand(0);
10882  SDValue Op1 = Op.getOperand(1);
10883  SDValue Op2 = Op.getOperand(2);
10884  SDLoc DL(Op);
10885  EVT VT = Op1.getValueType();
10886  SDValue CC;
10887
10888  // Lower fp selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
10889  // are available. Otherwise fp cmovs get lowered into a less efficient branch
10890  // sequence later on.
10891  if (Cond.getOpcode() == ISD::SETCC &&
10892      ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
10893       (Subtarget->hasSSE1() && VT == MVT::f32)) &&
10894      VT == Cond.getOperand(0).getValueType() && Cond->hasOneUse()) {
10895    SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
10896    int SSECC = translateX86FSETCC(
10897        cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
10898
10899    if (SSECC != 8) {
10900      if (Subtarget->hasAVX512()) {
10901        SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CondOp0, CondOp1,
10902                                  DAG.getConstant(SSECC, MVT::i8));
10903        return DAG.getNode(X86ISD::SELECT, DL, VT, Cmp, Op1, Op2);
10904      }
10905      SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1,
10906                                DAG.getConstant(SSECC, MVT::i8));
10907      SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
10908      SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
10909      return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
10910    }
10911  }
10912
10913  if (Cond.getOpcode() == ISD::SETCC) {
10914    SDValue NewCond = LowerSETCC(Cond, DAG);
10915    if (NewCond.getNode())
10916      Cond = NewCond;
10917  }
10918
10919  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
10920  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
10921  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
10922  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
10923  if (Cond.getOpcode() == X86ISD::SETCC &&
10924      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
10925      isZero(Cond.getOperand(1).getOperand(1))) {
10926    SDValue Cmp = Cond.getOperand(1);
10927
10928    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
10929
10930    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
10931        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
10932      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
10933
10934      SDValue CmpOp0 = Cmp.getOperand(0);
10935      // Apply further optimizations for special cases
10936      // (select (x != 0), -1, 0) -> neg & sbb
10937      // (select (x == 0), 0, -1) -> neg & sbb
10938      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
10939        if (YC->isNullValue() &&
10940            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
10941          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
10942          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
10943                                    DAG.getConstant(0, CmpOp0.getValueType()),
10944                                    CmpOp0);
10945          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
10946                                    DAG.getConstant(X86::COND_B, MVT::i8),
10947                                    SDValue(Neg.getNode(), 1));
10948          return Res;
10949        }
10950
10951      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
10952                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
10953      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10954
10955      SDValue Res =   // Res = 0 or -1.
10956        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
10957                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
10958
10959      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
10960        Res = DAG.getNOT(DL, Res, Res.getValueType());
10961
10962      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
10963      if (!N2C || !N2C->isNullValue())
10964        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
10965      return Res;
10966    }
10967  }
10968
10969  // Look past (and (setcc_carry (cmp ...)), 1).
10970  if (Cond.getOpcode() == ISD::AND &&
10971      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
10972    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
10973    if (C && C->getAPIntValue() == 1)
10974      Cond = Cond.getOperand(0);
10975  }
10976
10977  // If condition flag is set by a X86ISD::CMP, then use it as the condition
10978  // setting operand in place of the X86ISD::SETCC.
10979  unsigned CondOpcode = Cond.getOpcode();
10980  if (CondOpcode == X86ISD::SETCC ||
10981      CondOpcode == X86ISD::SETCC_CARRY) {
10982    CC = Cond.getOperand(0);
10983
10984    SDValue Cmp = Cond.getOperand(1);
10985    unsigned Opc = Cmp.getOpcode();
10986    MVT VT = Op.getSimpleValueType();
10987
10988    bool IllegalFPCMov = false;
10989    if (VT.isFloatingPoint() && !VT.isVector() &&
10990        !isScalarFPTypeInSSEReg(VT))  // FPStack?
10991      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
10992
10993    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
10994        Opc == X86ISD::BT) { // FIXME
10995      Cond = Cmp;
10996      addTest = false;
10997    }
10998  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
10999             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
11000             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
11001              Cond.getOperand(0).getValueType() != MVT::i8)) {
11002    SDValue LHS = Cond.getOperand(0);
11003    SDValue RHS = Cond.getOperand(1);
11004    unsigned X86Opcode;
11005    unsigned X86Cond;
11006    SDVTList VTs;
11007    switch (CondOpcode) {
11008    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
11009    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
11010    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
11011    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
11012    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
11013    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
11014    default: llvm_unreachable("unexpected overflowing operator");
11015    }
11016    if (CondOpcode == ISD::UMULO)
11017      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
11018                          MVT::i32);
11019    else
11020      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
11021
11022    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
11023
11024    if (CondOpcode == ISD::UMULO)
11025      Cond = X86Op.getValue(2);
11026    else
11027      Cond = X86Op.getValue(1);
11028
11029    CC = DAG.getConstant(X86Cond, MVT::i8);
11030    addTest = false;
11031  }
11032
11033  if (addTest) {
11034    // Look pass the truncate if the high bits are known zero.
11035    if (isTruncWithZeroHighBitsInput(Cond, DAG))
11036        Cond = Cond.getOperand(0);
11037
11038    // We know the result of AND is compared against zero. Try to match
11039    // it to BT.
11040    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
11041      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
11042      if (NewSetCC.getNode()) {
11043        CC = NewSetCC.getOperand(0);
11044        Cond = NewSetCC.getOperand(1);
11045        addTest = false;
11046      }
11047    }
11048  }
11049
11050  if (addTest) {
11051    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
11052    Cond = EmitTest(Cond, X86::COND_NE, DL, DAG);
11053  }
11054
11055  // a <  b ? -1 :  0 -> RES = ~setcc_carry
11056  // a <  b ?  0 : -1 -> RES = setcc_carry
11057  // a >= b ? -1 :  0 -> RES = setcc_carry
11058  // a >= b ?  0 : -1 -> RES = ~setcc_carry
11059  if (Cond.getOpcode() == X86ISD::SUB) {
11060    Cond = ConvertCmpIfNecessary(Cond, DAG);
11061    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
11062
11063    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
11064        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
11065      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
11066                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
11067      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
11068        return DAG.getNOT(DL, Res, Res.getValueType());
11069      return Res;
11070    }
11071  }
11072
11073  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
11074  // widen the cmov and push the truncate through. This avoids introducing a new
11075  // branch during isel and doesn't add any extensions.
11076  if (Op.getValueType() == MVT::i8 &&
11077      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
11078    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
11079    if (T1.getValueType() == T2.getValueType() &&
11080        // Blacklist CopyFromReg to avoid partial register stalls.
11081        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
11082      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
11083      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
11084      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
11085    }
11086  }
11087
11088  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
11089  // condition is true.
11090  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
11091  SDValue Ops[] = { Op2, Op1, CC, Cond };
11092  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops);
11093}
11094
11095static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, SelectionDAG &DAG) {
11096  MVT VT = Op->getSimpleValueType(0);
11097  SDValue In = Op->getOperand(0);
11098  MVT InVT = In.getSimpleValueType();
11099  SDLoc dl(Op);
11100
11101  unsigned int NumElts = VT.getVectorNumElements();
11102  if (NumElts != 8 && NumElts != 16)
11103    return SDValue();
11104
11105  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
11106    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
11107
11108  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11109  assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
11110
11111  MVT ExtVT = (NumElts == 8) ? MVT::v8i64 : MVT::v16i32;
11112  Constant *C = ConstantInt::get(*DAG.getContext(),
11113    APInt::getAllOnesValue(ExtVT.getScalarType().getSizeInBits()));
11114
11115  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
11116  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
11117  SDValue Ld = DAG.getLoad(ExtVT.getScalarType(), dl, DAG.getEntryNode(), CP,
11118                          MachinePointerInfo::getConstantPool(),
11119                          false, false, false, Alignment);
11120  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, dl, ExtVT, In, Ld);
11121  if (VT.is512BitVector())
11122    return Brcst;
11123  return DAG.getNode(X86ISD::VTRUNC, dl, VT, Brcst);
11124}
11125
11126static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
11127                                SelectionDAG &DAG) {
11128  MVT VT = Op->getSimpleValueType(0);
11129  SDValue In = Op->getOperand(0);
11130  MVT InVT = In.getSimpleValueType();
11131  SDLoc dl(Op);
11132
11133  if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
11134    return LowerSIGN_EXTEND_AVX512(Op, DAG);
11135
11136  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
11137      (VT != MVT::v8i32 || InVT != MVT::v8i16) &&
11138      (VT != MVT::v16i16 || InVT != MVT::v16i8))
11139    return SDValue();
11140
11141  if (Subtarget->hasInt256())
11142    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
11143
11144  // Optimize vectors in AVX mode
11145  // Sign extend  v8i16 to v8i32 and
11146  //              v4i32 to v4i64
11147  //
11148  // Divide input vector into two parts
11149  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
11150  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
11151  // concat the vectors to original VT
11152
11153  unsigned NumElems = InVT.getVectorNumElements();
11154  SDValue Undef = DAG.getUNDEF(InVT);
11155
11156  SmallVector<int,8> ShufMask1(NumElems, -1);
11157  for (unsigned i = 0; i != NumElems/2; ++i)
11158    ShufMask1[i] = i;
11159
11160  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
11161
11162  SmallVector<int,8> ShufMask2(NumElems, -1);
11163  for (unsigned i = 0; i != NumElems/2; ++i)
11164    ShufMask2[i] = i + NumElems/2;
11165
11166  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
11167
11168  MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
11169                                VT.getVectorNumElements()/2);
11170
11171  OpLo = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpLo);
11172  OpHi = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpHi);
11173
11174  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
11175}
11176
11177// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
11178// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
11179// from the AND / OR.
11180static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
11181  Opc = Op.getOpcode();
11182  if (Opc != ISD::OR && Opc != ISD::AND)
11183    return false;
11184  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
11185          Op.getOperand(0).hasOneUse() &&
11186          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
11187          Op.getOperand(1).hasOneUse());
11188}
11189
11190// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
11191// 1 and that the SETCC node has a single use.
11192static bool isXor1OfSetCC(SDValue Op) {
11193  if (Op.getOpcode() != ISD::XOR)
11194    return false;
11195  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
11196  if (N1C && N1C->getAPIntValue() == 1) {
11197    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
11198      Op.getOperand(0).hasOneUse();
11199  }
11200  return false;
11201}
11202
11203SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
11204  bool addTest = true;
11205  SDValue Chain = Op.getOperand(0);
11206  SDValue Cond  = Op.getOperand(1);
11207  SDValue Dest  = Op.getOperand(2);
11208  SDLoc dl(Op);
11209  SDValue CC;
11210  bool Inverted = false;
11211
11212  if (Cond.getOpcode() == ISD::SETCC) {
11213    // Check for setcc([su]{add,sub,mul}o == 0).
11214    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
11215        isa<ConstantSDNode>(Cond.getOperand(1)) &&
11216        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
11217        Cond.getOperand(0).getResNo() == 1 &&
11218        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
11219         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
11220         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
11221         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
11222         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
11223         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
11224      Inverted = true;
11225      Cond = Cond.getOperand(0);
11226    } else {
11227      SDValue NewCond = LowerSETCC(Cond, DAG);
11228      if (NewCond.getNode())
11229        Cond = NewCond;
11230    }
11231  }
11232#if 0
11233  // FIXME: LowerXALUO doesn't handle these!!
11234  else if (Cond.getOpcode() == X86ISD::ADD  ||
11235           Cond.getOpcode() == X86ISD::SUB  ||
11236           Cond.getOpcode() == X86ISD::SMUL ||
11237           Cond.getOpcode() == X86ISD::UMUL)
11238    Cond = LowerXALUO(Cond, DAG);
11239#endif
11240
11241  // Look pass (and (setcc_carry (cmp ...)), 1).
11242  if (Cond.getOpcode() == ISD::AND &&
11243      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
11244    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
11245    if (C && C->getAPIntValue() == 1)
11246      Cond = Cond.getOperand(0);
11247  }
11248
11249  // If condition flag is set by a X86ISD::CMP, then use it as the condition
11250  // setting operand in place of the X86ISD::SETCC.
11251  unsigned CondOpcode = Cond.getOpcode();
11252  if (CondOpcode == X86ISD::SETCC ||
11253      CondOpcode == X86ISD::SETCC_CARRY) {
11254    CC = Cond.getOperand(0);
11255
11256    SDValue Cmp = Cond.getOperand(1);
11257    unsigned Opc = Cmp.getOpcode();
11258    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
11259    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
11260      Cond = Cmp;
11261      addTest = false;
11262    } else {
11263      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
11264      default: break;
11265      case X86::COND_O:
11266      case X86::COND_B:
11267        // These can only come from an arithmetic instruction with overflow,
11268        // e.g. SADDO, UADDO.
11269        Cond = Cond.getNode()->getOperand(1);
11270        addTest = false;
11271        break;
11272      }
11273    }
11274  }
11275  CondOpcode = Cond.getOpcode();
11276  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
11277      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
11278      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
11279       Cond.getOperand(0).getValueType() != MVT::i8)) {
11280    SDValue LHS = Cond.getOperand(0);
11281    SDValue RHS = Cond.getOperand(1);
11282    unsigned X86Opcode;
11283    unsigned X86Cond;
11284    SDVTList VTs;
11285    // Keep this in sync with LowerXALUO, otherwise we might create redundant
11286    // instructions that can't be removed afterwards (i.e. X86ISD::ADD and
11287    // X86ISD::INC).
11288    switch (CondOpcode) {
11289    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
11290    case ISD::SADDO:
11291      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11292        if (C->isOne()) {
11293          X86Opcode = X86ISD::INC; X86Cond = X86::COND_O;
11294          break;
11295        }
11296      X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
11297    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
11298    case ISD::SSUBO:
11299      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11300        if (C->isOne()) {
11301          X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O;
11302          break;
11303        }
11304      X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
11305    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
11306    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
11307    default: llvm_unreachable("unexpected overflowing operator");
11308    }
11309    if (Inverted)
11310      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
11311    if (CondOpcode == ISD::UMULO)
11312      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
11313                          MVT::i32);
11314    else
11315      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
11316
11317    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
11318
11319    if (CondOpcode == ISD::UMULO)
11320      Cond = X86Op.getValue(2);
11321    else
11322      Cond = X86Op.getValue(1);
11323
11324    CC = DAG.getConstant(X86Cond, MVT::i8);
11325    addTest = false;
11326  } else {
11327    unsigned CondOpc;
11328    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
11329      SDValue Cmp = Cond.getOperand(0).getOperand(1);
11330      if (CondOpc == ISD::OR) {
11331        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
11332        // two branches instead of an explicit OR instruction with a
11333        // separate test.
11334        if (Cmp == Cond.getOperand(1).getOperand(1) &&
11335            isX86LogicalCmp(Cmp)) {
11336          CC = Cond.getOperand(0).getOperand(0);
11337          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
11338                              Chain, Dest, CC, Cmp);
11339          CC = Cond.getOperand(1).getOperand(0);
11340          Cond = Cmp;
11341          addTest = false;
11342        }
11343      } else { // ISD::AND
11344        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
11345        // two branches instead of an explicit AND instruction with a
11346        // separate test. However, we only do this if this block doesn't
11347        // have a fall-through edge, because this requires an explicit
11348        // jmp when the condition is false.
11349        if (Cmp == Cond.getOperand(1).getOperand(1) &&
11350            isX86LogicalCmp(Cmp) &&
11351            Op.getNode()->hasOneUse()) {
11352          X86::CondCode CCode =
11353            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
11354          CCode = X86::GetOppositeBranchCondition(CCode);
11355          CC = DAG.getConstant(CCode, MVT::i8);
11356          SDNode *User = *Op.getNode()->use_begin();
11357          // Look for an unconditional branch following this conditional branch.
11358          // We need this because we need to reverse the successors in order
11359          // to implement FCMP_OEQ.
11360          if (User->getOpcode() == ISD::BR) {
11361            SDValue FalseBB = User->getOperand(1);
11362            SDNode *NewBR =
11363              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
11364            assert(NewBR == User);
11365            (void)NewBR;
11366            Dest = FalseBB;
11367
11368            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
11369                                Chain, Dest, CC, Cmp);
11370            X86::CondCode CCode =
11371              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
11372            CCode = X86::GetOppositeBranchCondition(CCode);
11373            CC = DAG.getConstant(CCode, MVT::i8);
11374            Cond = Cmp;
11375            addTest = false;
11376          }
11377        }
11378      }
11379    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
11380      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
11381      // It should be transformed during dag combiner except when the condition
11382      // is set by a arithmetics with overflow node.
11383      X86::CondCode CCode =
11384        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
11385      CCode = X86::GetOppositeBranchCondition(CCode);
11386      CC = DAG.getConstant(CCode, MVT::i8);
11387      Cond = Cond.getOperand(0).getOperand(1);
11388      addTest = false;
11389    } else if (Cond.getOpcode() == ISD::SETCC &&
11390               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
11391      // For FCMP_OEQ, we can emit
11392      // two branches instead of an explicit AND instruction with a
11393      // separate test. However, we only do this if this block doesn't
11394      // have a fall-through edge, because this requires an explicit
11395      // jmp when the condition is false.
11396      if (Op.getNode()->hasOneUse()) {
11397        SDNode *User = *Op.getNode()->use_begin();
11398        // Look for an unconditional branch following this conditional branch.
11399        // We need this because we need to reverse the successors in order
11400        // to implement FCMP_OEQ.
11401        if (User->getOpcode() == ISD::BR) {
11402          SDValue FalseBB = User->getOperand(1);
11403          SDNode *NewBR =
11404            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
11405          assert(NewBR == User);
11406          (void)NewBR;
11407          Dest = FalseBB;
11408
11409          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
11410                                    Cond.getOperand(0), Cond.getOperand(1));
11411          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
11412          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
11413          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
11414                              Chain, Dest, CC, Cmp);
11415          CC = DAG.getConstant(X86::COND_P, MVT::i8);
11416          Cond = Cmp;
11417          addTest = false;
11418        }
11419      }
11420    } else if (Cond.getOpcode() == ISD::SETCC &&
11421               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
11422      // For FCMP_UNE, we can emit
11423      // two branches instead of an explicit AND instruction with a
11424      // separate test. However, we only do this if this block doesn't
11425      // have a fall-through edge, because this requires an explicit
11426      // jmp when the condition is false.
11427      if (Op.getNode()->hasOneUse()) {
11428        SDNode *User = *Op.getNode()->use_begin();
11429        // Look for an unconditional branch following this conditional branch.
11430        // We need this because we need to reverse the successors in order
11431        // to implement FCMP_UNE.
11432        if (User->getOpcode() == ISD::BR) {
11433          SDValue FalseBB = User->getOperand(1);
11434          SDNode *NewBR =
11435            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
11436          assert(NewBR == User);
11437          (void)NewBR;
11438
11439          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
11440                                    Cond.getOperand(0), Cond.getOperand(1));
11441          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
11442          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
11443          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
11444                              Chain, Dest, CC, Cmp);
11445          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
11446          Cond = Cmp;
11447          addTest = false;
11448          Dest = FalseBB;
11449        }
11450      }
11451    }
11452  }
11453
11454  if (addTest) {
11455    // Look pass the truncate if the high bits are known zero.
11456    if (isTruncWithZeroHighBitsInput(Cond, DAG))
11457        Cond = Cond.getOperand(0);
11458
11459    // We know the result of AND is compared against zero. Try to match
11460    // it to BT.
11461    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
11462      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
11463      if (NewSetCC.getNode()) {
11464        CC = NewSetCC.getOperand(0);
11465        Cond = NewSetCC.getOperand(1);
11466        addTest = false;
11467      }
11468    }
11469  }
11470
11471  if (addTest) {
11472    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
11473    Cond = EmitTest(Cond, X86::COND_NE, dl, DAG);
11474  }
11475  Cond = ConvertCmpIfNecessary(Cond, DAG);
11476  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
11477                     Chain, Dest, CC, Cond);
11478}
11479
11480// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
11481// Calls to _alloca is needed to probe the stack when allocating more than 4k
11482// bytes in one go. Touching the stack at 4K increments is necessary to ensure
11483// that the guard pages used by the OS virtual memory manager are allocated in
11484// correct sequence.
11485SDValue
11486X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
11487                                           SelectionDAG &DAG) const {
11488  MachineFunction &MF = DAG.getMachineFunction();
11489  bool SplitStack = MF.shouldSplitStack();
11490  bool Lower = (Subtarget->isOSWindows() && !Subtarget->isTargetMacho()) ||
11491               SplitStack;
11492  SDLoc dl(Op);
11493
11494  if (!Lower) {
11495    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11496    SDNode* Node = Op.getNode();
11497
11498    unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
11499    assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
11500        " not tell us which reg is the stack pointer!");
11501    EVT VT = Node->getValueType(0);
11502    SDValue Tmp1 = SDValue(Node, 0);
11503    SDValue Tmp2 = SDValue(Node, 1);
11504    SDValue Tmp3 = Node->getOperand(2);
11505    SDValue Chain = Tmp1.getOperand(0);
11506
11507    // Chain the dynamic stack allocation so that it doesn't modify the stack
11508    // pointer when other instructions are using the stack.
11509    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true),
11510        SDLoc(Node));
11511
11512    SDValue Size = Tmp2.getOperand(1);
11513    SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
11514    Chain = SP.getValue(1);
11515    unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
11516    const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
11517    unsigned StackAlign = TFI.getStackAlignment();
11518    Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
11519    if (Align > StackAlign)
11520      Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
11521          DAG.getConstant(-(uint64_t)Align, VT));
11522    Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
11523
11524    Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
11525        DAG.getIntPtrConstant(0, true), SDValue(),
11526        SDLoc(Node));
11527
11528    SDValue Ops[2] = { Tmp1, Tmp2 };
11529    return DAG.getMergeValues(Ops, dl);
11530  }
11531
11532  // Get the inputs.
11533  SDValue Chain = Op.getOperand(0);
11534  SDValue Size  = Op.getOperand(1);
11535  unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
11536  EVT VT = Op.getNode()->getValueType(0);
11537
11538  bool Is64Bit = Subtarget->is64Bit();
11539  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
11540
11541  if (SplitStack) {
11542    MachineRegisterInfo &MRI = MF.getRegInfo();
11543
11544    if (Is64Bit) {
11545      // The 64 bit implementation of segmented stacks needs to clobber both r10
11546      // r11. This makes it impossible to use it along with nested parameters.
11547      const Function *F = MF.getFunction();
11548
11549      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
11550           I != E; ++I)
11551        if (I->hasNestAttr())
11552          report_fatal_error("Cannot use segmented stacks with functions that "
11553                             "have nested arguments.");
11554    }
11555
11556    const TargetRegisterClass *AddrRegClass =
11557      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
11558    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
11559    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
11560    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
11561                                DAG.getRegister(Vreg, SPTy));
11562    SDValue Ops1[2] = { Value, Chain };
11563    return DAG.getMergeValues(Ops1, dl);
11564  } else {
11565    SDValue Flag;
11566    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
11567
11568    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
11569    Flag = Chain.getValue(1);
11570    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
11571
11572    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
11573
11574    const X86RegisterInfo *RegInfo =
11575      static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
11576    unsigned SPReg = RegInfo->getStackRegister();
11577    SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
11578    Chain = SP.getValue(1);
11579
11580    if (Align) {
11581      SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
11582                       DAG.getConstant(-(uint64_t)Align, VT));
11583      Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
11584    }
11585
11586    SDValue Ops1[2] = { SP, Chain };
11587    return DAG.getMergeValues(Ops1, dl);
11588  }
11589}
11590
11591SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
11592  MachineFunction &MF = DAG.getMachineFunction();
11593  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
11594
11595  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
11596  SDLoc DL(Op);
11597
11598  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
11599    // vastart just stores the address of the VarArgsFrameIndex slot into the
11600    // memory location argument.
11601    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
11602                                   getPointerTy());
11603    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
11604                        MachinePointerInfo(SV), false, false, 0);
11605  }
11606
11607  // __va_list_tag:
11608  //   gp_offset         (0 - 6 * 8)
11609  //   fp_offset         (48 - 48 + 8 * 16)
11610  //   overflow_arg_area (point to parameters coming in memory).
11611  //   reg_save_area
11612  SmallVector<SDValue, 8> MemOps;
11613  SDValue FIN = Op.getOperand(1);
11614  // Store gp_offset
11615  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
11616                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
11617                                               MVT::i32),
11618                               FIN, MachinePointerInfo(SV), false, false, 0);
11619  MemOps.push_back(Store);
11620
11621  // Store fp_offset
11622  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
11623                    FIN, DAG.getIntPtrConstant(4));
11624  Store = DAG.getStore(Op.getOperand(0), DL,
11625                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
11626                                       MVT::i32),
11627                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
11628  MemOps.push_back(Store);
11629
11630  // Store ptr to overflow_arg_area
11631  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
11632                    FIN, DAG.getIntPtrConstant(4));
11633  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
11634                                    getPointerTy());
11635  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
11636                       MachinePointerInfo(SV, 8),
11637                       false, false, 0);
11638  MemOps.push_back(Store);
11639
11640  // Store ptr to reg_save_area.
11641  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
11642                    FIN, DAG.getIntPtrConstant(8));
11643  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
11644                                    getPointerTy());
11645  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
11646                       MachinePointerInfo(SV, 16), false, false, 0);
11647  MemOps.push_back(Store);
11648  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
11649}
11650
11651SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
11652  assert(Subtarget->is64Bit() &&
11653         "LowerVAARG only handles 64-bit va_arg!");
11654  assert((Subtarget->isTargetLinux() ||
11655          Subtarget->isTargetDarwin()) &&
11656          "Unhandled target in LowerVAARG");
11657  assert(Op.getNode()->getNumOperands() == 4);
11658  SDValue Chain = Op.getOperand(0);
11659  SDValue SrcPtr = Op.getOperand(1);
11660  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
11661  unsigned Align = Op.getConstantOperandVal(3);
11662  SDLoc dl(Op);
11663
11664  EVT ArgVT = Op.getNode()->getValueType(0);
11665  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
11666  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
11667  uint8_t ArgMode;
11668
11669  // Decide which area this value should be read from.
11670  // TODO: Implement the AMD64 ABI in its entirety. This simple
11671  // selection mechanism works only for the basic types.
11672  if (ArgVT == MVT::f80) {
11673    llvm_unreachable("va_arg for f80 not yet implemented");
11674  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
11675    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
11676  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
11677    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
11678  } else {
11679    llvm_unreachable("Unhandled argument type in LowerVAARG");
11680  }
11681
11682  if (ArgMode == 2) {
11683    // Sanity Check: Make sure using fp_offset makes sense.
11684    assert(!getTargetMachine().Options.UseSoftFloat &&
11685           !(DAG.getMachineFunction()
11686                .getFunction()->getAttributes()
11687                .hasAttribute(AttributeSet::FunctionIndex,
11688                              Attribute::NoImplicitFloat)) &&
11689           Subtarget->hasSSE1());
11690  }
11691
11692  // Insert VAARG_64 node into the DAG
11693  // VAARG_64 returns two values: Variable Argument Address, Chain
11694  SmallVector<SDValue, 11> InstOps;
11695  InstOps.push_back(Chain);
11696  InstOps.push_back(SrcPtr);
11697  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
11698  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
11699  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
11700  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
11701  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
11702                                          VTs, InstOps, MVT::i64,
11703                                          MachinePointerInfo(SV),
11704                                          /*Align=*/0,
11705                                          /*Volatile=*/false,
11706                                          /*ReadMem=*/true,
11707                                          /*WriteMem=*/true);
11708  Chain = VAARG.getValue(1);
11709
11710  // Load the next argument and return it
11711  return DAG.getLoad(ArgVT, dl,
11712                     Chain,
11713                     VAARG,
11714                     MachinePointerInfo(),
11715                     false, false, false, 0);
11716}
11717
11718static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
11719                           SelectionDAG &DAG) {
11720  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
11721  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
11722  SDValue Chain = Op.getOperand(0);
11723  SDValue DstPtr = Op.getOperand(1);
11724  SDValue SrcPtr = Op.getOperand(2);
11725  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
11726  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
11727  SDLoc DL(Op);
11728
11729  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
11730                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
11731                       false,
11732                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
11733}
11734
11735// getTargetVShiftByConstNode - Handle vector element shifts where the shift
11736// amount is a constant. Takes immediate version of shift as input.
11737static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT,
11738                                          SDValue SrcOp, uint64_t ShiftAmt,
11739                                          SelectionDAG &DAG) {
11740  MVT ElementType = VT.getVectorElementType();
11741
11742  // Fold this packed shift into its first operand if ShiftAmt is 0.
11743  if (ShiftAmt == 0)
11744    return SrcOp;
11745
11746  // Check for ShiftAmt >= element width
11747  if (ShiftAmt >= ElementType.getSizeInBits()) {
11748    if (Opc == X86ISD::VSRAI)
11749      ShiftAmt = ElementType.getSizeInBits() - 1;
11750    else
11751      return DAG.getConstant(0, VT);
11752  }
11753
11754  assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
11755         && "Unknown target vector shift-by-constant node");
11756
11757  // Fold this packed vector shift into a build vector if SrcOp is a
11758  // vector of Constants or UNDEFs, and SrcOp valuetype is the same as VT.
11759  if (VT == SrcOp.getSimpleValueType() &&
11760      ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) {
11761    SmallVector<SDValue, 8> Elts;
11762    unsigned NumElts = SrcOp->getNumOperands();
11763    ConstantSDNode *ND;
11764
11765    switch(Opc) {
11766    default: llvm_unreachable(nullptr);
11767    case X86ISD::VSHLI:
11768      for (unsigned i=0; i!=NumElts; ++i) {
11769        SDValue CurrentOp = SrcOp->getOperand(i);
11770        if (CurrentOp->getOpcode() == ISD::UNDEF) {
11771          Elts.push_back(CurrentOp);
11772          continue;
11773        }
11774        ND = cast<ConstantSDNode>(CurrentOp);
11775        const APInt &C = ND->getAPIntValue();
11776        Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), ElementType));
11777      }
11778      break;
11779    case X86ISD::VSRLI:
11780      for (unsigned i=0; i!=NumElts; ++i) {
11781        SDValue CurrentOp = SrcOp->getOperand(i);
11782        if (CurrentOp->getOpcode() == ISD::UNDEF) {
11783          Elts.push_back(CurrentOp);
11784          continue;
11785        }
11786        ND = cast<ConstantSDNode>(CurrentOp);
11787        const APInt &C = ND->getAPIntValue();
11788        Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), ElementType));
11789      }
11790      break;
11791    case X86ISD::VSRAI:
11792      for (unsigned i=0; i!=NumElts; ++i) {
11793        SDValue CurrentOp = SrcOp->getOperand(i);
11794        if (CurrentOp->getOpcode() == ISD::UNDEF) {
11795          Elts.push_back(CurrentOp);
11796          continue;
11797        }
11798        ND = cast<ConstantSDNode>(CurrentOp);
11799        const APInt &C = ND->getAPIntValue();
11800        Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), ElementType));
11801      }
11802      break;
11803    }
11804
11805    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
11806  }
11807
11808  return DAG.getNode(Opc, dl, VT, SrcOp, DAG.getConstant(ShiftAmt, MVT::i8));
11809}
11810
11811// getTargetVShiftNode - Handle vector element shifts where the shift amount
11812// may or may not be a constant. Takes immediate version of shift as input.
11813static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT,
11814                                   SDValue SrcOp, SDValue ShAmt,
11815                                   SelectionDAG &DAG) {
11816  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
11817
11818  // Catch shift-by-constant.
11819  if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
11820    return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
11821                                      CShAmt->getZExtValue(), DAG);
11822
11823  // Change opcode to non-immediate version
11824  switch (Opc) {
11825    default: llvm_unreachable("Unknown target vector shift node");
11826    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
11827    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
11828    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
11829  }
11830
11831  // Need to build a vector containing shift amount
11832  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
11833  SDValue ShOps[4];
11834  ShOps[0] = ShAmt;
11835  ShOps[1] = DAG.getConstant(0, MVT::i32);
11836  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
11837  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, ShOps);
11838
11839  // The return type has to be a 128-bit type with the same element
11840  // type as the input type.
11841  MVT EltVT = VT.getVectorElementType();
11842  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
11843
11844  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
11845  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
11846}
11847
11848static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
11849  SDLoc dl(Op);
11850  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11851  switch (IntNo) {
11852  default: return SDValue();    // Don't custom lower most intrinsics.
11853  // Comparison intrinsics.
11854  case Intrinsic::x86_sse_comieq_ss:
11855  case Intrinsic::x86_sse_comilt_ss:
11856  case Intrinsic::x86_sse_comile_ss:
11857  case Intrinsic::x86_sse_comigt_ss:
11858  case Intrinsic::x86_sse_comige_ss:
11859  case Intrinsic::x86_sse_comineq_ss:
11860  case Intrinsic::x86_sse_ucomieq_ss:
11861  case Intrinsic::x86_sse_ucomilt_ss:
11862  case Intrinsic::x86_sse_ucomile_ss:
11863  case Intrinsic::x86_sse_ucomigt_ss:
11864  case Intrinsic::x86_sse_ucomige_ss:
11865  case Intrinsic::x86_sse_ucomineq_ss:
11866  case Intrinsic::x86_sse2_comieq_sd:
11867  case Intrinsic::x86_sse2_comilt_sd:
11868  case Intrinsic::x86_sse2_comile_sd:
11869  case Intrinsic::x86_sse2_comigt_sd:
11870  case Intrinsic::x86_sse2_comige_sd:
11871  case Intrinsic::x86_sse2_comineq_sd:
11872  case Intrinsic::x86_sse2_ucomieq_sd:
11873  case Intrinsic::x86_sse2_ucomilt_sd:
11874  case Intrinsic::x86_sse2_ucomile_sd:
11875  case Intrinsic::x86_sse2_ucomigt_sd:
11876  case Intrinsic::x86_sse2_ucomige_sd:
11877  case Intrinsic::x86_sse2_ucomineq_sd: {
11878    unsigned Opc;
11879    ISD::CondCode CC;
11880    switch (IntNo) {
11881    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11882    case Intrinsic::x86_sse_comieq_ss:
11883    case Intrinsic::x86_sse2_comieq_sd:
11884      Opc = X86ISD::COMI;
11885      CC = ISD::SETEQ;
11886      break;
11887    case Intrinsic::x86_sse_comilt_ss:
11888    case Intrinsic::x86_sse2_comilt_sd:
11889      Opc = X86ISD::COMI;
11890      CC = ISD::SETLT;
11891      break;
11892    case Intrinsic::x86_sse_comile_ss:
11893    case Intrinsic::x86_sse2_comile_sd:
11894      Opc = X86ISD::COMI;
11895      CC = ISD::SETLE;
11896      break;
11897    case Intrinsic::x86_sse_comigt_ss:
11898    case Intrinsic::x86_sse2_comigt_sd:
11899      Opc = X86ISD::COMI;
11900      CC = ISD::SETGT;
11901      break;
11902    case Intrinsic::x86_sse_comige_ss:
11903    case Intrinsic::x86_sse2_comige_sd:
11904      Opc = X86ISD::COMI;
11905      CC = ISD::SETGE;
11906      break;
11907    case Intrinsic::x86_sse_comineq_ss:
11908    case Intrinsic::x86_sse2_comineq_sd:
11909      Opc = X86ISD::COMI;
11910      CC = ISD::SETNE;
11911      break;
11912    case Intrinsic::x86_sse_ucomieq_ss:
11913    case Intrinsic::x86_sse2_ucomieq_sd:
11914      Opc = X86ISD::UCOMI;
11915      CC = ISD::SETEQ;
11916      break;
11917    case Intrinsic::x86_sse_ucomilt_ss:
11918    case Intrinsic::x86_sse2_ucomilt_sd:
11919      Opc = X86ISD::UCOMI;
11920      CC = ISD::SETLT;
11921      break;
11922    case Intrinsic::x86_sse_ucomile_ss:
11923    case Intrinsic::x86_sse2_ucomile_sd:
11924      Opc = X86ISD::UCOMI;
11925      CC = ISD::SETLE;
11926      break;
11927    case Intrinsic::x86_sse_ucomigt_ss:
11928    case Intrinsic::x86_sse2_ucomigt_sd:
11929      Opc = X86ISD::UCOMI;
11930      CC = ISD::SETGT;
11931      break;
11932    case Intrinsic::x86_sse_ucomige_ss:
11933    case Intrinsic::x86_sse2_ucomige_sd:
11934      Opc = X86ISD::UCOMI;
11935      CC = ISD::SETGE;
11936      break;
11937    case Intrinsic::x86_sse_ucomineq_ss:
11938    case Intrinsic::x86_sse2_ucomineq_sd:
11939      Opc = X86ISD::UCOMI;
11940      CC = ISD::SETNE;
11941      break;
11942    }
11943
11944    SDValue LHS = Op.getOperand(1);
11945    SDValue RHS = Op.getOperand(2);
11946    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
11947    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
11948    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
11949    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
11950                                DAG.getConstant(X86CC, MVT::i8), Cond);
11951    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11952  }
11953
11954  // Arithmetic intrinsics.
11955  case Intrinsic::x86_sse2_pmulu_dq:
11956  case Intrinsic::x86_avx2_pmulu_dq:
11957    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
11958                       Op.getOperand(1), Op.getOperand(2));
11959
11960  case Intrinsic::x86_sse41_pmuldq:
11961  case Intrinsic::x86_avx2_pmul_dq:
11962    return DAG.getNode(X86ISD::PMULDQ, dl, Op.getValueType(),
11963                       Op.getOperand(1), Op.getOperand(2));
11964
11965  case Intrinsic::x86_sse2_pmulhu_w:
11966  case Intrinsic::x86_avx2_pmulhu_w:
11967    return DAG.getNode(ISD::MULHU, dl, Op.getValueType(),
11968                       Op.getOperand(1), Op.getOperand(2));
11969
11970  case Intrinsic::x86_sse2_pmulh_w:
11971  case Intrinsic::x86_avx2_pmulh_w:
11972    return DAG.getNode(ISD::MULHS, dl, Op.getValueType(),
11973                       Op.getOperand(1), Op.getOperand(2));
11974
11975  // SSE2/AVX2 sub with unsigned saturation intrinsics
11976  case Intrinsic::x86_sse2_psubus_b:
11977  case Intrinsic::x86_sse2_psubus_w:
11978  case Intrinsic::x86_avx2_psubus_b:
11979  case Intrinsic::x86_avx2_psubus_w:
11980    return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
11981                       Op.getOperand(1), Op.getOperand(2));
11982
11983  // SSE3/AVX horizontal add/sub intrinsics
11984  case Intrinsic::x86_sse3_hadd_ps:
11985  case Intrinsic::x86_sse3_hadd_pd:
11986  case Intrinsic::x86_avx_hadd_ps_256:
11987  case Intrinsic::x86_avx_hadd_pd_256:
11988  case Intrinsic::x86_sse3_hsub_ps:
11989  case Intrinsic::x86_sse3_hsub_pd:
11990  case Intrinsic::x86_avx_hsub_ps_256:
11991  case Intrinsic::x86_avx_hsub_pd_256:
11992  case Intrinsic::x86_ssse3_phadd_w_128:
11993  case Intrinsic::x86_ssse3_phadd_d_128:
11994  case Intrinsic::x86_avx2_phadd_w:
11995  case Intrinsic::x86_avx2_phadd_d:
11996  case Intrinsic::x86_ssse3_phsub_w_128:
11997  case Intrinsic::x86_ssse3_phsub_d_128:
11998  case Intrinsic::x86_avx2_phsub_w:
11999  case Intrinsic::x86_avx2_phsub_d: {
12000    unsigned Opcode;
12001    switch (IntNo) {
12002    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12003    case Intrinsic::x86_sse3_hadd_ps:
12004    case Intrinsic::x86_sse3_hadd_pd:
12005    case Intrinsic::x86_avx_hadd_ps_256:
12006    case Intrinsic::x86_avx_hadd_pd_256:
12007      Opcode = X86ISD::FHADD;
12008      break;
12009    case Intrinsic::x86_sse3_hsub_ps:
12010    case Intrinsic::x86_sse3_hsub_pd:
12011    case Intrinsic::x86_avx_hsub_ps_256:
12012    case Intrinsic::x86_avx_hsub_pd_256:
12013      Opcode = X86ISD::FHSUB;
12014      break;
12015    case Intrinsic::x86_ssse3_phadd_w_128:
12016    case Intrinsic::x86_ssse3_phadd_d_128:
12017    case Intrinsic::x86_avx2_phadd_w:
12018    case Intrinsic::x86_avx2_phadd_d:
12019      Opcode = X86ISD::HADD;
12020      break;
12021    case Intrinsic::x86_ssse3_phsub_w_128:
12022    case Intrinsic::x86_ssse3_phsub_d_128:
12023    case Intrinsic::x86_avx2_phsub_w:
12024    case Intrinsic::x86_avx2_phsub_d:
12025      Opcode = X86ISD::HSUB;
12026      break;
12027    }
12028    return DAG.getNode(Opcode, dl, Op.getValueType(),
12029                       Op.getOperand(1), Op.getOperand(2));
12030  }
12031
12032  // SSE2/SSE41/AVX2 integer max/min intrinsics.
12033  case Intrinsic::x86_sse2_pmaxu_b:
12034  case Intrinsic::x86_sse41_pmaxuw:
12035  case Intrinsic::x86_sse41_pmaxud:
12036  case Intrinsic::x86_avx2_pmaxu_b:
12037  case Intrinsic::x86_avx2_pmaxu_w:
12038  case Intrinsic::x86_avx2_pmaxu_d:
12039  case Intrinsic::x86_sse2_pminu_b:
12040  case Intrinsic::x86_sse41_pminuw:
12041  case Intrinsic::x86_sse41_pminud:
12042  case Intrinsic::x86_avx2_pminu_b:
12043  case Intrinsic::x86_avx2_pminu_w:
12044  case Intrinsic::x86_avx2_pminu_d:
12045  case Intrinsic::x86_sse41_pmaxsb:
12046  case Intrinsic::x86_sse2_pmaxs_w:
12047  case Intrinsic::x86_sse41_pmaxsd:
12048  case Intrinsic::x86_avx2_pmaxs_b:
12049  case Intrinsic::x86_avx2_pmaxs_w:
12050  case Intrinsic::x86_avx2_pmaxs_d:
12051  case Intrinsic::x86_sse41_pminsb:
12052  case Intrinsic::x86_sse2_pmins_w:
12053  case Intrinsic::x86_sse41_pminsd:
12054  case Intrinsic::x86_avx2_pmins_b:
12055  case Intrinsic::x86_avx2_pmins_w:
12056  case Intrinsic::x86_avx2_pmins_d: {
12057    unsigned Opcode;
12058    switch (IntNo) {
12059    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12060    case Intrinsic::x86_sse2_pmaxu_b:
12061    case Intrinsic::x86_sse41_pmaxuw:
12062    case Intrinsic::x86_sse41_pmaxud:
12063    case Intrinsic::x86_avx2_pmaxu_b:
12064    case Intrinsic::x86_avx2_pmaxu_w:
12065    case Intrinsic::x86_avx2_pmaxu_d:
12066      Opcode = X86ISD::UMAX;
12067      break;
12068    case Intrinsic::x86_sse2_pminu_b:
12069    case Intrinsic::x86_sse41_pminuw:
12070    case Intrinsic::x86_sse41_pminud:
12071    case Intrinsic::x86_avx2_pminu_b:
12072    case Intrinsic::x86_avx2_pminu_w:
12073    case Intrinsic::x86_avx2_pminu_d:
12074      Opcode = X86ISD::UMIN;
12075      break;
12076    case Intrinsic::x86_sse41_pmaxsb:
12077    case Intrinsic::x86_sse2_pmaxs_w:
12078    case Intrinsic::x86_sse41_pmaxsd:
12079    case Intrinsic::x86_avx2_pmaxs_b:
12080    case Intrinsic::x86_avx2_pmaxs_w:
12081    case Intrinsic::x86_avx2_pmaxs_d:
12082      Opcode = X86ISD::SMAX;
12083      break;
12084    case Intrinsic::x86_sse41_pminsb:
12085    case Intrinsic::x86_sse2_pmins_w:
12086    case Intrinsic::x86_sse41_pminsd:
12087    case Intrinsic::x86_avx2_pmins_b:
12088    case Intrinsic::x86_avx2_pmins_w:
12089    case Intrinsic::x86_avx2_pmins_d:
12090      Opcode = X86ISD::SMIN;
12091      break;
12092    }
12093    return DAG.getNode(Opcode, dl, Op.getValueType(),
12094                       Op.getOperand(1), Op.getOperand(2));
12095  }
12096
12097  // SSE/SSE2/AVX floating point max/min intrinsics.
12098  case Intrinsic::x86_sse_max_ps:
12099  case Intrinsic::x86_sse2_max_pd:
12100  case Intrinsic::x86_avx_max_ps_256:
12101  case Intrinsic::x86_avx_max_pd_256:
12102  case Intrinsic::x86_sse_min_ps:
12103  case Intrinsic::x86_sse2_min_pd:
12104  case Intrinsic::x86_avx_min_ps_256:
12105  case Intrinsic::x86_avx_min_pd_256: {
12106    unsigned Opcode;
12107    switch (IntNo) {
12108    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12109    case Intrinsic::x86_sse_max_ps:
12110    case Intrinsic::x86_sse2_max_pd:
12111    case Intrinsic::x86_avx_max_ps_256:
12112    case Intrinsic::x86_avx_max_pd_256:
12113      Opcode = X86ISD::FMAX;
12114      break;
12115    case Intrinsic::x86_sse_min_ps:
12116    case Intrinsic::x86_sse2_min_pd:
12117    case Intrinsic::x86_avx_min_ps_256:
12118    case Intrinsic::x86_avx_min_pd_256:
12119      Opcode = X86ISD::FMIN;
12120      break;
12121    }
12122    return DAG.getNode(Opcode, dl, Op.getValueType(),
12123                       Op.getOperand(1), Op.getOperand(2));
12124  }
12125
12126  // AVX2 variable shift intrinsics
12127  case Intrinsic::x86_avx2_psllv_d:
12128  case Intrinsic::x86_avx2_psllv_q:
12129  case Intrinsic::x86_avx2_psllv_d_256:
12130  case Intrinsic::x86_avx2_psllv_q_256:
12131  case Intrinsic::x86_avx2_psrlv_d:
12132  case Intrinsic::x86_avx2_psrlv_q:
12133  case Intrinsic::x86_avx2_psrlv_d_256:
12134  case Intrinsic::x86_avx2_psrlv_q_256:
12135  case Intrinsic::x86_avx2_psrav_d:
12136  case Intrinsic::x86_avx2_psrav_d_256: {
12137    unsigned Opcode;
12138    switch (IntNo) {
12139    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12140    case Intrinsic::x86_avx2_psllv_d:
12141    case Intrinsic::x86_avx2_psllv_q:
12142    case Intrinsic::x86_avx2_psllv_d_256:
12143    case Intrinsic::x86_avx2_psllv_q_256:
12144      Opcode = ISD::SHL;
12145      break;
12146    case Intrinsic::x86_avx2_psrlv_d:
12147    case Intrinsic::x86_avx2_psrlv_q:
12148    case Intrinsic::x86_avx2_psrlv_d_256:
12149    case Intrinsic::x86_avx2_psrlv_q_256:
12150      Opcode = ISD::SRL;
12151      break;
12152    case Intrinsic::x86_avx2_psrav_d:
12153    case Intrinsic::x86_avx2_psrav_d_256:
12154      Opcode = ISD::SRA;
12155      break;
12156    }
12157    return DAG.getNode(Opcode, dl, Op.getValueType(),
12158                       Op.getOperand(1), Op.getOperand(2));
12159  }
12160
12161  case Intrinsic::x86_ssse3_pshuf_b_128:
12162  case Intrinsic::x86_avx2_pshuf_b:
12163    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
12164                       Op.getOperand(1), Op.getOperand(2));
12165
12166  case Intrinsic::x86_ssse3_psign_b_128:
12167  case Intrinsic::x86_ssse3_psign_w_128:
12168  case Intrinsic::x86_ssse3_psign_d_128:
12169  case Intrinsic::x86_avx2_psign_b:
12170  case Intrinsic::x86_avx2_psign_w:
12171  case Intrinsic::x86_avx2_psign_d:
12172    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
12173                       Op.getOperand(1), Op.getOperand(2));
12174
12175  case Intrinsic::x86_sse41_insertps:
12176    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
12177                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
12178
12179  case Intrinsic::x86_avx_vperm2f128_ps_256:
12180  case Intrinsic::x86_avx_vperm2f128_pd_256:
12181  case Intrinsic::x86_avx_vperm2f128_si_256:
12182  case Intrinsic::x86_avx2_vperm2i128:
12183    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
12184                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
12185
12186  case Intrinsic::x86_avx2_permd:
12187  case Intrinsic::x86_avx2_permps:
12188    // Operands intentionally swapped. Mask is last operand to intrinsic,
12189    // but second operand for node/instruction.
12190    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
12191                       Op.getOperand(2), Op.getOperand(1));
12192
12193  case Intrinsic::x86_sse_sqrt_ps:
12194  case Intrinsic::x86_sse2_sqrt_pd:
12195  case Intrinsic::x86_avx_sqrt_ps_256:
12196  case Intrinsic::x86_avx_sqrt_pd_256:
12197    return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
12198
12199  // ptest and testp intrinsics. The intrinsic these come from are designed to
12200  // return an integer value, not just an instruction so lower it to the ptest
12201  // or testp pattern and a setcc for the result.
12202  case Intrinsic::x86_sse41_ptestz:
12203  case Intrinsic::x86_sse41_ptestc:
12204  case Intrinsic::x86_sse41_ptestnzc:
12205  case Intrinsic::x86_avx_ptestz_256:
12206  case Intrinsic::x86_avx_ptestc_256:
12207  case Intrinsic::x86_avx_ptestnzc_256:
12208  case Intrinsic::x86_avx_vtestz_ps:
12209  case Intrinsic::x86_avx_vtestc_ps:
12210  case Intrinsic::x86_avx_vtestnzc_ps:
12211  case Intrinsic::x86_avx_vtestz_pd:
12212  case Intrinsic::x86_avx_vtestc_pd:
12213  case Intrinsic::x86_avx_vtestnzc_pd:
12214  case Intrinsic::x86_avx_vtestz_ps_256:
12215  case Intrinsic::x86_avx_vtestc_ps_256:
12216  case Intrinsic::x86_avx_vtestnzc_ps_256:
12217  case Intrinsic::x86_avx_vtestz_pd_256:
12218  case Intrinsic::x86_avx_vtestc_pd_256:
12219  case Intrinsic::x86_avx_vtestnzc_pd_256: {
12220    bool IsTestPacked = false;
12221    unsigned X86CC;
12222    switch (IntNo) {
12223    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
12224    case Intrinsic::x86_avx_vtestz_ps:
12225    case Intrinsic::x86_avx_vtestz_pd:
12226    case Intrinsic::x86_avx_vtestz_ps_256:
12227    case Intrinsic::x86_avx_vtestz_pd_256:
12228      IsTestPacked = true; // Fallthrough
12229    case Intrinsic::x86_sse41_ptestz:
12230    case Intrinsic::x86_avx_ptestz_256:
12231      // ZF = 1
12232      X86CC = X86::COND_E;
12233      break;
12234    case Intrinsic::x86_avx_vtestc_ps:
12235    case Intrinsic::x86_avx_vtestc_pd:
12236    case Intrinsic::x86_avx_vtestc_ps_256:
12237    case Intrinsic::x86_avx_vtestc_pd_256:
12238      IsTestPacked = true; // Fallthrough
12239    case Intrinsic::x86_sse41_ptestc:
12240    case Intrinsic::x86_avx_ptestc_256:
12241      // CF = 1
12242      X86CC = X86::COND_B;
12243      break;
12244    case Intrinsic::x86_avx_vtestnzc_ps:
12245    case Intrinsic::x86_avx_vtestnzc_pd:
12246    case Intrinsic::x86_avx_vtestnzc_ps_256:
12247    case Intrinsic::x86_avx_vtestnzc_pd_256:
12248      IsTestPacked = true; // Fallthrough
12249    case Intrinsic::x86_sse41_ptestnzc:
12250    case Intrinsic::x86_avx_ptestnzc_256:
12251      // ZF and CF = 0
12252      X86CC = X86::COND_A;
12253      break;
12254    }
12255
12256    SDValue LHS = Op.getOperand(1);
12257    SDValue RHS = Op.getOperand(2);
12258    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
12259    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
12260    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
12261    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
12262    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
12263  }
12264  case Intrinsic::x86_avx512_kortestz_w:
12265  case Intrinsic::x86_avx512_kortestc_w: {
12266    unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz_w)? X86::COND_E: X86::COND_B;
12267    SDValue LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(1));
12268    SDValue RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(2));
12269    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
12270    SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
12271    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i1, CC, Test);
12272    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
12273  }
12274
12275  // SSE/AVX shift intrinsics
12276  case Intrinsic::x86_sse2_psll_w:
12277  case Intrinsic::x86_sse2_psll_d:
12278  case Intrinsic::x86_sse2_psll_q:
12279  case Intrinsic::x86_avx2_psll_w:
12280  case Intrinsic::x86_avx2_psll_d:
12281  case Intrinsic::x86_avx2_psll_q:
12282  case Intrinsic::x86_sse2_psrl_w:
12283  case Intrinsic::x86_sse2_psrl_d:
12284  case Intrinsic::x86_sse2_psrl_q:
12285  case Intrinsic::x86_avx2_psrl_w:
12286  case Intrinsic::x86_avx2_psrl_d:
12287  case Intrinsic::x86_avx2_psrl_q:
12288  case Intrinsic::x86_sse2_psra_w:
12289  case Intrinsic::x86_sse2_psra_d:
12290  case Intrinsic::x86_avx2_psra_w:
12291  case Intrinsic::x86_avx2_psra_d: {
12292    unsigned Opcode;
12293    switch (IntNo) {
12294    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12295    case Intrinsic::x86_sse2_psll_w:
12296    case Intrinsic::x86_sse2_psll_d:
12297    case Intrinsic::x86_sse2_psll_q:
12298    case Intrinsic::x86_avx2_psll_w:
12299    case Intrinsic::x86_avx2_psll_d:
12300    case Intrinsic::x86_avx2_psll_q:
12301      Opcode = X86ISD::VSHL;
12302      break;
12303    case Intrinsic::x86_sse2_psrl_w:
12304    case Intrinsic::x86_sse2_psrl_d:
12305    case Intrinsic::x86_sse2_psrl_q:
12306    case Intrinsic::x86_avx2_psrl_w:
12307    case Intrinsic::x86_avx2_psrl_d:
12308    case Intrinsic::x86_avx2_psrl_q:
12309      Opcode = X86ISD::VSRL;
12310      break;
12311    case Intrinsic::x86_sse2_psra_w:
12312    case Intrinsic::x86_sse2_psra_d:
12313    case Intrinsic::x86_avx2_psra_w:
12314    case Intrinsic::x86_avx2_psra_d:
12315      Opcode = X86ISD::VSRA;
12316      break;
12317    }
12318    return DAG.getNode(Opcode, dl, Op.getValueType(),
12319                       Op.getOperand(1), Op.getOperand(2));
12320  }
12321
12322  // SSE/AVX immediate shift intrinsics
12323  case Intrinsic::x86_sse2_pslli_w:
12324  case Intrinsic::x86_sse2_pslli_d:
12325  case Intrinsic::x86_sse2_pslli_q:
12326  case Intrinsic::x86_avx2_pslli_w:
12327  case Intrinsic::x86_avx2_pslli_d:
12328  case Intrinsic::x86_avx2_pslli_q:
12329  case Intrinsic::x86_sse2_psrli_w:
12330  case Intrinsic::x86_sse2_psrli_d:
12331  case Intrinsic::x86_sse2_psrli_q:
12332  case Intrinsic::x86_avx2_psrli_w:
12333  case Intrinsic::x86_avx2_psrli_d:
12334  case Intrinsic::x86_avx2_psrli_q:
12335  case Intrinsic::x86_sse2_psrai_w:
12336  case Intrinsic::x86_sse2_psrai_d:
12337  case Intrinsic::x86_avx2_psrai_w:
12338  case Intrinsic::x86_avx2_psrai_d: {
12339    unsigned Opcode;
12340    switch (IntNo) {
12341    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12342    case Intrinsic::x86_sse2_pslli_w:
12343    case Intrinsic::x86_sse2_pslli_d:
12344    case Intrinsic::x86_sse2_pslli_q:
12345    case Intrinsic::x86_avx2_pslli_w:
12346    case Intrinsic::x86_avx2_pslli_d:
12347    case Intrinsic::x86_avx2_pslli_q:
12348      Opcode = X86ISD::VSHLI;
12349      break;
12350    case Intrinsic::x86_sse2_psrli_w:
12351    case Intrinsic::x86_sse2_psrli_d:
12352    case Intrinsic::x86_sse2_psrli_q:
12353    case Intrinsic::x86_avx2_psrli_w:
12354    case Intrinsic::x86_avx2_psrli_d:
12355    case Intrinsic::x86_avx2_psrli_q:
12356      Opcode = X86ISD::VSRLI;
12357      break;
12358    case Intrinsic::x86_sse2_psrai_w:
12359    case Intrinsic::x86_sse2_psrai_d:
12360    case Intrinsic::x86_avx2_psrai_w:
12361    case Intrinsic::x86_avx2_psrai_d:
12362      Opcode = X86ISD::VSRAI;
12363      break;
12364    }
12365    return getTargetVShiftNode(Opcode, dl, Op.getSimpleValueType(),
12366                               Op.getOperand(1), Op.getOperand(2), DAG);
12367  }
12368
12369  case Intrinsic::x86_sse42_pcmpistria128:
12370  case Intrinsic::x86_sse42_pcmpestria128:
12371  case Intrinsic::x86_sse42_pcmpistric128:
12372  case Intrinsic::x86_sse42_pcmpestric128:
12373  case Intrinsic::x86_sse42_pcmpistrio128:
12374  case Intrinsic::x86_sse42_pcmpestrio128:
12375  case Intrinsic::x86_sse42_pcmpistris128:
12376  case Intrinsic::x86_sse42_pcmpestris128:
12377  case Intrinsic::x86_sse42_pcmpistriz128:
12378  case Intrinsic::x86_sse42_pcmpestriz128: {
12379    unsigned Opcode;
12380    unsigned X86CC;
12381    switch (IntNo) {
12382    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12383    case Intrinsic::x86_sse42_pcmpistria128:
12384      Opcode = X86ISD::PCMPISTRI;
12385      X86CC = X86::COND_A;
12386      break;
12387    case Intrinsic::x86_sse42_pcmpestria128:
12388      Opcode = X86ISD::PCMPESTRI;
12389      X86CC = X86::COND_A;
12390      break;
12391    case Intrinsic::x86_sse42_pcmpistric128:
12392      Opcode = X86ISD::PCMPISTRI;
12393      X86CC = X86::COND_B;
12394      break;
12395    case Intrinsic::x86_sse42_pcmpestric128:
12396      Opcode = X86ISD::PCMPESTRI;
12397      X86CC = X86::COND_B;
12398      break;
12399    case Intrinsic::x86_sse42_pcmpistrio128:
12400      Opcode = X86ISD::PCMPISTRI;
12401      X86CC = X86::COND_O;
12402      break;
12403    case Intrinsic::x86_sse42_pcmpestrio128:
12404      Opcode = X86ISD::PCMPESTRI;
12405      X86CC = X86::COND_O;
12406      break;
12407    case Intrinsic::x86_sse42_pcmpistris128:
12408      Opcode = X86ISD::PCMPISTRI;
12409      X86CC = X86::COND_S;
12410      break;
12411    case Intrinsic::x86_sse42_pcmpestris128:
12412      Opcode = X86ISD::PCMPESTRI;
12413      X86CC = X86::COND_S;
12414      break;
12415    case Intrinsic::x86_sse42_pcmpistriz128:
12416      Opcode = X86ISD::PCMPISTRI;
12417      X86CC = X86::COND_E;
12418      break;
12419    case Intrinsic::x86_sse42_pcmpestriz128:
12420      Opcode = X86ISD::PCMPESTRI;
12421      X86CC = X86::COND_E;
12422      break;
12423    }
12424    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
12425    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
12426    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps);
12427    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
12428                                DAG.getConstant(X86CC, MVT::i8),
12429                                SDValue(PCMP.getNode(), 1));
12430    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
12431  }
12432
12433  case Intrinsic::x86_sse42_pcmpistri128:
12434  case Intrinsic::x86_sse42_pcmpestri128: {
12435    unsigned Opcode;
12436    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
12437      Opcode = X86ISD::PCMPISTRI;
12438    else
12439      Opcode = X86ISD::PCMPESTRI;
12440
12441    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
12442    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
12443    return DAG.getNode(Opcode, dl, VTs, NewOps);
12444  }
12445  case Intrinsic::x86_fma_vfmadd_ps:
12446  case Intrinsic::x86_fma_vfmadd_pd:
12447  case Intrinsic::x86_fma_vfmsub_ps:
12448  case Intrinsic::x86_fma_vfmsub_pd:
12449  case Intrinsic::x86_fma_vfnmadd_ps:
12450  case Intrinsic::x86_fma_vfnmadd_pd:
12451  case Intrinsic::x86_fma_vfnmsub_ps:
12452  case Intrinsic::x86_fma_vfnmsub_pd:
12453  case Intrinsic::x86_fma_vfmaddsub_ps:
12454  case Intrinsic::x86_fma_vfmaddsub_pd:
12455  case Intrinsic::x86_fma_vfmsubadd_ps:
12456  case Intrinsic::x86_fma_vfmsubadd_pd:
12457  case Intrinsic::x86_fma_vfmadd_ps_256:
12458  case Intrinsic::x86_fma_vfmadd_pd_256:
12459  case Intrinsic::x86_fma_vfmsub_ps_256:
12460  case Intrinsic::x86_fma_vfmsub_pd_256:
12461  case Intrinsic::x86_fma_vfnmadd_ps_256:
12462  case Intrinsic::x86_fma_vfnmadd_pd_256:
12463  case Intrinsic::x86_fma_vfnmsub_ps_256:
12464  case Intrinsic::x86_fma_vfnmsub_pd_256:
12465  case Intrinsic::x86_fma_vfmaddsub_ps_256:
12466  case Intrinsic::x86_fma_vfmaddsub_pd_256:
12467  case Intrinsic::x86_fma_vfmsubadd_ps_256:
12468  case Intrinsic::x86_fma_vfmsubadd_pd_256:
12469  case Intrinsic::x86_fma_vfmadd_ps_512:
12470  case Intrinsic::x86_fma_vfmadd_pd_512:
12471  case Intrinsic::x86_fma_vfmsub_ps_512:
12472  case Intrinsic::x86_fma_vfmsub_pd_512:
12473  case Intrinsic::x86_fma_vfnmadd_ps_512:
12474  case Intrinsic::x86_fma_vfnmadd_pd_512:
12475  case Intrinsic::x86_fma_vfnmsub_ps_512:
12476  case Intrinsic::x86_fma_vfnmsub_pd_512:
12477  case Intrinsic::x86_fma_vfmaddsub_ps_512:
12478  case Intrinsic::x86_fma_vfmaddsub_pd_512:
12479  case Intrinsic::x86_fma_vfmsubadd_ps_512:
12480  case Intrinsic::x86_fma_vfmsubadd_pd_512: {
12481    unsigned Opc;
12482    switch (IntNo) {
12483    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12484    case Intrinsic::x86_fma_vfmadd_ps:
12485    case Intrinsic::x86_fma_vfmadd_pd:
12486    case Intrinsic::x86_fma_vfmadd_ps_256:
12487    case Intrinsic::x86_fma_vfmadd_pd_256:
12488    case Intrinsic::x86_fma_vfmadd_ps_512:
12489    case Intrinsic::x86_fma_vfmadd_pd_512:
12490      Opc = X86ISD::FMADD;
12491      break;
12492    case Intrinsic::x86_fma_vfmsub_ps:
12493    case Intrinsic::x86_fma_vfmsub_pd:
12494    case Intrinsic::x86_fma_vfmsub_ps_256:
12495    case Intrinsic::x86_fma_vfmsub_pd_256:
12496    case Intrinsic::x86_fma_vfmsub_ps_512:
12497    case Intrinsic::x86_fma_vfmsub_pd_512:
12498      Opc = X86ISD::FMSUB;
12499      break;
12500    case Intrinsic::x86_fma_vfnmadd_ps:
12501    case Intrinsic::x86_fma_vfnmadd_pd:
12502    case Intrinsic::x86_fma_vfnmadd_ps_256:
12503    case Intrinsic::x86_fma_vfnmadd_pd_256:
12504    case Intrinsic::x86_fma_vfnmadd_ps_512:
12505    case Intrinsic::x86_fma_vfnmadd_pd_512:
12506      Opc = X86ISD::FNMADD;
12507      break;
12508    case Intrinsic::x86_fma_vfnmsub_ps:
12509    case Intrinsic::x86_fma_vfnmsub_pd:
12510    case Intrinsic::x86_fma_vfnmsub_ps_256:
12511    case Intrinsic::x86_fma_vfnmsub_pd_256:
12512    case Intrinsic::x86_fma_vfnmsub_ps_512:
12513    case Intrinsic::x86_fma_vfnmsub_pd_512:
12514      Opc = X86ISD::FNMSUB;
12515      break;
12516    case Intrinsic::x86_fma_vfmaddsub_ps:
12517    case Intrinsic::x86_fma_vfmaddsub_pd:
12518    case Intrinsic::x86_fma_vfmaddsub_ps_256:
12519    case Intrinsic::x86_fma_vfmaddsub_pd_256:
12520    case Intrinsic::x86_fma_vfmaddsub_ps_512:
12521    case Intrinsic::x86_fma_vfmaddsub_pd_512:
12522      Opc = X86ISD::FMADDSUB;
12523      break;
12524    case Intrinsic::x86_fma_vfmsubadd_ps:
12525    case Intrinsic::x86_fma_vfmsubadd_pd:
12526    case Intrinsic::x86_fma_vfmsubadd_ps_256:
12527    case Intrinsic::x86_fma_vfmsubadd_pd_256:
12528    case Intrinsic::x86_fma_vfmsubadd_ps_512:
12529    case Intrinsic::x86_fma_vfmsubadd_pd_512:
12530      Opc = X86ISD::FMSUBADD;
12531      break;
12532    }
12533
12534    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
12535                       Op.getOperand(2), Op.getOperand(3));
12536  }
12537  }
12538}
12539
12540static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
12541                              SDValue Src, SDValue Mask, SDValue Base,
12542                              SDValue Index, SDValue ScaleOp, SDValue Chain,
12543                              const X86Subtarget * Subtarget) {
12544  SDLoc dl(Op);
12545  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
12546  assert(C && "Invalid scale type");
12547  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
12548  EVT MaskVT = MVT::getVectorVT(MVT::i1,
12549                             Index.getSimpleValueType().getVectorNumElements());
12550  SDValue MaskInReg;
12551  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
12552  if (MaskC)
12553    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
12554  else
12555    MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
12556  SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
12557  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
12558  SDValue Segment = DAG.getRegister(0, MVT::i32);
12559  if (Src.getOpcode() == ISD::UNDEF)
12560    Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl);
12561  SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
12562  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
12563  SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
12564  return DAG.getMergeValues(RetOps, dl);
12565}
12566
12567static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
12568                               SDValue Src, SDValue Mask, SDValue Base,
12569                               SDValue Index, SDValue ScaleOp, SDValue Chain) {
12570  SDLoc dl(Op);
12571  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
12572  assert(C && "Invalid scale type");
12573  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
12574  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
12575  SDValue Segment = DAG.getRegister(0, MVT::i32);
12576  EVT MaskVT = MVT::getVectorVT(MVT::i1,
12577                             Index.getSimpleValueType().getVectorNumElements());
12578  SDValue MaskInReg;
12579  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
12580  if (MaskC)
12581    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
12582  else
12583    MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
12584  SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
12585  SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
12586  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
12587  return SDValue(Res, 1);
12588}
12589
12590static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
12591                               SDValue Mask, SDValue Base, SDValue Index,
12592                               SDValue ScaleOp, SDValue Chain) {
12593  SDLoc dl(Op);
12594  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
12595  assert(C && "Invalid scale type");
12596  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
12597  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
12598  SDValue Segment = DAG.getRegister(0, MVT::i32);
12599  EVT MaskVT =
12600    MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements());
12601  SDValue MaskInReg;
12602  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
12603  if (MaskC)
12604    MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), MaskVT);
12605  else
12606    MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
12607  //SDVTList VTs = DAG.getVTList(MVT::Other);
12608  SDValue Ops[] = {MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
12609  SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops);
12610  return SDValue(Res, 0);
12611}
12612
12613// getReadTimeStampCounter - Handles the lowering of builtin intrinsics that
12614// read the time stamp counter (x86_rdtsc and x86_rdtscp). This function is
12615// also used to custom lower READCYCLECOUNTER nodes.
12616static void getReadTimeStampCounter(SDNode *N, SDLoc DL, unsigned Opcode,
12617                              SelectionDAG &DAG, const X86Subtarget *Subtarget,
12618                              SmallVectorImpl<SDValue> &Results) {
12619  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12620  SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0));
12621  SDValue LO, HI;
12622
12623  // The processor's time-stamp counter (a 64-bit MSR) is stored into the
12624  // EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR
12625  // and the EAX register is loaded with the low-order 32 bits.
12626  if (Subtarget->is64Bit()) {
12627    LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
12628    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
12629                            LO.getValue(2));
12630  } else {
12631    LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
12632    HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
12633                            LO.getValue(2));
12634  }
12635  SDValue Chain = HI.getValue(1);
12636
12637  if (Opcode == X86ISD::RDTSCP_DAG) {
12638    assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
12639
12640    // Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into
12641    // the ECX register. Add 'ecx' explicitly to the chain.
12642    SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32,
12643                                     HI.getValue(2));
12644    // Explicitly store the content of ECX at the location passed in input
12645    // to the 'rdtscp' intrinsic.
12646    Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2),
12647                         MachinePointerInfo(), false, false, 0);
12648  }
12649
12650  if (Subtarget->is64Bit()) {
12651    // The EDX register is loaded with the high-order 32 bits of the MSR, and
12652    // the EAX register is loaded with the low-order 32 bits.
12653    SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
12654                              DAG.getConstant(32, MVT::i8));
12655    Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
12656    Results.push_back(Chain);
12657    return;
12658  }
12659
12660  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
12661  SDValue Ops[] = { LO, HI };
12662  SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
12663  Results.push_back(Pair);
12664  Results.push_back(Chain);
12665}
12666
12667static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
12668                                     SelectionDAG &DAG) {
12669  SmallVector<SDValue, 2> Results;
12670  SDLoc DL(Op);
12671  getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget,
12672                          Results);
12673  return DAG.getMergeValues(Results, DL);
12674}
12675
12676enum IntrinsicType {
12677  GATHER, SCATTER, PREFETCH, RDSEED, RDRAND, RDTSC, XTEST
12678};
12679
12680struct IntrinsicData {
12681  IntrinsicData(IntrinsicType IType, unsigned IOpc0, unsigned IOpc1)
12682    :Type(IType), Opc0(IOpc0), Opc1(IOpc1) {}
12683  IntrinsicType Type;
12684  unsigned      Opc0;
12685  unsigned      Opc1;
12686};
12687
12688std::map < unsigned, IntrinsicData> IntrMap;
12689static void InitIntinsicsMap() {
12690  static bool Initialized = false;
12691  if (Initialized)
12692    return;
12693  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qps_512,
12694                                IntrinsicData(GATHER, X86::VGATHERQPSZrm, 0)));
12695  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qps_512,
12696                                IntrinsicData(GATHER, X86::VGATHERQPSZrm, 0)));
12697  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qpd_512,
12698                                IntrinsicData(GATHER, X86::VGATHERQPDZrm, 0)));
12699  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_dpd_512,
12700                                IntrinsicData(GATHER, X86::VGATHERDPDZrm, 0)));
12701  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_dps_512,
12702                                IntrinsicData(GATHER, X86::VGATHERDPSZrm, 0)));
12703  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qpi_512,
12704                                IntrinsicData(GATHER, X86::VPGATHERQDZrm, 0)));
12705  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_qpq_512,
12706                                IntrinsicData(GATHER, X86::VPGATHERQQZrm, 0)));
12707  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_dpi_512,
12708                                IntrinsicData(GATHER, X86::VPGATHERDDZrm, 0)));
12709  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gather_dpq_512,
12710                                IntrinsicData(GATHER, X86::VPGATHERDQZrm, 0)));
12711
12712  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_qps_512,
12713                                IntrinsicData(SCATTER, X86::VSCATTERQPSZmr, 0)));
12714  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_qpd_512,
12715                                IntrinsicData(SCATTER, X86::VSCATTERQPDZmr, 0)));
12716  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_dpd_512,
12717                                IntrinsicData(SCATTER, X86::VSCATTERDPDZmr, 0)));
12718  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_dps_512,
12719                                IntrinsicData(SCATTER, X86::VSCATTERDPSZmr, 0)));
12720  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_qpi_512,
12721                                IntrinsicData(SCATTER, X86::VPSCATTERQDZmr, 0)));
12722  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_qpq_512,
12723                                IntrinsicData(SCATTER, X86::VPSCATTERQQZmr, 0)));
12724  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_dpi_512,
12725                                IntrinsicData(SCATTER, X86::VPSCATTERDDZmr, 0)));
12726  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatter_dpq_512,
12727                                IntrinsicData(SCATTER, X86::VPSCATTERDQZmr, 0)));
12728
12729  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gatherpf_qps_512,
12730                                IntrinsicData(PREFETCH, X86::VGATHERPF0QPSm,
12731                                                        X86::VGATHERPF1QPSm)));
12732  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gatherpf_qpd_512,
12733                                IntrinsicData(PREFETCH, X86::VGATHERPF0QPDm,
12734                                                        X86::VGATHERPF1QPDm)));
12735  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gatherpf_dpd_512,
12736                                IntrinsicData(PREFETCH, X86::VGATHERPF0DPDm,
12737                                                        X86::VGATHERPF1DPDm)));
12738  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_gatherpf_dps_512,
12739                                IntrinsicData(PREFETCH, X86::VGATHERPF0DPSm,
12740                                                        X86::VGATHERPF1DPSm)));
12741  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatterpf_qps_512,
12742                                IntrinsicData(PREFETCH, X86::VSCATTERPF0QPSm,
12743                                                        X86::VSCATTERPF1QPSm)));
12744  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatterpf_qpd_512,
12745                                IntrinsicData(PREFETCH, X86::VSCATTERPF0QPDm,
12746                                                        X86::VSCATTERPF1QPDm)));
12747  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatterpf_dpd_512,
12748                                IntrinsicData(PREFETCH, X86::VSCATTERPF0DPDm,
12749                                                        X86::VSCATTERPF1DPDm)));
12750  IntrMap.insert(std::make_pair(Intrinsic::x86_avx512_scatterpf_dps_512,
12751                                IntrinsicData(PREFETCH, X86::VSCATTERPF0DPSm,
12752                                                        X86::VSCATTERPF1DPSm)));
12753  IntrMap.insert(std::make_pair(Intrinsic::x86_rdrand_16,
12754                                IntrinsicData(RDRAND, X86ISD::RDRAND, 0)));
12755  IntrMap.insert(std::make_pair(Intrinsic::x86_rdrand_32,
12756                                IntrinsicData(RDRAND, X86ISD::RDRAND, 0)));
12757  IntrMap.insert(std::make_pair(Intrinsic::x86_rdrand_64,
12758                                IntrinsicData(RDRAND, X86ISD::RDRAND, 0)));
12759  IntrMap.insert(std::make_pair(Intrinsic::x86_rdseed_16,
12760                                IntrinsicData(RDSEED, X86ISD::RDSEED, 0)));
12761  IntrMap.insert(std::make_pair(Intrinsic::x86_rdseed_32,
12762                                IntrinsicData(RDSEED, X86ISD::RDSEED, 0)));
12763  IntrMap.insert(std::make_pair(Intrinsic::x86_rdseed_64,
12764                                IntrinsicData(RDSEED, X86ISD::RDSEED, 0)));
12765  IntrMap.insert(std::make_pair(Intrinsic::x86_xtest,
12766                                IntrinsicData(XTEST,  X86ISD::XTEST,  0)));
12767  IntrMap.insert(std::make_pair(Intrinsic::x86_rdtsc,
12768                                IntrinsicData(RDTSC,  X86ISD::RDTSC_DAG, 0)));
12769  IntrMap.insert(std::make_pair(Intrinsic::x86_rdtscp,
12770                                IntrinsicData(RDTSC,  X86ISD::RDTSCP_DAG, 0)));
12771  Initialized = true;
12772}
12773
12774static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
12775                                      SelectionDAG &DAG) {
12776  InitIntinsicsMap();
12777  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
12778  std::map < unsigned, IntrinsicData>::const_iterator itr = IntrMap.find(IntNo);
12779  if (itr == IntrMap.end())
12780    return SDValue();
12781
12782  SDLoc dl(Op);
12783  IntrinsicData Intr = itr->second;
12784  switch(Intr.Type) {
12785  case RDSEED:
12786  case RDRAND: {
12787    // Emit the node with the right value type.
12788    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
12789    SDValue Result = DAG.getNode(Intr.Opc0, dl, VTs, Op.getOperand(0));
12790
12791    // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
12792    // Otherwise return the value from Rand, which is always 0, casted to i32.
12793    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
12794                      DAG.getConstant(1, Op->getValueType(1)),
12795                      DAG.getConstant(X86::COND_B, MVT::i32),
12796                      SDValue(Result.getNode(), 1) };
12797    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
12798                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
12799                                  Ops);
12800
12801    // Return { result, isValid, chain }.
12802    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
12803                       SDValue(Result.getNode(), 2));
12804  }
12805  case GATHER: {
12806  //gather(v1, mask, index, base, scale);
12807    SDValue Chain = Op.getOperand(0);
12808    SDValue Src   = Op.getOperand(2);
12809    SDValue Base  = Op.getOperand(3);
12810    SDValue Index = Op.getOperand(4);
12811    SDValue Mask  = Op.getOperand(5);
12812    SDValue Scale = Op.getOperand(6);
12813    return getGatherNode(Intr.Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain,
12814                          Subtarget);
12815  }
12816  case SCATTER: {
12817  //scatter(base, mask, index, v1, scale);
12818    SDValue Chain = Op.getOperand(0);
12819    SDValue Base  = Op.getOperand(2);
12820    SDValue Mask  = Op.getOperand(3);
12821    SDValue Index = Op.getOperand(4);
12822    SDValue Src   = Op.getOperand(5);
12823    SDValue Scale = Op.getOperand(6);
12824    return getScatterNode(Intr.Opc0, Op, DAG, Src, Mask, Base, Index, Scale, Chain);
12825  }
12826  case PREFETCH: {
12827    SDValue Hint = Op.getOperand(6);
12828    unsigned HintVal;
12829    if (dyn_cast<ConstantSDNode> (Hint) == 0 ||
12830        (HintVal = dyn_cast<ConstantSDNode> (Hint)->getZExtValue()) > 1)
12831      llvm_unreachable("Wrong prefetch hint in intrinsic: should be 0 or 1");
12832    unsigned Opcode = (HintVal ? Intr.Opc1 : Intr.Opc0);
12833    SDValue Chain = Op.getOperand(0);
12834    SDValue Mask  = Op.getOperand(2);
12835    SDValue Index = Op.getOperand(3);
12836    SDValue Base  = Op.getOperand(4);
12837    SDValue Scale = Op.getOperand(5);
12838    return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain);
12839  }
12840  // Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP).
12841  case RDTSC: {
12842    SmallVector<SDValue, 2> Results;
12843    getReadTimeStampCounter(Op.getNode(), dl, Intr.Opc0, DAG, Subtarget, Results);
12844    return DAG.getMergeValues(Results, dl);
12845  }
12846  // XTEST intrinsics.
12847  case XTEST: {
12848    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
12849    SDValue InTrans = DAG.getNode(X86ISD::XTEST, dl, VTs, Op.getOperand(0));
12850    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
12851                                DAG.getConstant(X86::COND_NE, MVT::i8),
12852                                InTrans);
12853    SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
12854    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
12855                       Ret, SDValue(InTrans.getNode(), 1));
12856  }
12857  }
12858  llvm_unreachable("Unknown Intrinsic Type");
12859}
12860
12861SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
12862                                           SelectionDAG &DAG) const {
12863  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
12864  MFI->setReturnAddressIsTaken(true);
12865
12866  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
12867    return SDValue();
12868
12869  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12870  SDLoc dl(Op);
12871  EVT PtrVT = getPointerTy();
12872
12873  if (Depth > 0) {
12874    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
12875    const X86RegisterInfo *RegInfo =
12876      static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
12877    SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
12878    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
12879                       DAG.getNode(ISD::ADD, dl, PtrVT,
12880                                   FrameAddr, Offset),
12881                       MachinePointerInfo(), false, false, false, 0);
12882  }
12883
12884  // Just load the return address.
12885  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
12886  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
12887                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
12888}
12889
12890SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
12891  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
12892  MFI->setFrameAddressIsTaken(true);
12893
12894  EVT VT = Op.getValueType();
12895  SDLoc dl(Op);  // FIXME probably not meaningful
12896  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12897  const X86RegisterInfo *RegInfo =
12898    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
12899  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
12900  assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
12901          (FrameReg == X86::EBP && VT == MVT::i32)) &&
12902         "Invalid Frame Register!");
12903  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
12904  while (Depth--)
12905    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
12906                            MachinePointerInfo(),
12907                            false, false, false, 0);
12908  return FrameAddr;
12909}
12910
12911// FIXME? Maybe this could be a TableGen attribute on some registers and
12912// this table could be generated automatically from RegInfo.
12913unsigned X86TargetLowering::getRegisterByName(const char* RegName,
12914                                              EVT VT) const {
12915  unsigned Reg = StringSwitch<unsigned>(RegName)
12916                       .Case("esp", X86::ESP)
12917                       .Case("rsp", X86::RSP)
12918                       .Default(0);
12919  if (Reg)
12920    return Reg;
12921  report_fatal_error("Invalid register name global variable");
12922}
12923
12924SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
12925                                                     SelectionDAG &DAG) const {
12926  const X86RegisterInfo *RegInfo =
12927    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
12928  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
12929}
12930
12931SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
12932  SDValue Chain     = Op.getOperand(0);
12933  SDValue Offset    = Op.getOperand(1);
12934  SDValue Handler   = Op.getOperand(2);
12935  SDLoc dl      (Op);
12936
12937  EVT PtrVT = getPointerTy();
12938  const X86RegisterInfo *RegInfo =
12939    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
12940  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
12941  assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
12942          (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
12943         "Invalid Frame Register!");
12944  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
12945  unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
12946
12947  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
12948                                 DAG.getIntPtrConstant(RegInfo->getSlotSize()));
12949  StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
12950  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
12951                       false, false, 0);
12952  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
12953
12954  return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
12955                     DAG.getRegister(StoreAddrReg, PtrVT));
12956}
12957
12958SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
12959                                               SelectionDAG &DAG) const {
12960  SDLoc DL(Op);
12961  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
12962                     DAG.getVTList(MVT::i32, MVT::Other),
12963                     Op.getOperand(0), Op.getOperand(1));
12964}
12965
12966SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
12967                                                SelectionDAG &DAG) const {
12968  SDLoc DL(Op);
12969  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
12970                     Op.getOperand(0), Op.getOperand(1));
12971}
12972
12973static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
12974  return Op.getOperand(0);
12975}
12976
12977SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
12978                                                SelectionDAG &DAG) const {
12979  SDValue Root = Op.getOperand(0);
12980  SDValue Trmp = Op.getOperand(1); // trampoline
12981  SDValue FPtr = Op.getOperand(2); // nested function
12982  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
12983  SDLoc dl (Op);
12984
12985  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
12986  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12987
12988  if (Subtarget->is64Bit()) {
12989    SDValue OutChains[6];
12990
12991    // Large code-model.
12992    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
12993    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
12994
12995    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
12996    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
12997
12998    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
12999
13000    // Load the pointer to the nested function into R11.
13001    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
13002    SDValue Addr = Trmp;
13003    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
13004                                Addr, MachinePointerInfo(TrmpAddr),
13005                                false, false, 0);
13006
13007    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
13008                       DAG.getConstant(2, MVT::i64));
13009    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
13010                                MachinePointerInfo(TrmpAddr, 2),
13011                                false, false, 2);
13012
13013    // Load the 'nest' parameter value into R10.
13014    // R10 is specified in X86CallingConv.td
13015    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
13016    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
13017                       DAG.getConstant(10, MVT::i64));
13018    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
13019                                Addr, MachinePointerInfo(TrmpAddr, 10),
13020                                false, false, 0);
13021
13022    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
13023                       DAG.getConstant(12, MVT::i64));
13024    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
13025                                MachinePointerInfo(TrmpAddr, 12),
13026                                false, false, 2);
13027
13028    // Jump to the nested function.
13029    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
13030    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
13031                       DAG.getConstant(20, MVT::i64));
13032    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
13033                                Addr, MachinePointerInfo(TrmpAddr, 20),
13034                                false, false, 0);
13035
13036    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
13037    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
13038                       DAG.getConstant(22, MVT::i64));
13039    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
13040                                MachinePointerInfo(TrmpAddr, 22),
13041                                false, false, 0);
13042
13043    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
13044  } else {
13045    const Function *Func =
13046      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
13047    CallingConv::ID CC = Func->getCallingConv();
13048    unsigned NestReg;
13049
13050    switch (CC) {
13051    default:
13052      llvm_unreachable("Unsupported calling convention");
13053    case CallingConv::C:
13054    case CallingConv::X86_StdCall: {
13055      // Pass 'nest' parameter in ECX.
13056      // Must be kept in sync with X86CallingConv.td
13057      NestReg = X86::ECX;
13058
13059      // Check that ECX wasn't needed by an 'inreg' parameter.
13060      FunctionType *FTy = Func->getFunctionType();
13061      const AttributeSet &Attrs = Func->getAttributes();
13062
13063      if (!Attrs.isEmpty() && !Func->isVarArg()) {
13064        unsigned InRegCount = 0;
13065        unsigned Idx = 1;
13066
13067        for (FunctionType::param_iterator I = FTy->param_begin(),
13068             E = FTy->param_end(); I != E; ++I, ++Idx)
13069          if (Attrs.hasAttribute(Idx, Attribute::InReg))
13070            // FIXME: should only count parameters that are lowered to integers.
13071            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
13072
13073        if (InRegCount > 2) {
13074          report_fatal_error("Nest register in use - reduce number of inreg"
13075                             " parameters!");
13076        }
13077      }
13078      break;
13079    }
13080    case CallingConv::X86_FastCall:
13081    case CallingConv::X86_ThisCall:
13082    case CallingConv::Fast:
13083      // Pass 'nest' parameter in EAX.
13084      // Must be kept in sync with X86CallingConv.td
13085      NestReg = X86::EAX;
13086      break;
13087    }
13088
13089    SDValue OutChains[4];
13090    SDValue Addr, Disp;
13091
13092    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
13093                       DAG.getConstant(10, MVT::i32));
13094    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
13095
13096    // This is storing the opcode for MOV32ri.
13097    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
13098    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
13099    OutChains[0] = DAG.getStore(Root, dl,
13100                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
13101                                Trmp, MachinePointerInfo(TrmpAddr),
13102                                false, false, 0);
13103
13104    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
13105                       DAG.getConstant(1, MVT::i32));
13106    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
13107                                MachinePointerInfo(TrmpAddr, 1),
13108                                false, false, 1);
13109
13110    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
13111    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
13112                       DAG.getConstant(5, MVT::i32));
13113    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
13114                                MachinePointerInfo(TrmpAddr, 5),
13115                                false, false, 1);
13116
13117    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
13118                       DAG.getConstant(6, MVT::i32));
13119    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
13120                                MachinePointerInfo(TrmpAddr, 6),
13121                                false, false, 1);
13122
13123    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
13124  }
13125}
13126
13127SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
13128                                            SelectionDAG &DAG) const {
13129  /*
13130   The rounding mode is in bits 11:10 of FPSR, and has the following
13131   settings:
13132     00 Round to nearest
13133     01 Round to -inf
13134     10 Round to +inf
13135     11 Round to 0
13136
13137  FLT_ROUNDS, on the other hand, expects the following:
13138    -1 Undefined
13139     0 Round to 0
13140     1 Round to nearest
13141     2 Round to +inf
13142     3 Round to -inf
13143
13144  To perform the conversion, we do:
13145    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
13146  */
13147
13148  MachineFunction &MF = DAG.getMachineFunction();
13149  const TargetMachine &TM = MF.getTarget();
13150  const TargetFrameLowering &TFI = *TM.getFrameLowering();
13151  unsigned StackAlignment = TFI.getStackAlignment();
13152  MVT VT = Op.getSimpleValueType();
13153  SDLoc DL(Op);
13154
13155  // Save FP Control Word to stack slot
13156  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
13157  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
13158
13159  MachineMemOperand *MMO =
13160   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
13161                           MachineMemOperand::MOStore, 2, 2);
13162
13163  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
13164  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
13165                                          DAG.getVTList(MVT::Other),
13166                                          Ops, MVT::i16, MMO);
13167
13168  // Load FP Control Word from stack slot
13169  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
13170                            MachinePointerInfo(), false, false, false, 0);
13171
13172  // Transform as necessary
13173  SDValue CWD1 =
13174    DAG.getNode(ISD::SRL, DL, MVT::i16,
13175                DAG.getNode(ISD::AND, DL, MVT::i16,
13176                            CWD, DAG.getConstant(0x800, MVT::i16)),
13177                DAG.getConstant(11, MVT::i8));
13178  SDValue CWD2 =
13179    DAG.getNode(ISD::SRL, DL, MVT::i16,
13180                DAG.getNode(ISD::AND, DL, MVT::i16,
13181                            CWD, DAG.getConstant(0x400, MVT::i16)),
13182                DAG.getConstant(9, MVT::i8));
13183
13184  SDValue RetVal =
13185    DAG.getNode(ISD::AND, DL, MVT::i16,
13186                DAG.getNode(ISD::ADD, DL, MVT::i16,
13187                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
13188                            DAG.getConstant(1, MVT::i16)),
13189                DAG.getConstant(3, MVT::i16));
13190
13191  return DAG.getNode((VT.getSizeInBits() < 16 ?
13192                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
13193}
13194
13195static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
13196  MVT VT = Op.getSimpleValueType();
13197  EVT OpVT = VT;
13198  unsigned NumBits = VT.getSizeInBits();
13199  SDLoc dl(Op);
13200
13201  Op = Op.getOperand(0);
13202  if (VT == MVT::i8) {
13203    // Zero extend to i32 since there is not an i8 bsr.
13204    OpVT = MVT::i32;
13205    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
13206  }
13207
13208  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
13209  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
13210  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
13211
13212  // If src is zero (i.e. bsr sets ZF), returns NumBits.
13213  SDValue Ops[] = {
13214    Op,
13215    DAG.getConstant(NumBits+NumBits-1, OpVT),
13216    DAG.getConstant(X86::COND_E, MVT::i8),
13217    Op.getValue(1)
13218  };
13219  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops);
13220
13221  // Finally xor with NumBits-1.
13222  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
13223
13224  if (VT == MVT::i8)
13225    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
13226  return Op;
13227}
13228
13229static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
13230  MVT VT = Op.getSimpleValueType();
13231  EVT OpVT = VT;
13232  unsigned NumBits = VT.getSizeInBits();
13233  SDLoc dl(Op);
13234
13235  Op = Op.getOperand(0);
13236  if (VT == MVT::i8) {
13237    // Zero extend to i32 since there is not an i8 bsr.
13238    OpVT = MVT::i32;
13239    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
13240  }
13241
13242  // Issue a bsr (scan bits in reverse).
13243  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
13244  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
13245
13246  // And xor with NumBits-1.
13247  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
13248
13249  if (VT == MVT::i8)
13250    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
13251  return Op;
13252}
13253
13254static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
13255  MVT VT = Op.getSimpleValueType();
13256  unsigned NumBits = VT.getSizeInBits();
13257  SDLoc dl(Op);
13258  Op = Op.getOperand(0);
13259
13260  // Issue a bsf (scan bits forward) which also sets EFLAGS.
13261  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
13262  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
13263
13264  // If src is zero (i.e. bsf sets ZF), returns NumBits.
13265  SDValue Ops[] = {
13266    Op,
13267    DAG.getConstant(NumBits, VT),
13268    DAG.getConstant(X86::COND_E, MVT::i8),
13269    Op.getValue(1)
13270  };
13271  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops);
13272}
13273
13274// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
13275// ones, and then concatenate the result back.
13276static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
13277  MVT VT = Op.getSimpleValueType();
13278
13279  assert(VT.is256BitVector() && VT.isInteger() &&
13280         "Unsupported value type for operation");
13281
13282  unsigned NumElems = VT.getVectorNumElements();
13283  SDLoc dl(Op);
13284
13285  // Extract the LHS vectors
13286  SDValue LHS = Op.getOperand(0);
13287  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
13288  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
13289
13290  // Extract the RHS vectors
13291  SDValue RHS = Op.getOperand(1);
13292  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
13293  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
13294
13295  MVT EltVT = VT.getVectorElementType();
13296  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
13297
13298  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
13299                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
13300                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
13301}
13302
13303static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
13304  assert(Op.getSimpleValueType().is256BitVector() &&
13305         Op.getSimpleValueType().isInteger() &&
13306         "Only handle AVX 256-bit vector integer operation");
13307  return Lower256IntArith(Op, DAG);
13308}
13309
13310static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
13311  assert(Op.getSimpleValueType().is256BitVector() &&
13312         Op.getSimpleValueType().isInteger() &&
13313         "Only handle AVX 256-bit vector integer operation");
13314  return Lower256IntArith(Op, DAG);
13315}
13316
13317static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
13318                        SelectionDAG &DAG) {
13319  SDLoc dl(Op);
13320  MVT VT = Op.getSimpleValueType();
13321
13322  // Decompose 256-bit ops into smaller 128-bit ops.
13323  if (VT.is256BitVector() && !Subtarget->hasInt256())
13324    return Lower256IntArith(Op, DAG);
13325
13326  SDValue A = Op.getOperand(0);
13327  SDValue B = Op.getOperand(1);
13328
13329  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
13330  if (VT == MVT::v4i32) {
13331    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
13332           "Should not custom lower when pmuldq is available!");
13333
13334    // Extract the odd parts.
13335    static const int UnpackMask[] = { 1, -1, 3, -1 };
13336    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
13337    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
13338
13339    // Multiply the even parts.
13340    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
13341    // Now multiply odd parts.
13342    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
13343
13344    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
13345    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
13346
13347    // Merge the two vectors back together with a shuffle. This expands into 2
13348    // shuffles.
13349    static const int ShufMask[] = { 0, 4, 2, 6 };
13350    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
13351  }
13352
13353  assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
13354         "Only know how to lower V2I64/V4I64/V8I64 multiply");
13355
13356  //  Ahi = psrlqi(a, 32);
13357  //  Bhi = psrlqi(b, 32);
13358  //
13359  //  AloBlo = pmuludq(a, b);
13360  //  AloBhi = pmuludq(a, Bhi);
13361  //  AhiBlo = pmuludq(Ahi, b);
13362
13363  //  AloBhi = psllqi(AloBhi, 32);
13364  //  AhiBlo = psllqi(AhiBlo, 32);
13365  //  return AloBlo + AloBhi + AhiBlo;
13366
13367  SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
13368  SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
13369
13370  // Bit cast to 32-bit vectors for MULUDQ
13371  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 :
13372                                  (VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32;
13373  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
13374  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
13375  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
13376  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
13377
13378  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
13379  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
13380  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
13381
13382  AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG);
13383  AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG);
13384
13385  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
13386  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
13387}
13388
13389SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const {
13390  assert(Subtarget->isTargetWin64() && "Unexpected target");
13391  EVT VT = Op.getValueType();
13392  assert(VT.isInteger() && VT.getSizeInBits() == 128 &&
13393         "Unexpected return type for lowering");
13394
13395  RTLIB::Libcall LC;
13396  bool isSigned;
13397  switch (Op->getOpcode()) {
13398  default: llvm_unreachable("Unexpected request for libcall!");
13399  case ISD::SDIV:      isSigned = true;  LC = RTLIB::SDIV_I128;    break;
13400  case ISD::UDIV:      isSigned = false; LC = RTLIB::UDIV_I128;    break;
13401  case ISD::SREM:      isSigned = true;  LC = RTLIB::SREM_I128;    break;
13402  case ISD::UREM:      isSigned = false; LC = RTLIB::UREM_I128;    break;
13403  case ISD::SDIVREM:   isSigned = true;  LC = RTLIB::SDIVREM_I128; break;
13404  case ISD::UDIVREM:   isSigned = false; LC = RTLIB::UDIVREM_I128; break;
13405  }
13406
13407  SDLoc dl(Op);
13408  SDValue InChain = DAG.getEntryNode();
13409
13410  TargetLowering::ArgListTy Args;
13411  TargetLowering::ArgListEntry Entry;
13412  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
13413    EVT ArgVT = Op->getOperand(i).getValueType();
13414    assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 &&
13415           "Unexpected argument type for lowering");
13416    SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16);
13417    Entry.Node = StackPtr;
13418    InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr, MachinePointerInfo(),
13419                           false, false, 16);
13420    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
13421    Entry.Ty = PointerType::get(ArgTy,0);
13422    Entry.isSExt = false;
13423    Entry.isZExt = false;
13424    Args.push_back(Entry);
13425  }
13426
13427  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
13428                                         getPointerTy());
13429
13430  TargetLowering::CallLoweringInfo CLI(DAG);
13431  CLI.setDebugLoc(dl).setChain(InChain)
13432    .setCallee(getLibcallCallingConv(LC),
13433               static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()),
13434               Callee, &Args, 0)
13435    .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
13436
13437  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
13438  return DAG.getNode(ISD::BITCAST, dl, VT, CallInfo.first);
13439}
13440
13441static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget,
13442                             SelectionDAG &DAG) {
13443  SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
13444  EVT VT = Op0.getValueType();
13445  SDLoc dl(Op);
13446
13447  assert((VT == MVT::v4i32 && Subtarget->hasSSE2()) ||
13448         (VT == MVT::v8i32 && Subtarget->hasInt256()));
13449
13450  // Get the high parts.
13451  const int Mask[] = {1, 2, 3, 4, 5, 6, 7, 8};
13452  SDValue Hi0 = DAG.getVectorShuffle(VT, dl, Op0, Op0, Mask);
13453  SDValue Hi1 = DAG.getVectorShuffle(VT, dl, Op1, Op1, Mask);
13454
13455  // Emit two multiplies, one for the lower 2 ints and one for the higher 2
13456  // ints.
13457  MVT MulVT = VT == MVT::v4i32 ? MVT::v2i64 : MVT::v4i64;
13458  bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI;
13459  unsigned Opcode =
13460      (!IsSigned || !Subtarget->hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ;
13461  SDValue Mul1 = DAG.getNode(ISD::BITCAST, dl, VT,
13462                             DAG.getNode(Opcode, dl, MulVT, Op0, Op1));
13463  SDValue Mul2 = DAG.getNode(ISD::BITCAST, dl, VT,
13464                             DAG.getNode(Opcode, dl, MulVT, Hi0, Hi1));
13465
13466  // Shuffle it back into the right order.
13467  const int HighMask[] = {1, 5, 3, 7, 9, 13, 11, 15};
13468  SDValue Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
13469  const int LowMask[] = {0, 4, 2, 6, 8, 12, 10, 14};
13470  SDValue Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
13471
13472  // If we have a signed multiply but no PMULDQ fix up the high parts of a
13473  // unsigned multiply.
13474  if (IsSigned && !Subtarget->hasSSE41()) {
13475    SDValue ShAmt =
13476        DAG.getConstant(31, DAG.getTargetLoweringInfo().getShiftAmountTy(VT));
13477    SDValue T1 = DAG.getNode(ISD::AND, dl, VT,
13478                             DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1);
13479    SDValue T2 = DAG.getNode(ISD::AND, dl, VT,
13480                             DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0);
13481
13482    SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2);
13483    Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup);
13484  }
13485
13486  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getValueType(), Highs, Lows);
13487}
13488
13489static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
13490                                         const X86Subtarget *Subtarget) {
13491  MVT VT = Op.getSimpleValueType();
13492  SDLoc dl(Op);
13493  SDValue R = Op.getOperand(0);
13494  SDValue Amt = Op.getOperand(1);
13495
13496  // Optimize shl/srl/sra with constant shift amount.
13497  if (isSplatVector(Amt.getNode())) {
13498    SDValue SclrAmt = Amt->getOperand(0);
13499    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
13500      uint64_t ShiftAmt = C->getZExtValue();
13501
13502      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
13503          (Subtarget->hasInt256() &&
13504           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16)) ||
13505          (Subtarget->hasAVX512() &&
13506           (VT == MVT::v8i64 || VT == MVT::v16i32))) {
13507        if (Op.getOpcode() == ISD::SHL)
13508          return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
13509                                            DAG);
13510        if (Op.getOpcode() == ISD::SRL)
13511          return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
13512                                            DAG);
13513        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
13514          return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
13515                                            DAG);
13516      }
13517
13518      if (VT == MVT::v16i8) {
13519        if (Op.getOpcode() == ISD::SHL) {
13520          // Make a large shift.
13521          SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
13522                                                   MVT::v8i16, R, ShiftAmt,
13523                                                   DAG);
13524          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
13525          // Zero out the rightmost bits.
13526          SmallVector<SDValue, 16> V(16,
13527                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
13528                                                     MVT::i8));
13529          return DAG.getNode(ISD::AND, dl, VT, SHL,
13530                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
13531        }
13532        if (Op.getOpcode() == ISD::SRL) {
13533          // Make a large shift.
13534          SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
13535                                                   MVT::v8i16, R, ShiftAmt,
13536                                                   DAG);
13537          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
13538          // Zero out the leftmost bits.
13539          SmallVector<SDValue, 16> V(16,
13540                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
13541                                                     MVT::i8));
13542          return DAG.getNode(ISD::AND, dl, VT, SRL,
13543                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
13544        }
13545        if (Op.getOpcode() == ISD::SRA) {
13546          if (ShiftAmt == 7) {
13547            // R s>> 7  ===  R s< 0
13548            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
13549            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
13550          }
13551
13552          // R s>> a === ((R u>> a) ^ m) - m
13553          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
13554          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
13555                                                         MVT::i8));
13556          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V);
13557          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
13558          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
13559          return Res;
13560        }
13561        llvm_unreachable("Unknown shift opcode.");
13562      }
13563
13564      if (Subtarget->hasInt256() && VT == MVT::v32i8) {
13565        if (Op.getOpcode() == ISD::SHL) {
13566          // Make a large shift.
13567          SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
13568                                                   MVT::v16i16, R, ShiftAmt,
13569                                                   DAG);
13570          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
13571          // Zero out the rightmost bits.
13572          SmallVector<SDValue, 32> V(32,
13573                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
13574                                                     MVT::i8));
13575          return DAG.getNode(ISD::AND, dl, VT, SHL,
13576                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
13577        }
13578        if (Op.getOpcode() == ISD::SRL) {
13579          // Make a large shift.
13580          SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
13581                                                   MVT::v16i16, R, ShiftAmt,
13582                                                   DAG);
13583          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
13584          // Zero out the leftmost bits.
13585          SmallVector<SDValue, 32> V(32,
13586                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
13587                                                     MVT::i8));
13588          return DAG.getNode(ISD::AND, dl, VT, SRL,
13589                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V));
13590        }
13591        if (Op.getOpcode() == ISD::SRA) {
13592          if (ShiftAmt == 7) {
13593            // R s>> 7  ===  R s< 0
13594            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
13595            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
13596          }
13597
13598          // R s>> a === ((R u>> a) ^ m) - m
13599          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
13600          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
13601                                                         MVT::i8));
13602          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, V);
13603          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
13604          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
13605          return Res;
13606        }
13607        llvm_unreachable("Unknown shift opcode.");
13608      }
13609    }
13610  }
13611
13612  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
13613  if (!Subtarget->is64Bit() &&
13614      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
13615      Amt.getOpcode() == ISD::BITCAST &&
13616      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
13617    Amt = Amt.getOperand(0);
13618    unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
13619                     VT.getVectorNumElements();
13620    unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
13621    uint64_t ShiftAmt = 0;
13622    for (unsigned i = 0; i != Ratio; ++i) {
13623      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i));
13624      if (!C)
13625        return SDValue();
13626      // 6 == Log2(64)
13627      ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
13628    }
13629    // Check remaining shift amounts.
13630    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
13631      uint64_t ShAmt = 0;
13632      for (unsigned j = 0; j != Ratio; ++j) {
13633        ConstantSDNode *C =
13634          dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
13635        if (!C)
13636          return SDValue();
13637        // 6 == Log2(64)
13638        ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
13639      }
13640      if (ShAmt != ShiftAmt)
13641        return SDValue();
13642    }
13643    switch (Op.getOpcode()) {
13644    default:
13645      llvm_unreachable("Unknown shift opcode!");
13646    case ISD::SHL:
13647      return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
13648                                        DAG);
13649    case ISD::SRL:
13650      return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
13651                                        DAG);
13652    case ISD::SRA:
13653      return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
13654                                        DAG);
13655    }
13656  }
13657
13658  return SDValue();
13659}
13660
13661static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
13662                                        const X86Subtarget* Subtarget) {
13663  MVT VT = Op.getSimpleValueType();
13664  SDLoc dl(Op);
13665  SDValue R = Op.getOperand(0);
13666  SDValue Amt = Op.getOperand(1);
13667
13668  if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) ||
13669      VT == MVT::v4i32 || VT == MVT::v8i16 ||
13670      (Subtarget->hasInt256() &&
13671       ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
13672        VT == MVT::v8i32 || VT == MVT::v16i16)) ||
13673       (Subtarget->hasAVX512() && (VT == MVT::v8i64 || VT == MVT::v16i32))) {
13674    SDValue BaseShAmt;
13675    EVT EltVT = VT.getVectorElementType();
13676
13677    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
13678      unsigned NumElts = VT.getVectorNumElements();
13679      unsigned i, j;
13680      for (i = 0; i != NumElts; ++i) {
13681        if (Amt.getOperand(i).getOpcode() == ISD::UNDEF)
13682          continue;
13683        break;
13684      }
13685      for (j = i; j != NumElts; ++j) {
13686        SDValue Arg = Amt.getOperand(j);
13687        if (Arg.getOpcode() == ISD::UNDEF) continue;
13688        if (Arg != Amt.getOperand(i))
13689          break;
13690      }
13691      if (i != NumElts && j == NumElts)
13692        BaseShAmt = Amt.getOperand(i);
13693    } else {
13694      if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
13695        Amt = Amt.getOperand(0);
13696      if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE &&
13697               cast<ShuffleVectorSDNode>(Amt)->isSplat()) {
13698        SDValue InVec = Amt.getOperand(0);
13699        if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13700          unsigned NumElts = InVec.getValueType().getVectorNumElements();
13701          unsigned i = 0;
13702          for (; i != NumElts; ++i) {
13703            SDValue Arg = InVec.getOperand(i);
13704            if (Arg.getOpcode() == ISD::UNDEF) continue;
13705            BaseShAmt = Arg;
13706            break;
13707          }
13708        } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13709           if (ConstantSDNode *C =
13710               dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13711             unsigned SplatIdx =
13712               cast<ShuffleVectorSDNode>(Amt)->getSplatIndex();
13713             if (C->getZExtValue() == SplatIdx)
13714               BaseShAmt = InVec.getOperand(1);
13715           }
13716        }
13717        if (!BaseShAmt.getNode())
13718          BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt,
13719                                  DAG.getIntPtrConstant(0));
13720      }
13721    }
13722
13723    if (BaseShAmt.getNode()) {
13724      if (EltVT.bitsGT(MVT::i32))
13725        BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt);
13726      else if (EltVT.bitsLT(MVT::i32))
13727        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
13728
13729      switch (Op.getOpcode()) {
13730      default:
13731        llvm_unreachable("Unknown shift opcode!");
13732      case ISD::SHL:
13733        switch (VT.SimpleTy) {
13734        default: return SDValue();
13735        case MVT::v2i64:
13736        case MVT::v4i32:
13737        case MVT::v8i16:
13738        case MVT::v4i64:
13739        case MVT::v8i32:
13740        case MVT::v16i16:
13741        case MVT::v16i32:
13742        case MVT::v8i64:
13743          return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
13744        }
13745      case ISD::SRA:
13746        switch (VT.SimpleTy) {
13747        default: return SDValue();
13748        case MVT::v4i32:
13749        case MVT::v8i16:
13750        case MVT::v8i32:
13751        case MVT::v16i16:
13752        case MVT::v16i32:
13753        case MVT::v8i64:
13754          return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
13755        }
13756      case ISD::SRL:
13757        switch (VT.SimpleTy) {
13758        default: return SDValue();
13759        case MVT::v2i64:
13760        case MVT::v4i32:
13761        case MVT::v8i16:
13762        case MVT::v4i64:
13763        case MVT::v8i32:
13764        case MVT::v16i16:
13765        case MVT::v16i32:
13766        case MVT::v8i64:
13767          return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
13768        }
13769      }
13770    }
13771  }
13772
13773  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
13774  if (!Subtarget->is64Bit() &&
13775      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64) ||
13776      (Subtarget->hasAVX512() && VT == MVT::v8i64)) &&
13777      Amt.getOpcode() == ISD::BITCAST &&
13778      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
13779    Amt = Amt.getOperand(0);
13780    unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
13781                     VT.getVectorNumElements();
13782    std::vector<SDValue> Vals(Ratio);
13783    for (unsigned i = 0; i != Ratio; ++i)
13784      Vals[i] = Amt.getOperand(i);
13785    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
13786      for (unsigned j = 0; j != Ratio; ++j)
13787        if (Vals[j] != Amt.getOperand(i + j))
13788          return SDValue();
13789    }
13790    switch (Op.getOpcode()) {
13791    default:
13792      llvm_unreachable("Unknown shift opcode!");
13793    case ISD::SHL:
13794      return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1));
13795    case ISD::SRL:
13796      return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1));
13797    case ISD::SRA:
13798      return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1));
13799    }
13800  }
13801
13802  return SDValue();
13803}
13804
13805static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
13806                          SelectionDAG &DAG) {
13807
13808  MVT VT = Op.getSimpleValueType();
13809  SDLoc dl(Op);
13810  SDValue R = Op.getOperand(0);
13811  SDValue Amt = Op.getOperand(1);
13812  SDValue V;
13813
13814  if (!Subtarget->hasSSE2())
13815    return SDValue();
13816
13817  V = LowerScalarImmediateShift(Op, DAG, Subtarget);
13818  if (V.getNode())
13819    return V;
13820
13821  V = LowerScalarVariableShift(Op, DAG, Subtarget);
13822  if (V.getNode())
13823      return V;
13824
13825  if (Subtarget->hasAVX512() && (VT == MVT::v16i32 || VT == MVT::v8i64))
13826    return Op;
13827  // AVX2 has VPSLLV/VPSRAV/VPSRLV.
13828  if (Subtarget->hasInt256()) {
13829    if (Op.getOpcode() == ISD::SRL &&
13830        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
13831         VT == MVT::v4i64 || VT == MVT::v8i32))
13832      return Op;
13833    if (Op.getOpcode() == ISD::SHL &&
13834        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
13835         VT == MVT::v4i64 || VT == MVT::v8i32))
13836      return Op;
13837    if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32))
13838      return Op;
13839  }
13840
13841  // If possible, lower this packed shift into a vector multiply instead of
13842  // expanding it into a sequence of scalar shifts.
13843  // Do this only if the vector shift count is a constant build_vector.
13844  if (Op.getOpcode() == ISD::SHL &&
13845      (VT == MVT::v8i16 || VT == MVT::v4i32 ||
13846       (Subtarget->hasInt256() && VT == MVT::v16i16)) &&
13847      ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
13848    SmallVector<SDValue, 8> Elts;
13849    EVT SVT = VT.getScalarType();
13850    unsigned SVTBits = SVT.getSizeInBits();
13851    const APInt &One = APInt(SVTBits, 1);
13852    unsigned NumElems = VT.getVectorNumElements();
13853
13854    for (unsigned i=0; i !=NumElems; ++i) {
13855      SDValue Op = Amt->getOperand(i);
13856      if (Op->getOpcode() == ISD::UNDEF) {
13857        Elts.push_back(Op);
13858        continue;
13859      }
13860
13861      ConstantSDNode *ND = cast<ConstantSDNode>(Op);
13862      const APInt &C = APInt(SVTBits, ND->getAPIntValue().getZExtValue());
13863      uint64_t ShAmt = C.getZExtValue();
13864      if (ShAmt >= SVTBits) {
13865        Elts.push_back(DAG.getUNDEF(SVT));
13866        continue;
13867      }
13868      Elts.push_back(DAG.getConstant(One.shl(ShAmt), SVT));
13869    }
13870    SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
13871    return DAG.getNode(ISD::MUL, dl, VT, R, BV);
13872  }
13873
13874  // Lower SHL with variable shift amount.
13875  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
13876    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
13877
13878    Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
13879    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
13880    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
13881    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
13882  }
13883
13884  // If possible, lower this shift as a sequence of two shifts by
13885  // constant plus a MOVSS/MOVSD instead of scalarizing it.
13886  // Example:
13887  //   (v4i32 (srl A, (build_vector < X, Y, Y, Y>)))
13888  //
13889  // Could be rewritten as:
13890  //   (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>)))
13891  //
13892  // The advantage is that the two shifts from the example would be
13893  // lowered as X86ISD::VSRLI nodes. This would be cheaper than scalarizing
13894  // the vector shift into four scalar shifts plus four pairs of vector
13895  // insert/extract.
13896  if ((VT == MVT::v8i16 || VT == MVT::v4i32) &&
13897      ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
13898    unsigned TargetOpcode = X86ISD::MOVSS;
13899    bool CanBeSimplified;
13900    // The splat value for the first packed shift (the 'X' from the example).
13901    SDValue Amt1 = Amt->getOperand(0);
13902    // The splat value for the second packed shift (the 'Y' from the example).
13903    SDValue Amt2 = (VT == MVT::v4i32) ? Amt->getOperand(1) :
13904                                        Amt->getOperand(2);
13905
13906    // See if it is possible to replace this node with a sequence of
13907    // two shifts followed by a MOVSS/MOVSD
13908    if (VT == MVT::v4i32) {
13909      // Check if it is legal to use a MOVSS.
13910      CanBeSimplified = Amt2 == Amt->getOperand(2) &&
13911                        Amt2 == Amt->getOperand(3);
13912      if (!CanBeSimplified) {
13913        // Otherwise, check if we can still simplify this node using a MOVSD.
13914        CanBeSimplified = Amt1 == Amt->getOperand(1) &&
13915                          Amt->getOperand(2) == Amt->getOperand(3);
13916        TargetOpcode = X86ISD::MOVSD;
13917        Amt2 = Amt->getOperand(2);
13918      }
13919    } else {
13920      // Do similar checks for the case where the machine value type
13921      // is MVT::v8i16.
13922      CanBeSimplified = Amt1 == Amt->getOperand(1);
13923      for (unsigned i=3; i != 8 && CanBeSimplified; ++i)
13924        CanBeSimplified = Amt2 == Amt->getOperand(i);
13925
13926      if (!CanBeSimplified) {
13927        TargetOpcode = X86ISD::MOVSD;
13928        CanBeSimplified = true;
13929        Amt2 = Amt->getOperand(4);
13930        for (unsigned i=0; i != 4 && CanBeSimplified; ++i)
13931          CanBeSimplified = Amt1 == Amt->getOperand(i);
13932        for (unsigned j=4; j != 8 && CanBeSimplified; ++j)
13933          CanBeSimplified = Amt2 == Amt->getOperand(j);
13934      }
13935    }
13936
13937    if (CanBeSimplified && isa<ConstantSDNode>(Amt1) &&
13938        isa<ConstantSDNode>(Amt2)) {
13939      // Replace this node with two shifts followed by a MOVSS/MOVSD.
13940      EVT CastVT = MVT::v4i32;
13941      SDValue Splat1 =
13942        DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), VT);
13943      SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1);
13944      SDValue Splat2 =
13945        DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), VT);
13946      SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2);
13947      if (TargetOpcode == X86ISD::MOVSD)
13948        CastVT = MVT::v2i64;
13949      SDValue BitCast1 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift1);
13950      SDValue BitCast2 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift2);
13951      SDValue Result = getTargetShuffleNode(TargetOpcode, dl, CastVT, BitCast2,
13952                                            BitCast1, DAG);
13953      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
13954    }
13955  }
13956
13957  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
13958    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
13959
13960    // a = a << 5;
13961    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
13962    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
13963
13964    // Turn 'a' into a mask suitable for VSELECT
13965    SDValue VSelM = DAG.getConstant(0x80, VT);
13966    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
13967    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
13968
13969    SDValue CM1 = DAG.getConstant(0x0f, VT);
13970    SDValue CM2 = DAG.getConstant(0x3f, VT);
13971
13972    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
13973    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
13974    M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 4, DAG);
13975    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
13976    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
13977
13978    // a += a
13979    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
13980    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
13981    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
13982
13983    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
13984    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
13985    M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 2, DAG);
13986    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
13987    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
13988
13989    // a += a
13990    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
13991    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
13992    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
13993
13994    // return VSELECT(r, r+r, a);
13995    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
13996                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
13997    return R;
13998  }
13999
14000  // It's worth extending once and using the v8i32 shifts for 16-bit types, but
14001  // the extra overheads to get from v16i8 to v8i32 make the existing SSE
14002  // solution better.
14003  if (Subtarget->hasInt256() && VT == MVT::v8i16) {
14004    MVT NewVT = VT == MVT::v8i16 ? MVT::v8i32 : MVT::v16i16;
14005    unsigned ExtOpc =
14006        Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
14007    R = DAG.getNode(ExtOpc, dl, NewVT, R);
14008    Amt = DAG.getNode(ISD::ANY_EXTEND, dl, NewVT, Amt);
14009    return DAG.getNode(ISD::TRUNCATE, dl, VT,
14010                       DAG.getNode(Op.getOpcode(), dl, NewVT, R, Amt));
14011    }
14012
14013  // Decompose 256-bit shifts into smaller 128-bit shifts.
14014  if (VT.is256BitVector()) {
14015    unsigned NumElems = VT.getVectorNumElements();
14016    MVT EltVT = VT.getVectorElementType();
14017    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
14018
14019    // Extract the two vectors
14020    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
14021    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
14022
14023    // Recreate the shift amount vectors
14024    SDValue Amt1, Amt2;
14025    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
14026      // Constant shift amount
14027      SmallVector<SDValue, 4> Amt1Csts;
14028      SmallVector<SDValue, 4> Amt2Csts;
14029      for (unsigned i = 0; i != NumElems/2; ++i)
14030        Amt1Csts.push_back(Amt->getOperand(i));
14031      for (unsigned i = NumElems/2; i != NumElems; ++i)
14032        Amt2Csts.push_back(Amt->getOperand(i));
14033
14034      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt1Csts);
14035      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt2Csts);
14036    } else {
14037      // Variable shift amount
14038      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
14039      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
14040    }
14041
14042    // Issue new vector shifts for the smaller types
14043    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
14044    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
14045
14046    // Concatenate the result back
14047    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
14048  }
14049
14050  return SDValue();
14051}
14052
14053static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
14054  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
14055  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
14056  // looks for this combo and may remove the "setcc" instruction if the "setcc"
14057  // has only one use.
14058  SDNode *N = Op.getNode();
14059  SDValue LHS = N->getOperand(0);
14060  SDValue RHS = N->getOperand(1);
14061  unsigned BaseOp = 0;
14062  unsigned Cond = 0;
14063  SDLoc DL(Op);
14064  switch (Op.getOpcode()) {
14065  default: llvm_unreachable("Unknown ovf instruction!");
14066  case ISD::SADDO:
14067    // A subtract of one will be selected as a INC. Note that INC doesn't
14068    // set CF, so we can't do this for UADDO.
14069    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
14070      if (C->isOne()) {
14071        BaseOp = X86ISD::INC;
14072        Cond = X86::COND_O;
14073        break;
14074      }
14075    BaseOp = X86ISD::ADD;
14076    Cond = X86::COND_O;
14077    break;
14078  case ISD::UADDO:
14079    BaseOp = X86ISD::ADD;
14080    Cond = X86::COND_B;
14081    break;
14082  case ISD::SSUBO:
14083    // A subtract of one will be selected as a DEC. Note that DEC doesn't
14084    // set CF, so we can't do this for USUBO.
14085    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
14086      if (C->isOne()) {
14087        BaseOp = X86ISD::DEC;
14088        Cond = X86::COND_O;
14089        break;
14090      }
14091    BaseOp = X86ISD::SUB;
14092    Cond = X86::COND_O;
14093    break;
14094  case ISD::USUBO:
14095    BaseOp = X86ISD::SUB;
14096    Cond = X86::COND_B;
14097    break;
14098  case ISD::SMULO:
14099    BaseOp = X86ISD::SMUL;
14100    Cond = X86::COND_O;
14101    break;
14102  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
14103    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
14104                                 MVT::i32);
14105    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
14106
14107    SDValue SetCC =
14108      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14109                  DAG.getConstant(X86::COND_O, MVT::i32),
14110                  SDValue(Sum.getNode(), 2));
14111
14112    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
14113  }
14114  }
14115
14116  // Also sets EFLAGS.
14117  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
14118  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
14119
14120  SDValue SetCC =
14121    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
14122                DAG.getConstant(Cond, MVT::i32),
14123                SDValue(Sum.getNode(), 1));
14124
14125  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
14126}
14127
14128SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
14129                                                  SelectionDAG &DAG) const {
14130  SDLoc dl(Op);
14131  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
14132  MVT VT = Op.getSimpleValueType();
14133
14134  if (!Subtarget->hasSSE2() || !VT.isVector())
14135    return SDValue();
14136
14137  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
14138                      ExtraVT.getScalarType().getSizeInBits();
14139
14140  switch (VT.SimpleTy) {
14141    default: return SDValue();
14142    case MVT::v8i32:
14143    case MVT::v16i16:
14144      if (!Subtarget->hasFp256())
14145        return SDValue();
14146      if (!Subtarget->hasInt256()) {
14147        // needs to be split
14148        unsigned NumElems = VT.getVectorNumElements();
14149
14150        // Extract the LHS vectors
14151        SDValue LHS = Op.getOperand(0);
14152        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
14153        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
14154
14155        MVT EltVT = VT.getVectorElementType();
14156        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
14157
14158        EVT ExtraEltVT = ExtraVT.getVectorElementType();
14159        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
14160        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
14161                                   ExtraNumElems/2);
14162        SDValue Extra = DAG.getValueType(ExtraVT);
14163
14164        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
14165        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
14166
14167        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
14168      }
14169      // fall through
14170    case MVT::v4i32:
14171    case MVT::v8i16: {
14172      SDValue Op0 = Op.getOperand(0);
14173      SDValue Op00 = Op0.getOperand(0);
14174      SDValue Tmp1;
14175      // Hopefully, this VECTOR_SHUFFLE is just a VZEXT.
14176      if (Op0.getOpcode() == ISD::BITCAST &&
14177          Op00.getOpcode() == ISD::VECTOR_SHUFFLE) {
14178        // (sext (vzext x)) -> (vsext x)
14179        Tmp1 = LowerVectorIntExtend(Op00, Subtarget, DAG);
14180        if (Tmp1.getNode()) {
14181          EVT ExtraEltVT = ExtraVT.getVectorElementType();
14182          // This folding is only valid when the in-reg type is a vector of i8,
14183          // i16, or i32.
14184          if (ExtraEltVT == MVT::i8 || ExtraEltVT == MVT::i16 ||
14185              ExtraEltVT == MVT::i32) {
14186            SDValue Tmp1Op0 = Tmp1.getOperand(0);
14187            assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT &&
14188                   "This optimization is invalid without a VZEXT.");
14189            return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0));
14190          }
14191          Op0 = Tmp1;
14192        }
14193      }
14194
14195      // If the above didn't work, then just use Shift-Left + Shift-Right.
14196      Tmp1 = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Op0, BitsDiff,
14197                                        DAG);
14198      return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, Tmp1, BitsDiff,
14199                                        DAG);
14200    }
14201  }
14202}
14203
14204static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
14205                                 SelectionDAG &DAG) {
14206  SDLoc dl(Op);
14207  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
14208    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
14209  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
14210    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
14211
14212  // The only fence that needs an instruction is a sequentially-consistent
14213  // cross-thread fence.
14214  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
14215    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
14216    // no-sse2). There isn't any reason to disable it if the target processor
14217    // supports it.
14218    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
14219      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
14220
14221    SDValue Chain = Op.getOperand(0);
14222    SDValue Zero = DAG.getConstant(0, MVT::i32);
14223    SDValue Ops[] = {
14224      DAG.getRegister(X86::ESP, MVT::i32), // Base
14225      DAG.getTargetConstant(1, MVT::i8),   // Scale
14226      DAG.getRegister(0, MVT::i32),        // Index
14227      DAG.getTargetConstant(0, MVT::i32),  // Disp
14228      DAG.getRegister(0, MVT::i32),        // Segment.
14229      Zero,
14230      Chain
14231    };
14232    SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
14233    return SDValue(Res, 0);
14234  }
14235
14236  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
14237  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
14238}
14239
14240static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
14241                             SelectionDAG &DAG) {
14242  MVT T = Op.getSimpleValueType();
14243  SDLoc DL(Op);
14244  unsigned Reg = 0;
14245  unsigned size = 0;
14246  switch(T.SimpleTy) {
14247  default: llvm_unreachable("Invalid value type!");
14248  case MVT::i8:  Reg = X86::AL;  size = 1; break;
14249  case MVT::i16: Reg = X86::AX;  size = 2; break;
14250  case MVT::i32: Reg = X86::EAX; size = 4; break;
14251  case MVT::i64:
14252    assert(Subtarget->is64Bit() && "Node not type legal!");
14253    Reg = X86::RAX; size = 8;
14254    break;
14255  }
14256  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
14257                                    Op.getOperand(2), SDValue());
14258  SDValue Ops[] = { cpIn.getValue(0),
14259                    Op.getOperand(1),
14260                    Op.getOperand(3),
14261                    DAG.getTargetConstant(size, MVT::i8),
14262                    cpIn.getValue(1) };
14263  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
14264  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
14265  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
14266                                           Ops, T, MMO);
14267  SDValue cpOut =
14268    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
14269  return cpOut;
14270}
14271
14272static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
14273                            SelectionDAG &DAG) {
14274  MVT SrcVT = Op.getOperand(0).getSimpleValueType();
14275  MVT DstVT = Op.getSimpleValueType();
14276
14277  if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8) {
14278    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
14279    if (DstVT != MVT::f64)
14280      // This conversion needs to be expanded.
14281      return SDValue();
14282
14283    SDValue InVec = Op->getOperand(0);
14284    SDLoc dl(Op);
14285    unsigned NumElts = SrcVT.getVectorNumElements();
14286    EVT SVT = SrcVT.getVectorElementType();
14287
14288    // Widen the vector in input in the case of MVT::v2i32.
14289    // Example: from MVT::v2i32 to MVT::v4i32.
14290    SmallVector<SDValue, 16> Elts;
14291    for (unsigned i = 0, e = NumElts; i != e; ++i)
14292      Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, InVec,
14293                                 DAG.getIntPtrConstant(i)));
14294
14295    // Explicitly mark the extra elements as Undef.
14296    SDValue Undef = DAG.getUNDEF(SVT);
14297    for (unsigned i = NumElts, e = NumElts * 2; i != e; ++i)
14298      Elts.push_back(Undef);
14299
14300    EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
14301    SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Elts);
14302    SDValue ToV2F64 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, BV);
14303    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64,
14304                       DAG.getIntPtrConstant(0));
14305  }
14306
14307  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
14308         Subtarget->hasMMX() && "Unexpected custom BITCAST");
14309  assert((DstVT == MVT::i64 ||
14310          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
14311         "Unexpected custom BITCAST");
14312  // i64 <=> MMX conversions are Legal.
14313  if (SrcVT==MVT::i64 && DstVT.isVector())
14314    return Op;
14315  if (DstVT==MVT::i64 && SrcVT.isVector())
14316    return Op;
14317  // MMX <=> MMX conversions are Legal.
14318  if (SrcVT.isVector() && DstVT.isVector())
14319    return Op;
14320  // All other conversions need to be expanded.
14321  return SDValue();
14322}
14323
14324static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
14325  SDNode *Node = Op.getNode();
14326  SDLoc dl(Node);
14327  EVT T = Node->getValueType(0);
14328  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
14329                              DAG.getConstant(0, T), Node->getOperand(2));
14330  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
14331                       cast<AtomicSDNode>(Node)->getMemoryVT(),
14332                       Node->getOperand(0),
14333                       Node->getOperand(1), negOp,
14334                       cast<AtomicSDNode>(Node)->getMemOperand(),
14335                       cast<AtomicSDNode>(Node)->getOrdering(),
14336                       cast<AtomicSDNode>(Node)->getSynchScope());
14337}
14338
14339static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
14340  SDNode *Node = Op.getNode();
14341  SDLoc dl(Node);
14342  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
14343
14344  // Convert seq_cst store -> xchg
14345  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
14346  // FIXME: On 32-bit, store -> fist or movq would be more efficient
14347  //        (The only way to get a 16-byte store is cmpxchg16b)
14348  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
14349  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
14350      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14351    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
14352                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
14353                                 Node->getOperand(0),
14354                                 Node->getOperand(1), Node->getOperand(2),
14355                                 cast<AtomicSDNode>(Node)->getMemOperand(),
14356                                 cast<AtomicSDNode>(Node)->getOrdering(),
14357                                 cast<AtomicSDNode>(Node)->getSynchScope());
14358    return Swap.getValue(1);
14359  }
14360  // Other atomic stores have a simple pattern.
14361  return Op;
14362}
14363
14364static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
14365  EVT VT = Op.getNode()->getSimpleValueType(0);
14366
14367  // Let legalize expand this if it isn't a legal type yet.
14368  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
14369    return SDValue();
14370
14371  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
14372
14373  unsigned Opc;
14374  bool ExtraOp = false;
14375  switch (Op.getOpcode()) {
14376  default: llvm_unreachable("Invalid code");
14377  case ISD::ADDC: Opc = X86ISD::ADD; break;
14378  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
14379  case ISD::SUBC: Opc = X86ISD::SUB; break;
14380  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
14381  }
14382
14383  if (!ExtraOp)
14384    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
14385                       Op.getOperand(1));
14386  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
14387                     Op.getOperand(1), Op.getOperand(2));
14388}
14389
14390static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget,
14391                            SelectionDAG &DAG) {
14392  assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
14393
14394  // For MacOSX, we want to call an alternative entry point: __sincos_stret,
14395  // which returns the values as { float, float } (in XMM0) or
14396  // { double, double } (which is returned in XMM0, XMM1).
14397  SDLoc dl(Op);
14398  SDValue Arg = Op.getOperand(0);
14399  EVT ArgVT = Arg.getValueType();
14400  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
14401
14402  TargetLowering::ArgListTy Args;
14403  TargetLowering::ArgListEntry Entry;
14404
14405  Entry.Node = Arg;
14406  Entry.Ty = ArgTy;
14407  Entry.isSExt = false;
14408  Entry.isZExt = false;
14409  Args.push_back(Entry);
14410
14411  bool isF64 = ArgVT == MVT::f64;
14412  // Only optimize x86_64 for now. i386 is a bit messy. For f32,
14413  // the small struct {f32, f32} is returned in (eax, edx). For f64,
14414  // the results are returned via SRet in memory.
14415  const char *LibcallName =  isF64 ? "__sincos_stret" : "__sincosf_stret";
14416  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14417  SDValue Callee = DAG.getExternalSymbol(LibcallName, TLI.getPointerTy());
14418
14419  Type *RetTy = isF64
14420    ? (Type*)StructType::get(ArgTy, ArgTy, NULL)
14421    : (Type*)VectorType::get(ArgTy, 4);
14422
14423  TargetLowering::CallLoweringInfo CLI(DAG);
14424  CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
14425    .setCallee(CallingConv::C, RetTy, Callee, &Args, 0);
14426
14427  std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
14428
14429  if (isF64)
14430    // Returned in xmm0 and xmm1.
14431    return CallResult.first;
14432
14433  // Returned in bits 0:31 and 32:64 xmm0.
14434  SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
14435                               CallResult.first, DAG.getIntPtrConstant(0));
14436  SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
14437                               CallResult.first, DAG.getIntPtrConstant(1));
14438  SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
14439  return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
14440}
14441
14442/// LowerOperation - Provide custom lowering hooks for some operations.
14443///
14444SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
14445  switch (Op.getOpcode()) {
14446  default: llvm_unreachable("Should not custom lower this!");
14447  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
14448  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
14449  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
14450  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
14451  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
14452  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
14453  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
14454  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
14455  case ISD::VSELECT:            return LowerVSELECT(Op, DAG);
14456  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
14457  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
14458  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
14459  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
14460  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
14461  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
14462  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
14463  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
14464  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
14465  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
14466  case ISD::SHL_PARTS:
14467  case ISD::SRA_PARTS:
14468  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
14469  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
14470  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
14471  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
14472  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, Subtarget, DAG);
14473  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, Subtarget, DAG);
14474  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, Subtarget, DAG);
14475  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
14476  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
14477  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
14478  case ISD::FABS:               return LowerFABS(Op, DAG);
14479  case ISD::FNEG:               return LowerFNEG(Op, DAG);
14480  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
14481  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
14482  case ISD::SETCC:              return LowerSETCC(Op, DAG);
14483  case ISD::SELECT:             return LowerSELECT(Op, DAG);
14484  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
14485  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
14486  case ISD::VASTART:            return LowerVASTART(Op, DAG);
14487  case ISD::VAARG:              return LowerVAARG(Op, DAG);
14488  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
14489  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
14490  case ISD::INTRINSIC_VOID:
14491  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
14492  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
14493  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
14494  case ISD::FRAME_TO_ARGS_OFFSET:
14495                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
14496  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
14497  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
14498  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
14499  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
14500  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
14501  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
14502  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
14503  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
14504  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
14505  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
14506  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
14507  case ISD::UMUL_LOHI:
14508  case ISD::SMUL_LOHI:          return LowerMUL_LOHI(Op, Subtarget, DAG);
14509  case ISD::SRA:
14510  case ISD::SRL:
14511  case ISD::SHL:                return LowerShift(Op, Subtarget, DAG);
14512  case ISD::SADDO:
14513  case ISD::UADDO:
14514  case ISD::SSUBO:
14515  case ISD::USUBO:
14516  case ISD::SMULO:
14517  case ISD::UMULO:              return LowerXALUO(Op, DAG);
14518  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
14519  case ISD::BITCAST:            return LowerBITCAST(Op, Subtarget, DAG);
14520  case ISD::ADDC:
14521  case ISD::ADDE:
14522  case ISD::SUBC:
14523  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
14524  case ISD::ADD:                return LowerADD(Op, DAG);
14525  case ISD::SUB:                return LowerSUB(Op, DAG);
14526  case ISD::FSINCOS:            return LowerFSINCOS(Op, Subtarget, DAG);
14527  }
14528}
14529
14530static void ReplaceATOMIC_LOAD(SDNode *Node,
14531                                  SmallVectorImpl<SDValue> &Results,
14532                                  SelectionDAG &DAG) {
14533  SDLoc dl(Node);
14534  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
14535
14536  // Convert wide load -> cmpxchg8b/cmpxchg16b
14537  // FIXME: On 32-bit, load -> fild or movq would be more efficient
14538  //        (The only way to get a 16-byte load is cmpxchg16b)
14539  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
14540  SDValue Zero = DAG.getConstant(0, VT);
14541  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
14542                               Node->getOperand(0),
14543                               Node->getOperand(1), Zero, Zero,
14544                               cast<AtomicSDNode>(Node)->getMemOperand(),
14545                               cast<AtomicSDNode>(Node)->getOrdering(),
14546                               cast<AtomicSDNode>(Node)->getOrdering(),
14547                               cast<AtomicSDNode>(Node)->getSynchScope());
14548  Results.push_back(Swap.getValue(0));
14549  Results.push_back(Swap.getValue(1));
14550}
14551
14552static void
14553ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
14554                        SelectionDAG &DAG, unsigned NewOp) {
14555  SDLoc dl(Node);
14556  assert (Node->getValueType(0) == MVT::i64 &&
14557          "Only know how to expand i64 atomics");
14558
14559  SDValue Chain = Node->getOperand(0);
14560  SDValue In1 = Node->getOperand(1);
14561  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
14562                             Node->getOperand(2), DAG.getIntPtrConstant(0));
14563  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
14564                             Node->getOperand(2), DAG.getIntPtrConstant(1));
14565  SDValue Ops[] = { Chain, In1, In2L, In2H };
14566  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
14567  SDValue Result =
14568    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, MVT::i64,
14569                            cast<MemSDNode>(Node)->getMemOperand());
14570  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
14571  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF));
14572  Results.push_back(Result.getValue(2));
14573}
14574
14575/// ReplaceNodeResults - Replace a node with an illegal result type
14576/// with a new node built out of custom code.
14577void X86TargetLowering::ReplaceNodeResults(SDNode *N,
14578                                           SmallVectorImpl<SDValue>&Results,
14579                                           SelectionDAG &DAG) const {
14580  SDLoc dl(N);
14581  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14582  switch (N->getOpcode()) {
14583  default:
14584    llvm_unreachable("Do not know how to custom type legalize this operation!");
14585  case ISD::SIGN_EXTEND_INREG:
14586  case ISD::ADDC:
14587  case ISD::ADDE:
14588  case ISD::SUBC:
14589  case ISD::SUBE:
14590    // We don't want to expand or promote these.
14591    return;
14592  case ISD::SDIV:
14593  case ISD::UDIV:
14594  case ISD::SREM:
14595  case ISD::UREM:
14596  case ISD::SDIVREM:
14597  case ISD::UDIVREM: {
14598    SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG);
14599    Results.push_back(V);
14600    return;
14601  }
14602  case ISD::FP_TO_SINT:
14603  case ISD::FP_TO_UINT: {
14604    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
14605
14606    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
14607      return;
14608
14609    std::pair<SDValue,SDValue> Vals =
14610        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
14611    SDValue FIST = Vals.first, StackSlot = Vals.second;
14612    if (FIST.getNode()) {
14613      EVT VT = N->getValueType(0);
14614      // Return a load from the stack slot.
14615      if (StackSlot.getNode())
14616        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
14617                                      MachinePointerInfo(),
14618                                      false, false, false, 0));
14619      else
14620        Results.push_back(FIST);
14621    }
14622    return;
14623  }
14624  case ISD::UINT_TO_FP: {
14625    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
14626    if (N->getOperand(0).getValueType() != MVT::v2i32 ||
14627        N->getValueType(0) != MVT::v2f32)
14628      return;
14629    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
14630                                 N->getOperand(0));
14631    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
14632                                     MVT::f64);
14633    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
14634    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
14635                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
14636    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
14637    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
14638    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
14639    return;
14640  }
14641  case ISD::FP_ROUND: {
14642    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
14643        return;
14644    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
14645    Results.push_back(V);
14646    return;
14647  }
14648  case ISD::INTRINSIC_W_CHAIN: {
14649    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
14650    switch (IntNo) {
14651    default : llvm_unreachable("Do not know how to custom type "
14652                               "legalize this intrinsic operation!");
14653    case Intrinsic::x86_rdtsc:
14654      return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
14655                                     Results);
14656    case Intrinsic::x86_rdtscp:
14657      return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget,
14658                                     Results);
14659    }
14660  }
14661  case ISD::READCYCLECOUNTER: {
14662    return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
14663                                   Results);
14664  }
14665  case ISD::ATOMIC_CMP_SWAP: {
14666    EVT T = N->getValueType(0);
14667    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
14668    bool Regs64bit = T == MVT::i128;
14669    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
14670    SDValue cpInL, cpInH;
14671    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
14672                        DAG.getConstant(0, HalfT));
14673    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
14674                        DAG.getConstant(1, HalfT));
14675    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
14676                             Regs64bit ? X86::RAX : X86::EAX,
14677                             cpInL, SDValue());
14678    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
14679                             Regs64bit ? X86::RDX : X86::EDX,
14680                             cpInH, cpInL.getValue(1));
14681    SDValue swapInL, swapInH;
14682    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
14683                          DAG.getConstant(0, HalfT));
14684    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
14685                          DAG.getConstant(1, HalfT));
14686    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
14687                               Regs64bit ? X86::RBX : X86::EBX,
14688                               swapInL, cpInH.getValue(1));
14689    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
14690                               Regs64bit ? X86::RCX : X86::ECX,
14691                               swapInH, swapInL.getValue(1));
14692    SDValue Ops[] = { swapInH.getValue(0),
14693                      N->getOperand(1),
14694                      swapInH.getValue(1) };
14695    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
14696    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
14697    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
14698                                  X86ISD::LCMPXCHG8_DAG;
14699    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
14700    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
14701                                        Regs64bit ? X86::RAX : X86::EAX,
14702                                        HalfT, Result.getValue(1));
14703    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
14704                                        Regs64bit ? X86::RDX : X86::EDX,
14705                                        HalfT, cpOutL.getValue(2));
14706    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
14707    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF));
14708    Results.push_back(cpOutH.getValue(1));
14709    return;
14710  }
14711  case ISD::ATOMIC_LOAD_ADD:
14712  case ISD::ATOMIC_LOAD_AND:
14713  case ISD::ATOMIC_LOAD_NAND:
14714  case ISD::ATOMIC_LOAD_OR:
14715  case ISD::ATOMIC_LOAD_SUB:
14716  case ISD::ATOMIC_LOAD_XOR:
14717  case ISD::ATOMIC_LOAD_MAX:
14718  case ISD::ATOMIC_LOAD_MIN:
14719  case ISD::ATOMIC_LOAD_UMAX:
14720  case ISD::ATOMIC_LOAD_UMIN:
14721  case ISD::ATOMIC_SWAP: {
14722    unsigned Opc;
14723    switch (N->getOpcode()) {
14724    default: llvm_unreachable("Unexpected opcode");
14725    case ISD::ATOMIC_LOAD_ADD:
14726      Opc = X86ISD::ATOMADD64_DAG;
14727      break;
14728    case ISD::ATOMIC_LOAD_AND:
14729      Opc = X86ISD::ATOMAND64_DAG;
14730      break;
14731    case ISD::ATOMIC_LOAD_NAND:
14732      Opc = X86ISD::ATOMNAND64_DAG;
14733      break;
14734    case ISD::ATOMIC_LOAD_OR:
14735      Opc = X86ISD::ATOMOR64_DAG;
14736      break;
14737    case ISD::ATOMIC_LOAD_SUB:
14738      Opc = X86ISD::ATOMSUB64_DAG;
14739      break;
14740    case ISD::ATOMIC_LOAD_XOR:
14741      Opc = X86ISD::ATOMXOR64_DAG;
14742      break;
14743    case ISD::ATOMIC_LOAD_MAX:
14744      Opc = X86ISD::ATOMMAX64_DAG;
14745      break;
14746    case ISD::ATOMIC_LOAD_MIN:
14747      Opc = X86ISD::ATOMMIN64_DAG;
14748      break;
14749    case ISD::ATOMIC_LOAD_UMAX:
14750      Opc = X86ISD::ATOMUMAX64_DAG;
14751      break;
14752    case ISD::ATOMIC_LOAD_UMIN:
14753      Opc = X86ISD::ATOMUMIN64_DAG;
14754      break;
14755    case ISD::ATOMIC_SWAP:
14756      Opc = X86ISD::ATOMSWAP64_DAG;
14757      break;
14758    }
14759    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
14760    return;
14761  }
14762  case ISD::ATOMIC_LOAD: {
14763    ReplaceATOMIC_LOAD(N, Results, DAG);
14764    return;
14765  }
14766  case ISD::BITCAST: {
14767    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
14768    EVT DstVT = N->getValueType(0);
14769    EVT SrcVT = N->getOperand(0)->getValueType(0);
14770
14771    if (SrcVT != MVT::f64 ||
14772        (DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8))
14773      return;
14774
14775    unsigned NumElts = DstVT.getVectorNumElements();
14776    EVT SVT = DstVT.getVectorElementType();
14777    EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
14778    SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14779                                   MVT::v2f64, N->getOperand(0));
14780    SDValue ToVecInt = DAG.getNode(ISD::BITCAST, dl, WiderVT, Expanded);
14781
14782    SmallVector<SDValue, 8> Elts;
14783    for (unsigned i = 0, e = NumElts; i != e; ++i)
14784      Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT,
14785                                   ToVecInt, DAG.getIntPtrConstant(i)));
14786
14787    Results.push_back(DAG.getNode(ISD::BUILD_VECTOR, dl, DstVT, Elts));
14788  }
14789  }
14790}
14791
14792const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
14793  switch (Opcode) {
14794  default: return nullptr;
14795  case X86ISD::BSF:                return "X86ISD::BSF";
14796  case X86ISD::BSR:                return "X86ISD::BSR";
14797  case X86ISD::SHLD:               return "X86ISD::SHLD";
14798  case X86ISD::SHRD:               return "X86ISD::SHRD";
14799  case X86ISD::FAND:               return "X86ISD::FAND";
14800  case X86ISD::FANDN:              return "X86ISD::FANDN";
14801  case X86ISD::FOR:                return "X86ISD::FOR";
14802  case X86ISD::FXOR:               return "X86ISD::FXOR";
14803  case X86ISD::FSRL:               return "X86ISD::FSRL";
14804  case X86ISD::FILD:               return "X86ISD::FILD";
14805  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
14806  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
14807  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
14808  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
14809  case X86ISD::FLD:                return "X86ISD::FLD";
14810  case X86ISD::FST:                return "X86ISD::FST";
14811  case X86ISD::CALL:               return "X86ISD::CALL";
14812  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
14813  case X86ISD::BT:                 return "X86ISD::BT";
14814  case X86ISD::CMP:                return "X86ISD::CMP";
14815  case X86ISD::COMI:               return "X86ISD::COMI";
14816  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
14817  case X86ISD::CMPM:               return "X86ISD::CMPM";
14818  case X86ISD::CMPMU:              return "X86ISD::CMPMU";
14819  case X86ISD::SETCC:              return "X86ISD::SETCC";
14820  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
14821  case X86ISD::FSETCC:             return "X86ISD::FSETCC";
14822  case X86ISD::CMOV:               return "X86ISD::CMOV";
14823  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
14824  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
14825  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
14826  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
14827  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
14828  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
14829  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
14830  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
14831  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
14832  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
14833  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
14834  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
14835  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
14836  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
14837  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
14838  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
14839  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
14840  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
14841  case X86ISD::HADD:               return "X86ISD::HADD";
14842  case X86ISD::HSUB:               return "X86ISD::HSUB";
14843  case X86ISD::FHADD:              return "X86ISD::FHADD";
14844  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
14845  case X86ISD::UMAX:               return "X86ISD::UMAX";
14846  case X86ISD::UMIN:               return "X86ISD::UMIN";
14847  case X86ISD::SMAX:               return "X86ISD::SMAX";
14848  case X86ISD::SMIN:               return "X86ISD::SMIN";
14849  case X86ISD::FMAX:               return "X86ISD::FMAX";
14850  case X86ISD::FMIN:               return "X86ISD::FMIN";
14851  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
14852  case X86ISD::FMINC:              return "X86ISD::FMINC";
14853  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
14854  case X86ISD::FRCP:               return "X86ISD::FRCP";
14855  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
14856  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
14857  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
14858  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
14859  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
14860  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
14861  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
14862  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
14863  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
14864  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
14865  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
14866  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
14867  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
14868  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
14869  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
14870  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
14871  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
14872  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
14873  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
14874  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
14875  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
14876  case X86ISD::VTRUNC:             return "X86ISD::VTRUNC";
14877  case X86ISD::VTRUNCM:            return "X86ISD::VTRUNCM";
14878  case X86ISD::VINSERT:            return "X86ISD::VINSERT";
14879  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
14880  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
14881  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
14882  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
14883  case X86ISD::VSHL:               return "X86ISD::VSHL";
14884  case X86ISD::VSRL:               return "X86ISD::VSRL";
14885  case X86ISD::VSRA:               return "X86ISD::VSRA";
14886  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
14887  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
14888  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
14889  case X86ISD::CMPP:               return "X86ISD::CMPP";
14890  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
14891  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
14892  case X86ISD::PCMPEQM:            return "X86ISD::PCMPEQM";
14893  case X86ISD::PCMPGTM:            return "X86ISD::PCMPGTM";
14894  case X86ISD::ADD:                return "X86ISD::ADD";
14895  case X86ISD::SUB:                return "X86ISD::SUB";
14896  case X86ISD::ADC:                return "X86ISD::ADC";
14897  case X86ISD::SBB:                return "X86ISD::SBB";
14898  case X86ISD::SMUL:               return "X86ISD::SMUL";
14899  case X86ISD::UMUL:               return "X86ISD::UMUL";
14900  case X86ISD::INC:                return "X86ISD::INC";
14901  case X86ISD::DEC:                return "X86ISD::DEC";
14902  case X86ISD::OR:                 return "X86ISD::OR";
14903  case X86ISD::XOR:                return "X86ISD::XOR";
14904  case X86ISD::AND:                return "X86ISD::AND";
14905  case X86ISD::BEXTR:              return "X86ISD::BEXTR";
14906  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
14907  case X86ISD::PTEST:              return "X86ISD::PTEST";
14908  case X86ISD::TESTP:              return "X86ISD::TESTP";
14909  case X86ISD::TESTM:              return "X86ISD::TESTM";
14910  case X86ISD::TESTNM:             return "X86ISD::TESTNM";
14911  case X86ISD::KORTEST:            return "X86ISD::KORTEST";
14912  case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
14913  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
14914  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
14915  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
14916  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
14917  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
14918  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
14919  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
14920  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
14921  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
14922  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
14923  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
14924  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
14925  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
14926  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
14927  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
14928  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
14929  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
14930  case X86ISD::VBROADCASTM:        return "X86ISD::VBROADCASTM";
14931  case X86ISD::VEXTRACT:           return "X86ISD::VEXTRACT";
14932  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
14933  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
14934  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
14935  case X86ISD::VPERMV3:            return "X86ISD::VPERMV3";
14936  case X86ISD::VPERMIV3:           return "X86ISD::VPERMIV3";
14937  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
14938  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
14939  case X86ISD::PMULDQ:             return "X86ISD::PMULDQ";
14940  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
14941  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
14942  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
14943  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
14944  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
14945  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
14946  case X86ISD::SAHF:               return "X86ISD::SAHF";
14947  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
14948  case X86ISD::RDSEED:             return "X86ISD::RDSEED";
14949  case X86ISD::FMADD:              return "X86ISD::FMADD";
14950  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
14951  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
14952  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
14953  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
14954  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
14955  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
14956  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
14957  case X86ISD::XTEST:              return "X86ISD::XTEST";
14958  }
14959}
14960
14961// isLegalAddressingMode - Return true if the addressing mode represented
14962// by AM is legal for this target, for a load/store of the specified type.
14963bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
14964                                              Type *Ty) const {
14965  // X86 supports extremely general addressing modes.
14966  CodeModel::Model M = getTargetMachine().getCodeModel();
14967  Reloc::Model R = getTargetMachine().getRelocationModel();
14968
14969  // X86 allows a sign-extended 32-bit immediate field as a displacement.
14970  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr))
14971    return false;
14972
14973  if (AM.BaseGV) {
14974    unsigned GVFlags =
14975      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
14976
14977    // If a reference to this global requires an extra load, we can't fold it.
14978    if (isGlobalStubReference(GVFlags))
14979      return false;
14980
14981    // If BaseGV requires a register for the PIC base, we cannot also have a
14982    // BaseReg specified.
14983    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
14984      return false;
14985
14986    // If lower 4G is not available, then we must use rip-relative addressing.
14987    if ((M != CodeModel::Small || R != Reloc::Static) &&
14988        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
14989      return false;
14990  }
14991
14992  switch (AM.Scale) {
14993  case 0:
14994  case 1:
14995  case 2:
14996  case 4:
14997  case 8:
14998    // These scales always work.
14999    break;
15000  case 3:
15001  case 5:
15002  case 9:
15003    // These scales are formed with basereg+scalereg.  Only accept if there is
15004    // no basereg yet.
15005    if (AM.HasBaseReg)
15006      return false;
15007    break;
15008  default:  // Other stuff never works.
15009    return false;
15010  }
15011
15012  return true;
15013}
15014
15015bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const {
15016  unsigned Bits = Ty->getScalarSizeInBits();
15017
15018  // 8-bit shifts are always expensive, but versions with a scalar amount aren't
15019  // particularly cheaper than those without.
15020  if (Bits == 8)
15021    return false;
15022
15023  // On AVX2 there are new vpsllv[dq] instructions (and other shifts), that make
15024  // variable shifts just as cheap as scalar ones.
15025  if (Subtarget->hasInt256() && (Bits == 32 || Bits == 64))
15026    return false;
15027
15028  // Otherwise, it's significantly cheaper to shift by a scalar amount than by a
15029  // fully general vector.
15030  return true;
15031}
15032
15033bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15034  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15035    return false;
15036  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15037  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15038  return NumBits1 > NumBits2;
15039}
15040
15041bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
15042  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15043    return false;
15044
15045  if (!isTypeLegal(EVT::getEVT(Ty1)))
15046    return false;
15047
15048  assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
15049
15050  // Assuming the caller doesn't have a zeroext or signext return parameter,
15051  // truncation all the way down to i1 is valid.
15052  return true;
15053}
15054
15055bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15056  return isInt<32>(Imm);
15057}
15058
15059bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
15060  // Can also use sub to handle negated immediates.
15061  return isInt<32>(Imm);
15062}
15063
15064bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15065  if (!VT1.isInteger() || !VT2.isInteger())
15066    return false;
15067  unsigned NumBits1 = VT1.getSizeInBits();
15068  unsigned NumBits2 = VT2.getSizeInBits();
15069  return NumBits1 > NumBits2;
15070}
15071
15072bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
15073  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
15074  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
15075}
15076
15077bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
15078  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
15079  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
15080}
15081
15082bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15083  EVT VT1 = Val.getValueType();
15084  if (isZExtFree(VT1, VT2))
15085    return true;
15086
15087  if (Val.getOpcode() != ISD::LOAD)
15088    return false;
15089
15090  if (!VT1.isSimple() || !VT1.isInteger() ||
15091      !VT2.isSimple() || !VT2.isInteger())
15092    return false;
15093
15094  switch (VT1.getSimpleVT().SimpleTy) {
15095  default: break;
15096  case MVT::i8:
15097  case MVT::i16:
15098  case MVT::i32:
15099    // X86 has 8, 16, and 32-bit zero-extending loads.
15100    return true;
15101  }
15102
15103  return false;
15104}
15105
15106bool
15107X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
15108  if (!(Subtarget->hasFMA() || Subtarget->hasFMA4()))
15109    return false;
15110
15111  VT = VT.getScalarType();
15112
15113  if (!VT.isSimple())
15114    return false;
15115
15116  switch (VT.getSimpleVT().SimpleTy) {
15117  case MVT::f32:
15118  case MVT::f64:
15119    return true;
15120  default:
15121    break;
15122  }
15123
15124  return false;
15125}
15126
15127bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
15128  // i16 instructions are longer (0x66 prefix) and potentially slower.
15129  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
15130}
15131
15132/// isShuffleMaskLegal - Targets can use this to indicate that they only
15133/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
15134/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
15135/// are assumed to be legal.
15136bool
15137X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
15138                                      EVT VT) const {
15139  if (!VT.isSimple())
15140    return false;
15141
15142  MVT SVT = VT.getSimpleVT();
15143
15144  // Very little shuffling can be done for 64-bit vectors right now.
15145  if (VT.getSizeInBits() == 64)
15146    return false;
15147
15148  // If this is a single-input shuffle with no 128 bit lane crossings we can
15149  // lower it into pshufb.
15150  if ((SVT.is128BitVector() && Subtarget->hasSSSE3()) ||
15151      (SVT.is256BitVector() && Subtarget->hasInt256())) {
15152    bool isLegal = true;
15153    for (unsigned I = 0, E = M.size(); I != E; ++I) {
15154      if (M[I] >= (int)SVT.getVectorNumElements() ||
15155          ShuffleCrosses128bitLane(SVT, I, M[I])) {
15156        isLegal = false;
15157        break;
15158      }
15159    }
15160    if (isLegal)
15161      return true;
15162  }
15163
15164  // FIXME: blends, shifts.
15165  return (SVT.getVectorNumElements() == 2 ||
15166          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
15167          isMOVLMask(M, SVT) ||
15168          isSHUFPMask(M, SVT) ||
15169          isPSHUFDMask(M, SVT) ||
15170          isPSHUFHWMask(M, SVT, Subtarget->hasInt256()) ||
15171          isPSHUFLWMask(M, SVT, Subtarget->hasInt256()) ||
15172          isPALIGNRMask(M, SVT, Subtarget) ||
15173          isUNPCKLMask(M, SVT, Subtarget->hasInt256()) ||
15174          isUNPCKHMask(M, SVT, Subtarget->hasInt256()) ||
15175          isUNPCKL_v_undef_Mask(M, SVT, Subtarget->hasInt256()) ||
15176          isUNPCKH_v_undef_Mask(M, SVT, Subtarget->hasInt256()));
15177}
15178
15179bool
15180X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
15181                                          EVT VT) const {
15182  if (!VT.isSimple())
15183    return false;
15184
15185  MVT SVT = VT.getSimpleVT();
15186  unsigned NumElts = SVT.getVectorNumElements();
15187  // FIXME: This collection of masks seems suspect.
15188  if (NumElts == 2)
15189    return true;
15190  if (NumElts == 4 && SVT.is128BitVector()) {
15191    return (isMOVLMask(Mask, SVT)  ||
15192            isCommutedMOVLMask(Mask, SVT, true) ||
15193            isSHUFPMask(Mask, SVT) ||
15194            isSHUFPMask(Mask, SVT, /* Commuted */ true));
15195  }
15196  return false;
15197}
15198
15199//===----------------------------------------------------------------------===//
15200//                           X86 Scheduler Hooks
15201//===----------------------------------------------------------------------===//
15202
15203/// Utility function to emit xbegin specifying the start of an RTM region.
15204static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
15205                                     const TargetInstrInfo *TII) {
15206  DebugLoc DL = MI->getDebugLoc();
15207
15208  const BasicBlock *BB = MBB->getBasicBlock();
15209  MachineFunction::iterator I = MBB;
15210  ++I;
15211
15212  // For the v = xbegin(), we generate
15213  //
15214  // thisMBB:
15215  //  xbegin sinkMBB
15216  //
15217  // mainMBB:
15218  //  eax = -1
15219  //
15220  // sinkMBB:
15221  //  v = eax
15222
15223  MachineBasicBlock *thisMBB = MBB;
15224  MachineFunction *MF = MBB->getParent();
15225  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
15226  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
15227  MF->insert(I, mainMBB);
15228  MF->insert(I, sinkMBB);
15229
15230  // Transfer the remainder of BB and its successor edges to sinkMBB.
15231  sinkMBB->splice(sinkMBB->begin(), MBB,
15232                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
15233  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
15234
15235  // thisMBB:
15236  //  xbegin sinkMBB
15237  //  # fallthrough to mainMBB
15238  //  # abortion to sinkMBB
15239  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
15240  thisMBB->addSuccessor(mainMBB);
15241  thisMBB->addSuccessor(sinkMBB);
15242
15243  // mainMBB:
15244  //  EAX = -1
15245  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
15246  mainMBB->addSuccessor(sinkMBB);
15247
15248  // sinkMBB:
15249  // EAX is live into the sinkMBB
15250  sinkMBB->addLiveIn(X86::EAX);
15251  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
15252          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
15253    .addReg(X86::EAX);
15254
15255  MI->eraseFromParent();
15256  return sinkMBB;
15257}
15258
15259// Get CMPXCHG opcode for the specified data type.
15260static unsigned getCmpXChgOpcode(EVT VT) {
15261  switch (VT.getSimpleVT().SimpleTy) {
15262  case MVT::i8:  return X86::LCMPXCHG8;
15263  case MVT::i16: return X86::LCMPXCHG16;
15264  case MVT::i32: return X86::LCMPXCHG32;
15265  case MVT::i64: return X86::LCMPXCHG64;
15266  default:
15267    break;
15268  }
15269  llvm_unreachable("Invalid operand size!");
15270}
15271
15272// Get LOAD opcode for the specified data type.
15273static unsigned getLoadOpcode(EVT VT) {
15274  switch (VT.getSimpleVT().SimpleTy) {
15275  case MVT::i8:  return X86::MOV8rm;
15276  case MVT::i16: return X86::MOV16rm;
15277  case MVT::i32: return X86::MOV32rm;
15278  case MVT::i64: return X86::MOV64rm;
15279  default:
15280    break;
15281  }
15282  llvm_unreachable("Invalid operand size!");
15283}
15284
15285// Get opcode of the non-atomic one from the specified atomic instruction.
15286static unsigned getNonAtomicOpcode(unsigned Opc) {
15287  switch (Opc) {
15288  case X86::ATOMAND8:  return X86::AND8rr;
15289  case X86::ATOMAND16: return X86::AND16rr;
15290  case X86::ATOMAND32: return X86::AND32rr;
15291  case X86::ATOMAND64: return X86::AND64rr;
15292  case X86::ATOMOR8:   return X86::OR8rr;
15293  case X86::ATOMOR16:  return X86::OR16rr;
15294  case X86::ATOMOR32:  return X86::OR32rr;
15295  case X86::ATOMOR64:  return X86::OR64rr;
15296  case X86::ATOMXOR8:  return X86::XOR8rr;
15297  case X86::ATOMXOR16: return X86::XOR16rr;
15298  case X86::ATOMXOR32: return X86::XOR32rr;
15299  case X86::ATOMXOR64: return X86::XOR64rr;
15300  }
15301  llvm_unreachable("Unhandled atomic-load-op opcode!");
15302}
15303
15304// Get opcode of the non-atomic one from the specified atomic instruction with
15305// extra opcode.
15306static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
15307                                               unsigned &ExtraOpc) {
15308  switch (Opc) {
15309  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
15310  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
15311  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
15312  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
15313  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
15314  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
15315  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
15316  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
15317  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
15318  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
15319  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
15320  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
15321  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
15322  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
15323  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
15324  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
15325  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
15326  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
15327  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
15328  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
15329  }
15330  llvm_unreachable("Unhandled atomic-load-op opcode!");
15331}
15332
15333// Get opcode of the non-atomic one from the specified atomic instruction for
15334// 64-bit data type on 32-bit target.
15335static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
15336  switch (Opc) {
15337  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
15338  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
15339  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
15340  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
15341  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
15342  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
15343  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
15344  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
15345  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
15346  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
15347  }
15348  llvm_unreachable("Unhandled atomic-load-op opcode!");
15349}
15350
15351// Get opcode of the non-atomic one from the specified atomic instruction for
15352// 64-bit data type on 32-bit target with extra opcode.
15353static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
15354                                                   unsigned &HiOpc,
15355                                                   unsigned &ExtraOpc) {
15356  switch (Opc) {
15357  case X86::ATOMNAND6432:
15358    ExtraOpc = X86::NOT32r;
15359    HiOpc = X86::AND32rr;
15360    return X86::AND32rr;
15361  }
15362  llvm_unreachable("Unhandled atomic-load-op opcode!");
15363}
15364
15365// Get pseudo CMOV opcode from the specified data type.
15366static unsigned getPseudoCMOVOpc(EVT VT) {
15367  switch (VT.getSimpleVT().SimpleTy) {
15368  case MVT::i8:  return X86::CMOV_GR8;
15369  case MVT::i16: return X86::CMOV_GR16;
15370  case MVT::i32: return X86::CMOV_GR32;
15371  default:
15372    break;
15373  }
15374  llvm_unreachable("Unknown CMOV opcode!");
15375}
15376
15377// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
15378// They will be translated into a spin-loop or compare-exchange loop from
15379//
15380//    ...
15381//    dst = atomic-fetch-op MI.addr, MI.val
15382//    ...
15383//
15384// to
15385//
15386//    ...
15387//    t1 = LOAD MI.addr
15388// loop:
15389//    t4 = phi(t1, t3 / loop)
15390//    t2 = OP MI.val, t4
15391//    EAX = t4
15392//    LCMPXCHG [MI.addr], t2, [EAX is implicitly used & defined]
15393//    t3 = EAX
15394//    JNE loop
15395// sink:
15396//    dst = t3
15397//    ...
15398MachineBasicBlock *
15399X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
15400                                       MachineBasicBlock *MBB) const {
15401  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15402  DebugLoc DL = MI->getDebugLoc();
15403
15404  MachineFunction *MF = MBB->getParent();
15405  MachineRegisterInfo &MRI = MF->getRegInfo();
15406
15407  const BasicBlock *BB = MBB->getBasicBlock();
15408  MachineFunction::iterator I = MBB;
15409  ++I;
15410
15411  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
15412         "Unexpected number of operands");
15413
15414  assert(MI->hasOneMemOperand() &&
15415         "Expected atomic-load-op to have one memoperand");
15416
15417  // Memory Reference
15418  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
15419  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
15420
15421  unsigned DstReg, SrcReg;
15422  unsigned MemOpndSlot;
15423
15424  unsigned CurOp = 0;
15425
15426  DstReg = MI->getOperand(CurOp++).getReg();
15427  MemOpndSlot = CurOp;
15428  CurOp += X86::AddrNumOperands;
15429  SrcReg = MI->getOperand(CurOp++).getReg();
15430
15431  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
15432  MVT::SimpleValueType VT = *RC->vt_begin();
15433  unsigned t1 = MRI.createVirtualRegister(RC);
15434  unsigned t2 = MRI.createVirtualRegister(RC);
15435  unsigned t3 = MRI.createVirtualRegister(RC);
15436  unsigned t4 = MRI.createVirtualRegister(RC);
15437  unsigned PhyReg = getX86SubSuperRegister(X86::EAX, VT);
15438
15439  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
15440  unsigned LOADOpc = getLoadOpcode(VT);
15441
15442  // For the atomic load-arith operator, we generate
15443  //
15444  //  thisMBB:
15445  //    t1 = LOAD [MI.addr]
15446  //  mainMBB:
15447  //    t4 = phi(t1 / thisMBB, t3 / mainMBB)
15448  //    t1 = OP MI.val, EAX
15449  //    EAX = t4
15450  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
15451  //    t3 = EAX
15452  //    JNE mainMBB
15453  //  sinkMBB:
15454  //    dst = t3
15455
15456  MachineBasicBlock *thisMBB = MBB;
15457  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
15458  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
15459  MF->insert(I, mainMBB);
15460  MF->insert(I, sinkMBB);
15461
15462  MachineInstrBuilder MIB;
15463
15464  // Transfer the remainder of BB and its successor edges to sinkMBB.
15465  sinkMBB->splice(sinkMBB->begin(), MBB,
15466                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
15467  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
15468
15469  // thisMBB:
15470  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1);
15471  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15472    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
15473    if (NewMO.isReg())
15474      NewMO.setIsKill(false);
15475    MIB.addOperand(NewMO);
15476  }
15477  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
15478    unsigned flags = (*MMOI)->getFlags();
15479    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
15480    MachineMemOperand *MMO =
15481      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
15482                               (*MMOI)->getSize(),
15483                               (*MMOI)->getBaseAlignment(),
15484                               (*MMOI)->getTBAAInfo(),
15485                               (*MMOI)->getRanges());
15486    MIB.addMemOperand(MMO);
15487  }
15488
15489  thisMBB->addSuccessor(mainMBB);
15490
15491  // mainMBB:
15492  MachineBasicBlock *origMainMBB = mainMBB;
15493
15494  // Add a PHI.
15495  MachineInstr *Phi = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4)
15496                        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
15497
15498  unsigned Opc = MI->getOpcode();
15499  switch (Opc) {
15500  default:
15501    llvm_unreachable("Unhandled atomic-load-op opcode!");
15502  case X86::ATOMAND8:
15503  case X86::ATOMAND16:
15504  case X86::ATOMAND32:
15505  case X86::ATOMAND64:
15506  case X86::ATOMOR8:
15507  case X86::ATOMOR16:
15508  case X86::ATOMOR32:
15509  case X86::ATOMOR64:
15510  case X86::ATOMXOR8:
15511  case X86::ATOMXOR16:
15512  case X86::ATOMXOR32:
15513  case X86::ATOMXOR64: {
15514    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
15515    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t2).addReg(SrcReg)
15516      .addReg(t4);
15517    break;
15518  }
15519  case X86::ATOMNAND8:
15520  case X86::ATOMNAND16:
15521  case X86::ATOMNAND32:
15522  case X86::ATOMNAND64: {
15523    unsigned Tmp = MRI.createVirtualRegister(RC);
15524    unsigned NOTOpc;
15525    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
15526    BuildMI(mainMBB, DL, TII->get(ANDOpc), Tmp).addReg(SrcReg)
15527      .addReg(t4);
15528    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2).addReg(Tmp);
15529    break;
15530  }
15531  case X86::ATOMMAX8:
15532  case X86::ATOMMAX16:
15533  case X86::ATOMMAX32:
15534  case X86::ATOMMAX64:
15535  case X86::ATOMMIN8:
15536  case X86::ATOMMIN16:
15537  case X86::ATOMMIN32:
15538  case X86::ATOMMIN64:
15539  case X86::ATOMUMAX8:
15540  case X86::ATOMUMAX16:
15541  case X86::ATOMUMAX32:
15542  case X86::ATOMUMAX64:
15543  case X86::ATOMUMIN8:
15544  case X86::ATOMUMIN16:
15545  case X86::ATOMUMIN32:
15546  case X86::ATOMUMIN64: {
15547    unsigned CMPOpc;
15548    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
15549
15550    BuildMI(mainMBB, DL, TII->get(CMPOpc))
15551      .addReg(SrcReg)
15552      .addReg(t4);
15553
15554    if (Subtarget->hasCMov()) {
15555      if (VT != MVT::i8) {
15556        // Native support
15557        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
15558          .addReg(SrcReg)
15559          .addReg(t4);
15560      } else {
15561        // Promote i8 to i32 to use CMOV32
15562        const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
15563        const TargetRegisterClass *RC32 =
15564          TRI->getSubClassWithSubReg(getRegClassFor(MVT::i32), X86::sub_8bit);
15565        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
15566        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
15567        unsigned Tmp = MRI.createVirtualRegister(RC32);
15568
15569        unsigned Undef = MRI.createVirtualRegister(RC32);
15570        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
15571
15572        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
15573          .addReg(Undef)
15574          .addReg(SrcReg)
15575          .addImm(X86::sub_8bit);
15576        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
15577          .addReg(Undef)
15578          .addReg(t4)
15579          .addImm(X86::sub_8bit);
15580
15581        BuildMI(mainMBB, DL, TII->get(CMOVOpc), Tmp)
15582          .addReg(SrcReg32)
15583          .addReg(AccReg32);
15584
15585        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t2)
15586          .addReg(Tmp, 0, X86::sub_8bit);
15587      }
15588    } else {
15589      // Use pseudo select and lower them.
15590      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
15591             "Invalid atomic-load-op transformation!");
15592      unsigned SelOpc = getPseudoCMOVOpc(VT);
15593      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
15594      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
15595      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t2)
15596              .addReg(SrcReg).addReg(t4)
15597              .addImm(CC);
15598      mainMBB = EmitLoweredSelect(MIB, mainMBB);
15599      // Replace the original PHI node as mainMBB is changed after CMOV
15600      // lowering.
15601      BuildMI(*origMainMBB, Phi, DL, TII->get(X86::PHI), t4)
15602        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
15603      Phi->eraseFromParent();
15604    }
15605    break;
15606  }
15607  }
15608
15609  // Copy PhyReg back from virtual register.
15610  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), PhyReg)
15611    .addReg(t4);
15612
15613  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
15614  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15615    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
15616    if (NewMO.isReg())
15617      NewMO.setIsKill(false);
15618    MIB.addOperand(NewMO);
15619  }
15620  MIB.addReg(t2);
15621  MIB.setMemRefs(MMOBegin, MMOEnd);
15622
15623  // Copy PhyReg back to virtual register.
15624  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3)
15625    .addReg(PhyReg);
15626
15627  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
15628
15629  mainMBB->addSuccessor(origMainMBB);
15630  mainMBB->addSuccessor(sinkMBB);
15631
15632  // sinkMBB:
15633  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
15634          TII->get(TargetOpcode::COPY), DstReg)
15635    .addReg(t3);
15636
15637  MI->eraseFromParent();
15638  return sinkMBB;
15639}
15640
15641// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
15642// instructions. They will be translated into a spin-loop or compare-exchange
15643// loop from
15644//
15645//    ...
15646//    dst = atomic-fetch-op MI.addr, MI.val
15647//    ...
15648//
15649// to
15650//
15651//    ...
15652//    t1L = LOAD [MI.addr + 0]
15653//    t1H = LOAD [MI.addr + 4]
15654// loop:
15655//    t4L = phi(t1L, t3L / loop)
15656//    t4H = phi(t1H, t3H / loop)
15657//    t2L = OP MI.val.lo, t4L
15658//    t2H = OP MI.val.hi, t4H
15659//    EAX = t4L
15660//    EDX = t4H
15661//    EBX = t2L
15662//    ECX = t2H
15663//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
15664//    t3L = EAX
15665//    t3H = EDX
15666//    JNE loop
15667// sink:
15668//    dstL = t3L
15669//    dstH = t3H
15670//    ...
15671MachineBasicBlock *
15672X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
15673                                           MachineBasicBlock *MBB) const {
15674  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15675  DebugLoc DL = MI->getDebugLoc();
15676
15677  MachineFunction *MF = MBB->getParent();
15678  MachineRegisterInfo &MRI = MF->getRegInfo();
15679
15680  const BasicBlock *BB = MBB->getBasicBlock();
15681  MachineFunction::iterator I = MBB;
15682  ++I;
15683
15684  assert(MI->getNumOperands() <= X86::AddrNumOperands + 7 &&
15685         "Unexpected number of operands");
15686
15687  assert(MI->hasOneMemOperand() &&
15688         "Expected atomic-load-op32 to have one memoperand");
15689
15690  // Memory Reference
15691  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
15692  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
15693
15694  unsigned DstLoReg, DstHiReg;
15695  unsigned SrcLoReg, SrcHiReg;
15696  unsigned MemOpndSlot;
15697
15698  unsigned CurOp = 0;
15699
15700  DstLoReg = MI->getOperand(CurOp++).getReg();
15701  DstHiReg = MI->getOperand(CurOp++).getReg();
15702  MemOpndSlot = CurOp;
15703  CurOp += X86::AddrNumOperands;
15704  SrcLoReg = MI->getOperand(CurOp++).getReg();
15705  SrcHiReg = MI->getOperand(CurOp++).getReg();
15706
15707  const TargetRegisterClass *RC = &X86::GR32RegClass;
15708  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
15709
15710  unsigned t1L = MRI.createVirtualRegister(RC);
15711  unsigned t1H = MRI.createVirtualRegister(RC);
15712  unsigned t2L = MRI.createVirtualRegister(RC);
15713  unsigned t2H = MRI.createVirtualRegister(RC);
15714  unsigned t3L = MRI.createVirtualRegister(RC);
15715  unsigned t3H = MRI.createVirtualRegister(RC);
15716  unsigned t4L = MRI.createVirtualRegister(RC);
15717  unsigned t4H = MRI.createVirtualRegister(RC);
15718
15719  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
15720  unsigned LOADOpc = X86::MOV32rm;
15721
15722  // For the atomic load-arith operator, we generate
15723  //
15724  //  thisMBB:
15725  //    t1L = LOAD [MI.addr + 0]
15726  //    t1H = LOAD [MI.addr + 4]
15727  //  mainMBB:
15728  //    t4L = phi(t1L / thisMBB, t3L / mainMBB)
15729  //    t4H = phi(t1H / thisMBB, t3H / mainMBB)
15730  //    t2L = OP MI.val.lo, t4L
15731  //    t2H = OP MI.val.hi, t4H
15732  //    EBX = t2L
15733  //    ECX = t2H
15734  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
15735  //    t3L = EAX
15736  //    t3H = EDX
15737  //    JNE loop
15738  //  sinkMBB:
15739  //    dstL = t3L
15740  //    dstH = t3H
15741
15742  MachineBasicBlock *thisMBB = MBB;
15743  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
15744  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
15745  MF->insert(I, mainMBB);
15746  MF->insert(I, sinkMBB);
15747
15748  MachineInstrBuilder MIB;
15749
15750  // Transfer the remainder of BB and its successor edges to sinkMBB.
15751  sinkMBB->splice(sinkMBB->begin(), MBB,
15752                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
15753  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
15754
15755  // thisMBB:
15756  // Lo
15757  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1L);
15758  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15759    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
15760    if (NewMO.isReg())
15761      NewMO.setIsKill(false);
15762    MIB.addOperand(NewMO);
15763  }
15764  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
15765    unsigned flags = (*MMOI)->getFlags();
15766    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
15767    MachineMemOperand *MMO =
15768      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
15769                               (*MMOI)->getSize(),
15770                               (*MMOI)->getBaseAlignment(),
15771                               (*MMOI)->getTBAAInfo(),
15772                               (*MMOI)->getRanges());
15773    MIB.addMemOperand(MMO);
15774  };
15775  MachineInstr *LowMI = MIB;
15776
15777  // Hi
15778  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1H);
15779  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15780    if (i == X86::AddrDisp) {
15781      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
15782    } else {
15783      MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
15784      if (NewMO.isReg())
15785        NewMO.setIsKill(false);
15786      MIB.addOperand(NewMO);
15787    }
15788  }
15789  MIB.setMemRefs(LowMI->memoperands_begin(), LowMI->memoperands_end());
15790
15791  thisMBB->addSuccessor(mainMBB);
15792
15793  // mainMBB:
15794  MachineBasicBlock *origMainMBB = mainMBB;
15795
15796  // Add PHIs.
15797  MachineInstr *PhiL = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4L)
15798                        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
15799  MachineInstr *PhiH = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4H)
15800                        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
15801
15802  unsigned Opc = MI->getOpcode();
15803  switch (Opc) {
15804  default:
15805    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
15806  case X86::ATOMAND6432:
15807  case X86::ATOMOR6432:
15808  case X86::ATOMXOR6432:
15809  case X86::ATOMADD6432:
15810  case X86::ATOMSUB6432: {
15811    unsigned HiOpc;
15812    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
15813    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(t4L)
15814      .addReg(SrcLoReg);
15815    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(t4H)
15816      .addReg(SrcHiReg);
15817    break;
15818  }
15819  case X86::ATOMNAND6432: {
15820    unsigned HiOpc, NOTOpc;
15821    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
15822    unsigned TmpL = MRI.createVirtualRegister(RC);
15823    unsigned TmpH = MRI.createVirtualRegister(RC);
15824    BuildMI(mainMBB, DL, TII->get(LoOpc), TmpL).addReg(SrcLoReg)
15825      .addReg(t4L);
15826    BuildMI(mainMBB, DL, TII->get(HiOpc), TmpH).addReg(SrcHiReg)
15827      .addReg(t4H);
15828    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2L).addReg(TmpL);
15829    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2H).addReg(TmpH);
15830    break;
15831  }
15832  case X86::ATOMMAX6432:
15833  case X86::ATOMMIN6432:
15834  case X86::ATOMUMAX6432:
15835  case X86::ATOMUMIN6432: {
15836    unsigned HiOpc;
15837    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
15838    unsigned cL = MRI.createVirtualRegister(RC8);
15839    unsigned cH = MRI.createVirtualRegister(RC8);
15840    unsigned cL32 = MRI.createVirtualRegister(RC);
15841    unsigned cH32 = MRI.createVirtualRegister(RC);
15842    unsigned cc = MRI.createVirtualRegister(RC);
15843    // cl := cmp src_lo, lo
15844    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
15845      .addReg(SrcLoReg).addReg(t4L);
15846    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
15847    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
15848    // ch := cmp src_hi, hi
15849    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
15850      .addReg(SrcHiReg).addReg(t4H);
15851    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
15852    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
15853    // cc := if (src_hi == hi) ? cl : ch;
15854    if (Subtarget->hasCMov()) {
15855      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
15856        .addReg(cH32).addReg(cL32);
15857    } else {
15858      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
15859              .addReg(cH32).addReg(cL32)
15860              .addImm(X86::COND_E);
15861      mainMBB = EmitLoweredSelect(MIB, mainMBB);
15862    }
15863    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
15864    if (Subtarget->hasCMov()) {
15865      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2L)
15866        .addReg(SrcLoReg).addReg(t4L);
15867      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2H)
15868        .addReg(SrcHiReg).addReg(t4H);
15869    } else {
15870      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2L)
15871              .addReg(SrcLoReg).addReg(t4L)
15872              .addImm(X86::COND_NE);
15873      mainMBB = EmitLoweredSelect(MIB, mainMBB);
15874      // As the lowered CMOV won't clobber EFLAGS, we could reuse it for the
15875      // 2nd CMOV lowering.
15876      mainMBB->addLiveIn(X86::EFLAGS);
15877      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2H)
15878              .addReg(SrcHiReg).addReg(t4H)
15879              .addImm(X86::COND_NE);
15880      mainMBB = EmitLoweredSelect(MIB, mainMBB);
15881      // Replace the original PHI node as mainMBB is changed after CMOV
15882      // lowering.
15883      BuildMI(*origMainMBB, PhiL, DL, TII->get(X86::PHI), t4L)
15884        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
15885      BuildMI(*origMainMBB, PhiH, DL, TII->get(X86::PHI), t4H)
15886        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
15887      PhiL->eraseFromParent();
15888      PhiH->eraseFromParent();
15889    }
15890    break;
15891  }
15892  case X86::ATOMSWAP6432: {
15893    unsigned HiOpc;
15894    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
15895    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg);
15896    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg);
15897    break;
15898  }
15899  }
15900
15901  // Copy EDX:EAX back from HiReg:LoReg
15902  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(t4L);
15903  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(t4H);
15904  // Copy ECX:EBX from t1H:t1L
15905  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t2L);
15906  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t2H);
15907
15908  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
15909  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15910    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
15911    if (NewMO.isReg())
15912      NewMO.setIsKill(false);
15913    MIB.addOperand(NewMO);
15914  }
15915  MIB.setMemRefs(MMOBegin, MMOEnd);
15916
15917  // Copy EDX:EAX back to t3H:t3L
15918  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3L).addReg(X86::EAX);
15919  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3H).addReg(X86::EDX);
15920
15921  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
15922
15923  mainMBB->addSuccessor(origMainMBB);
15924  mainMBB->addSuccessor(sinkMBB);
15925
15926  // sinkMBB:
15927  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
15928          TII->get(TargetOpcode::COPY), DstLoReg)
15929    .addReg(t3L);
15930  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
15931          TII->get(TargetOpcode::COPY), DstHiReg)
15932    .addReg(t3H);
15933
15934  MI->eraseFromParent();
15935  return sinkMBB;
15936}
15937
15938// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
15939// or XMM0_V32I8 in AVX all of this code can be replaced with that
15940// in the .td file.
15941static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
15942                                       const TargetInstrInfo *TII) {
15943  unsigned Opc;
15944  switch (MI->getOpcode()) {
15945  default: llvm_unreachable("illegal opcode!");
15946  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
15947  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
15948  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
15949  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
15950  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
15951  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
15952  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
15953  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
15954  }
15955
15956  DebugLoc dl = MI->getDebugLoc();
15957  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
15958
15959  unsigned NumArgs = MI->getNumOperands();
15960  for (unsigned i = 1; i < NumArgs; ++i) {
15961    MachineOperand &Op = MI->getOperand(i);
15962    if (!(Op.isReg() && Op.isImplicit()))
15963      MIB.addOperand(Op);
15964  }
15965  if (MI->hasOneMemOperand())
15966    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
15967
15968  BuildMI(*BB, MI, dl,
15969    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
15970    .addReg(X86::XMM0);
15971
15972  MI->eraseFromParent();
15973  return BB;
15974}
15975
15976// FIXME: Custom handling because TableGen doesn't support multiple implicit
15977// defs in an instruction pattern
15978static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
15979                                       const TargetInstrInfo *TII) {
15980  unsigned Opc;
15981  switch (MI->getOpcode()) {
15982  default: llvm_unreachable("illegal opcode!");
15983  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
15984  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
15985  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
15986  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
15987  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
15988  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
15989  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
15990  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
15991  }
15992
15993  DebugLoc dl = MI->getDebugLoc();
15994  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
15995
15996  unsigned NumArgs = MI->getNumOperands(); // remove the results
15997  for (unsigned i = 1; i < NumArgs; ++i) {
15998    MachineOperand &Op = MI->getOperand(i);
15999    if (!(Op.isReg() && Op.isImplicit()))
16000      MIB.addOperand(Op);
16001  }
16002  if (MI->hasOneMemOperand())
16003    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
16004
16005  BuildMI(*BB, MI, dl,
16006    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
16007    .addReg(X86::ECX);
16008
16009  MI->eraseFromParent();
16010  return BB;
16011}
16012
16013static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
16014                                       const TargetInstrInfo *TII,
16015                                       const X86Subtarget* Subtarget) {
16016  DebugLoc dl = MI->getDebugLoc();
16017
16018  // Address into RAX/EAX, other two args into ECX, EDX.
16019  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
16020  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
16021  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
16022  for (int i = 0; i < X86::AddrNumOperands; ++i)
16023    MIB.addOperand(MI->getOperand(i));
16024
16025  unsigned ValOps = X86::AddrNumOperands;
16026  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
16027    .addReg(MI->getOperand(ValOps).getReg());
16028  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
16029    .addReg(MI->getOperand(ValOps+1).getReg());
16030
16031  // The instruction doesn't actually take any operands though.
16032  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
16033
16034  MI->eraseFromParent(); // The pseudo is gone now.
16035  return BB;
16036}
16037
16038MachineBasicBlock *
16039X86TargetLowering::EmitVAARG64WithCustomInserter(
16040                   MachineInstr *MI,
16041                   MachineBasicBlock *MBB) const {
16042  // Emit va_arg instruction on X86-64.
16043
16044  // Operands to this pseudo-instruction:
16045  // 0  ) Output        : destination address (reg)
16046  // 1-5) Input         : va_list address (addr, i64mem)
16047  // 6  ) ArgSize       : Size (in bytes) of vararg type
16048  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
16049  // 8  ) Align         : Alignment of type
16050  // 9  ) EFLAGS (implicit-def)
16051
16052  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
16053  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
16054
16055  unsigned DestReg = MI->getOperand(0).getReg();
16056  MachineOperand &Base = MI->getOperand(1);
16057  MachineOperand &Scale = MI->getOperand(2);
16058  MachineOperand &Index = MI->getOperand(3);
16059  MachineOperand &Disp = MI->getOperand(4);
16060  MachineOperand &Segment = MI->getOperand(5);
16061  unsigned ArgSize = MI->getOperand(6).getImm();
16062  unsigned ArgMode = MI->getOperand(7).getImm();
16063  unsigned Align = MI->getOperand(8).getImm();
16064
16065  // Memory Reference
16066  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
16067  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
16068  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
16069
16070  // Machine Information
16071  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
16072  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
16073  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
16074  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
16075  DebugLoc DL = MI->getDebugLoc();
16076
16077  // struct va_list {
16078  //   i32   gp_offset
16079  //   i32   fp_offset
16080  //   i64   overflow_area (address)
16081  //   i64   reg_save_area (address)
16082  // }
16083  // sizeof(va_list) = 24
16084  // alignment(va_list) = 8
16085
16086  unsigned TotalNumIntRegs = 6;
16087  unsigned TotalNumXMMRegs = 8;
16088  bool UseGPOffset = (ArgMode == 1);
16089  bool UseFPOffset = (ArgMode == 2);
16090  unsigned MaxOffset = TotalNumIntRegs * 8 +
16091                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
16092
16093  /* Align ArgSize to a multiple of 8 */
16094  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
16095  bool NeedsAlign = (Align > 8);
16096
16097  MachineBasicBlock *thisMBB = MBB;
16098  MachineBasicBlock *overflowMBB;
16099  MachineBasicBlock *offsetMBB;
16100  MachineBasicBlock *endMBB;
16101
16102  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
16103  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
16104  unsigned OffsetReg = 0;
16105
16106  if (!UseGPOffset && !UseFPOffset) {
16107    // If we only pull from the overflow region, we don't create a branch.
16108    // We don't need to alter control flow.
16109    OffsetDestReg = 0; // unused
16110    OverflowDestReg = DestReg;
16111
16112    offsetMBB = nullptr;
16113    overflowMBB = thisMBB;
16114    endMBB = thisMBB;
16115  } else {
16116    // First emit code to check if gp_offset (or fp_offset) is below the bound.
16117    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
16118    // If not, pull from overflow_area. (branch to overflowMBB)
16119    //
16120    //       thisMBB
16121    //         |     .
16122    //         |        .
16123    //     offsetMBB   overflowMBB
16124    //         |        .
16125    //         |     .
16126    //        endMBB
16127
16128    // Registers for the PHI in endMBB
16129    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
16130    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
16131
16132    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
16133    MachineFunction *MF = MBB->getParent();
16134    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
16135    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
16136    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
16137
16138    MachineFunction::iterator MBBIter = MBB;
16139    ++MBBIter;
16140
16141    // Insert the new basic blocks
16142    MF->insert(MBBIter, offsetMBB);
16143    MF->insert(MBBIter, overflowMBB);
16144    MF->insert(MBBIter, endMBB);
16145
16146    // Transfer the remainder of MBB and its successor edges to endMBB.
16147    endMBB->splice(endMBB->begin(), thisMBB,
16148                   std::next(MachineBasicBlock::iterator(MI)), thisMBB->end());
16149    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
16150
16151    // Make offsetMBB and overflowMBB successors of thisMBB
16152    thisMBB->addSuccessor(offsetMBB);
16153    thisMBB->addSuccessor(overflowMBB);
16154
16155    // endMBB is a successor of both offsetMBB and overflowMBB
16156    offsetMBB->addSuccessor(endMBB);
16157    overflowMBB->addSuccessor(endMBB);
16158
16159    // Load the offset value into a register
16160    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
16161    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
16162      .addOperand(Base)
16163      .addOperand(Scale)
16164      .addOperand(Index)
16165      .addDisp(Disp, UseFPOffset ? 4 : 0)
16166      .addOperand(Segment)
16167      .setMemRefs(MMOBegin, MMOEnd);
16168
16169    // Check if there is enough room left to pull this argument.
16170    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
16171      .addReg(OffsetReg)
16172      .addImm(MaxOffset + 8 - ArgSizeA8);
16173
16174    // Branch to "overflowMBB" if offset >= max
16175    // Fall through to "offsetMBB" otherwise
16176    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
16177      .addMBB(overflowMBB);
16178  }
16179
16180  // In offsetMBB, emit code to use the reg_save_area.
16181  if (offsetMBB) {
16182    assert(OffsetReg != 0);
16183
16184    // Read the reg_save_area address.
16185    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
16186    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
16187      .addOperand(Base)
16188      .addOperand(Scale)
16189      .addOperand(Index)
16190      .addDisp(Disp, 16)
16191      .addOperand(Segment)
16192      .setMemRefs(MMOBegin, MMOEnd);
16193
16194    // Zero-extend the offset
16195    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
16196      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
16197        .addImm(0)
16198        .addReg(OffsetReg)
16199        .addImm(X86::sub_32bit);
16200
16201    // Add the offset to the reg_save_area to get the final address.
16202    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
16203      .addReg(OffsetReg64)
16204      .addReg(RegSaveReg);
16205
16206    // Compute the offset for the next argument
16207    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
16208    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
16209      .addReg(OffsetReg)
16210      .addImm(UseFPOffset ? 16 : 8);
16211
16212    // Store it back into the va_list.
16213    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
16214      .addOperand(Base)
16215      .addOperand(Scale)
16216      .addOperand(Index)
16217      .addDisp(Disp, UseFPOffset ? 4 : 0)
16218      .addOperand(Segment)
16219      .addReg(NextOffsetReg)
16220      .setMemRefs(MMOBegin, MMOEnd);
16221
16222    // Jump to endMBB
16223    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
16224      .addMBB(endMBB);
16225  }
16226
16227  //
16228  // Emit code to use overflow area
16229  //
16230
16231  // Load the overflow_area address into a register.
16232  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
16233  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
16234    .addOperand(Base)
16235    .addOperand(Scale)
16236    .addOperand(Index)
16237    .addDisp(Disp, 8)
16238    .addOperand(Segment)
16239    .setMemRefs(MMOBegin, MMOEnd);
16240
16241  // If we need to align it, do so. Otherwise, just copy the address
16242  // to OverflowDestReg.
16243  if (NeedsAlign) {
16244    // Align the overflow address
16245    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
16246    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
16247
16248    // aligned_addr = (addr + (align-1)) & ~(align-1)
16249    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
16250      .addReg(OverflowAddrReg)
16251      .addImm(Align-1);
16252
16253    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
16254      .addReg(TmpReg)
16255      .addImm(~(uint64_t)(Align-1));
16256  } else {
16257    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
16258      .addReg(OverflowAddrReg);
16259  }
16260
16261  // Compute the next overflow address after this argument.
16262  // (the overflow address should be kept 8-byte aligned)
16263  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
16264  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
16265    .addReg(OverflowDestReg)
16266    .addImm(ArgSizeA8);
16267
16268  // Store the new overflow address.
16269  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
16270    .addOperand(Base)
16271    .addOperand(Scale)
16272    .addOperand(Index)
16273    .addDisp(Disp, 8)
16274    .addOperand(Segment)
16275    .addReg(NextAddrReg)
16276    .setMemRefs(MMOBegin, MMOEnd);
16277
16278  // If we branched, emit the PHI to the front of endMBB.
16279  if (offsetMBB) {
16280    BuildMI(*endMBB, endMBB->begin(), DL,
16281            TII->get(X86::PHI), DestReg)
16282      .addReg(OffsetDestReg).addMBB(offsetMBB)
16283      .addReg(OverflowDestReg).addMBB(overflowMBB);
16284  }
16285
16286  // Erase the pseudo instruction
16287  MI->eraseFromParent();
16288
16289  return endMBB;
16290}
16291
16292MachineBasicBlock *
16293X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
16294                                                 MachineInstr *MI,
16295                                                 MachineBasicBlock *MBB) const {
16296  // Emit code to save XMM registers to the stack. The ABI says that the
16297  // number of registers to save is given in %al, so it's theoretically
16298  // possible to do an indirect jump trick to avoid saving all of them,
16299  // however this code takes a simpler approach and just executes all
16300  // of the stores if %al is non-zero. It's less code, and it's probably
16301  // easier on the hardware branch predictor, and stores aren't all that
16302  // expensive anyway.
16303
16304  // Create the new basic blocks. One block contains all the XMM stores,
16305  // and one block is the final destination regardless of whether any
16306  // stores were performed.
16307  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
16308  MachineFunction *F = MBB->getParent();
16309  MachineFunction::iterator MBBIter = MBB;
16310  ++MBBIter;
16311  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
16312  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
16313  F->insert(MBBIter, XMMSaveMBB);
16314  F->insert(MBBIter, EndMBB);
16315
16316  // Transfer the remainder of MBB and its successor edges to EndMBB.
16317  EndMBB->splice(EndMBB->begin(), MBB,
16318                 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
16319  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
16320
16321  // The original block will now fall through to the XMM save block.
16322  MBB->addSuccessor(XMMSaveMBB);
16323  // The XMMSaveMBB will fall through to the end block.
16324  XMMSaveMBB->addSuccessor(EndMBB);
16325
16326  // Now add the instructions.
16327  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
16328  DebugLoc DL = MI->getDebugLoc();
16329
16330  unsigned CountReg = MI->getOperand(0).getReg();
16331  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
16332  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
16333
16334  if (!Subtarget->isTargetWin64()) {
16335    // If %al is 0, branch around the XMM save block.
16336    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
16337    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
16338    MBB->addSuccessor(EndMBB);
16339  }
16340
16341  // Make sure the last operand is EFLAGS, which gets clobbered by the branch
16342  // that was just emitted, but clearly shouldn't be "saved".
16343  assert((MI->getNumOperands() <= 3 ||
16344          !MI->getOperand(MI->getNumOperands() - 1).isReg() ||
16345          MI->getOperand(MI->getNumOperands() - 1).getReg() == X86::EFLAGS)
16346         && "Expected last argument to be EFLAGS");
16347  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
16348  // In the XMM save block, save all the XMM argument registers.
16349  for (int i = 3, e = MI->getNumOperands() - 1; i != e; ++i) {
16350    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
16351    MachineMemOperand *MMO =
16352      F->getMachineMemOperand(
16353          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
16354        MachineMemOperand::MOStore,
16355        /*Size=*/16, /*Align=*/16);
16356    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
16357      .addFrameIndex(RegSaveFrameIndex)
16358      .addImm(/*Scale=*/1)
16359      .addReg(/*IndexReg=*/0)
16360      .addImm(/*Disp=*/Offset)
16361      .addReg(/*Segment=*/0)
16362      .addReg(MI->getOperand(i).getReg())
16363      .addMemOperand(MMO);
16364  }
16365
16366  MI->eraseFromParent();   // The pseudo instruction is gone now.
16367
16368  return EndMBB;
16369}
16370
16371// The EFLAGS operand of SelectItr might be missing a kill marker
16372// because there were multiple uses of EFLAGS, and ISel didn't know
16373// which to mark. Figure out whether SelectItr should have had a
16374// kill marker, and set it if it should. Returns the correct kill
16375// marker value.
16376static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
16377                                     MachineBasicBlock* BB,
16378                                     const TargetRegisterInfo* TRI) {
16379  // Scan forward through BB for a use/def of EFLAGS.
16380  MachineBasicBlock::iterator miI(std::next(SelectItr));
16381  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
16382    const MachineInstr& mi = *miI;
16383    if (mi.readsRegister(X86::EFLAGS))
16384      return false;
16385    if (mi.definesRegister(X86::EFLAGS))
16386      break; // Should have kill-flag - update below.
16387  }
16388
16389  // If we hit the end of the block, check whether EFLAGS is live into a
16390  // successor.
16391  if (miI == BB->end()) {
16392    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
16393                                          sEnd = BB->succ_end();
16394         sItr != sEnd; ++sItr) {
16395      MachineBasicBlock* succ = *sItr;
16396      if (succ->isLiveIn(X86::EFLAGS))
16397        return false;
16398    }
16399  }
16400
16401  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
16402  // out. SelectMI should have a kill flag on EFLAGS.
16403  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
16404  return true;
16405}
16406
16407MachineBasicBlock *
16408X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
16409                                     MachineBasicBlock *BB) const {
16410  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
16411  DebugLoc DL = MI->getDebugLoc();
16412
16413  // To "insert" a SELECT_CC instruction, we actually have to insert the
16414  // diamond control-flow pattern.  The incoming instruction knows the
16415  // destination vreg to set, the condition code register to branch on, the
16416  // true/false values to select between, and a branch opcode to use.
16417  const BasicBlock *LLVM_BB = BB->getBasicBlock();
16418  MachineFunction::iterator It = BB;
16419  ++It;
16420
16421  //  thisMBB:
16422  //  ...
16423  //   TrueVal = ...
16424  //   cmpTY ccX, r1, r2
16425  //   bCC copy1MBB
16426  //   fallthrough --> copy0MBB
16427  MachineBasicBlock *thisMBB = BB;
16428  MachineFunction *F = BB->getParent();
16429  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
16430  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
16431  F->insert(It, copy0MBB);
16432  F->insert(It, sinkMBB);
16433
16434  // If the EFLAGS register isn't dead in the terminator, then claim that it's
16435  // live into the sink and copy blocks.
16436  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
16437  if (!MI->killsRegister(X86::EFLAGS) &&
16438      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
16439    copy0MBB->addLiveIn(X86::EFLAGS);
16440    sinkMBB->addLiveIn(X86::EFLAGS);
16441  }
16442
16443  // Transfer the remainder of BB and its successor edges to sinkMBB.
16444  sinkMBB->splice(sinkMBB->begin(), BB,
16445                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
16446  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
16447
16448  // Add the true and fallthrough blocks as its successors.
16449  BB->addSuccessor(copy0MBB);
16450  BB->addSuccessor(sinkMBB);
16451
16452  // Create the conditional branch instruction.
16453  unsigned Opc =
16454    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
16455  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
16456
16457  //  copy0MBB:
16458  //   %FalseValue = ...
16459  //   # fallthrough to sinkMBB
16460  copy0MBB->addSuccessor(sinkMBB);
16461
16462  //  sinkMBB:
16463  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
16464  //  ...
16465  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
16466          TII->get(X86::PHI), MI->getOperand(0).getReg())
16467    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
16468    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
16469
16470  MI->eraseFromParent();   // The pseudo instruction is gone now.
16471  return sinkMBB;
16472}
16473
16474MachineBasicBlock *
16475X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
16476                                        bool Is64Bit) const {
16477  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
16478  DebugLoc DL = MI->getDebugLoc();
16479  MachineFunction *MF = BB->getParent();
16480  const BasicBlock *LLVM_BB = BB->getBasicBlock();
16481
16482  assert(MF->shouldSplitStack());
16483
16484  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
16485  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
16486
16487  // BB:
16488  //  ... [Till the alloca]
16489  // If stacklet is not large enough, jump to mallocMBB
16490  //
16491  // bumpMBB:
16492  //  Allocate by subtracting from RSP
16493  //  Jump to continueMBB
16494  //
16495  // mallocMBB:
16496  //  Allocate by call to runtime
16497  //
16498  // continueMBB:
16499  //  ...
16500  //  [rest of original BB]
16501  //
16502
16503  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
16504  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
16505  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
16506
16507  MachineRegisterInfo &MRI = MF->getRegInfo();
16508  const TargetRegisterClass *AddrRegClass =
16509    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
16510
16511  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
16512    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
16513    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
16514    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
16515    sizeVReg = MI->getOperand(1).getReg(),
16516    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
16517
16518  MachineFunction::iterator MBBIter = BB;
16519  ++MBBIter;
16520
16521  MF->insert(MBBIter, bumpMBB);
16522  MF->insert(MBBIter, mallocMBB);
16523  MF->insert(MBBIter, continueMBB);
16524
16525  continueMBB->splice(continueMBB->begin(), BB,
16526                      std::next(MachineBasicBlock::iterator(MI)), BB->end());
16527  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
16528
16529  // Add code to the main basic block to check if the stack limit has been hit,
16530  // and if so, jump to mallocMBB otherwise to bumpMBB.
16531  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
16532  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
16533    .addReg(tmpSPVReg).addReg(sizeVReg);
16534  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
16535    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
16536    .addReg(SPLimitVReg);
16537  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
16538
16539  // bumpMBB simply decreases the stack pointer, since we know the current
16540  // stacklet has enough space.
16541  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
16542    .addReg(SPLimitVReg);
16543  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
16544    .addReg(SPLimitVReg);
16545  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
16546
16547  // Calls into a routine in libgcc to allocate more space from the heap.
16548  const uint32_t *RegMask =
16549    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
16550  if (Is64Bit) {
16551    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
16552      .addReg(sizeVReg);
16553    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
16554      .addExternalSymbol("__morestack_allocate_stack_space")
16555      .addRegMask(RegMask)
16556      .addReg(X86::RDI, RegState::Implicit)
16557      .addReg(X86::RAX, RegState::ImplicitDefine);
16558  } else {
16559    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
16560      .addImm(12);
16561    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
16562    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
16563      .addExternalSymbol("__morestack_allocate_stack_space")
16564      .addRegMask(RegMask)
16565      .addReg(X86::EAX, RegState::ImplicitDefine);
16566  }
16567
16568  if (!Is64Bit)
16569    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
16570      .addImm(16);
16571
16572  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
16573    .addReg(Is64Bit ? X86::RAX : X86::EAX);
16574  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
16575
16576  // Set up the CFG correctly.
16577  BB->addSuccessor(bumpMBB);
16578  BB->addSuccessor(mallocMBB);
16579  mallocMBB->addSuccessor(continueMBB);
16580  bumpMBB->addSuccessor(continueMBB);
16581
16582  // Take care of the PHI nodes.
16583  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
16584          MI->getOperand(0).getReg())
16585    .addReg(mallocPtrVReg).addMBB(mallocMBB)
16586    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
16587
16588  // Delete the original pseudo instruction.
16589  MI->eraseFromParent();
16590
16591  // And we're done.
16592  return continueMBB;
16593}
16594
16595MachineBasicBlock *
16596X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
16597                                          MachineBasicBlock *BB) const {
16598  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
16599  DebugLoc DL = MI->getDebugLoc();
16600
16601  assert(!Subtarget->isTargetMacho());
16602
16603  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
16604  // non-trivial part is impdef of ESP.
16605
16606  if (Subtarget->isTargetWin64()) {
16607    if (Subtarget->isTargetCygMing()) {
16608      // ___chkstk(Mingw64):
16609      // Clobbers R10, R11, RAX and EFLAGS.
16610      // Updates RSP.
16611      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
16612        .addExternalSymbol("___chkstk")
16613        .addReg(X86::RAX, RegState::Implicit)
16614        .addReg(X86::RSP, RegState::Implicit)
16615        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
16616        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
16617        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
16618    } else {
16619      // __chkstk(MSVCRT): does not update stack pointer.
16620      // Clobbers R10, R11 and EFLAGS.
16621      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
16622        .addExternalSymbol("__chkstk")
16623        .addReg(X86::RAX, RegState::Implicit)
16624        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
16625      // RAX has the offset to be subtracted from RSP.
16626      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
16627        .addReg(X86::RSP)
16628        .addReg(X86::RAX);
16629    }
16630  } else {
16631    const char *StackProbeSymbol =
16632      Subtarget->isTargetKnownWindowsMSVC() ? "_chkstk" : "_alloca";
16633
16634    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
16635      .addExternalSymbol(StackProbeSymbol)
16636      .addReg(X86::EAX, RegState::Implicit)
16637      .addReg(X86::ESP, RegState::Implicit)
16638      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
16639      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
16640      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
16641  }
16642
16643  MI->eraseFromParent();   // The pseudo instruction is gone now.
16644  return BB;
16645}
16646
16647MachineBasicBlock *
16648X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
16649                                      MachineBasicBlock *BB) const {
16650  // This is pretty easy.  We're taking the value that we received from
16651  // our load from the relocation, sticking it in either RDI (x86-64)
16652  // or EAX and doing an indirect call.  The return value will then
16653  // be in the normal return register.
16654  const X86InstrInfo *TII
16655    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
16656  DebugLoc DL = MI->getDebugLoc();
16657  MachineFunction *F = BB->getParent();
16658
16659  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
16660  assert(MI->getOperand(3).isGlobal() && "This should be a global");
16661
16662  // Get a register mask for the lowered call.
16663  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
16664  // proper register mask.
16665  const uint32_t *RegMask =
16666    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
16667  if (Subtarget->is64Bit()) {
16668    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
16669                                      TII->get(X86::MOV64rm), X86::RDI)
16670    .addReg(X86::RIP)
16671    .addImm(0).addReg(0)
16672    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
16673                      MI->getOperand(3).getTargetFlags())
16674    .addReg(0);
16675    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
16676    addDirectMem(MIB, X86::RDI);
16677    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
16678  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
16679    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
16680                                      TII->get(X86::MOV32rm), X86::EAX)
16681    .addReg(0)
16682    .addImm(0).addReg(0)
16683    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
16684                      MI->getOperand(3).getTargetFlags())
16685    .addReg(0);
16686    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
16687    addDirectMem(MIB, X86::EAX);
16688    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
16689  } else {
16690    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
16691                                      TII->get(X86::MOV32rm), X86::EAX)
16692    .addReg(TII->getGlobalBaseReg(F))
16693    .addImm(0).addReg(0)
16694    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
16695                      MI->getOperand(3).getTargetFlags())
16696    .addReg(0);
16697    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
16698    addDirectMem(MIB, X86::EAX);
16699    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
16700  }
16701
16702  MI->eraseFromParent(); // The pseudo instruction is gone now.
16703  return BB;
16704}
16705
16706MachineBasicBlock *
16707X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
16708                                    MachineBasicBlock *MBB) const {
16709  DebugLoc DL = MI->getDebugLoc();
16710  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
16711
16712  MachineFunction *MF = MBB->getParent();
16713  MachineRegisterInfo &MRI = MF->getRegInfo();
16714
16715  const BasicBlock *BB = MBB->getBasicBlock();
16716  MachineFunction::iterator I = MBB;
16717  ++I;
16718
16719  // Memory Reference
16720  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
16721  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
16722
16723  unsigned DstReg;
16724  unsigned MemOpndSlot = 0;
16725
16726  unsigned CurOp = 0;
16727
16728  DstReg = MI->getOperand(CurOp++).getReg();
16729  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
16730  assert(RC->hasType(MVT::i32) && "Invalid destination!");
16731  unsigned mainDstReg = MRI.createVirtualRegister(RC);
16732  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
16733
16734  MemOpndSlot = CurOp;
16735
16736  MVT PVT = getPointerTy();
16737  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
16738         "Invalid Pointer Size!");
16739
16740  // For v = setjmp(buf), we generate
16741  //
16742  // thisMBB:
16743  //  buf[LabelOffset] = restoreMBB
16744  //  SjLjSetup restoreMBB
16745  //
16746  // mainMBB:
16747  //  v_main = 0
16748  //
16749  // sinkMBB:
16750  //  v = phi(main, restore)
16751  //
16752  // restoreMBB:
16753  //  v_restore = 1
16754
16755  MachineBasicBlock *thisMBB = MBB;
16756  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
16757  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
16758  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
16759  MF->insert(I, mainMBB);
16760  MF->insert(I, sinkMBB);
16761  MF->push_back(restoreMBB);
16762
16763  MachineInstrBuilder MIB;
16764
16765  // Transfer the remainder of BB and its successor edges to sinkMBB.
16766  sinkMBB->splice(sinkMBB->begin(), MBB,
16767                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
16768  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
16769
16770  // thisMBB:
16771  unsigned PtrStoreOpc = 0;
16772  unsigned LabelReg = 0;
16773  const int64_t LabelOffset = 1 * PVT.getStoreSize();
16774  Reloc::Model RM = getTargetMachine().getRelocationModel();
16775  bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
16776                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
16777
16778  // Prepare IP either in reg or imm.
16779  if (!UseImmLabel) {
16780    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
16781    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
16782    LabelReg = MRI.createVirtualRegister(PtrRC);
16783    if (Subtarget->is64Bit()) {
16784      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
16785              .addReg(X86::RIP)
16786              .addImm(0)
16787              .addReg(0)
16788              .addMBB(restoreMBB)
16789              .addReg(0);
16790    } else {
16791      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
16792      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
16793              .addReg(XII->getGlobalBaseReg(MF))
16794              .addImm(0)
16795              .addReg(0)
16796              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
16797              .addReg(0);
16798    }
16799  } else
16800    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
16801  // Store IP
16802  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
16803  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
16804    if (i == X86::AddrDisp)
16805      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
16806    else
16807      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
16808  }
16809  if (!UseImmLabel)
16810    MIB.addReg(LabelReg);
16811  else
16812    MIB.addMBB(restoreMBB);
16813  MIB.setMemRefs(MMOBegin, MMOEnd);
16814  // Setup
16815  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
16816          .addMBB(restoreMBB);
16817
16818  const X86RegisterInfo *RegInfo =
16819    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
16820  MIB.addRegMask(RegInfo->getNoPreservedMask());
16821  thisMBB->addSuccessor(mainMBB);
16822  thisMBB->addSuccessor(restoreMBB);
16823
16824  // mainMBB:
16825  //  EAX = 0
16826  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
16827  mainMBB->addSuccessor(sinkMBB);
16828
16829  // sinkMBB:
16830  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
16831          TII->get(X86::PHI), DstReg)
16832    .addReg(mainDstReg).addMBB(mainMBB)
16833    .addReg(restoreDstReg).addMBB(restoreMBB);
16834
16835  // restoreMBB:
16836  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
16837  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
16838  restoreMBB->addSuccessor(sinkMBB);
16839
16840  MI->eraseFromParent();
16841  return sinkMBB;
16842}
16843
16844MachineBasicBlock *
16845X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
16846                                     MachineBasicBlock *MBB) const {
16847  DebugLoc DL = MI->getDebugLoc();
16848  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
16849
16850  MachineFunction *MF = MBB->getParent();
16851  MachineRegisterInfo &MRI = MF->getRegInfo();
16852
16853  // Memory Reference
16854  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
16855  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
16856
16857  MVT PVT = getPointerTy();
16858  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
16859         "Invalid Pointer Size!");
16860
16861  const TargetRegisterClass *RC =
16862    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
16863  unsigned Tmp = MRI.createVirtualRegister(RC);
16864  // Since FP is only updated here but NOT referenced, it's treated as GPR.
16865  const X86RegisterInfo *RegInfo =
16866    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
16867  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
16868  unsigned SP = RegInfo->getStackRegister();
16869
16870  MachineInstrBuilder MIB;
16871
16872  const int64_t LabelOffset = 1 * PVT.getStoreSize();
16873  const int64_t SPOffset = 2 * PVT.getStoreSize();
16874
16875  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
16876  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
16877
16878  // Reload FP
16879  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
16880  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
16881    MIB.addOperand(MI->getOperand(i));
16882  MIB.setMemRefs(MMOBegin, MMOEnd);
16883  // Reload IP
16884  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
16885  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
16886    if (i == X86::AddrDisp)
16887      MIB.addDisp(MI->getOperand(i), LabelOffset);
16888    else
16889      MIB.addOperand(MI->getOperand(i));
16890  }
16891  MIB.setMemRefs(MMOBegin, MMOEnd);
16892  // Reload SP
16893  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
16894  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
16895    if (i == X86::AddrDisp)
16896      MIB.addDisp(MI->getOperand(i), SPOffset);
16897    else
16898      MIB.addOperand(MI->getOperand(i));
16899  }
16900  MIB.setMemRefs(MMOBegin, MMOEnd);
16901  // Jump
16902  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
16903
16904  MI->eraseFromParent();
16905  return MBB;
16906}
16907
16908// Replace 213-type (isel default) FMA3 instructions with 231-type for
16909// accumulator loops. Writing back to the accumulator allows the coalescer
16910// to remove extra copies in the loop.
16911MachineBasicBlock *
16912X86TargetLowering::emitFMA3Instr(MachineInstr *MI,
16913                                 MachineBasicBlock *MBB) const {
16914  MachineOperand &AddendOp = MI->getOperand(3);
16915
16916  // Bail out early if the addend isn't a register - we can't switch these.
16917  if (!AddendOp.isReg())
16918    return MBB;
16919
16920  MachineFunction &MF = *MBB->getParent();
16921  MachineRegisterInfo &MRI = MF.getRegInfo();
16922
16923  // Check whether the addend is defined by a PHI:
16924  assert(MRI.hasOneDef(AddendOp.getReg()) && "Multiple defs in SSA?");
16925  MachineInstr &AddendDef = *MRI.def_instr_begin(AddendOp.getReg());
16926  if (!AddendDef.isPHI())
16927    return MBB;
16928
16929  // Look for the following pattern:
16930  // loop:
16931  //   %addend = phi [%entry, 0], [%loop, %result]
16932  //   ...
16933  //   %result<tied1> = FMA213 %m2<tied0>, %m1, %addend
16934
16935  // Replace with:
16936  //   loop:
16937  //   %addend = phi [%entry, 0], [%loop, %result]
16938  //   ...
16939  //   %result<tied1> = FMA231 %addend<tied0>, %m1, %m2
16940
16941  for (unsigned i = 1, e = AddendDef.getNumOperands(); i < e; i += 2) {
16942    assert(AddendDef.getOperand(i).isReg());
16943    MachineOperand PHISrcOp = AddendDef.getOperand(i);
16944    MachineInstr &PHISrcInst = *MRI.def_instr_begin(PHISrcOp.getReg());
16945    if (&PHISrcInst == MI) {
16946      // Found a matching instruction.
16947      unsigned NewFMAOpc = 0;
16948      switch (MI->getOpcode()) {
16949        case X86::VFMADDPDr213r: NewFMAOpc = X86::VFMADDPDr231r; break;
16950        case X86::VFMADDPSr213r: NewFMAOpc = X86::VFMADDPSr231r; break;
16951        case X86::VFMADDSDr213r: NewFMAOpc = X86::VFMADDSDr231r; break;
16952        case X86::VFMADDSSr213r: NewFMAOpc = X86::VFMADDSSr231r; break;
16953        case X86::VFMSUBPDr213r: NewFMAOpc = X86::VFMSUBPDr231r; break;
16954        case X86::VFMSUBPSr213r: NewFMAOpc = X86::VFMSUBPSr231r; break;
16955        case X86::VFMSUBSDr213r: NewFMAOpc = X86::VFMSUBSDr231r; break;
16956        case X86::VFMSUBSSr213r: NewFMAOpc = X86::VFMSUBSSr231r; break;
16957        case X86::VFNMADDPDr213r: NewFMAOpc = X86::VFNMADDPDr231r; break;
16958        case X86::VFNMADDPSr213r: NewFMAOpc = X86::VFNMADDPSr231r; break;
16959        case X86::VFNMADDSDr213r: NewFMAOpc = X86::VFNMADDSDr231r; break;
16960        case X86::VFNMADDSSr213r: NewFMAOpc = X86::VFNMADDSSr231r; break;
16961        case X86::VFNMSUBPDr213r: NewFMAOpc = X86::VFNMSUBPDr231r; break;
16962        case X86::VFNMSUBPSr213r: NewFMAOpc = X86::VFNMSUBPSr231r; break;
16963        case X86::VFNMSUBSDr213r: NewFMAOpc = X86::VFNMSUBSDr231r; break;
16964        case X86::VFNMSUBSSr213r: NewFMAOpc = X86::VFNMSUBSSr231r; break;
16965        case X86::VFMADDPDr213rY: NewFMAOpc = X86::VFMADDPDr231rY; break;
16966        case X86::VFMADDPSr213rY: NewFMAOpc = X86::VFMADDPSr231rY; break;
16967        case X86::VFMSUBPDr213rY: NewFMAOpc = X86::VFMSUBPDr231rY; break;
16968        case X86::VFMSUBPSr213rY: NewFMAOpc = X86::VFMSUBPSr231rY; break;
16969        case X86::VFNMADDPDr213rY: NewFMAOpc = X86::VFNMADDPDr231rY; break;
16970        case X86::VFNMADDPSr213rY: NewFMAOpc = X86::VFNMADDPSr231rY; break;
16971        case X86::VFNMSUBPDr213rY: NewFMAOpc = X86::VFNMSUBPDr231rY; break;
16972        case X86::VFNMSUBPSr213rY: NewFMAOpc = X86::VFNMSUBPSr231rY; break;
16973        default: llvm_unreachable("Unrecognized FMA variant.");
16974      }
16975
16976      const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
16977      MachineInstrBuilder MIB =
16978        BuildMI(MF, MI->getDebugLoc(), TII.get(NewFMAOpc))
16979        .addOperand(MI->getOperand(0))
16980        .addOperand(MI->getOperand(3))
16981        .addOperand(MI->getOperand(2))
16982        .addOperand(MI->getOperand(1));
16983      MBB->insert(MachineBasicBlock::iterator(MI), MIB);
16984      MI->eraseFromParent();
16985    }
16986  }
16987
16988  return MBB;
16989}
16990
16991MachineBasicBlock *
16992X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
16993                                               MachineBasicBlock *BB) const {
16994  switch (MI->getOpcode()) {
16995  default: llvm_unreachable("Unexpected instr type to insert");
16996  case X86::TAILJMPd64:
16997  case X86::TAILJMPr64:
16998  case X86::TAILJMPm64:
16999    llvm_unreachable("TAILJMP64 would not be touched here.");
17000  case X86::TCRETURNdi64:
17001  case X86::TCRETURNri64:
17002  case X86::TCRETURNmi64:
17003    return BB;
17004  case X86::WIN_ALLOCA:
17005    return EmitLoweredWinAlloca(MI, BB);
17006  case X86::SEG_ALLOCA_32:
17007    return EmitLoweredSegAlloca(MI, BB, false);
17008  case X86::SEG_ALLOCA_64:
17009    return EmitLoweredSegAlloca(MI, BB, true);
17010  case X86::TLSCall_32:
17011  case X86::TLSCall_64:
17012    return EmitLoweredTLSCall(MI, BB);
17013  case X86::CMOV_GR8:
17014  case X86::CMOV_FR32:
17015  case X86::CMOV_FR64:
17016  case X86::CMOV_V4F32:
17017  case X86::CMOV_V2F64:
17018  case X86::CMOV_V2I64:
17019  case X86::CMOV_V8F32:
17020  case X86::CMOV_V4F64:
17021  case X86::CMOV_V4I64:
17022  case X86::CMOV_V16F32:
17023  case X86::CMOV_V8F64:
17024  case X86::CMOV_V8I64:
17025  case X86::CMOV_GR16:
17026  case X86::CMOV_GR32:
17027  case X86::CMOV_RFP32:
17028  case X86::CMOV_RFP64:
17029  case X86::CMOV_RFP80:
17030    return EmitLoweredSelect(MI, BB);
17031
17032  case X86::FP32_TO_INT16_IN_MEM:
17033  case X86::FP32_TO_INT32_IN_MEM:
17034  case X86::FP32_TO_INT64_IN_MEM:
17035  case X86::FP64_TO_INT16_IN_MEM:
17036  case X86::FP64_TO_INT32_IN_MEM:
17037  case X86::FP64_TO_INT64_IN_MEM:
17038  case X86::FP80_TO_INT16_IN_MEM:
17039  case X86::FP80_TO_INT32_IN_MEM:
17040  case X86::FP80_TO_INT64_IN_MEM: {
17041    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
17042    DebugLoc DL = MI->getDebugLoc();
17043
17044    // Change the floating point control register to use "round towards zero"
17045    // mode when truncating to an integer value.
17046    MachineFunction *F = BB->getParent();
17047    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
17048    addFrameReference(BuildMI(*BB, MI, DL,
17049                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
17050
17051    // Load the old value of the high byte of the control word...
17052    unsigned OldCW =
17053      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
17054    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
17055                      CWFrameIdx);
17056
17057    // Set the high part to be round to zero...
17058    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
17059      .addImm(0xC7F);
17060
17061    // Reload the modified control word now...
17062    addFrameReference(BuildMI(*BB, MI, DL,
17063                              TII->get(X86::FLDCW16m)), CWFrameIdx);
17064
17065    // Restore the memory image of control word to original value
17066    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
17067      .addReg(OldCW);
17068
17069    // Get the X86 opcode to use.
17070    unsigned Opc;
17071    switch (MI->getOpcode()) {
17072    default: llvm_unreachable("illegal opcode!");
17073    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
17074    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
17075    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
17076    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
17077    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
17078    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
17079    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
17080    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
17081    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
17082    }
17083
17084    X86AddressMode AM;
17085    MachineOperand &Op = MI->getOperand(0);
17086    if (Op.isReg()) {
17087      AM.BaseType = X86AddressMode::RegBase;
17088      AM.Base.Reg = Op.getReg();
17089    } else {
17090      AM.BaseType = X86AddressMode::FrameIndexBase;
17091      AM.Base.FrameIndex = Op.getIndex();
17092    }
17093    Op = MI->getOperand(1);
17094    if (Op.isImm())
17095      AM.Scale = Op.getImm();
17096    Op = MI->getOperand(2);
17097    if (Op.isImm())
17098      AM.IndexReg = Op.getImm();
17099    Op = MI->getOperand(3);
17100    if (Op.isGlobal()) {
17101      AM.GV = Op.getGlobal();
17102    } else {
17103      AM.Disp = Op.getImm();
17104    }
17105    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
17106                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
17107
17108    // Reload the original control word now.
17109    addFrameReference(BuildMI(*BB, MI, DL,
17110                              TII->get(X86::FLDCW16m)), CWFrameIdx);
17111
17112    MI->eraseFromParent();   // The pseudo instruction is gone now.
17113    return BB;
17114  }
17115    // String/text processing lowering.
17116  case X86::PCMPISTRM128REG:
17117  case X86::VPCMPISTRM128REG:
17118  case X86::PCMPISTRM128MEM:
17119  case X86::VPCMPISTRM128MEM:
17120  case X86::PCMPESTRM128REG:
17121  case X86::VPCMPESTRM128REG:
17122  case X86::PCMPESTRM128MEM:
17123  case X86::VPCMPESTRM128MEM:
17124    assert(Subtarget->hasSSE42() &&
17125           "Target must have SSE4.2 or AVX features enabled");
17126    return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo());
17127
17128  // String/text processing lowering.
17129  case X86::PCMPISTRIREG:
17130  case X86::VPCMPISTRIREG:
17131  case X86::PCMPISTRIMEM:
17132  case X86::VPCMPISTRIMEM:
17133  case X86::PCMPESTRIREG:
17134  case X86::VPCMPESTRIREG:
17135  case X86::PCMPESTRIMEM:
17136  case X86::VPCMPESTRIMEM:
17137    assert(Subtarget->hasSSE42() &&
17138           "Target must have SSE4.2 or AVX features enabled");
17139    return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo());
17140
17141  // Thread synchronization.
17142  case X86::MONITOR:
17143    return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget);
17144
17145  // xbegin
17146  case X86::XBEGIN:
17147    return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo());
17148
17149  // Atomic Lowering.
17150  case X86::ATOMAND8:
17151  case X86::ATOMAND16:
17152  case X86::ATOMAND32:
17153  case X86::ATOMAND64:
17154    // Fall through
17155  case X86::ATOMOR8:
17156  case X86::ATOMOR16:
17157  case X86::ATOMOR32:
17158  case X86::ATOMOR64:
17159    // Fall through
17160  case X86::ATOMXOR16:
17161  case X86::ATOMXOR8:
17162  case X86::ATOMXOR32:
17163  case X86::ATOMXOR64:
17164    // Fall through
17165  case X86::ATOMNAND8:
17166  case X86::ATOMNAND16:
17167  case X86::ATOMNAND32:
17168  case X86::ATOMNAND64:
17169    // Fall through
17170  case X86::ATOMMAX8:
17171  case X86::ATOMMAX16:
17172  case X86::ATOMMAX32:
17173  case X86::ATOMMAX64:
17174    // Fall through
17175  case X86::ATOMMIN8:
17176  case X86::ATOMMIN16:
17177  case X86::ATOMMIN32:
17178  case X86::ATOMMIN64:
17179    // Fall through
17180  case X86::ATOMUMAX8:
17181  case X86::ATOMUMAX16:
17182  case X86::ATOMUMAX32:
17183  case X86::ATOMUMAX64:
17184    // Fall through
17185  case X86::ATOMUMIN8:
17186  case X86::ATOMUMIN16:
17187  case X86::ATOMUMIN32:
17188  case X86::ATOMUMIN64:
17189    return EmitAtomicLoadArith(MI, BB);
17190
17191  // This group does 64-bit operations on a 32-bit host.
17192  case X86::ATOMAND6432:
17193  case X86::ATOMOR6432:
17194  case X86::ATOMXOR6432:
17195  case X86::ATOMNAND6432:
17196  case X86::ATOMADD6432:
17197  case X86::ATOMSUB6432:
17198  case X86::ATOMMAX6432:
17199  case X86::ATOMMIN6432:
17200  case X86::ATOMUMAX6432:
17201  case X86::ATOMUMIN6432:
17202  case X86::ATOMSWAP6432:
17203    return EmitAtomicLoadArith6432(MI, BB);
17204
17205  case X86::VASTART_SAVE_XMM_REGS:
17206    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
17207
17208  case X86::VAARG_64:
17209    return EmitVAARG64WithCustomInserter(MI, BB);
17210
17211  case X86::EH_SjLj_SetJmp32:
17212  case X86::EH_SjLj_SetJmp64:
17213    return emitEHSjLjSetJmp(MI, BB);
17214
17215  case X86::EH_SjLj_LongJmp32:
17216  case X86::EH_SjLj_LongJmp64:
17217    return emitEHSjLjLongJmp(MI, BB);
17218
17219  case TargetOpcode::STACKMAP:
17220  case TargetOpcode::PATCHPOINT:
17221    return emitPatchPoint(MI, BB);
17222
17223  case X86::VFMADDPDr213r:
17224  case X86::VFMADDPSr213r:
17225  case X86::VFMADDSDr213r:
17226  case X86::VFMADDSSr213r:
17227  case X86::VFMSUBPDr213r:
17228  case X86::VFMSUBPSr213r:
17229  case X86::VFMSUBSDr213r:
17230  case X86::VFMSUBSSr213r:
17231  case X86::VFNMADDPDr213r:
17232  case X86::VFNMADDPSr213r:
17233  case X86::VFNMADDSDr213r:
17234  case X86::VFNMADDSSr213r:
17235  case X86::VFNMSUBPDr213r:
17236  case X86::VFNMSUBPSr213r:
17237  case X86::VFNMSUBSDr213r:
17238  case X86::VFNMSUBSSr213r:
17239  case X86::VFMADDPDr213rY:
17240  case X86::VFMADDPSr213rY:
17241  case X86::VFMSUBPDr213rY:
17242  case X86::VFMSUBPSr213rY:
17243  case X86::VFNMADDPDr213rY:
17244  case X86::VFNMADDPSr213rY:
17245  case X86::VFNMSUBPDr213rY:
17246  case X86::VFNMSUBPSr213rY:
17247    return emitFMA3Instr(MI, BB);
17248  }
17249}
17250
17251//===----------------------------------------------------------------------===//
17252//                           X86 Optimization Hooks
17253//===----------------------------------------------------------------------===//
17254
17255void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
17256                                                      APInt &KnownZero,
17257                                                      APInt &KnownOne,
17258                                                      const SelectionDAG &DAG,
17259                                                      unsigned Depth) const {
17260  unsigned BitWidth = KnownZero.getBitWidth();
17261  unsigned Opc = Op.getOpcode();
17262  assert((Opc >= ISD::BUILTIN_OP_END ||
17263          Opc == ISD::INTRINSIC_WO_CHAIN ||
17264          Opc == ISD::INTRINSIC_W_CHAIN ||
17265          Opc == ISD::INTRINSIC_VOID) &&
17266         "Should use MaskedValueIsZero if you don't know whether Op"
17267         " is a target node!");
17268
17269  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
17270  switch (Opc) {
17271  default: break;
17272  case X86ISD::ADD:
17273  case X86ISD::SUB:
17274  case X86ISD::ADC:
17275  case X86ISD::SBB:
17276  case X86ISD::SMUL:
17277  case X86ISD::UMUL:
17278  case X86ISD::INC:
17279  case X86ISD::DEC:
17280  case X86ISD::OR:
17281  case X86ISD::XOR:
17282  case X86ISD::AND:
17283    // These nodes' second result is a boolean.
17284    if (Op.getResNo() == 0)
17285      break;
17286    // Fallthrough
17287  case X86ISD::SETCC:
17288    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
17289    break;
17290  case ISD::INTRINSIC_WO_CHAIN: {
17291    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
17292    unsigned NumLoBits = 0;
17293    switch (IntId) {
17294    default: break;
17295    case Intrinsic::x86_sse_movmsk_ps:
17296    case Intrinsic::x86_avx_movmsk_ps_256:
17297    case Intrinsic::x86_sse2_movmsk_pd:
17298    case Intrinsic::x86_avx_movmsk_pd_256:
17299    case Intrinsic::x86_mmx_pmovmskb:
17300    case Intrinsic::x86_sse2_pmovmskb_128:
17301    case Intrinsic::x86_avx2_pmovmskb: {
17302      // High bits of movmskp{s|d}, pmovmskb are known zero.
17303      switch (IntId) {
17304        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
17305        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
17306        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
17307        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
17308        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
17309        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
17310        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
17311        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
17312      }
17313      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
17314      break;
17315    }
17316    }
17317    break;
17318  }
17319  }
17320}
17321
17322unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(
17323  SDValue Op,
17324  const SelectionDAG &,
17325  unsigned Depth) const {
17326  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
17327  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
17328    return Op.getValueType().getScalarType().getSizeInBits();
17329
17330  // Fallback case.
17331  return 1;
17332}
17333
17334/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
17335/// node is a GlobalAddress + offset.
17336bool X86TargetLowering::isGAPlusOffset(SDNode *N,
17337                                       const GlobalValue* &GA,
17338                                       int64_t &Offset) const {
17339  if (N->getOpcode() == X86ISD::Wrapper) {
17340    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
17341      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
17342      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
17343      return true;
17344    }
17345  }
17346  return TargetLowering::isGAPlusOffset(N, GA, Offset);
17347}
17348
17349/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
17350/// same as extracting the high 128-bit part of 256-bit vector and then
17351/// inserting the result into the low part of a new 256-bit vector
17352static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
17353  EVT VT = SVOp->getValueType(0);
17354  unsigned NumElems = VT.getVectorNumElements();
17355
17356  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
17357  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
17358    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
17359        SVOp->getMaskElt(j) >= 0)
17360      return false;
17361
17362  return true;
17363}
17364
17365/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
17366/// same as extracting the low 128-bit part of 256-bit vector and then
17367/// inserting the result into the high part of a new 256-bit vector
17368static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
17369  EVT VT = SVOp->getValueType(0);
17370  unsigned NumElems = VT.getVectorNumElements();
17371
17372  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
17373  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
17374    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
17375        SVOp->getMaskElt(j) >= 0)
17376      return false;
17377
17378  return true;
17379}
17380
17381/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
17382static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
17383                                        TargetLowering::DAGCombinerInfo &DCI,
17384                                        const X86Subtarget* Subtarget) {
17385  SDLoc dl(N);
17386  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
17387  SDValue V1 = SVOp->getOperand(0);
17388  SDValue V2 = SVOp->getOperand(1);
17389  EVT VT = SVOp->getValueType(0);
17390  unsigned NumElems = VT.getVectorNumElements();
17391
17392  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
17393      V2.getOpcode() == ISD::CONCAT_VECTORS) {
17394    //
17395    //                   0,0,0,...
17396    //                      |
17397    //    V      UNDEF    BUILD_VECTOR    UNDEF
17398    //     \      /           \           /
17399    //  CONCAT_VECTOR         CONCAT_VECTOR
17400    //         \                  /
17401    //          \                /
17402    //          RESULT: V + zero extended
17403    //
17404    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
17405        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
17406        V1.getOperand(1).getOpcode() != ISD::UNDEF)
17407      return SDValue();
17408
17409    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
17410      return SDValue();
17411
17412    // To match the shuffle mask, the first half of the mask should
17413    // be exactly the first vector, and all the rest a splat with the
17414    // first element of the second one.
17415    for (unsigned i = 0; i != NumElems/2; ++i)
17416      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
17417          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
17418        return SDValue();
17419
17420    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
17421    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
17422      if (Ld->hasNUsesOfValue(1, 0)) {
17423        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
17424        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
17425        SDValue ResNode =
17426          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
17427                                  Ld->getMemoryVT(),
17428                                  Ld->getPointerInfo(),
17429                                  Ld->getAlignment(),
17430                                  false/*isVolatile*/, true/*ReadMem*/,
17431                                  false/*WriteMem*/);
17432
17433        // Make sure the newly-created LOAD is in the same position as Ld in
17434        // terms of dependency. We create a TokenFactor for Ld and ResNode,
17435        // and update uses of Ld's output chain to use the TokenFactor.
17436        if (Ld->hasAnyUseOfValue(1)) {
17437          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
17438                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
17439          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
17440          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
17441                                 SDValue(ResNode.getNode(), 1));
17442        }
17443
17444        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
17445      }
17446    }
17447
17448    // Emit a zeroed vector and insert the desired subvector on its
17449    // first half.
17450    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
17451    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
17452    return DCI.CombineTo(N, InsV);
17453  }
17454
17455  //===--------------------------------------------------------------------===//
17456  // Combine some shuffles into subvector extracts and inserts:
17457  //
17458
17459  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
17460  if (isShuffleHigh128VectorInsertLow(SVOp)) {
17461    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
17462    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
17463    return DCI.CombineTo(N, InsV);
17464  }
17465
17466  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
17467  if (isShuffleLow128VectorInsertHigh(SVOp)) {
17468    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
17469    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
17470    return DCI.CombineTo(N, InsV);
17471  }
17472
17473  return SDValue();
17474}
17475
17476/// PerformShuffleCombine - Performs several different shuffle combines.
17477static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
17478                                     TargetLowering::DAGCombinerInfo &DCI,
17479                                     const X86Subtarget *Subtarget) {
17480  SDLoc dl(N);
17481  EVT VT = N->getValueType(0);
17482
17483  // Don't create instructions with illegal types after legalize types has run.
17484  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17485  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
17486    return SDValue();
17487
17488  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
17489  if (Subtarget->hasFp256() && VT.is256BitVector() &&
17490      N->getOpcode() == ISD::VECTOR_SHUFFLE)
17491    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
17492
17493  // Only handle 128 wide vector from here on.
17494  if (!VT.is128BitVector())
17495    return SDValue();
17496
17497  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
17498  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
17499  // consecutive, non-overlapping, and in the right order.
17500  SmallVector<SDValue, 16> Elts;
17501  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
17502    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
17503
17504  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true);
17505}
17506
17507/// PerformTruncateCombine - Converts truncate operation to
17508/// a sequence of vector shuffle operations.
17509/// It is possible when we truncate 256-bit vector to 128-bit vector
17510static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
17511                                      TargetLowering::DAGCombinerInfo &DCI,
17512                                      const X86Subtarget *Subtarget)  {
17513  return SDValue();
17514}
17515
17516/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
17517/// specific shuffle of a load can be folded into a single element load.
17518/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
17519/// shuffles have been customed lowered so we need to handle those here.
17520static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
17521                                         TargetLowering::DAGCombinerInfo &DCI) {
17522  if (DCI.isBeforeLegalizeOps())
17523    return SDValue();
17524
17525  SDValue InVec = N->getOperand(0);
17526  SDValue EltNo = N->getOperand(1);
17527
17528  if (!isa<ConstantSDNode>(EltNo))
17529    return SDValue();
17530
17531  EVT VT = InVec.getValueType();
17532
17533  bool HasShuffleIntoBitcast = false;
17534  if (InVec.getOpcode() == ISD::BITCAST) {
17535    // Don't duplicate a load with other uses.
17536    if (!InVec.hasOneUse())
17537      return SDValue();
17538    EVT BCVT = InVec.getOperand(0).getValueType();
17539    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
17540      return SDValue();
17541    InVec = InVec.getOperand(0);
17542    HasShuffleIntoBitcast = true;
17543  }
17544
17545  if (!isTargetShuffle(InVec.getOpcode()))
17546    return SDValue();
17547
17548  // Don't duplicate a load with other uses.
17549  if (!InVec.hasOneUse())
17550    return SDValue();
17551
17552  SmallVector<int, 16> ShuffleMask;
17553  bool UnaryShuffle;
17554  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
17555                            UnaryShuffle))
17556    return SDValue();
17557
17558  // Select the input vector, guarding against out of range extract vector.
17559  unsigned NumElems = VT.getVectorNumElements();
17560  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
17561  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
17562  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
17563                                         : InVec.getOperand(1);
17564
17565  // If inputs to shuffle are the same for both ops, then allow 2 uses
17566  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
17567
17568  if (LdNode.getOpcode() == ISD::BITCAST) {
17569    // Don't duplicate a load with other uses.
17570    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
17571      return SDValue();
17572
17573    AllowedUses = 1; // only allow 1 load use if we have a bitcast
17574    LdNode = LdNode.getOperand(0);
17575  }
17576
17577  if (!ISD::isNormalLoad(LdNode.getNode()))
17578    return SDValue();
17579
17580  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
17581
17582  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
17583    return SDValue();
17584
17585  if (HasShuffleIntoBitcast) {
17586    // If there's a bitcast before the shuffle, check if the load type and
17587    // alignment is valid.
17588    unsigned Align = LN0->getAlignment();
17589    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17590    unsigned NewAlign = TLI.getDataLayout()->
17591      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
17592
17593    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
17594      return SDValue();
17595  }
17596
17597  // All checks match so transform back to vector_shuffle so that DAG combiner
17598  // can finish the job
17599  SDLoc dl(N);
17600
17601  // Create shuffle node taking into account the case that its a unary shuffle
17602  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
17603  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
17604                                 InVec.getOperand(0), Shuffle,
17605                                 &ShuffleMask[0]);
17606  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
17607  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
17608                     EltNo);
17609}
17610
17611/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
17612/// generation and convert it from being a bunch of shuffles and extracts
17613/// to a simple store and scalar loads to extract the elements.
17614static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
17615                                         TargetLowering::DAGCombinerInfo &DCI) {
17616  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
17617  if (NewOp.getNode())
17618    return NewOp;
17619
17620  SDValue InputVector = N->getOperand(0);
17621
17622  // Detect whether we are trying to convert from mmx to i32 and the bitcast
17623  // from mmx to v2i32 has a single usage.
17624  if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
17625      InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
17626      InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
17627    return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
17628                       N->getValueType(0),
17629                       InputVector.getNode()->getOperand(0));
17630
17631  // Only operate on vectors of 4 elements, where the alternative shuffling
17632  // gets to be more expensive.
17633  if (InputVector.getValueType() != MVT::v4i32)
17634    return SDValue();
17635
17636  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
17637  // single use which is a sign-extend or zero-extend, and all elements are
17638  // used.
17639  SmallVector<SDNode *, 4> Uses;
17640  unsigned ExtractedElements = 0;
17641  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
17642       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
17643    if (UI.getUse().getResNo() != InputVector.getResNo())
17644      return SDValue();
17645
17646    SDNode *Extract = *UI;
17647    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
17648      return SDValue();
17649
17650    if (Extract->getValueType(0) != MVT::i32)
17651      return SDValue();
17652    if (!Extract->hasOneUse())
17653      return SDValue();
17654    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
17655        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
17656      return SDValue();
17657    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
17658      return SDValue();
17659
17660    // Record which element was extracted.
17661    ExtractedElements |=
17662      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
17663
17664    Uses.push_back(Extract);
17665  }
17666
17667  // If not all the elements were used, this may not be worthwhile.
17668  if (ExtractedElements != 15)
17669    return SDValue();
17670
17671  // Ok, we've now decided to do the transformation.
17672  SDLoc dl(InputVector);
17673
17674  // Store the value to a temporary stack slot.
17675  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
17676  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
17677                            MachinePointerInfo(), false, false, 0);
17678
17679  // Replace each use (extract) with a load of the appropriate element.
17680  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
17681       UE = Uses.end(); UI != UE; ++UI) {
17682    SDNode *Extract = *UI;
17683
17684    // cOMpute the element's address.
17685    SDValue Idx = Extract->getOperand(1);
17686    unsigned EltSize =
17687        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
17688    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
17689    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17690    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
17691
17692    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
17693                                     StackPtr, OffsetVal);
17694
17695    // Load the scalar.
17696    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
17697                                     ScalarAddr, MachinePointerInfo(),
17698                                     false, false, false, 0);
17699
17700    // Replace the exact with the load.
17701    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
17702  }
17703
17704  // The replacement was made in place; don't return anything.
17705  return SDValue();
17706}
17707
17708/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
17709static std::pair<unsigned, bool>
17710matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS,
17711                   SelectionDAG &DAG, const X86Subtarget *Subtarget) {
17712  if (!VT.isVector())
17713    return std::make_pair(0, false);
17714
17715  bool NeedSplit = false;
17716  switch (VT.getSimpleVT().SimpleTy) {
17717  default: return std::make_pair(0, false);
17718  case MVT::v32i8:
17719  case MVT::v16i16:
17720  case MVT::v8i32:
17721    if (!Subtarget->hasAVX2())
17722      NeedSplit = true;
17723    if (!Subtarget->hasAVX())
17724      return std::make_pair(0, false);
17725    break;
17726  case MVT::v16i8:
17727  case MVT::v8i16:
17728  case MVT::v4i32:
17729    if (!Subtarget->hasSSE2())
17730      return std::make_pair(0, false);
17731  }
17732
17733  // SSE2 has only a small subset of the operations.
17734  bool hasUnsigned = Subtarget->hasSSE41() ||
17735                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
17736  bool hasSigned = Subtarget->hasSSE41() ||
17737                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
17738
17739  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
17740
17741  unsigned Opc = 0;
17742  // Check for x CC y ? x : y.
17743  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
17744      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
17745    switch (CC) {
17746    default: break;
17747    case ISD::SETULT:
17748    case ISD::SETULE:
17749      Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
17750    case ISD::SETUGT:
17751    case ISD::SETUGE:
17752      Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
17753    case ISD::SETLT:
17754    case ISD::SETLE:
17755      Opc = hasSigned ? X86ISD::SMIN : 0; break;
17756    case ISD::SETGT:
17757    case ISD::SETGE:
17758      Opc = hasSigned ? X86ISD::SMAX : 0; break;
17759    }
17760  // Check for x CC y ? y : x -- a min/max with reversed arms.
17761  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
17762             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
17763    switch (CC) {
17764    default: break;
17765    case ISD::SETULT:
17766    case ISD::SETULE:
17767      Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
17768    case ISD::SETUGT:
17769    case ISD::SETUGE:
17770      Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
17771    case ISD::SETLT:
17772    case ISD::SETLE:
17773      Opc = hasSigned ? X86ISD::SMAX : 0; break;
17774    case ISD::SETGT:
17775    case ISD::SETGE:
17776      Opc = hasSigned ? X86ISD::SMIN : 0; break;
17777    }
17778  }
17779
17780  return std::make_pair(Opc, NeedSplit);
17781}
17782
17783static SDValue
17784TransformVSELECTtoBlendVECTOR_SHUFFLE(SDNode *N, SelectionDAG &DAG,
17785                                      const X86Subtarget *Subtarget) {
17786  SDLoc dl(N);
17787  SDValue Cond = N->getOperand(0);
17788  SDValue LHS = N->getOperand(1);
17789  SDValue RHS = N->getOperand(2);
17790
17791  if (Cond.getOpcode() == ISD::SIGN_EXTEND) {
17792    SDValue CondSrc = Cond->getOperand(0);
17793    if (CondSrc->getOpcode() == ISD::SIGN_EXTEND_INREG)
17794      Cond = CondSrc->getOperand(0);
17795  }
17796
17797  MVT VT = N->getSimpleValueType(0);
17798  MVT EltVT = VT.getVectorElementType();
17799  unsigned NumElems = VT.getVectorNumElements();
17800  // There is no blend with immediate in AVX-512.
17801  if (VT.is512BitVector())
17802    return SDValue();
17803
17804  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
17805    return SDValue();
17806  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
17807    return SDValue();
17808
17809  if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
17810    return SDValue();
17811
17812  unsigned MaskValue = 0;
17813  if (!BUILD_VECTORtoBlendMask(cast<BuildVectorSDNode>(Cond), MaskValue))
17814    return SDValue();
17815
17816  SmallVector<int, 8> ShuffleMask(NumElems, -1);
17817  for (unsigned i = 0; i < NumElems; ++i) {
17818    // Be sure we emit undef where we can.
17819    if (Cond.getOperand(i)->getOpcode() == ISD::UNDEF)
17820      ShuffleMask[i] = -1;
17821    else
17822      ShuffleMask[i] = i + NumElems * ((MaskValue >> i) & 1);
17823  }
17824
17825  return DAG.getVectorShuffle(VT, dl, LHS, RHS, &ShuffleMask[0]);
17826}
17827
17828/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
17829/// nodes.
17830static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
17831                                    TargetLowering::DAGCombinerInfo &DCI,
17832                                    const X86Subtarget *Subtarget) {
17833  SDLoc DL(N);
17834  SDValue Cond = N->getOperand(0);
17835  // Get the LHS/RHS of the select.
17836  SDValue LHS = N->getOperand(1);
17837  SDValue RHS = N->getOperand(2);
17838  EVT VT = LHS.getValueType();
17839  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17840
17841  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
17842  // instructions match the semantics of the common C idiom x<y?x:y but not
17843  // x<=y?x:y, because of how they handle negative zero (which can be
17844  // ignored in unsafe-math mode).
17845  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
17846      VT != MVT::f80 && TLI.isTypeLegal(VT) &&
17847      (Subtarget->hasSSE2() ||
17848       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
17849    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
17850
17851    unsigned Opcode = 0;
17852    // Check for x CC y ? x : y.
17853    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
17854        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
17855      switch (CC) {
17856      default: break;
17857      case ISD::SETULT:
17858        // Converting this to a min would handle NaNs incorrectly, and swapping
17859        // the operands would cause it to handle comparisons between positive
17860        // and negative zero incorrectly.
17861        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
17862          if (!DAG.getTarget().Options.UnsafeFPMath &&
17863              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
17864            break;
17865          std::swap(LHS, RHS);
17866        }
17867        Opcode = X86ISD::FMIN;
17868        break;
17869      case ISD::SETOLE:
17870        // Converting this to a min would handle comparisons between positive
17871        // and negative zero incorrectly.
17872        if (!DAG.getTarget().Options.UnsafeFPMath &&
17873            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
17874          break;
17875        Opcode = X86ISD::FMIN;
17876        break;
17877      case ISD::SETULE:
17878        // Converting this to a min would handle both negative zeros and NaNs
17879        // incorrectly, but we can swap the operands to fix both.
17880        std::swap(LHS, RHS);
17881      case ISD::SETOLT:
17882      case ISD::SETLT:
17883      case ISD::SETLE:
17884        Opcode = X86ISD::FMIN;
17885        break;
17886
17887      case ISD::SETOGE:
17888        // Converting this to a max would handle comparisons between positive
17889        // and negative zero incorrectly.
17890        if (!DAG.getTarget().Options.UnsafeFPMath &&
17891            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
17892          break;
17893        Opcode = X86ISD::FMAX;
17894        break;
17895      case ISD::SETUGT:
17896        // Converting this to a max would handle NaNs incorrectly, and swapping
17897        // the operands would cause it to handle comparisons between positive
17898        // and negative zero incorrectly.
17899        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
17900          if (!DAG.getTarget().Options.UnsafeFPMath &&
17901              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
17902            break;
17903          std::swap(LHS, RHS);
17904        }
17905        Opcode = X86ISD::FMAX;
17906        break;
17907      case ISD::SETUGE:
17908        // Converting this to a max would handle both negative zeros and NaNs
17909        // incorrectly, but we can swap the operands to fix both.
17910        std::swap(LHS, RHS);
17911      case ISD::SETOGT:
17912      case ISD::SETGT:
17913      case ISD::SETGE:
17914        Opcode = X86ISD::FMAX;
17915        break;
17916      }
17917    // Check for x CC y ? y : x -- a min/max with reversed arms.
17918    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
17919               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
17920      switch (CC) {
17921      default: break;
17922      case ISD::SETOGE:
17923        // Converting this to a min would handle comparisons between positive
17924        // and negative zero incorrectly, and swapping the operands would
17925        // cause it to handle NaNs incorrectly.
17926        if (!DAG.getTarget().Options.UnsafeFPMath &&
17927            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
17928          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
17929            break;
17930          std::swap(LHS, RHS);
17931        }
17932        Opcode = X86ISD::FMIN;
17933        break;
17934      case ISD::SETUGT:
17935        // Converting this to a min would handle NaNs incorrectly.
17936        if (!DAG.getTarget().Options.UnsafeFPMath &&
17937            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
17938          break;
17939        Opcode = X86ISD::FMIN;
17940        break;
17941      case ISD::SETUGE:
17942        // Converting this to a min would handle both negative zeros and NaNs
17943        // incorrectly, but we can swap the operands to fix both.
17944        std::swap(LHS, RHS);
17945      case ISD::SETOGT:
17946      case ISD::SETGT:
17947      case ISD::SETGE:
17948        Opcode = X86ISD::FMIN;
17949        break;
17950
17951      case ISD::SETULT:
17952        // Converting this to a max would handle NaNs incorrectly.
17953        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
17954          break;
17955        Opcode = X86ISD::FMAX;
17956        break;
17957      case ISD::SETOLE:
17958        // Converting this to a max would handle comparisons between positive
17959        // and negative zero incorrectly, and swapping the operands would
17960        // cause it to handle NaNs incorrectly.
17961        if (!DAG.getTarget().Options.UnsafeFPMath &&
17962            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
17963          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
17964            break;
17965          std::swap(LHS, RHS);
17966        }
17967        Opcode = X86ISD::FMAX;
17968        break;
17969      case ISD::SETULE:
17970        // Converting this to a max would handle both negative zeros and NaNs
17971        // incorrectly, but we can swap the operands to fix both.
17972        std::swap(LHS, RHS);
17973      case ISD::SETOLT:
17974      case ISD::SETLT:
17975      case ISD::SETLE:
17976        Opcode = X86ISD::FMAX;
17977        break;
17978      }
17979    }
17980
17981    if (Opcode)
17982      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
17983  }
17984
17985  EVT CondVT = Cond.getValueType();
17986  if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() &&
17987      CondVT.getVectorElementType() == MVT::i1) {
17988    // v16i8 (select v16i1, v16i8, v16i8) does not have a proper
17989    // lowering on AVX-512. In this case we convert it to
17990    // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
17991    // The same situation for all 128 and 256-bit vectors of i8 and i16
17992    EVT OpVT = LHS.getValueType();
17993    if ((OpVT.is128BitVector() || OpVT.is256BitVector()) &&
17994        (OpVT.getVectorElementType() == MVT::i8 ||
17995         OpVT.getVectorElementType() == MVT::i16)) {
17996      Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond);
17997      DCI.AddToWorklist(Cond.getNode());
17998      return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS);
17999    }
18000  }
18001  // If this is a select between two integer constants, try to do some
18002  // optimizations.
18003  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
18004    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
18005      // Don't do this for crazy integer types.
18006      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
18007        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
18008        // so that TrueC (the true value) is larger than FalseC.
18009        bool NeedsCondInvert = false;
18010
18011        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
18012            // Efficiently invertible.
18013            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
18014             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
18015              isa<ConstantSDNode>(Cond.getOperand(1))))) {
18016          NeedsCondInvert = true;
18017          std::swap(TrueC, FalseC);
18018        }
18019
18020        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
18021        if (FalseC->getAPIntValue() == 0 &&
18022            TrueC->getAPIntValue().isPowerOf2()) {
18023          if (NeedsCondInvert) // Invert the condition if needed.
18024            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
18025                               DAG.getConstant(1, Cond.getValueType()));
18026
18027          // Zero extend the condition if needed.
18028          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
18029
18030          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
18031          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
18032                             DAG.getConstant(ShAmt, MVT::i8));
18033        }
18034
18035        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
18036        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
18037          if (NeedsCondInvert) // Invert the condition if needed.
18038            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
18039                               DAG.getConstant(1, Cond.getValueType()));
18040
18041          // Zero extend the condition if needed.
18042          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
18043                             FalseC->getValueType(0), Cond);
18044          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
18045                             SDValue(FalseC, 0));
18046        }
18047
18048        // Optimize cases that will turn into an LEA instruction.  This requires
18049        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
18050        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
18051          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
18052          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
18053
18054          bool isFastMultiplier = false;
18055          if (Diff < 10) {
18056            switch ((unsigned char)Diff) {
18057              default: break;
18058              case 1:  // result = add base, cond
18059              case 2:  // result = lea base(    , cond*2)
18060              case 3:  // result = lea base(cond, cond*2)
18061              case 4:  // result = lea base(    , cond*4)
18062              case 5:  // result = lea base(cond, cond*4)
18063              case 8:  // result = lea base(    , cond*8)
18064              case 9:  // result = lea base(cond, cond*8)
18065                isFastMultiplier = true;
18066                break;
18067            }
18068          }
18069
18070          if (isFastMultiplier) {
18071            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
18072            if (NeedsCondInvert) // Invert the condition if needed.
18073              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
18074                                 DAG.getConstant(1, Cond.getValueType()));
18075
18076            // Zero extend the condition if needed.
18077            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
18078                               Cond);
18079            // Scale the condition by the difference.
18080            if (Diff != 1)
18081              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
18082                                 DAG.getConstant(Diff, Cond.getValueType()));
18083
18084            // Add the base if non-zero.
18085            if (FalseC->getAPIntValue() != 0)
18086              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
18087                                 SDValue(FalseC, 0));
18088            return Cond;
18089          }
18090        }
18091      }
18092  }
18093
18094  // Canonicalize max and min:
18095  // (x > y) ? x : y -> (x >= y) ? x : y
18096  // (x < y) ? x : y -> (x <= y) ? x : y
18097  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
18098  // the need for an extra compare
18099  // against zero. e.g.
18100  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
18101  // subl   %esi, %edi
18102  // testl  %edi, %edi
18103  // movl   $0, %eax
18104  // cmovgl %edi, %eax
18105  // =>
18106  // xorl   %eax, %eax
18107  // subl   %esi, $edi
18108  // cmovsl %eax, %edi
18109  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
18110      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
18111      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
18112    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
18113    switch (CC) {
18114    default: break;
18115    case ISD::SETLT:
18116    case ISD::SETGT: {
18117      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
18118      Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
18119                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
18120      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
18121    }
18122    }
18123  }
18124
18125  // Early exit check
18126  if (!TLI.isTypeLegal(VT))
18127    return SDValue();
18128
18129  // Match VSELECTs into subs with unsigned saturation.
18130  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
18131      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
18132      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
18133       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
18134    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
18135
18136    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
18137    // left side invert the predicate to simplify logic below.
18138    SDValue Other;
18139    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
18140      Other = RHS;
18141      CC = ISD::getSetCCInverse(CC, true);
18142    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
18143      Other = LHS;
18144    }
18145
18146    if (Other.getNode() && Other->getNumOperands() == 2 &&
18147        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
18148      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
18149      SDValue CondRHS = Cond->getOperand(1);
18150
18151      // Look for a general sub with unsigned saturation first.
18152      // x >= y ? x-y : 0 --> subus x, y
18153      // x >  y ? x-y : 0 --> subus x, y
18154      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
18155          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
18156        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
18157
18158      // If the RHS is a constant we have to reverse the const canonicalization.
18159      // x > C-1 ? x+-C : 0 --> subus x, C
18160      if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
18161          isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) {
18162        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
18163        if (CondRHS.getConstantOperandVal(0) == -A-1)
18164          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS,
18165                             DAG.getConstant(-A, VT));
18166      }
18167
18168      // Another special case: If C was a sign bit, the sub has been
18169      // canonicalized into a xor.
18170      // FIXME: Would it be better to use computeKnownBits to determine whether
18171      //        it's safe to decanonicalize the xor?
18172      // x s< 0 ? x^C : 0 --> subus x, C
18173      if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
18174          ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
18175          isSplatVector(OpRHS.getNode())) {
18176        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
18177        if (A.isSignBit())
18178          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
18179      }
18180    }
18181  }
18182
18183  // Try to match a min/max vector operation.
18184  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) {
18185    std::pair<unsigned, bool> ret = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget);
18186    unsigned Opc = ret.first;
18187    bool NeedSplit = ret.second;
18188
18189    if (Opc && NeedSplit) {
18190      unsigned NumElems = VT.getVectorNumElements();
18191      // Extract the LHS vectors
18192      SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, DL);
18193      SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, DL);
18194
18195      // Extract the RHS vectors
18196      SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, DL);
18197      SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, DL);
18198
18199      // Create min/max for each subvector
18200      LHS = DAG.getNode(Opc, DL, LHS1.getValueType(), LHS1, RHS1);
18201      RHS = DAG.getNode(Opc, DL, LHS2.getValueType(), LHS2, RHS2);
18202
18203      // Merge the result
18204      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LHS, RHS);
18205    } else if (Opc)
18206      return DAG.getNode(Opc, DL, VT, LHS, RHS);
18207  }
18208
18209  // Simplify vector selection if the selector will be produced by CMPP*/PCMP*.
18210  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
18211      // Check if SETCC has already been promoted
18212      TLI.getSetCCResultType(*DAG.getContext(), VT) == CondVT &&
18213      // Check that condition value type matches vselect operand type
18214      CondVT == VT) {
18215
18216    assert(Cond.getValueType().isVector() &&
18217           "vector select expects a vector selector!");
18218
18219    bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
18220    bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
18221
18222    if (!TValIsAllOnes && !FValIsAllZeros) {
18223      // Try invert the condition if true value is not all 1s and false value
18224      // is not all 0s.
18225      bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
18226      bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
18227
18228      if (TValIsAllZeros || FValIsAllOnes) {
18229        SDValue CC = Cond.getOperand(2);
18230        ISD::CondCode NewCC =
18231          ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
18232                               Cond.getOperand(0).getValueType().isInteger());
18233        Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
18234        std::swap(LHS, RHS);
18235        TValIsAllOnes = FValIsAllOnes;
18236        FValIsAllZeros = TValIsAllZeros;
18237      }
18238    }
18239
18240    if (TValIsAllOnes || FValIsAllZeros) {
18241      SDValue Ret;
18242
18243      if (TValIsAllOnes && FValIsAllZeros)
18244        Ret = Cond;
18245      else if (TValIsAllOnes)
18246        Ret = DAG.getNode(ISD::OR, DL, CondVT, Cond,
18247                          DAG.getNode(ISD::BITCAST, DL, CondVT, RHS));
18248      else if (FValIsAllZeros)
18249        Ret = DAG.getNode(ISD::AND, DL, CondVT, Cond,
18250                          DAG.getNode(ISD::BITCAST, DL, CondVT, LHS));
18251
18252      return DAG.getNode(ISD::BITCAST, DL, VT, Ret);
18253    }
18254  }
18255
18256  // Try to fold this VSELECT into a MOVSS/MOVSD
18257  if (N->getOpcode() == ISD::VSELECT &&
18258      Cond.getOpcode() == ISD::BUILD_VECTOR && !DCI.isBeforeLegalize()) {
18259    if (VT == MVT::v4i32 || VT == MVT::v4f32 ||
18260        (Subtarget->hasSSE2() && (VT == MVT::v2i64 || VT == MVT::v2f64))) {
18261      bool CanFold = false;
18262      unsigned NumElems = Cond.getNumOperands();
18263      SDValue A = LHS;
18264      SDValue B = RHS;
18265
18266      if (isZero(Cond.getOperand(0))) {
18267        CanFold = true;
18268
18269        // fold (vselect <0,-1,-1,-1>, A, B) -> (movss A, B)
18270        // fold (vselect <0,-1> -> (movsd A, B)
18271        for (unsigned i = 1, e = NumElems; i != e && CanFold; ++i)
18272          CanFold = isAllOnes(Cond.getOperand(i));
18273      } else if (isAllOnes(Cond.getOperand(0))) {
18274        CanFold = true;
18275        std::swap(A, B);
18276
18277        // fold (vselect <-1,0,0,0>, A, B) -> (movss B, A)
18278        // fold (vselect <-1,0> -> (movsd B, A)
18279        for (unsigned i = 1, e = NumElems; i != e && CanFold; ++i)
18280          CanFold = isZero(Cond.getOperand(i));
18281      }
18282
18283      if (CanFold) {
18284        if (VT == MVT::v4i32 || VT == MVT::v4f32)
18285          return getTargetShuffleNode(X86ISD::MOVSS, DL, VT, A, B, DAG);
18286        return getTargetShuffleNode(X86ISD::MOVSD, DL, VT, A, B, DAG);
18287      }
18288
18289      if (Subtarget->hasSSE2() && (VT == MVT::v4i32 || VT == MVT::v4f32)) {
18290        // fold (v4i32: vselect <0,0,-1,-1>, A, B) ->
18291        //      (v4i32 (bitcast (movsd (v2i64 (bitcast A)),
18292        //                             (v2i64 (bitcast B)))))
18293        //
18294        // fold (v4f32: vselect <0,0,-1,-1>, A, B) ->
18295        //      (v4f32 (bitcast (movsd (v2f64 (bitcast A)),
18296        //                             (v2f64 (bitcast B)))))
18297        //
18298        // fold (v4i32: vselect <-1,-1,0,0>, A, B) ->
18299        //      (v4i32 (bitcast (movsd (v2i64 (bitcast B)),
18300        //                             (v2i64 (bitcast A)))))
18301        //
18302        // fold (v4f32: vselect <-1,-1,0,0>, A, B) ->
18303        //      (v4f32 (bitcast (movsd (v2f64 (bitcast B)),
18304        //                             (v2f64 (bitcast A)))))
18305
18306        CanFold = (isZero(Cond.getOperand(0)) &&
18307                   isZero(Cond.getOperand(1)) &&
18308                   isAllOnes(Cond.getOperand(2)) &&
18309                   isAllOnes(Cond.getOperand(3)));
18310
18311        if (!CanFold && isAllOnes(Cond.getOperand(0)) &&
18312            isAllOnes(Cond.getOperand(1)) &&
18313            isZero(Cond.getOperand(2)) &&
18314            isZero(Cond.getOperand(3))) {
18315          CanFold = true;
18316          std::swap(LHS, RHS);
18317        }
18318
18319        if (CanFold) {
18320          EVT NVT = (VT == MVT::v4i32) ? MVT::v2i64 : MVT::v2f64;
18321          SDValue NewA = DAG.getNode(ISD::BITCAST, DL, NVT, LHS);
18322          SDValue NewB = DAG.getNode(ISD::BITCAST, DL, NVT, RHS);
18323          SDValue Select = getTargetShuffleNode(X86ISD::MOVSD, DL, NVT, NewA,
18324                                                NewB, DAG);
18325          return DAG.getNode(ISD::BITCAST, DL, VT, Select);
18326        }
18327      }
18328    }
18329  }
18330
18331  // If we know that this node is legal then we know that it is going to be
18332  // matched by one of the SSE/AVX BLEND instructions. These instructions only
18333  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
18334  // to simplify previous instructions.
18335  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
18336      !DCI.isBeforeLegalize() &&
18337      // We explicitly check against v8i16 and v16i16 because, although
18338      // they're marked as Custom, they might only be legal when Cond is a
18339      // build_vector of constants. This will be taken care in a later
18340      // condition.
18341      (TLI.isOperationLegalOrCustom(ISD::VSELECT, VT) && VT != MVT::v16i16 &&
18342       VT != MVT::v8i16)) {
18343    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
18344
18345    // Don't optimize vector selects that map to mask-registers.
18346    if (BitWidth == 1)
18347      return SDValue();
18348
18349    // Check all uses of that condition operand to check whether it will be
18350    // consumed by non-BLEND instructions, which may depend on all bits are set
18351    // properly.
18352    for (SDNode::use_iterator I = Cond->use_begin(),
18353                              E = Cond->use_end(); I != E; ++I)
18354      if (I->getOpcode() != ISD::VSELECT)
18355        // TODO: Add other opcodes eventually lowered into BLEND.
18356        return SDValue();
18357
18358    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
18359    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
18360
18361    APInt KnownZero, KnownOne;
18362    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
18363                                          DCI.isBeforeLegalizeOps());
18364    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
18365        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
18366      DCI.CommitTargetLoweringOpt(TLO);
18367  }
18368
18369  // We should generate an X86ISD::BLENDI from a vselect if its argument
18370  // is a sign_extend_inreg of an any_extend of a BUILD_VECTOR of
18371  // constants. This specific pattern gets generated when we split a
18372  // selector for a 512 bit vector in a machine without AVX512 (but with
18373  // 256-bit vectors), during legalization:
18374  //
18375  // (vselect (sign_extend (any_extend (BUILD_VECTOR)) i1) LHS RHS)
18376  //
18377  // Iff we find this pattern and the build_vectors are built from
18378  // constants, we translate the vselect into a shuffle_vector that we
18379  // know will be matched by LowerVECTOR_SHUFFLEtoBlend.
18380  if (N->getOpcode() == ISD::VSELECT && !DCI.isBeforeLegalize()) {
18381    SDValue Shuffle = TransformVSELECTtoBlendVECTOR_SHUFFLE(N, DAG, Subtarget);
18382    if (Shuffle.getNode())
18383      return Shuffle;
18384  }
18385
18386  return SDValue();
18387}
18388
18389// Check whether a boolean test is testing a boolean value generated by
18390// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
18391// code.
18392//
18393// Simplify the following patterns:
18394// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
18395// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
18396// to (Op EFLAGS Cond)
18397//
18398// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
18399// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
18400// to (Op EFLAGS !Cond)
18401//
18402// where Op could be BRCOND or CMOV.
18403//
18404static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
18405  // Quit if not CMP and SUB with its value result used.
18406  if (Cmp.getOpcode() != X86ISD::CMP &&
18407      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
18408      return SDValue();
18409
18410  // Quit if not used as a boolean value.
18411  if (CC != X86::COND_E && CC != X86::COND_NE)
18412    return SDValue();
18413
18414  // Check CMP operands. One of them should be 0 or 1 and the other should be
18415  // an SetCC or extended from it.
18416  SDValue Op1 = Cmp.getOperand(0);
18417  SDValue Op2 = Cmp.getOperand(1);
18418
18419  SDValue SetCC;
18420  const ConstantSDNode* C = nullptr;
18421  bool needOppositeCond = (CC == X86::COND_E);
18422  bool checkAgainstTrue = false; // Is it a comparison against 1?
18423
18424  if ((C = dyn_cast<ConstantSDNode>(Op1)))
18425    SetCC = Op2;
18426  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
18427    SetCC = Op1;
18428  else // Quit if all operands are not constants.
18429    return SDValue();
18430
18431  if (C->getZExtValue() == 1) {
18432    needOppositeCond = !needOppositeCond;
18433    checkAgainstTrue = true;
18434  } else if (C->getZExtValue() != 0)
18435    // Quit if the constant is neither 0 or 1.
18436    return SDValue();
18437
18438  bool truncatedToBoolWithAnd = false;
18439  // Skip (zext $x), (trunc $x), or (and $x, 1) node.
18440  while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
18441         SetCC.getOpcode() == ISD::TRUNCATE ||
18442         SetCC.getOpcode() == ISD::AND) {
18443    if (SetCC.getOpcode() == ISD::AND) {
18444      int OpIdx = -1;
18445      ConstantSDNode *CS;
18446      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(0))) &&
18447          CS->getZExtValue() == 1)
18448        OpIdx = 1;
18449      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(1))) &&
18450          CS->getZExtValue() == 1)
18451        OpIdx = 0;
18452      if (OpIdx == -1)
18453        break;
18454      SetCC = SetCC.getOperand(OpIdx);
18455      truncatedToBoolWithAnd = true;
18456    } else
18457      SetCC = SetCC.getOperand(0);
18458  }
18459
18460  switch (SetCC.getOpcode()) {
18461  case X86ISD::SETCC_CARRY:
18462    // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
18463    // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
18464    // i.e. it's a comparison against true but the result of SETCC_CARRY is not
18465    // truncated to i1 using 'and'.
18466    if (checkAgainstTrue && !truncatedToBoolWithAnd)
18467      break;
18468    assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
18469           "Invalid use of SETCC_CARRY!");
18470    // FALL THROUGH
18471  case X86ISD::SETCC:
18472    // Set the condition code or opposite one if necessary.
18473    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
18474    if (needOppositeCond)
18475      CC = X86::GetOppositeBranchCondition(CC);
18476    return SetCC.getOperand(1);
18477  case X86ISD::CMOV: {
18478    // Check whether false/true value has canonical one, i.e. 0 or 1.
18479    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
18480    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
18481    // Quit if true value is not a constant.
18482    if (!TVal)
18483      return SDValue();
18484    // Quit if false value is not a constant.
18485    if (!FVal) {
18486      SDValue Op = SetCC.getOperand(0);
18487      // Skip 'zext' or 'trunc' node.
18488      if (Op.getOpcode() == ISD::ZERO_EXTEND ||
18489          Op.getOpcode() == ISD::TRUNCATE)
18490        Op = Op.getOperand(0);
18491      // A special case for rdrand/rdseed, where 0 is set if false cond is
18492      // found.
18493      if ((Op.getOpcode() != X86ISD::RDRAND &&
18494           Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
18495        return SDValue();
18496    }
18497    // Quit if false value is not the constant 0 or 1.
18498    bool FValIsFalse = true;
18499    if (FVal && FVal->getZExtValue() != 0) {
18500      if (FVal->getZExtValue() != 1)
18501        return SDValue();
18502      // If FVal is 1, opposite cond is needed.
18503      needOppositeCond = !needOppositeCond;
18504      FValIsFalse = false;
18505    }
18506    // Quit if TVal is not the constant opposite of FVal.
18507    if (FValIsFalse && TVal->getZExtValue() != 1)
18508      return SDValue();
18509    if (!FValIsFalse && TVal->getZExtValue() != 0)
18510      return SDValue();
18511    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
18512    if (needOppositeCond)
18513      CC = X86::GetOppositeBranchCondition(CC);
18514    return SetCC.getOperand(3);
18515  }
18516  }
18517
18518  return SDValue();
18519}
18520
18521/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
18522static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
18523                                  TargetLowering::DAGCombinerInfo &DCI,
18524                                  const X86Subtarget *Subtarget) {
18525  SDLoc DL(N);
18526
18527  // If the flag operand isn't dead, don't touch this CMOV.
18528  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
18529    return SDValue();
18530
18531  SDValue FalseOp = N->getOperand(0);
18532  SDValue TrueOp = N->getOperand(1);
18533  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
18534  SDValue Cond = N->getOperand(3);
18535
18536  if (CC == X86::COND_E || CC == X86::COND_NE) {
18537    switch (Cond.getOpcode()) {
18538    default: break;
18539    case X86ISD::BSR:
18540    case X86ISD::BSF:
18541      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
18542      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
18543        return (CC == X86::COND_E) ? FalseOp : TrueOp;
18544    }
18545  }
18546
18547  SDValue Flags;
18548
18549  Flags = checkBoolTestSetCCCombine(Cond, CC);
18550  if (Flags.getNode() &&
18551      // Extra check as FCMOV only supports a subset of X86 cond.
18552      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
18553    SDValue Ops[] = { FalseOp, TrueOp,
18554                      DAG.getConstant(CC, MVT::i8), Flags };
18555    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
18556  }
18557
18558  // If this is a select between two integer constants, try to do some
18559  // optimizations.  Note that the operands are ordered the opposite of SELECT
18560  // operands.
18561  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
18562    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
18563      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
18564      // larger than FalseC (the false value).
18565      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
18566        CC = X86::GetOppositeBranchCondition(CC);
18567        std::swap(TrueC, FalseC);
18568        std::swap(TrueOp, FalseOp);
18569      }
18570
18571      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
18572      // This is efficient for any integer data type (including i8/i16) and
18573      // shift amount.
18574      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
18575        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
18576                           DAG.getConstant(CC, MVT::i8), Cond);
18577
18578        // Zero extend the condition if needed.
18579        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
18580
18581        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
18582        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
18583                           DAG.getConstant(ShAmt, MVT::i8));
18584        if (N->getNumValues() == 2)  // Dead flag value?
18585          return DCI.CombineTo(N, Cond, SDValue());
18586        return Cond;
18587      }
18588
18589      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
18590      // for any integer data type, including i8/i16.
18591      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
18592        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
18593                           DAG.getConstant(CC, MVT::i8), Cond);
18594
18595        // Zero extend the condition if needed.
18596        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
18597                           FalseC->getValueType(0), Cond);
18598        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
18599                           SDValue(FalseC, 0));
18600
18601        if (N->getNumValues() == 2)  // Dead flag value?
18602          return DCI.CombineTo(N, Cond, SDValue());
18603        return Cond;
18604      }
18605
18606      // Optimize cases that will turn into an LEA instruction.  This requires
18607      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
18608      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
18609        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
18610        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
18611
18612        bool isFastMultiplier = false;
18613        if (Diff < 10) {
18614          switch ((unsigned char)Diff) {
18615          default: break;
18616          case 1:  // result = add base, cond
18617          case 2:  // result = lea base(    , cond*2)
18618          case 3:  // result = lea base(cond, cond*2)
18619          case 4:  // result = lea base(    , cond*4)
18620          case 5:  // result = lea base(cond, cond*4)
18621          case 8:  // result = lea base(    , cond*8)
18622          case 9:  // result = lea base(cond, cond*8)
18623            isFastMultiplier = true;
18624            break;
18625          }
18626        }
18627
18628        if (isFastMultiplier) {
18629          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
18630          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
18631                             DAG.getConstant(CC, MVT::i8), Cond);
18632          // Zero extend the condition if needed.
18633          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
18634                             Cond);
18635          // Scale the condition by the difference.
18636          if (Diff != 1)
18637            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
18638                               DAG.getConstant(Diff, Cond.getValueType()));
18639
18640          // Add the base if non-zero.
18641          if (FalseC->getAPIntValue() != 0)
18642            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
18643                               SDValue(FalseC, 0));
18644          if (N->getNumValues() == 2)  // Dead flag value?
18645            return DCI.CombineTo(N, Cond, SDValue());
18646          return Cond;
18647        }
18648      }
18649    }
18650  }
18651
18652  // Handle these cases:
18653  //   (select (x != c), e, c) -> select (x != c), e, x),
18654  //   (select (x == c), c, e) -> select (x == c), x, e)
18655  // where the c is an integer constant, and the "select" is the combination
18656  // of CMOV and CMP.
18657  //
18658  // The rationale for this change is that the conditional-move from a constant
18659  // needs two instructions, however, conditional-move from a register needs
18660  // only one instruction.
18661  //
18662  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
18663  //  some instruction-combining opportunities. This opt needs to be
18664  //  postponed as late as possible.
18665  //
18666  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
18667    // the DCI.xxxx conditions are provided to postpone the optimization as
18668    // late as possible.
18669
18670    ConstantSDNode *CmpAgainst = nullptr;
18671    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
18672        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
18673        !isa<ConstantSDNode>(Cond.getOperand(0))) {
18674
18675      if (CC == X86::COND_NE &&
18676          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
18677        CC = X86::GetOppositeBranchCondition(CC);
18678        std::swap(TrueOp, FalseOp);
18679      }
18680
18681      if (CC == X86::COND_E &&
18682          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
18683        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
18684                          DAG.getConstant(CC, MVT::i8), Cond };
18685        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops);
18686      }
18687    }
18688  }
18689
18690  return SDValue();
18691}
18692
18693static SDValue PerformINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG,
18694                                                const X86Subtarget *Subtarget) {
18695  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
18696  switch (IntNo) {
18697  default: return SDValue();
18698  // SSE/AVX/AVX2 blend intrinsics.
18699  case Intrinsic::x86_avx2_pblendvb:
18700  case Intrinsic::x86_avx2_pblendw:
18701  case Intrinsic::x86_avx2_pblendd_128:
18702  case Intrinsic::x86_avx2_pblendd_256:
18703    // Don't try to simplify this intrinsic if we don't have AVX2.
18704    if (!Subtarget->hasAVX2())
18705      return SDValue();
18706    // FALL-THROUGH
18707  case Intrinsic::x86_avx_blend_pd_256:
18708  case Intrinsic::x86_avx_blend_ps_256:
18709  case Intrinsic::x86_avx_blendv_pd_256:
18710  case Intrinsic::x86_avx_blendv_ps_256:
18711    // Don't try to simplify this intrinsic if we don't have AVX.
18712    if (!Subtarget->hasAVX())
18713      return SDValue();
18714    // FALL-THROUGH
18715  case Intrinsic::x86_sse41_pblendw:
18716  case Intrinsic::x86_sse41_blendpd:
18717  case Intrinsic::x86_sse41_blendps:
18718  case Intrinsic::x86_sse41_blendvps:
18719  case Intrinsic::x86_sse41_blendvpd:
18720  case Intrinsic::x86_sse41_pblendvb: {
18721    SDValue Op0 = N->getOperand(1);
18722    SDValue Op1 = N->getOperand(2);
18723    SDValue Mask = N->getOperand(3);
18724
18725    // Don't try to simplify this intrinsic if we don't have SSE4.1.
18726    if (!Subtarget->hasSSE41())
18727      return SDValue();
18728
18729    // fold (blend A, A, Mask) -> A
18730    if (Op0 == Op1)
18731      return Op0;
18732    // fold (blend A, B, allZeros) -> A
18733    if (ISD::isBuildVectorAllZeros(Mask.getNode()))
18734      return Op0;
18735    // fold (blend A, B, allOnes) -> B
18736    if (ISD::isBuildVectorAllOnes(Mask.getNode()))
18737      return Op1;
18738
18739    // Simplify the case where the mask is a constant i32 value.
18740    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mask)) {
18741      if (C->isNullValue())
18742        return Op0;
18743      if (C->isAllOnesValue())
18744        return Op1;
18745    }
18746  }
18747
18748  // Packed SSE2/AVX2 arithmetic shift immediate intrinsics.
18749  case Intrinsic::x86_sse2_psrai_w:
18750  case Intrinsic::x86_sse2_psrai_d:
18751  case Intrinsic::x86_avx2_psrai_w:
18752  case Intrinsic::x86_avx2_psrai_d:
18753  case Intrinsic::x86_sse2_psra_w:
18754  case Intrinsic::x86_sse2_psra_d:
18755  case Intrinsic::x86_avx2_psra_w:
18756  case Intrinsic::x86_avx2_psra_d: {
18757    SDValue Op0 = N->getOperand(1);
18758    SDValue Op1 = N->getOperand(2);
18759    EVT VT = Op0.getValueType();
18760    assert(VT.isVector() && "Expected a vector type!");
18761
18762    if (isa<BuildVectorSDNode>(Op1))
18763      Op1 = Op1.getOperand(0);
18764
18765    if (!isa<ConstantSDNode>(Op1))
18766      return SDValue();
18767
18768    EVT SVT = VT.getVectorElementType();
18769    unsigned SVTBits = SVT.getSizeInBits();
18770
18771    ConstantSDNode *CND = cast<ConstantSDNode>(Op1);
18772    const APInt &C = APInt(SVTBits, CND->getAPIntValue().getZExtValue());
18773    uint64_t ShAmt = C.getZExtValue();
18774
18775    // Don't try to convert this shift into a ISD::SRA if the shift
18776    // count is bigger than or equal to the element size.
18777    if (ShAmt >= SVTBits)
18778      return SDValue();
18779
18780    // Trivial case: if the shift count is zero, then fold this
18781    // into the first operand.
18782    if (ShAmt == 0)
18783      return Op0;
18784
18785    // Replace this packed shift intrinsic with a target independent
18786    // shift dag node.
18787    SDValue Splat = DAG.getConstant(C, VT);
18788    return DAG.getNode(ISD::SRA, SDLoc(N), VT, Op0, Splat);
18789  }
18790  }
18791}
18792
18793/// PerformMulCombine - Optimize a single multiply with constant into two
18794/// in order to implement it with two cheaper instructions, e.g.
18795/// LEA + SHL, LEA + LEA.
18796static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
18797                                 TargetLowering::DAGCombinerInfo &DCI) {
18798  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
18799    return SDValue();
18800
18801  EVT VT = N->getValueType(0);
18802  if (VT != MVT::i64)
18803    return SDValue();
18804
18805  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
18806  if (!C)
18807    return SDValue();
18808  uint64_t MulAmt = C->getZExtValue();
18809  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
18810    return SDValue();
18811
18812  uint64_t MulAmt1 = 0;
18813  uint64_t MulAmt2 = 0;
18814  if ((MulAmt % 9) == 0) {
18815    MulAmt1 = 9;
18816    MulAmt2 = MulAmt / 9;
18817  } else if ((MulAmt % 5) == 0) {
18818    MulAmt1 = 5;
18819    MulAmt2 = MulAmt / 5;
18820  } else if ((MulAmt % 3) == 0) {
18821    MulAmt1 = 3;
18822    MulAmt2 = MulAmt / 3;
18823  }
18824  if (MulAmt2 &&
18825      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
18826    SDLoc DL(N);
18827
18828    if (isPowerOf2_64(MulAmt2) &&
18829        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
18830      // If second multiplifer is pow2, issue it first. We want the multiply by
18831      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
18832      // is an add.
18833      std::swap(MulAmt1, MulAmt2);
18834
18835    SDValue NewMul;
18836    if (isPowerOf2_64(MulAmt1))
18837      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
18838                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
18839    else
18840      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
18841                           DAG.getConstant(MulAmt1, VT));
18842
18843    if (isPowerOf2_64(MulAmt2))
18844      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
18845                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
18846    else
18847      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
18848                           DAG.getConstant(MulAmt2, VT));
18849
18850    // Do not add new nodes to DAG combiner worklist.
18851    DCI.CombineTo(N, NewMul, false);
18852  }
18853  return SDValue();
18854}
18855
18856static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
18857  SDValue N0 = N->getOperand(0);
18858  SDValue N1 = N->getOperand(1);
18859  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
18860  EVT VT = N0.getValueType();
18861
18862  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
18863  // since the result of setcc_c is all zero's or all ones.
18864  if (VT.isInteger() && !VT.isVector() &&
18865      N1C && N0.getOpcode() == ISD::AND &&
18866      N0.getOperand(1).getOpcode() == ISD::Constant) {
18867    SDValue N00 = N0.getOperand(0);
18868    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
18869        ((N00.getOpcode() == ISD::ANY_EXTEND ||
18870          N00.getOpcode() == ISD::ZERO_EXTEND) &&
18871         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
18872      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
18873      APInt ShAmt = N1C->getAPIntValue();
18874      Mask = Mask.shl(ShAmt);
18875      if (Mask != 0)
18876        return DAG.getNode(ISD::AND, SDLoc(N), VT,
18877                           N00, DAG.getConstant(Mask, VT));
18878    }
18879  }
18880
18881  // Hardware support for vector shifts is sparse which makes us scalarize the
18882  // vector operations in many cases. Also, on sandybridge ADD is faster than
18883  // shl.
18884  // (shl V, 1) -> add V,V
18885  if (isSplatVector(N1.getNode())) {
18886    assert(N0.getValueType().isVector() && "Invalid vector shift type");
18887    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
18888    // We shift all of the values by one. In many cases we do not have
18889    // hardware support for this operation. This is better expressed as an ADD
18890    // of two values.
18891    if (N1C && (1 == N1C->getZExtValue())) {
18892      return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
18893    }
18894  }
18895
18896  return SDValue();
18897}
18898
18899/// \brief Returns a vector of 0s if the node in input is a vector logical
18900/// shift by a constant amount which is known to be bigger than or equal
18901/// to the vector element size in bits.
18902static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
18903                                      const X86Subtarget *Subtarget) {
18904  EVT VT = N->getValueType(0);
18905
18906  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
18907      (!Subtarget->hasInt256() ||
18908       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
18909    return SDValue();
18910
18911  SDValue Amt = N->getOperand(1);
18912  SDLoc DL(N);
18913  if (isSplatVector(Amt.getNode())) {
18914    SDValue SclrAmt = Amt->getOperand(0);
18915    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
18916      APInt ShiftAmt = C->getAPIntValue();
18917      unsigned MaxAmount = VT.getVectorElementType().getSizeInBits();
18918
18919      // SSE2/AVX2 logical shifts always return a vector of 0s
18920      // if the shift amount is bigger than or equal to
18921      // the element size. The constant shift amount will be
18922      // encoded as a 8-bit immediate.
18923      if (ShiftAmt.trunc(8).uge(MaxAmount))
18924        return getZeroVector(VT, Subtarget, DAG, DL);
18925    }
18926  }
18927
18928  return SDValue();
18929}
18930
18931/// PerformShiftCombine - Combine shifts.
18932static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
18933                                   TargetLowering::DAGCombinerInfo &DCI,
18934                                   const X86Subtarget *Subtarget) {
18935  if (N->getOpcode() == ISD::SHL) {
18936    SDValue V = PerformSHLCombine(N, DAG);
18937    if (V.getNode()) return V;
18938  }
18939
18940  if (N->getOpcode() != ISD::SRA) {
18941    // Try to fold this logical shift into a zero vector.
18942    SDValue V = performShiftToAllZeros(N, DAG, Subtarget);
18943    if (V.getNode()) return V;
18944  }
18945
18946  return SDValue();
18947}
18948
18949// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
18950// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
18951// and friends.  Likewise for OR -> CMPNEQSS.
18952static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
18953                            TargetLowering::DAGCombinerInfo &DCI,
18954                            const X86Subtarget *Subtarget) {
18955  unsigned opcode;
18956
18957  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
18958  // we're requiring SSE2 for both.
18959  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
18960    SDValue N0 = N->getOperand(0);
18961    SDValue N1 = N->getOperand(1);
18962    SDValue CMP0 = N0->getOperand(1);
18963    SDValue CMP1 = N1->getOperand(1);
18964    SDLoc DL(N);
18965
18966    // The SETCCs should both refer to the same CMP.
18967    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
18968      return SDValue();
18969
18970    SDValue CMP00 = CMP0->getOperand(0);
18971    SDValue CMP01 = CMP0->getOperand(1);
18972    EVT     VT    = CMP00.getValueType();
18973
18974    if (VT == MVT::f32 || VT == MVT::f64) {
18975      bool ExpectingFlags = false;
18976      // Check for any users that want flags:
18977      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
18978           !ExpectingFlags && UI != UE; ++UI)
18979        switch (UI->getOpcode()) {
18980        default:
18981        case ISD::BR_CC:
18982        case ISD::BRCOND:
18983        case ISD::SELECT:
18984          ExpectingFlags = true;
18985          break;
18986        case ISD::CopyToReg:
18987        case ISD::SIGN_EXTEND:
18988        case ISD::ZERO_EXTEND:
18989        case ISD::ANY_EXTEND:
18990          break;
18991        }
18992
18993      if (!ExpectingFlags) {
18994        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
18995        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
18996
18997        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
18998          X86::CondCode tmp = cc0;
18999          cc0 = cc1;
19000          cc1 = tmp;
19001        }
19002
19003        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
19004            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
19005          // FIXME: need symbolic constants for these magic numbers.
19006          // See X86ATTInstPrinter.cpp:printSSECC().
19007          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
19008          if (Subtarget->hasAVX512()) {
19009            SDValue FSetCC = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CMP00,
19010                                         CMP01, DAG.getConstant(x86cc, MVT::i8));
19011            if (N->getValueType(0) != MVT::i1)
19012              return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0),
19013                                 FSetCC);
19014            return FSetCC;
19015          }
19016          SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL,
19017                                              CMP00.getValueType(), CMP00, CMP01,
19018                                              DAG.getConstant(x86cc, MVT::i8));
19019
19020          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
19021          MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32;
19022
19023          if (is64BitFP && !Subtarget->is64Bit()) {
19024            // On a 32-bit target, we cannot bitcast the 64-bit float to a
19025            // 64-bit integer, since that's not a legal type. Since
19026            // OnesOrZeroesF is all ones of all zeroes, we don't need all the
19027            // bits, but can do this little dance to extract the lowest 32 bits
19028            // and work with those going forward.
19029            SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
19030                                           OnesOrZeroesF);
19031            SDValue Vector32 = DAG.getNode(ISD::BITCAST, DL, MVT::v4f32,
19032                                           Vector64);
19033            OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
19034                                        Vector32, DAG.getIntPtrConstant(0));
19035            IntVT = MVT::i32;
19036          }
19037
19038          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, IntVT, OnesOrZeroesF);
19039          SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI,
19040                                      DAG.getConstant(1, IntVT));
19041          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
19042          return OneBitOfTruth;
19043        }
19044      }
19045    }
19046  }
19047  return SDValue();
19048}
19049
19050/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
19051/// so it can be folded inside ANDNP.
19052static bool CanFoldXORWithAllOnes(const SDNode *N) {
19053  EVT VT = N->getValueType(0);
19054
19055  // Match direct AllOnes for 128 and 256-bit vectors
19056  if (ISD::isBuildVectorAllOnes(N))
19057    return true;
19058
19059  // Look through a bit convert.
19060  if (N->getOpcode() == ISD::BITCAST)
19061    N = N->getOperand(0).getNode();
19062
19063  // Sometimes the operand may come from a insert_subvector building a 256-bit
19064  // allones vector
19065  if (VT.is256BitVector() &&
19066      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
19067    SDValue V1 = N->getOperand(0);
19068    SDValue V2 = N->getOperand(1);
19069
19070    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
19071        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
19072        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
19073        ISD::isBuildVectorAllOnes(V2.getNode()))
19074      return true;
19075  }
19076
19077  return false;
19078}
19079
19080// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
19081// register. In most cases we actually compare or select YMM-sized registers
19082// and mixing the two types creates horrible code. This method optimizes
19083// some of the transition sequences.
19084static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
19085                                 TargetLowering::DAGCombinerInfo &DCI,
19086                                 const X86Subtarget *Subtarget) {
19087  EVT VT = N->getValueType(0);
19088  if (!VT.is256BitVector())
19089    return SDValue();
19090
19091  assert((N->getOpcode() == ISD::ANY_EXTEND ||
19092          N->getOpcode() == ISD::ZERO_EXTEND ||
19093          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
19094
19095  SDValue Narrow = N->getOperand(0);
19096  EVT NarrowVT = Narrow->getValueType(0);
19097  if (!NarrowVT.is128BitVector())
19098    return SDValue();
19099
19100  if (Narrow->getOpcode() != ISD::XOR &&
19101      Narrow->getOpcode() != ISD::AND &&
19102      Narrow->getOpcode() != ISD::OR)
19103    return SDValue();
19104
19105  SDValue N0  = Narrow->getOperand(0);
19106  SDValue N1  = Narrow->getOperand(1);
19107  SDLoc DL(Narrow);
19108
19109  // The Left side has to be a trunc.
19110  if (N0.getOpcode() != ISD::TRUNCATE)
19111    return SDValue();
19112
19113  // The type of the truncated inputs.
19114  EVT WideVT = N0->getOperand(0)->getValueType(0);
19115  if (WideVT != VT)
19116    return SDValue();
19117
19118  // The right side has to be a 'trunc' or a constant vector.
19119  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
19120  bool RHSConst = (isSplatVector(N1.getNode()) &&
19121                   isa<ConstantSDNode>(N1->getOperand(0)));
19122  if (!RHSTrunc && !RHSConst)
19123    return SDValue();
19124
19125  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19126
19127  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
19128    return SDValue();
19129
19130  // Set N0 and N1 to hold the inputs to the new wide operation.
19131  N0 = N0->getOperand(0);
19132  if (RHSConst) {
19133    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
19134                     N1->getOperand(0));
19135    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
19136    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, C);
19137  } else if (RHSTrunc) {
19138    N1 = N1->getOperand(0);
19139  }
19140
19141  // Generate the wide operation.
19142  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
19143  unsigned Opcode = N->getOpcode();
19144  switch (Opcode) {
19145  case ISD::ANY_EXTEND:
19146    return Op;
19147  case ISD::ZERO_EXTEND: {
19148    unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
19149    APInt Mask = APInt::getAllOnesValue(InBits);
19150    Mask = Mask.zext(VT.getScalarType().getSizeInBits());
19151    return DAG.getNode(ISD::AND, DL, VT,
19152                       Op, DAG.getConstant(Mask, VT));
19153  }
19154  case ISD::SIGN_EXTEND:
19155    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
19156                       Op, DAG.getValueType(NarrowVT));
19157  default:
19158    llvm_unreachable("Unexpected opcode");
19159  }
19160}
19161
19162static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
19163                                 TargetLowering::DAGCombinerInfo &DCI,
19164                                 const X86Subtarget *Subtarget) {
19165  EVT VT = N->getValueType(0);
19166  if (DCI.isBeforeLegalizeOps())
19167    return SDValue();
19168
19169  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
19170  if (R.getNode())
19171    return R;
19172
19173  // Create BEXTR instructions
19174  // BEXTR is ((X >> imm) & (2**size-1))
19175  if (VT == MVT::i32 || VT == MVT::i64) {
19176    SDValue N0 = N->getOperand(0);
19177    SDValue N1 = N->getOperand(1);
19178    SDLoc DL(N);
19179
19180    // Check for BEXTR.
19181    if ((Subtarget->hasBMI() || Subtarget->hasTBM()) &&
19182        (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) {
19183      ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1);
19184      ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1));
19185      if (MaskNode && ShiftNode) {
19186        uint64_t Mask = MaskNode->getZExtValue();
19187        uint64_t Shift = ShiftNode->getZExtValue();
19188        if (isMask_64(Mask)) {
19189          uint64_t MaskSize = CountPopulation_64(Mask);
19190          if (Shift + MaskSize <= VT.getSizeInBits())
19191            return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0),
19192                               DAG.getConstant(Shift | (MaskSize << 8), VT));
19193        }
19194      }
19195    } // BEXTR
19196
19197    return SDValue();
19198  }
19199
19200  // Want to form ANDNP nodes:
19201  // 1) In the hopes of then easily combining them with OR and AND nodes
19202  //    to form PBLEND/PSIGN.
19203  // 2) To match ANDN packed intrinsics
19204  if (VT != MVT::v2i64 && VT != MVT::v4i64)
19205    return SDValue();
19206
19207  SDValue N0 = N->getOperand(0);
19208  SDValue N1 = N->getOperand(1);
19209  SDLoc DL(N);
19210
19211  // Check LHS for vnot
19212  if (N0.getOpcode() == ISD::XOR &&
19213      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
19214      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
19215    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
19216
19217  // Check RHS for vnot
19218  if (N1.getOpcode() == ISD::XOR &&
19219      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
19220      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
19221    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
19222
19223  return SDValue();
19224}
19225
19226static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
19227                                TargetLowering::DAGCombinerInfo &DCI,
19228                                const X86Subtarget *Subtarget) {
19229  if (DCI.isBeforeLegalizeOps())
19230    return SDValue();
19231
19232  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
19233  if (R.getNode())
19234    return R;
19235
19236  SDValue N0 = N->getOperand(0);
19237  SDValue N1 = N->getOperand(1);
19238  EVT VT = N->getValueType(0);
19239
19240  // look for psign/blend
19241  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
19242    if (!Subtarget->hasSSSE3() ||
19243        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
19244      return SDValue();
19245
19246    // Canonicalize pandn to RHS
19247    if (N0.getOpcode() == X86ISD::ANDNP)
19248      std::swap(N0, N1);
19249    // or (and (m, y), (pandn m, x))
19250    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
19251      SDValue Mask = N1.getOperand(0);
19252      SDValue X    = N1.getOperand(1);
19253      SDValue Y;
19254      if (N0.getOperand(0) == Mask)
19255        Y = N0.getOperand(1);
19256      if (N0.getOperand(1) == Mask)
19257        Y = N0.getOperand(0);
19258
19259      // Check to see if the mask appeared in both the AND and ANDNP and
19260      if (!Y.getNode())
19261        return SDValue();
19262
19263      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
19264      // Look through mask bitcast.
19265      if (Mask.getOpcode() == ISD::BITCAST)
19266        Mask = Mask.getOperand(0);
19267      if (X.getOpcode() == ISD::BITCAST)
19268        X = X.getOperand(0);
19269      if (Y.getOpcode() == ISD::BITCAST)
19270        Y = Y.getOperand(0);
19271
19272      EVT MaskVT = Mask.getValueType();
19273
19274      // Validate that the Mask operand is a vector sra node.
19275      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
19276      // there is no psrai.b
19277      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
19278      unsigned SraAmt = ~0;
19279      if (Mask.getOpcode() == ISD::SRA) {
19280        SDValue Amt = Mask.getOperand(1);
19281        if (isSplatVector(Amt.getNode())) {
19282          SDValue SclrAmt = Amt->getOperand(0);
19283          if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt))
19284            SraAmt = C->getZExtValue();
19285        }
19286      } else if (Mask.getOpcode() == X86ISD::VSRAI) {
19287        SDValue SraC = Mask.getOperand(1);
19288        SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
19289      }
19290      if ((SraAmt + 1) != EltBits)
19291        return SDValue();
19292
19293      SDLoc DL(N);
19294
19295      // Now we know we at least have a plendvb with the mask val.  See if
19296      // we can form a psignb/w/d.
19297      // psign = x.type == y.type == mask.type && y = sub(0, x);
19298      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
19299          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
19300          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
19301        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
19302               "Unsupported VT for PSIGN");
19303        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
19304        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
19305      }
19306      // PBLENDVB only available on SSE 4.1
19307      if (!Subtarget->hasSSE41())
19308        return SDValue();
19309
19310      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
19311
19312      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
19313      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
19314      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
19315      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
19316      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
19317    }
19318  }
19319
19320  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
19321    return SDValue();
19322
19323  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
19324  MachineFunction &MF = DAG.getMachineFunction();
19325  bool OptForSize = MF.getFunction()->getAttributes().
19326    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
19327
19328  // SHLD/SHRD instructions have lower register pressure, but on some
19329  // platforms they have higher latency than the equivalent
19330  // series of shifts/or that would otherwise be generated.
19331  // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions
19332  // have higher latencies and we are not optimizing for size.
19333  if (!OptForSize && Subtarget->isSHLDSlow())
19334    return SDValue();
19335
19336  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
19337    std::swap(N0, N1);
19338  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
19339    return SDValue();
19340  if (!N0.hasOneUse() || !N1.hasOneUse())
19341    return SDValue();
19342
19343  SDValue ShAmt0 = N0.getOperand(1);
19344  if (ShAmt0.getValueType() != MVT::i8)
19345    return SDValue();
19346  SDValue ShAmt1 = N1.getOperand(1);
19347  if (ShAmt1.getValueType() != MVT::i8)
19348    return SDValue();
19349  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
19350    ShAmt0 = ShAmt0.getOperand(0);
19351  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
19352    ShAmt1 = ShAmt1.getOperand(0);
19353
19354  SDLoc DL(N);
19355  unsigned Opc = X86ISD::SHLD;
19356  SDValue Op0 = N0.getOperand(0);
19357  SDValue Op1 = N1.getOperand(0);
19358  if (ShAmt0.getOpcode() == ISD::SUB) {
19359    Opc = X86ISD::SHRD;
19360    std::swap(Op0, Op1);
19361    std::swap(ShAmt0, ShAmt1);
19362  }
19363
19364  unsigned Bits = VT.getSizeInBits();
19365  if (ShAmt1.getOpcode() == ISD::SUB) {
19366    SDValue Sum = ShAmt1.getOperand(0);
19367    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
19368      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
19369      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
19370        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
19371      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
19372        return DAG.getNode(Opc, DL, VT,
19373                           Op0, Op1,
19374                           DAG.getNode(ISD::TRUNCATE, DL,
19375                                       MVT::i8, ShAmt0));
19376    }
19377  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
19378    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
19379    if (ShAmt0C &&
19380        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
19381      return DAG.getNode(Opc, DL, VT,
19382                         N0.getOperand(0), N1.getOperand(0),
19383                         DAG.getNode(ISD::TRUNCATE, DL,
19384                                       MVT::i8, ShAmt0));
19385  }
19386
19387  return SDValue();
19388}
19389
19390// Generate NEG and CMOV for integer abs.
19391static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
19392  EVT VT = N->getValueType(0);
19393
19394  // Since X86 does not have CMOV for 8-bit integer, we don't convert
19395  // 8-bit integer abs to NEG and CMOV.
19396  if (VT.isInteger() && VT.getSizeInBits() == 8)
19397    return SDValue();
19398
19399  SDValue N0 = N->getOperand(0);
19400  SDValue N1 = N->getOperand(1);
19401  SDLoc DL(N);
19402
19403  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
19404  // and change it to SUB and CMOV.
19405  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
19406      N0.getOpcode() == ISD::ADD &&
19407      N0.getOperand(1) == N1 &&
19408      N1.getOpcode() == ISD::SRA &&
19409      N1.getOperand(0) == N0.getOperand(0))
19410    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
19411      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
19412        // Generate SUB & CMOV.
19413        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
19414                                  DAG.getConstant(0, VT), N0.getOperand(0));
19415
19416        SDValue Ops[] = { N0.getOperand(0), Neg,
19417                          DAG.getConstant(X86::COND_GE, MVT::i8),
19418                          SDValue(Neg.getNode(), 1) };
19419        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), Ops);
19420      }
19421  return SDValue();
19422}
19423
19424// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
19425static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
19426                                 TargetLowering::DAGCombinerInfo &DCI,
19427                                 const X86Subtarget *Subtarget) {
19428  if (DCI.isBeforeLegalizeOps())
19429    return SDValue();
19430
19431  if (Subtarget->hasCMov()) {
19432    SDValue RV = performIntegerAbsCombine(N, DAG);
19433    if (RV.getNode())
19434      return RV;
19435  }
19436
19437  return SDValue();
19438}
19439
19440/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
19441static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
19442                                  TargetLowering::DAGCombinerInfo &DCI,
19443                                  const X86Subtarget *Subtarget) {
19444  LoadSDNode *Ld = cast<LoadSDNode>(N);
19445  EVT RegVT = Ld->getValueType(0);
19446  EVT MemVT = Ld->getMemoryVT();
19447  SDLoc dl(Ld);
19448  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19449  unsigned RegSz = RegVT.getSizeInBits();
19450
19451  // On Sandybridge unaligned 256bit loads are inefficient.
19452  ISD::LoadExtType Ext = Ld->getExtensionType();
19453  unsigned Alignment = Ld->getAlignment();
19454  bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
19455  if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
19456      !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
19457    unsigned NumElems = RegVT.getVectorNumElements();
19458    if (NumElems < 2)
19459      return SDValue();
19460
19461    SDValue Ptr = Ld->getBasePtr();
19462    SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
19463
19464    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
19465                                  NumElems/2);
19466    SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
19467                                Ld->getPointerInfo(), Ld->isVolatile(),
19468                                Ld->isNonTemporal(), Ld->isInvariant(),
19469                                Alignment);
19470    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
19471    SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
19472                                Ld->getPointerInfo(), Ld->isVolatile(),
19473                                Ld->isNonTemporal(), Ld->isInvariant(),
19474                                std::min(16U, Alignment));
19475    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
19476                             Load1.getValue(1),
19477                             Load2.getValue(1));
19478
19479    SDValue NewVec = DAG.getUNDEF(RegVT);
19480    NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
19481    NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
19482    return DCI.CombineTo(N, NewVec, TF, true);
19483  }
19484
19485  // If this is a vector EXT Load then attempt to optimize it using a
19486  // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
19487  // expansion is still better than scalar code.
19488  // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
19489  // emit a shuffle and a arithmetic shift.
19490  // TODO: It is possible to support ZExt by zeroing the undef values
19491  // during the shuffle phase or after the shuffle.
19492  if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
19493      (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
19494    assert(MemVT != RegVT && "Cannot extend to the same type");
19495    assert(MemVT.isVector() && "Must load a vector from memory");
19496
19497    unsigned NumElems = RegVT.getVectorNumElements();
19498    unsigned MemSz = MemVT.getSizeInBits();
19499    assert(RegSz > MemSz && "Register size must be greater than the mem size");
19500
19501    if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
19502      return SDValue();
19503
19504    // All sizes must be a power of two.
19505    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
19506      return SDValue();
19507
19508    // Attempt to load the original value using scalar loads.
19509    // Find the largest scalar type that divides the total loaded size.
19510    MVT SclrLoadTy = MVT::i8;
19511    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
19512         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
19513      MVT Tp = (MVT::SimpleValueType)tp;
19514      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
19515        SclrLoadTy = Tp;
19516      }
19517    }
19518
19519    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
19520    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
19521        (64 <= MemSz))
19522      SclrLoadTy = MVT::f64;
19523
19524    // Calculate the number of scalar loads that we need to perform
19525    // in order to load our vector from memory.
19526    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
19527    if (Ext == ISD::SEXTLOAD && NumLoads > 1)
19528      return SDValue();
19529
19530    unsigned loadRegZize = RegSz;
19531    if (Ext == ISD::SEXTLOAD && RegSz == 256)
19532      loadRegZize /= 2;
19533
19534    // Represent our vector as a sequence of elements which are the
19535    // largest scalar that we can load.
19536    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
19537      loadRegZize/SclrLoadTy.getSizeInBits());
19538
19539    // Represent the data using the same element type that is stored in
19540    // memory. In practice, we ''widen'' MemVT.
19541    EVT WideVecVT =
19542          EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
19543                       loadRegZize/MemVT.getScalarType().getSizeInBits());
19544
19545    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
19546      "Invalid vector type");
19547
19548    // We can't shuffle using an illegal type.
19549    if (!TLI.isTypeLegal(WideVecVT))
19550      return SDValue();
19551
19552    SmallVector<SDValue, 8> Chains;
19553    SDValue Ptr = Ld->getBasePtr();
19554    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
19555                                        TLI.getPointerTy());
19556    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
19557
19558    for (unsigned i = 0; i < NumLoads; ++i) {
19559      // Perform a single load.
19560      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
19561                                       Ptr, Ld->getPointerInfo(),
19562                                       Ld->isVolatile(), Ld->isNonTemporal(),
19563                                       Ld->isInvariant(), Ld->getAlignment());
19564      Chains.push_back(ScalarLoad.getValue(1));
19565      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
19566      // another round of DAGCombining.
19567      if (i == 0)
19568        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
19569      else
19570        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
19571                          ScalarLoad, DAG.getIntPtrConstant(i));
19572
19573      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
19574    }
19575
19576    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
19577
19578    // Bitcast the loaded value to a vector of the original element type, in
19579    // the size of the target vector type.
19580    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
19581    unsigned SizeRatio = RegSz/MemSz;
19582
19583    if (Ext == ISD::SEXTLOAD) {
19584      // If we have SSE4.1 we can directly emit a VSEXT node.
19585      if (Subtarget->hasSSE41()) {
19586        SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
19587        return DCI.CombineTo(N, Sext, TF, true);
19588      }
19589
19590      // Otherwise we'll shuffle the small elements in the high bits of the
19591      // larger type and perform an arithmetic shift. If the shift is not legal
19592      // it's better to scalarize.
19593      if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
19594        return SDValue();
19595
19596      // Redistribute the loaded elements into the different locations.
19597      SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
19598      for (unsigned i = 0; i != NumElems; ++i)
19599        ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
19600
19601      SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
19602                                           DAG.getUNDEF(WideVecVT),
19603                                           &ShuffleVec[0]);
19604
19605      Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
19606
19607      // Build the arithmetic shift.
19608      unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
19609                     MemVT.getVectorElementType().getSizeInBits();
19610      Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff,
19611                          DAG.getConstant(Amt, RegVT));
19612
19613      return DCI.CombineTo(N, Shuff, TF, true);
19614    }
19615
19616    // Redistribute the loaded elements into the different locations.
19617    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
19618    for (unsigned i = 0; i != NumElems; ++i)
19619      ShuffleVec[i*SizeRatio] = i;
19620
19621    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
19622                                         DAG.getUNDEF(WideVecVT),
19623                                         &ShuffleVec[0]);
19624
19625    // Bitcast to the requested type.
19626    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
19627    // Replace the original load with the new sequence
19628    // and return the new chain.
19629    return DCI.CombineTo(N, Shuff, TF, true);
19630  }
19631
19632  return SDValue();
19633}
19634
19635/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
19636static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
19637                                   const X86Subtarget *Subtarget) {
19638  StoreSDNode *St = cast<StoreSDNode>(N);
19639  EVT VT = St->getValue().getValueType();
19640  EVT StVT = St->getMemoryVT();
19641  SDLoc dl(St);
19642  SDValue StoredVal = St->getOperand(1);
19643  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19644
19645  // If we are saving a concatenation of two XMM registers, perform two stores.
19646  // On Sandy Bridge, 256-bit memory operations are executed by two
19647  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
19648  // memory  operation.
19649  unsigned Alignment = St->getAlignment();
19650  bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
19651  if (VT.is256BitVector() && !Subtarget->hasInt256() &&
19652      StVT == VT && !IsAligned) {
19653    unsigned NumElems = VT.getVectorNumElements();
19654    if (NumElems < 2)
19655      return SDValue();
19656
19657    SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
19658    SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
19659
19660    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
19661    SDValue Ptr0 = St->getBasePtr();
19662    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
19663
19664    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
19665                                St->getPointerInfo(), St->isVolatile(),
19666                                St->isNonTemporal(), Alignment);
19667    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
19668                                St->getPointerInfo(), St->isVolatile(),
19669                                St->isNonTemporal(),
19670                                std::min(16U, Alignment));
19671    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
19672  }
19673
19674  // Optimize trunc store (of multiple scalars) to shuffle and store.
19675  // First, pack all of the elements in one place. Next, store to memory
19676  // in fewer chunks.
19677  if (St->isTruncatingStore() && VT.isVector()) {
19678    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19679    unsigned NumElems = VT.getVectorNumElements();
19680    assert(StVT != VT && "Cannot truncate to the same type");
19681    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
19682    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
19683
19684    // From, To sizes and ElemCount must be pow of two
19685    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
19686    // We are going to use the original vector elt for storing.
19687    // Accumulated smaller vector elements must be a multiple of the store size.
19688    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
19689
19690    unsigned SizeRatio  = FromSz / ToSz;
19691
19692    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
19693
19694    // Create a type on which we perform the shuffle
19695    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
19696            StVT.getScalarType(), NumElems*SizeRatio);
19697
19698    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
19699
19700    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
19701    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
19702    for (unsigned i = 0; i != NumElems; ++i)
19703      ShuffleVec[i] = i * SizeRatio;
19704
19705    // Can't shuffle using an illegal type.
19706    if (!TLI.isTypeLegal(WideVecVT))
19707      return SDValue();
19708
19709    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
19710                                         DAG.getUNDEF(WideVecVT),
19711                                         &ShuffleVec[0]);
19712    // At this point all of the data is stored at the bottom of the
19713    // register. We now need to save it to mem.
19714
19715    // Find the largest store unit
19716    MVT StoreType = MVT::i8;
19717    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
19718         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
19719      MVT Tp = (MVT::SimpleValueType)tp;
19720      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
19721        StoreType = Tp;
19722    }
19723
19724    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
19725    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
19726        (64 <= NumElems * ToSz))
19727      StoreType = MVT::f64;
19728
19729    // Bitcast the original vector into a vector of store-size units
19730    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
19731            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
19732    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
19733    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
19734    SmallVector<SDValue, 8> Chains;
19735    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
19736                                        TLI.getPointerTy());
19737    SDValue Ptr = St->getBasePtr();
19738
19739    // Perform one or more big stores into memory.
19740    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
19741      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
19742                                   StoreType, ShuffWide,
19743                                   DAG.getIntPtrConstant(i));
19744      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
19745                                St->getPointerInfo(), St->isVolatile(),
19746                                St->isNonTemporal(), St->getAlignment());
19747      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
19748      Chains.push_back(Ch);
19749    }
19750
19751    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
19752  }
19753
19754  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
19755  // the FP state in cases where an emms may be missing.
19756  // A preferable solution to the general problem is to figure out the right
19757  // places to insert EMMS.  This qualifies as a quick hack.
19758
19759  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
19760  if (VT.getSizeInBits() != 64)
19761    return SDValue();
19762
19763  const Function *F = DAG.getMachineFunction().getFunction();
19764  bool NoImplicitFloatOps = F->getAttributes().
19765    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
19766  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
19767                     && Subtarget->hasSSE2();
19768  if ((VT.isVector() ||
19769       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
19770      isa<LoadSDNode>(St->getValue()) &&
19771      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
19772      St->getChain().hasOneUse() && !St->isVolatile()) {
19773    SDNode* LdVal = St->getValue().getNode();
19774    LoadSDNode *Ld = nullptr;
19775    int TokenFactorIndex = -1;
19776    SmallVector<SDValue, 8> Ops;
19777    SDNode* ChainVal = St->getChain().getNode();
19778    // Must be a store of a load.  We currently handle two cases:  the load
19779    // is a direct child, and it's under an intervening TokenFactor.  It is
19780    // possible to dig deeper under nested TokenFactors.
19781    if (ChainVal == LdVal)
19782      Ld = cast<LoadSDNode>(St->getChain());
19783    else if (St->getValue().hasOneUse() &&
19784             ChainVal->getOpcode() == ISD::TokenFactor) {
19785      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
19786        if (ChainVal->getOperand(i).getNode() == LdVal) {
19787          TokenFactorIndex = i;
19788          Ld = cast<LoadSDNode>(St->getValue());
19789        } else
19790          Ops.push_back(ChainVal->getOperand(i));
19791      }
19792    }
19793
19794    if (!Ld || !ISD::isNormalLoad(Ld))
19795      return SDValue();
19796
19797    // If this is not the MMX case, i.e. we are just turning i64 load/store
19798    // into f64 load/store, avoid the transformation if there are multiple
19799    // uses of the loaded value.
19800    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
19801      return SDValue();
19802
19803    SDLoc LdDL(Ld);
19804    SDLoc StDL(N);
19805    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
19806    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
19807    // pair instead.
19808    if (Subtarget->is64Bit() || F64IsLegal) {
19809      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
19810      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
19811                                  Ld->getPointerInfo(), Ld->isVolatile(),
19812                                  Ld->isNonTemporal(), Ld->isInvariant(),
19813                                  Ld->getAlignment());
19814      SDValue NewChain = NewLd.getValue(1);
19815      if (TokenFactorIndex != -1) {
19816        Ops.push_back(NewChain);
19817        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
19818      }
19819      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
19820                          St->getPointerInfo(),
19821                          St->isVolatile(), St->isNonTemporal(),
19822                          St->getAlignment());
19823    }
19824
19825    // Otherwise, lower to two pairs of 32-bit loads / stores.
19826    SDValue LoAddr = Ld->getBasePtr();
19827    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
19828                                 DAG.getConstant(4, MVT::i32));
19829
19830    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
19831                               Ld->getPointerInfo(),
19832                               Ld->isVolatile(), Ld->isNonTemporal(),
19833                               Ld->isInvariant(), Ld->getAlignment());
19834    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
19835                               Ld->getPointerInfo().getWithOffset(4),
19836                               Ld->isVolatile(), Ld->isNonTemporal(),
19837                               Ld->isInvariant(),
19838                               MinAlign(Ld->getAlignment(), 4));
19839
19840    SDValue NewChain = LoLd.getValue(1);
19841    if (TokenFactorIndex != -1) {
19842      Ops.push_back(LoLd);
19843      Ops.push_back(HiLd);
19844      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
19845    }
19846
19847    LoAddr = St->getBasePtr();
19848    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
19849                         DAG.getConstant(4, MVT::i32));
19850
19851    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
19852                                St->getPointerInfo(),
19853                                St->isVolatile(), St->isNonTemporal(),
19854                                St->getAlignment());
19855    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
19856                                St->getPointerInfo().getWithOffset(4),
19857                                St->isVolatile(),
19858                                St->isNonTemporal(),
19859                                MinAlign(St->getAlignment(), 4));
19860    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
19861  }
19862  return SDValue();
19863}
19864
19865/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
19866/// and return the operands for the horizontal operation in LHS and RHS.  A
19867/// horizontal operation performs the binary operation on successive elements
19868/// of its first operand, then on successive elements of its second operand,
19869/// returning the resulting values in a vector.  For example, if
19870///   A = < float a0, float a1, float a2, float a3 >
19871/// and
19872///   B = < float b0, float b1, float b2, float b3 >
19873/// then the result of doing a horizontal operation on A and B is
19874///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
19875/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
19876/// A horizontal-op B, for some already available A and B, and if so then LHS is
19877/// set to A, RHS to B, and the routine returns 'true'.
19878/// Note that the binary operation should have the property that if one of the
19879/// operands is UNDEF then the result is UNDEF.
19880static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
19881  // Look for the following pattern: if
19882  //   A = < float a0, float a1, float a2, float a3 >
19883  //   B = < float b0, float b1, float b2, float b3 >
19884  // and
19885  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
19886  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
19887  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
19888  // which is A horizontal-op B.
19889
19890  // At least one of the operands should be a vector shuffle.
19891  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
19892      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
19893    return false;
19894
19895  MVT VT = LHS.getSimpleValueType();
19896
19897  assert((VT.is128BitVector() || VT.is256BitVector()) &&
19898         "Unsupported vector type for horizontal add/sub");
19899
19900  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
19901  // operate independently on 128-bit lanes.
19902  unsigned NumElts = VT.getVectorNumElements();
19903  unsigned NumLanes = VT.getSizeInBits()/128;
19904  unsigned NumLaneElts = NumElts / NumLanes;
19905  assert((NumLaneElts % 2 == 0) &&
19906         "Vector type should have an even number of elements in each lane");
19907  unsigned HalfLaneElts = NumLaneElts/2;
19908
19909  // View LHS in the form
19910  //   LHS = VECTOR_SHUFFLE A, B, LMask
19911  // If LHS is not a shuffle then pretend it is the shuffle
19912  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
19913  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
19914  // type VT.
19915  SDValue A, B;
19916  SmallVector<int, 16> LMask(NumElts);
19917  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
19918    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
19919      A = LHS.getOperand(0);
19920    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
19921      B = LHS.getOperand(1);
19922    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
19923    std::copy(Mask.begin(), Mask.end(), LMask.begin());
19924  } else {
19925    if (LHS.getOpcode() != ISD::UNDEF)
19926      A = LHS;
19927    for (unsigned i = 0; i != NumElts; ++i)
19928      LMask[i] = i;
19929  }
19930
19931  // Likewise, view RHS in the form
19932  //   RHS = VECTOR_SHUFFLE C, D, RMask
19933  SDValue C, D;
19934  SmallVector<int, 16> RMask(NumElts);
19935  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
19936    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
19937      C = RHS.getOperand(0);
19938    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
19939      D = RHS.getOperand(1);
19940    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
19941    std::copy(Mask.begin(), Mask.end(), RMask.begin());
19942  } else {
19943    if (RHS.getOpcode() != ISD::UNDEF)
19944      C = RHS;
19945    for (unsigned i = 0; i != NumElts; ++i)
19946      RMask[i] = i;
19947  }
19948
19949  // Check that the shuffles are both shuffling the same vectors.
19950  if (!(A == C && B == D) && !(A == D && B == C))
19951    return false;
19952
19953  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
19954  if (!A.getNode() && !B.getNode())
19955    return false;
19956
19957  // If A and B occur in reverse order in RHS, then "swap" them (which means
19958  // rewriting the mask).
19959  if (A != C)
19960    CommuteVectorShuffleMask(RMask, NumElts);
19961
19962  // At this point LHS and RHS are equivalent to
19963  //   LHS = VECTOR_SHUFFLE A, B, LMask
19964  //   RHS = VECTOR_SHUFFLE A, B, RMask
19965  // Check that the masks correspond to performing a horizontal operation.
19966  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
19967    for (unsigned i = 0; i != NumLaneElts; ++i) {
19968      int LIdx = LMask[i+l], RIdx = RMask[i+l];
19969
19970      // Ignore any UNDEF components.
19971      if (LIdx < 0 || RIdx < 0 ||
19972          (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
19973          (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
19974        continue;
19975
19976      // Check that successive elements are being operated on.  If not, this is
19977      // not a horizontal operation.
19978      unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
19979      int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
19980      if (!(LIdx == Index && RIdx == Index + 1) &&
19981          !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
19982        return false;
19983    }
19984  }
19985
19986  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
19987  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
19988  return true;
19989}
19990
19991/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
19992static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
19993                                  const X86Subtarget *Subtarget) {
19994  EVT VT = N->getValueType(0);
19995  SDValue LHS = N->getOperand(0);
19996  SDValue RHS = N->getOperand(1);
19997
19998  // Try to synthesize horizontal adds from adds of shuffles.
19999  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
20000       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
20001      isHorizontalBinOp(LHS, RHS, true))
20002    return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS);
20003  return SDValue();
20004}
20005
20006/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
20007static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
20008                                  const X86Subtarget *Subtarget) {
20009  EVT VT = N->getValueType(0);
20010  SDValue LHS = N->getOperand(0);
20011  SDValue RHS = N->getOperand(1);
20012
20013  // Try to synthesize horizontal subs from subs of shuffles.
20014  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
20015       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
20016      isHorizontalBinOp(LHS, RHS, false))
20017    return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS);
20018  return SDValue();
20019}
20020
20021/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
20022/// X86ISD::FXOR nodes.
20023static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
20024  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
20025  // F[X]OR(0.0, x) -> x
20026  // F[X]OR(x, 0.0) -> x
20027  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
20028    if (C->getValueAPF().isPosZero())
20029      return N->getOperand(1);
20030  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
20031    if (C->getValueAPF().isPosZero())
20032      return N->getOperand(0);
20033  return SDValue();
20034}
20035
20036/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
20037/// X86ISD::FMAX nodes.
20038static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
20039  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
20040
20041  // Only perform optimizations if UnsafeMath is used.
20042  if (!DAG.getTarget().Options.UnsafeFPMath)
20043    return SDValue();
20044
20045  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
20046  // into FMINC and FMAXC, which are Commutative operations.
20047  unsigned NewOp = 0;
20048  switch (N->getOpcode()) {
20049    default: llvm_unreachable("unknown opcode");
20050    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
20051    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
20052  }
20053
20054  return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
20055                     N->getOperand(0), N->getOperand(1));
20056}
20057
20058/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
20059static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
20060  // FAND(0.0, x) -> 0.0
20061  // FAND(x, 0.0) -> 0.0
20062  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
20063    if (C->getValueAPF().isPosZero())
20064      return N->getOperand(0);
20065  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
20066    if (C->getValueAPF().isPosZero())
20067      return N->getOperand(1);
20068  return SDValue();
20069}
20070
20071/// PerformFANDNCombine - Do target-specific dag combines on X86ISD::FANDN nodes
20072static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG) {
20073  // FANDN(x, 0.0) -> 0.0
20074  // FANDN(0.0, x) -> x
20075  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
20076    if (C->getValueAPF().isPosZero())
20077      return N->getOperand(1);
20078  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
20079    if (C->getValueAPF().isPosZero())
20080      return N->getOperand(1);
20081  return SDValue();
20082}
20083
20084static SDValue PerformBTCombine(SDNode *N,
20085                                SelectionDAG &DAG,
20086                                TargetLowering::DAGCombinerInfo &DCI) {
20087  // BT ignores high bits in the bit index operand.
20088  SDValue Op1 = N->getOperand(1);
20089  if (Op1.hasOneUse()) {
20090    unsigned BitWidth = Op1.getValueSizeInBits();
20091    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
20092    APInt KnownZero, KnownOne;
20093    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
20094                                          !DCI.isBeforeLegalizeOps());
20095    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20096    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
20097        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
20098      DCI.CommitTargetLoweringOpt(TLO);
20099  }
20100  return SDValue();
20101}
20102
20103static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
20104  SDValue Op = N->getOperand(0);
20105  if (Op.getOpcode() == ISD::BITCAST)
20106    Op = Op.getOperand(0);
20107  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
20108  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
20109      VT.getVectorElementType().getSizeInBits() ==
20110      OpVT.getVectorElementType().getSizeInBits()) {
20111    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
20112  }
20113  return SDValue();
20114}
20115
20116static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
20117                                               const X86Subtarget *Subtarget) {
20118  EVT VT = N->getValueType(0);
20119  if (!VT.isVector())
20120    return SDValue();
20121
20122  SDValue N0 = N->getOperand(0);
20123  SDValue N1 = N->getOperand(1);
20124  EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
20125  SDLoc dl(N);
20126
20127  // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
20128  // both SSE and AVX2 since there is no sign-extended shift right
20129  // operation on a vector with 64-bit elements.
20130  //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
20131  // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
20132  if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
20133      N0.getOpcode() == ISD::SIGN_EXTEND)) {
20134    SDValue N00 = N0.getOperand(0);
20135
20136    // EXTLOAD has a better solution on AVX2,
20137    // it may be replaced with X86ISD::VSEXT node.
20138    if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
20139      if (!ISD::isNormalLoad(N00.getNode()))
20140        return SDValue();
20141
20142    if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
20143        SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
20144                                  N00, N1);
20145      return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
20146    }
20147  }
20148  return SDValue();
20149}
20150
20151static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
20152                                  TargetLowering::DAGCombinerInfo &DCI,
20153                                  const X86Subtarget *Subtarget) {
20154  if (!DCI.isBeforeLegalizeOps())
20155    return SDValue();
20156
20157  if (!Subtarget->hasFp256())
20158    return SDValue();
20159
20160  EVT VT = N->getValueType(0);
20161  if (VT.isVector() && VT.getSizeInBits() == 256) {
20162    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
20163    if (R.getNode())
20164      return R;
20165  }
20166
20167  return SDValue();
20168}
20169
20170static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
20171                                 const X86Subtarget* Subtarget) {
20172  SDLoc dl(N);
20173  EVT VT = N->getValueType(0);
20174
20175  // Let legalize expand this if it isn't a legal type yet.
20176  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
20177    return SDValue();
20178
20179  EVT ScalarVT = VT.getScalarType();
20180  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
20181      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
20182    return SDValue();
20183
20184  SDValue A = N->getOperand(0);
20185  SDValue B = N->getOperand(1);
20186  SDValue C = N->getOperand(2);
20187
20188  bool NegA = (A.getOpcode() == ISD::FNEG);
20189  bool NegB = (B.getOpcode() == ISD::FNEG);
20190  bool NegC = (C.getOpcode() == ISD::FNEG);
20191
20192  // Negative multiplication when NegA xor NegB
20193  bool NegMul = (NegA != NegB);
20194  if (NegA)
20195    A = A.getOperand(0);
20196  if (NegB)
20197    B = B.getOperand(0);
20198  if (NegC)
20199    C = C.getOperand(0);
20200
20201  unsigned Opcode;
20202  if (!NegMul)
20203    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
20204  else
20205    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
20206
20207  return DAG.getNode(Opcode, dl, VT, A, B, C);
20208}
20209
20210static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
20211                                  TargetLowering::DAGCombinerInfo &DCI,
20212                                  const X86Subtarget *Subtarget) {
20213  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
20214  //           (and (i32 x86isd::setcc_carry), 1)
20215  // This eliminates the zext. This transformation is necessary because
20216  // ISD::SETCC is always legalized to i8.
20217  SDLoc dl(N);
20218  SDValue N0 = N->getOperand(0);
20219  EVT VT = N->getValueType(0);
20220
20221  if (N0.getOpcode() == ISD::AND &&
20222      N0.hasOneUse() &&
20223      N0.getOperand(0).hasOneUse()) {
20224    SDValue N00 = N0.getOperand(0);
20225    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
20226      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
20227      if (!C || C->getZExtValue() != 1)
20228        return SDValue();
20229      return DAG.getNode(ISD::AND, dl, VT,
20230                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
20231                                     N00.getOperand(0), N00.getOperand(1)),
20232                         DAG.getConstant(1, VT));
20233    }
20234  }
20235
20236  if (N0.getOpcode() == ISD::TRUNCATE &&
20237      N0.hasOneUse() &&
20238      N0.getOperand(0).hasOneUse()) {
20239    SDValue N00 = N0.getOperand(0);
20240    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
20241      return DAG.getNode(ISD::AND, dl, VT,
20242                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
20243                                     N00.getOperand(0), N00.getOperand(1)),
20244                         DAG.getConstant(1, VT));
20245    }
20246  }
20247  if (VT.is256BitVector()) {
20248    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
20249    if (R.getNode())
20250      return R;
20251  }
20252
20253  return SDValue();
20254}
20255
20256// Optimize x == -y --> x+y == 0
20257//          x != -y --> x+y != 0
20258static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG,
20259                                      const X86Subtarget* Subtarget) {
20260  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
20261  SDValue LHS = N->getOperand(0);
20262  SDValue RHS = N->getOperand(1);
20263  EVT VT = N->getValueType(0);
20264  SDLoc DL(N);
20265
20266  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
20267    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
20268      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
20269        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
20270                                   LHS.getValueType(), RHS, LHS.getOperand(1));
20271        return DAG.getSetCC(SDLoc(N), N->getValueType(0),
20272                            addV, DAG.getConstant(0, addV.getValueType()), CC);
20273      }
20274  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
20275    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
20276      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
20277        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
20278                                   RHS.getValueType(), LHS, RHS.getOperand(1));
20279        return DAG.getSetCC(SDLoc(N), N->getValueType(0),
20280                            addV, DAG.getConstant(0, addV.getValueType()), CC);
20281      }
20282
20283  if (VT.getScalarType() == MVT::i1) {
20284    bool IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
20285      (LHS.getOperand(0).getValueType().getScalarType() ==  MVT::i1);
20286    bool IsVZero0 = ISD::isBuildVectorAllZeros(LHS.getNode());
20287    if (!IsSEXT0 && !IsVZero0)
20288      return SDValue();
20289    bool IsSEXT1 = (RHS.getOpcode() == ISD::SIGN_EXTEND) &&
20290      (RHS.getOperand(0).getValueType().getScalarType() ==  MVT::i1);
20291    bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
20292
20293    if (!IsSEXT1 && !IsVZero1)
20294      return SDValue();
20295
20296    if (IsSEXT0 && IsVZero1) {
20297      assert(VT == LHS.getOperand(0).getValueType() && "Uexpected operand type");
20298      if (CC == ISD::SETEQ)
20299        return DAG.getNOT(DL, LHS.getOperand(0), VT);
20300      return LHS.getOperand(0);
20301    }
20302    if (IsSEXT1 && IsVZero0) {
20303      assert(VT == RHS.getOperand(0).getValueType() && "Uexpected operand type");
20304      if (CC == ISD::SETEQ)
20305        return DAG.getNOT(DL, RHS.getOperand(0), VT);
20306      return RHS.getOperand(0);
20307    }
20308  }
20309
20310  return SDValue();
20311}
20312
20313static SDValue PerformINSERTPSCombine(SDNode *N, SelectionDAG &DAG,
20314                                      const X86Subtarget *Subtarget) {
20315  SDLoc dl(N);
20316  MVT VT = N->getOperand(1)->getSimpleValueType(0);
20317  assert((VT == MVT::v4f32 || VT == MVT::v4i32) &&
20318         "X86insertps is only defined for v4x32");
20319
20320  SDValue Ld = N->getOperand(1);
20321  if (MayFoldLoad(Ld)) {
20322    // Extract the countS bits from the immediate so we can get the proper
20323    // address when narrowing the vector load to a specific element.
20324    // When the second source op is a memory address, interps doesn't use
20325    // countS and just gets an f32 from that address.
20326    unsigned DestIndex =
20327        cast<ConstantSDNode>(N->getOperand(2))->getZExtValue() >> 6;
20328    Ld = NarrowVectorLoadToElement(cast<LoadSDNode>(Ld), DestIndex, DAG);
20329  } else
20330    return SDValue();
20331
20332  // Create this as a scalar to vector to match the instruction pattern.
20333  SDValue LoadScalarToVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Ld);
20334  // countS bits are ignored when loading from memory on insertps, which
20335  // means we don't need to explicitly set them to 0.
20336  return DAG.getNode(X86ISD::INSERTPS, dl, VT, N->getOperand(0),
20337                     LoadScalarToVector, N->getOperand(2));
20338}
20339
20340// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
20341// as "sbb reg,reg", since it can be extended without zext and produces
20342// an all-ones bit which is more useful than 0/1 in some cases.
20343static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG,
20344                               MVT VT) {
20345  if (VT == MVT::i8)
20346    return DAG.getNode(ISD::AND, DL, VT,
20347                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
20348                                   DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
20349                       DAG.getConstant(1, VT));
20350  assert (VT == MVT::i1 && "Unexpected type for SECCC node");
20351  return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1,
20352                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
20353                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS));
20354}
20355
20356// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
20357static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
20358                                   TargetLowering::DAGCombinerInfo &DCI,
20359                                   const X86Subtarget *Subtarget) {
20360  SDLoc DL(N);
20361  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
20362  SDValue EFLAGS = N->getOperand(1);
20363
20364  if (CC == X86::COND_A) {
20365    // Try to convert COND_A into COND_B in an attempt to facilitate
20366    // materializing "setb reg".
20367    //
20368    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
20369    // cannot take an immediate as its first operand.
20370    //
20371    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
20372        EFLAGS.getValueType().isInteger() &&
20373        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
20374      SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
20375                                   EFLAGS.getNode()->getVTList(),
20376                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
20377      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
20378      return MaterializeSETB(DL, NewEFLAGS, DAG, N->getSimpleValueType(0));
20379    }
20380  }
20381
20382  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
20383  // a zext and produces an all-ones bit which is more useful than 0/1 in some
20384  // cases.
20385  if (CC == X86::COND_B)
20386    return MaterializeSETB(DL, EFLAGS, DAG, N->getSimpleValueType(0));
20387
20388  SDValue Flags;
20389
20390  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
20391  if (Flags.getNode()) {
20392    SDValue Cond = DAG.getConstant(CC, MVT::i8);
20393    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
20394  }
20395
20396  return SDValue();
20397}
20398
20399// Optimize branch condition evaluation.
20400//
20401static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
20402                                    TargetLowering::DAGCombinerInfo &DCI,
20403                                    const X86Subtarget *Subtarget) {
20404  SDLoc DL(N);
20405  SDValue Chain = N->getOperand(0);
20406  SDValue Dest = N->getOperand(1);
20407  SDValue EFLAGS = N->getOperand(3);
20408  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
20409
20410  SDValue Flags;
20411
20412  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
20413  if (Flags.getNode()) {
20414    SDValue Cond = DAG.getConstant(CC, MVT::i8);
20415    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
20416                       Flags);
20417  }
20418
20419  return SDValue();
20420}
20421
20422static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
20423                                        const X86TargetLowering *XTLI) {
20424  SDValue Op0 = N->getOperand(0);
20425  EVT InVT = Op0->getValueType(0);
20426
20427  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
20428  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
20429    SDLoc dl(N);
20430    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
20431    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
20432    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
20433  }
20434
20435  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
20436  // a 32-bit target where SSE doesn't support i64->FP operations.
20437  if (Op0.getOpcode() == ISD::LOAD) {
20438    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
20439    EVT VT = Ld->getValueType(0);
20440    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
20441        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
20442        !XTLI->getSubtarget()->is64Bit() &&
20443        VT == MVT::i64) {
20444      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
20445                                          Ld->getChain(), Op0, DAG);
20446      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
20447      return FILDChain;
20448    }
20449  }
20450  return SDValue();
20451}
20452
20453// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
20454static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
20455                                 X86TargetLowering::DAGCombinerInfo &DCI) {
20456  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
20457  // the result is either zero or one (depending on the input carry bit).
20458  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
20459  if (X86::isZeroNode(N->getOperand(0)) &&
20460      X86::isZeroNode(N->getOperand(1)) &&
20461      // We don't have a good way to replace an EFLAGS use, so only do this when
20462      // dead right now.
20463      SDValue(N, 1).use_empty()) {
20464    SDLoc DL(N);
20465    EVT VT = N->getValueType(0);
20466    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
20467    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
20468                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
20469                                           DAG.getConstant(X86::COND_B,MVT::i8),
20470                                           N->getOperand(2)),
20471                               DAG.getConstant(1, VT));
20472    return DCI.CombineTo(N, Res1, CarryOut);
20473  }
20474
20475  return SDValue();
20476}
20477
20478// fold (add Y, (sete  X, 0)) -> adc  0, Y
20479//      (add Y, (setne X, 0)) -> sbb -1, Y
20480//      (sub (sete  X, 0), Y) -> sbb  0, Y
20481//      (sub (setne X, 0), Y) -> adc -1, Y
20482static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
20483  SDLoc DL(N);
20484
20485  // Look through ZExts.
20486  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
20487  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
20488    return SDValue();
20489
20490  SDValue SetCC = Ext.getOperand(0);
20491  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
20492    return SDValue();
20493
20494  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
20495  if (CC != X86::COND_E && CC != X86::COND_NE)
20496    return SDValue();
20497
20498  SDValue Cmp = SetCC.getOperand(1);
20499  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
20500      !X86::isZeroNode(Cmp.getOperand(1)) ||
20501      !Cmp.getOperand(0).getValueType().isInteger())
20502    return SDValue();
20503
20504  SDValue CmpOp0 = Cmp.getOperand(0);
20505  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
20506                               DAG.getConstant(1, CmpOp0.getValueType()));
20507
20508  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
20509  if (CC == X86::COND_NE)
20510    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
20511                       DL, OtherVal.getValueType(), OtherVal,
20512                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
20513  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
20514                     DL, OtherVal.getValueType(), OtherVal,
20515                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
20516}
20517
20518/// PerformADDCombine - Do target-specific dag combines on integer adds.
20519static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
20520                                 const X86Subtarget *Subtarget) {
20521  EVT VT = N->getValueType(0);
20522  SDValue Op0 = N->getOperand(0);
20523  SDValue Op1 = N->getOperand(1);
20524
20525  // Try to synthesize horizontal adds from adds of shuffles.
20526  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
20527       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
20528      isHorizontalBinOp(Op0, Op1, true))
20529    return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
20530
20531  return OptimizeConditionalInDecrement(N, DAG);
20532}
20533
20534static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
20535                                 const X86Subtarget *Subtarget) {
20536  SDValue Op0 = N->getOperand(0);
20537  SDValue Op1 = N->getOperand(1);
20538
20539  // X86 can't encode an immediate LHS of a sub. See if we can push the
20540  // negation into a preceding instruction.
20541  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
20542    // If the RHS of the sub is a XOR with one use and a constant, invert the
20543    // immediate. Then add one to the LHS of the sub so we can turn
20544    // X-Y -> X+~Y+1, saving one register.
20545    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
20546        isa<ConstantSDNode>(Op1.getOperand(1))) {
20547      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
20548      EVT VT = Op0.getValueType();
20549      SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
20550                                   Op1.getOperand(0),
20551                                   DAG.getConstant(~XorC, VT));
20552      return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
20553                         DAG.getConstant(C->getAPIntValue()+1, VT));
20554    }
20555  }
20556
20557  // Try to synthesize horizontal adds from adds of shuffles.
20558  EVT VT = N->getValueType(0);
20559  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
20560       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
20561      isHorizontalBinOp(Op0, Op1, true))
20562    return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
20563
20564  return OptimizeConditionalInDecrement(N, DAG);
20565}
20566
20567/// performVZEXTCombine - Performs build vector combines
20568static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
20569                                        TargetLowering::DAGCombinerInfo &DCI,
20570                                        const X86Subtarget *Subtarget) {
20571  // (vzext (bitcast (vzext (x)) -> (vzext x)
20572  SDValue In = N->getOperand(0);
20573  while (In.getOpcode() == ISD::BITCAST)
20574    In = In.getOperand(0);
20575
20576  if (In.getOpcode() != X86ISD::VZEXT)
20577    return SDValue();
20578
20579  return DAG.getNode(X86ISD::VZEXT, SDLoc(N), N->getValueType(0),
20580                     In.getOperand(0));
20581}
20582
20583SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
20584                                             DAGCombinerInfo &DCI) const {
20585  SelectionDAG &DAG = DCI.DAG;
20586  switch (N->getOpcode()) {
20587  default: break;
20588  case ISD::EXTRACT_VECTOR_ELT:
20589    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
20590  case ISD::VSELECT:
20591  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
20592  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
20593  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
20594  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
20595  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
20596  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
20597  case ISD::SHL:
20598  case ISD::SRA:
20599  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
20600  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
20601  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
20602  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
20603  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
20604  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
20605  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
20606  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
20607  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
20608  case X86ISD::FXOR:
20609  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
20610  case X86ISD::FMIN:
20611  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
20612  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
20613  case X86ISD::FANDN:       return PerformFANDNCombine(N, DAG);
20614  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
20615  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
20616  case ISD::ANY_EXTEND:
20617  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
20618  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
20619  case ISD::SIGN_EXTEND_INREG:
20620    return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
20621  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
20622  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG, Subtarget);
20623  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
20624  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
20625  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
20626  case X86ISD::SHUFP:       // Handle all target specific shuffles
20627  case X86ISD::PALIGNR:
20628  case X86ISD::UNPCKH:
20629  case X86ISD::UNPCKL:
20630  case X86ISD::MOVHLPS:
20631  case X86ISD::MOVLHPS:
20632  case X86ISD::PSHUFD:
20633  case X86ISD::PSHUFHW:
20634  case X86ISD::PSHUFLW:
20635  case X86ISD::MOVSS:
20636  case X86ISD::MOVSD:
20637  case X86ISD::VPERMILP:
20638  case X86ISD::VPERM2X128:
20639  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
20640  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
20641  case ISD::INTRINSIC_WO_CHAIN:
20642    return PerformINTRINSIC_WO_CHAINCombine(N, DAG, Subtarget);
20643  case X86ISD::INSERTPS:
20644    return PerformINSERTPSCombine(N, DAG, Subtarget);
20645  }
20646
20647  return SDValue();
20648}
20649
20650/// isTypeDesirableForOp - Return true if the target has native support for
20651/// the specified value type and it is 'desirable' to use the type for the
20652/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
20653/// instruction encodings are longer and some i16 instructions are slow.
20654bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
20655  if (!isTypeLegal(VT))
20656    return false;
20657  if (VT != MVT::i16)
20658    return true;
20659
20660  switch (Opc) {
20661  default:
20662    return true;
20663  case ISD::LOAD:
20664  case ISD::SIGN_EXTEND:
20665  case ISD::ZERO_EXTEND:
20666  case ISD::ANY_EXTEND:
20667  case ISD::SHL:
20668  case ISD::SRL:
20669  case ISD::SUB:
20670  case ISD::ADD:
20671  case ISD::MUL:
20672  case ISD::AND:
20673  case ISD::OR:
20674  case ISD::XOR:
20675    return false;
20676  }
20677}
20678
20679/// IsDesirableToPromoteOp - This method query the target whether it is
20680/// beneficial for dag combiner to promote the specified node. If true, it
20681/// should return the desired promotion type by reference.
20682bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
20683  EVT VT = Op.getValueType();
20684  if (VT != MVT::i16)
20685    return false;
20686
20687  bool Promote = false;
20688  bool Commute = false;
20689  switch (Op.getOpcode()) {
20690  default: break;
20691  case ISD::LOAD: {
20692    LoadSDNode *LD = cast<LoadSDNode>(Op);
20693    // If the non-extending load has a single use and it's not live out, then it
20694    // might be folded.
20695    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
20696                                                     Op.hasOneUse()*/) {
20697      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
20698             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
20699        // The only case where we'd want to promote LOAD (rather then it being
20700        // promoted as an operand is when it's only use is liveout.
20701        if (UI->getOpcode() != ISD::CopyToReg)
20702          return false;
20703      }
20704    }
20705    Promote = true;
20706    break;
20707  }
20708  case ISD::SIGN_EXTEND:
20709  case ISD::ZERO_EXTEND:
20710  case ISD::ANY_EXTEND:
20711    Promote = true;
20712    break;
20713  case ISD::SHL:
20714  case ISD::SRL: {
20715    SDValue N0 = Op.getOperand(0);
20716    // Look out for (store (shl (load), x)).
20717    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
20718      return false;
20719    Promote = true;
20720    break;
20721  }
20722  case ISD::ADD:
20723  case ISD::MUL:
20724  case ISD::AND:
20725  case ISD::OR:
20726  case ISD::XOR:
20727    Commute = true;
20728    // fallthrough
20729  case ISD::SUB: {
20730    SDValue N0 = Op.getOperand(0);
20731    SDValue N1 = Op.getOperand(1);
20732    if (!Commute && MayFoldLoad(N1))
20733      return false;
20734    // Avoid disabling potential load folding opportunities.
20735    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
20736      return false;
20737    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
20738      return false;
20739    Promote = true;
20740  }
20741  }
20742
20743  PVT = MVT::i32;
20744  return Promote;
20745}
20746
20747//===----------------------------------------------------------------------===//
20748//                           X86 Inline Assembly Support
20749//===----------------------------------------------------------------------===//
20750
20751namespace {
20752  // Helper to match a string separated by whitespace.
20753  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
20754    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
20755
20756    for (unsigned i = 0, e = args.size(); i != e; ++i) {
20757      StringRef piece(*args[i]);
20758      if (!s.startswith(piece)) // Check if the piece matches.
20759        return false;
20760
20761      s = s.substr(piece.size());
20762      StringRef::size_type pos = s.find_first_not_of(" \t");
20763      if (pos == 0) // We matched a prefix.
20764        return false;
20765
20766      s = s.substr(pos);
20767    }
20768
20769    return s.empty();
20770  }
20771  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
20772}
20773
20774static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
20775
20776  if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
20777    if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
20778        std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
20779        std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
20780
20781      if (AsmPieces.size() == 3)
20782        return true;
20783      else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
20784        return true;
20785    }
20786  }
20787  return false;
20788}
20789
20790bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
20791  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
20792
20793  std::string AsmStr = IA->getAsmString();
20794
20795  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
20796  if (!Ty || Ty->getBitWidth() % 16 != 0)
20797    return false;
20798
20799  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
20800  SmallVector<StringRef, 4> AsmPieces;
20801  SplitString(AsmStr, AsmPieces, ";\n");
20802
20803  switch (AsmPieces.size()) {
20804  default: return false;
20805  case 1:
20806    // FIXME: this should verify that we are targeting a 486 or better.  If not,
20807    // we will turn this bswap into something that will be lowered to logical
20808    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
20809    // lower so don't worry about this.
20810    // bswap $0
20811    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
20812        matchAsm(AsmPieces[0], "bswapl", "$0") ||
20813        matchAsm(AsmPieces[0], "bswapq", "$0") ||
20814        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
20815        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
20816        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
20817      // No need to check constraints, nothing other than the equivalent of
20818      // "=r,0" would be valid here.
20819      return IntrinsicLowering::LowerToByteSwap(CI);
20820    }
20821
20822    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
20823    if (CI->getType()->isIntegerTy(16) &&
20824        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
20825        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
20826         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
20827      AsmPieces.clear();
20828      const std::string &ConstraintsStr = IA->getConstraintString();
20829      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
20830      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
20831      if (clobbersFlagRegisters(AsmPieces))
20832        return IntrinsicLowering::LowerToByteSwap(CI);
20833    }
20834    break;
20835  case 3:
20836    if (CI->getType()->isIntegerTy(32) &&
20837        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
20838        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
20839        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
20840        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
20841      AsmPieces.clear();
20842      const std::string &ConstraintsStr = IA->getConstraintString();
20843      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
20844      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
20845      if (clobbersFlagRegisters(AsmPieces))
20846        return IntrinsicLowering::LowerToByteSwap(CI);
20847    }
20848
20849    if (CI->getType()->isIntegerTy(64)) {
20850      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
20851      if (Constraints.size() >= 2 &&
20852          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
20853          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
20854        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
20855        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
20856            matchAsm(AsmPieces[1], "bswap", "%edx") &&
20857            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
20858          return IntrinsicLowering::LowerToByteSwap(CI);
20859      }
20860    }
20861    break;
20862  }
20863  return false;
20864}
20865
20866/// getConstraintType - Given a constraint letter, return the type of
20867/// constraint it is for this target.
20868X86TargetLowering::ConstraintType
20869X86TargetLowering::getConstraintType(const std::string &Constraint) const {
20870  if (Constraint.size() == 1) {
20871    switch (Constraint[0]) {
20872    case 'R':
20873    case 'q':
20874    case 'Q':
20875    case 'f':
20876    case 't':
20877    case 'u':
20878    case 'y':
20879    case 'x':
20880    case 'Y':
20881    case 'l':
20882      return C_RegisterClass;
20883    case 'a':
20884    case 'b':
20885    case 'c':
20886    case 'd':
20887    case 'S':
20888    case 'D':
20889    case 'A':
20890      return C_Register;
20891    case 'I':
20892    case 'J':
20893    case 'K':
20894    case 'L':
20895    case 'M':
20896    case 'N':
20897    case 'G':
20898    case 'C':
20899    case 'e':
20900    case 'Z':
20901      return C_Other;
20902    default:
20903      break;
20904    }
20905  }
20906  return TargetLowering::getConstraintType(Constraint);
20907}
20908
20909/// Examine constraint type and operand type and determine a weight value.
20910/// This object must already have been set up with the operand type
20911/// and the current alternative constraint selected.
20912TargetLowering::ConstraintWeight
20913  X86TargetLowering::getSingleConstraintMatchWeight(
20914    AsmOperandInfo &info, const char *constraint) const {
20915  ConstraintWeight weight = CW_Invalid;
20916  Value *CallOperandVal = info.CallOperandVal;
20917    // If we don't have a value, we can't do a match,
20918    // but allow it at the lowest weight.
20919  if (!CallOperandVal)
20920    return CW_Default;
20921  Type *type = CallOperandVal->getType();
20922  // Look at the constraint type.
20923  switch (*constraint) {
20924  default:
20925    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
20926  case 'R':
20927  case 'q':
20928  case 'Q':
20929  case 'a':
20930  case 'b':
20931  case 'c':
20932  case 'd':
20933  case 'S':
20934  case 'D':
20935  case 'A':
20936    if (CallOperandVal->getType()->isIntegerTy())
20937      weight = CW_SpecificReg;
20938    break;
20939  case 'f':
20940  case 't':
20941  case 'u':
20942    if (type->isFloatingPointTy())
20943      weight = CW_SpecificReg;
20944    break;
20945  case 'y':
20946    if (type->isX86_MMXTy() && Subtarget->hasMMX())
20947      weight = CW_SpecificReg;
20948    break;
20949  case 'x':
20950  case 'Y':
20951    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
20952        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
20953      weight = CW_Register;
20954    break;
20955  case 'I':
20956    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
20957      if (C->getZExtValue() <= 31)
20958        weight = CW_Constant;
20959    }
20960    break;
20961  case 'J':
20962    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
20963      if (C->getZExtValue() <= 63)
20964        weight = CW_Constant;
20965    }
20966    break;
20967  case 'K':
20968    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
20969      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
20970        weight = CW_Constant;
20971    }
20972    break;
20973  case 'L':
20974    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
20975      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
20976        weight = CW_Constant;
20977    }
20978    break;
20979  case 'M':
20980    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
20981      if (C->getZExtValue() <= 3)
20982        weight = CW_Constant;
20983    }
20984    break;
20985  case 'N':
20986    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
20987      if (C->getZExtValue() <= 0xff)
20988        weight = CW_Constant;
20989    }
20990    break;
20991  case 'G':
20992  case 'C':
20993    if (dyn_cast<ConstantFP>(CallOperandVal)) {
20994      weight = CW_Constant;
20995    }
20996    break;
20997  case 'e':
20998    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
20999      if ((C->getSExtValue() >= -0x80000000LL) &&
21000          (C->getSExtValue() <= 0x7fffffffLL))
21001        weight = CW_Constant;
21002    }
21003    break;
21004  case 'Z':
21005    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
21006      if (C->getZExtValue() <= 0xffffffff)
21007        weight = CW_Constant;
21008    }
21009    break;
21010  }
21011  return weight;
21012}
21013
21014/// LowerXConstraint - try to replace an X constraint, which matches anything,
21015/// with another that has more specific requirements based on the type of the
21016/// corresponding operand.
21017const char *X86TargetLowering::
21018LowerXConstraint(EVT ConstraintVT) const {
21019  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
21020  // 'f' like normal targets.
21021  if (ConstraintVT.isFloatingPoint()) {
21022    if (Subtarget->hasSSE2())
21023      return "Y";
21024    if (Subtarget->hasSSE1())
21025      return "x";
21026  }
21027
21028  return TargetLowering::LowerXConstraint(ConstraintVT);
21029}
21030
21031/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
21032/// vector.  If it is invalid, don't add anything to Ops.
21033void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
21034                                                     std::string &Constraint,
21035                                                     std::vector<SDValue>&Ops,
21036                                                     SelectionDAG &DAG) const {
21037  SDValue Result;
21038
21039  // Only support length 1 constraints for now.
21040  if (Constraint.length() > 1) return;
21041
21042  char ConstraintLetter = Constraint[0];
21043  switch (ConstraintLetter) {
21044  default: break;
21045  case 'I':
21046    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
21047      if (C->getZExtValue() <= 31) {
21048        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
21049        break;
21050      }
21051    }
21052    return;
21053  case 'J':
21054    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
21055      if (C->getZExtValue() <= 63) {
21056        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
21057        break;
21058      }
21059    }
21060    return;
21061  case 'K':
21062    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
21063      if (isInt<8>(C->getSExtValue())) {
21064        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
21065        break;
21066      }
21067    }
21068    return;
21069  case 'N':
21070    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
21071      if (C->getZExtValue() <= 255) {
21072        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
21073        break;
21074      }
21075    }
21076    return;
21077  case 'e': {
21078    // 32-bit signed value
21079    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
21080      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
21081                                           C->getSExtValue())) {
21082        // Widen to 64 bits here to get it sign extended.
21083        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
21084        break;
21085      }
21086    // FIXME gcc accepts some relocatable values here too, but only in certain
21087    // memory models; it's complicated.
21088    }
21089    return;
21090  }
21091  case 'Z': {
21092    // 32-bit unsigned value
21093    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
21094      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
21095                                           C->getZExtValue())) {
21096        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
21097        break;
21098      }
21099    }
21100    // FIXME gcc accepts some relocatable values here too, but only in certain
21101    // memory models; it's complicated.
21102    return;
21103  }
21104  case 'i': {
21105    // Literal immediates are always ok.
21106    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
21107      // Widen to 64 bits here to get it sign extended.
21108      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
21109      break;
21110    }
21111
21112    // In any sort of PIC mode addresses need to be computed at runtime by
21113    // adding in a register or some sort of table lookup.  These can't
21114    // be used as immediates.
21115    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
21116      return;
21117
21118    // If we are in non-pic codegen mode, we allow the address of a global (with
21119    // an optional displacement) to be used with 'i'.
21120    GlobalAddressSDNode *GA = nullptr;
21121    int64_t Offset = 0;
21122
21123    // Match either (GA), (GA+C), (GA+C1+C2), etc.
21124    while (1) {
21125      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
21126        Offset += GA->getOffset();
21127        break;
21128      } else if (Op.getOpcode() == ISD::ADD) {
21129        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
21130          Offset += C->getZExtValue();
21131          Op = Op.getOperand(0);
21132          continue;
21133        }
21134      } else if (Op.getOpcode() == ISD::SUB) {
21135        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
21136          Offset += -C->getZExtValue();
21137          Op = Op.getOperand(0);
21138          continue;
21139        }
21140      }
21141
21142      // Otherwise, this isn't something we can handle, reject it.
21143      return;
21144    }
21145
21146    const GlobalValue *GV = GA->getGlobal();
21147    // If we require an extra load to get this address, as in PIC mode, we
21148    // can't accept it.
21149    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
21150                                                        getTargetMachine())))
21151      return;
21152
21153    Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
21154                                        GA->getValueType(0), Offset);
21155    break;
21156  }
21157  }
21158
21159  if (Result.getNode()) {
21160    Ops.push_back(Result);
21161    return;
21162  }
21163  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
21164}
21165
21166std::pair<unsigned, const TargetRegisterClass*>
21167X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
21168                                                MVT VT) const {
21169  // First, see if this is a constraint that directly corresponds to an LLVM
21170  // register class.
21171  if (Constraint.size() == 1) {
21172    // GCC Constraint Letters
21173    switch (Constraint[0]) {
21174    default: break;
21175      // TODO: Slight differences here in allocation order and leaving
21176      // RIP in the class. Do they matter any more here than they do
21177      // in the normal allocation?
21178    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
21179      if (Subtarget->is64Bit()) {
21180        if (VT == MVT::i32 || VT == MVT::f32)
21181          return std::make_pair(0U, &X86::GR32RegClass);
21182        if (VT == MVT::i16)
21183          return std::make_pair(0U, &X86::GR16RegClass);
21184        if (VT == MVT::i8 || VT == MVT::i1)
21185          return std::make_pair(0U, &X86::GR8RegClass);
21186        if (VT == MVT::i64 || VT == MVT::f64)
21187          return std::make_pair(0U, &X86::GR64RegClass);
21188        break;
21189      }
21190      // 32-bit fallthrough
21191    case 'Q':   // Q_REGS
21192      if (VT == MVT::i32 || VT == MVT::f32)
21193        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
21194      if (VT == MVT::i16)
21195        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
21196      if (VT == MVT::i8 || VT == MVT::i1)
21197        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
21198      if (VT == MVT::i64)
21199        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
21200      break;
21201    case 'r':   // GENERAL_REGS
21202    case 'l':   // INDEX_REGS
21203      if (VT == MVT::i8 || VT == MVT::i1)
21204        return std::make_pair(0U, &X86::GR8RegClass);
21205      if (VT == MVT::i16)
21206        return std::make_pair(0U, &X86::GR16RegClass);
21207      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
21208        return std::make_pair(0U, &X86::GR32RegClass);
21209      return std::make_pair(0U, &X86::GR64RegClass);
21210    case 'R':   // LEGACY_REGS
21211      if (VT == MVT::i8 || VT == MVT::i1)
21212        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
21213      if (VT == MVT::i16)
21214        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
21215      if (VT == MVT::i32 || !Subtarget->is64Bit())
21216        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
21217      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
21218    case 'f':  // FP Stack registers.
21219      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
21220      // value to the correct fpstack register class.
21221      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
21222        return std::make_pair(0U, &X86::RFP32RegClass);
21223      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
21224        return std::make_pair(0U, &X86::RFP64RegClass);
21225      return std::make_pair(0U, &X86::RFP80RegClass);
21226    case 'y':   // MMX_REGS if MMX allowed.
21227      if (!Subtarget->hasMMX()) break;
21228      return std::make_pair(0U, &X86::VR64RegClass);
21229    case 'Y':   // SSE_REGS if SSE2 allowed
21230      if (!Subtarget->hasSSE2()) break;
21231      // FALL THROUGH.
21232    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
21233      if (!Subtarget->hasSSE1()) break;
21234
21235      switch (VT.SimpleTy) {
21236      default: break;
21237      // Scalar SSE types.
21238      case MVT::f32:
21239      case MVT::i32:
21240        return std::make_pair(0U, &X86::FR32RegClass);
21241      case MVT::f64:
21242      case MVT::i64:
21243        return std::make_pair(0U, &X86::FR64RegClass);
21244      // Vector types.
21245      case MVT::v16i8:
21246      case MVT::v8i16:
21247      case MVT::v4i32:
21248      case MVT::v2i64:
21249      case MVT::v4f32:
21250      case MVT::v2f64:
21251        return std::make_pair(0U, &X86::VR128RegClass);
21252      // AVX types.
21253      case MVT::v32i8:
21254      case MVT::v16i16:
21255      case MVT::v8i32:
21256      case MVT::v4i64:
21257      case MVT::v8f32:
21258      case MVT::v4f64:
21259        return std::make_pair(0U, &X86::VR256RegClass);
21260      case MVT::v8f64:
21261      case MVT::v16f32:
21262      case MVT::v16i32:
21263      case MVT::v8i64:
21264        return std::make_pair(0U, &X86::VR512RegClass);
21265      }
21266      break;
21267    }
21268  }
21269
21270  // Use the default implementation in TargetLowering to convert the register
21271  // constraint into a member of a register class.
21272  std::pair<unsigned, const TargetRegisterClass*> Res;
21273  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
21274
21275  // Not found as a standard register?
21276  if (!Res.second) {
21277    // Map st(0) -> st(7) -> ST0
21278    if (Constraint.size() == 7 && Constraint[0] == '{' &&
21279        tolower(Constraint[1]) == 's' &&
21280        tolower(Constraint[2]) == 't' &&
21281        Constraint[3] == '(' &&
21282        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
21283        Constraint[5] == ')' &&
21284        Constraint[6] == '}') {
21285
21286      Res.first = X86::ST0+Constraint[4]-'0';
21287      Res.second = &X86::RFP80RegClass;
21288      return Res;
21289    }
21290
21291    // GCC allows "st(0)" to be called just plain "st".
21292    if (StringRef("{st}").equals_lower(Constraint)) {
21293      Res.first = X86::ST0;
21294      Res.second = &X86::RFP80RegClass;
21295      return Res;
21296    }
21297
21298    // flags -> EFLAGS
21299    if (StringRef("{flags}").equals_lower(Constraint)) {
21300      Res.first = X86::EFLAGS;
21301      Res.second = &X86::CCRRegClass;
21302      return Res;
21303    }
21304
21305    // 'A' means EAX + EDX.
21306    if (Constraint == "A") {
21307      Res.first = X86::EAX;
21308      Res.second = &X86::GR32_ADRegClass;
21309      return Res;
21310    }
21311    return Res;
21312  }
21313
21314  // Otherwise, check to see if this is a register class of the wrong value
21315  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
21316  // turn into {ax},{dx}.
21317  if (Res.second->hasType(VT))
21318    return Res;   // Correct type already, nothing to do.
21319
21320  // All of the single-register GCC register classes map their values onto
21321  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
21322  // really want an 8-bit or 32-bit register, map to the appropriate register
21323  // class and return the appropriate register.
21324  if (Res.second == &X86::GR16RegClass) {
21325    if (VT == MVT::i8 || VT == MVT::i1) {
21326      unsigned DestReg = 0;
21327      switch (Res.first) {
21328      default: break;
21329      case X86::AX: DestReg = X86::AL; break;
21330      case X86::DX: DestReg = X86::DL; break;
21331      case X86::CX: DestReg = X86::CL; break;
21332      case X86::BX: DestReg = X86::BL; break;
21333      }
21334      if (DestReg) {
21335        Res.first = DestReg;
21336        Res.second = &X86::GR8RegClass;
21337      }
21338    } else if (VT == MVT::i32 || VT == MVT::f32) {
21339      unsigned DestReg = 0;
21340      switch (Res.first) {
21341      default: break;
21342      case X86::AX: DestReg = X86::EAX; break;
21343      case X86::DX: DestReg = X86::EDX; break;
21344      case X86::CX: DestReg = X86::ECX; break;
21345      case X86::BX: DestReg = X86::EBX; break;
21346      case X86::SI: DestReg = X86::ESI; break;
21347      case X86::DI: DestReg = X86::EDI; break;
21348      case X86::BP: DestReg = X86::EBP; break;
21349      case X86::SP: DestReg = X86::ESP; break;
21350      }
21351      if (DestReg) {
21352        Res.first = DestReg;
21353        Res.second = &X86::GR32RegClass;
21354      }
21355    } else if (VT == MVT::i64 || VT == MVT::f64) {
21356      unsigned DestReg = 0;
21357      switch (Res.first) {
21358      default: break;
21359      case X86::AX: DestReg = X86::RAX; break;
21360      case X86::DX: DestReg = X86::RDX; break;
21361      case X86::CX: DestReg = X86::RCX; break;
21362      case X86::BX: DestReg = X86::RBX; break;
21363      case X86::SI: DestReg = X86::RSI; break;
21364      case X86::DI: DestReg = X86::RDI; break;
21365      case X86::BP: DestReg = X86::RBP; break;
21366      case X86::SP: DestReg = X86::RSP; break;
21367      }
21368      if (DestReg) {
21369        Res.first = DestReg;
21370        Res.second = &X86::GR64RegClass;
21371      }
21372    }
21373  } else if (Res.second == &X86::FR32RegClass ||
21374             Res.second == &X86::FR64RegClass ||
21375             Res.second == &X86::VR128RegClass ||
21376             Res.second == &X86::VR256RegClass ||
21377             Res.second == &X86::FR32XRegClass ||
21378             Res.second == &X86::FR64XRegClass ||
21379             Res.second == &X86::VR128XRegClass ||
21380             Res.second == &X86::VR256XRegClass ||
21381             Res.second == &X86::VR512RegClass) {
21382    // Handle references to XMM physical registers that got mapped into the
21383    // wrong class.  This can happen with constraints like {xmm0} where the
21384    // target independent register mapper will just pick the first match it can
21385    // find, ignoring the required type.
21386
21387    if (VT == MVT::f32 || VT == MVT::i32)
21388      Res.second = &X86::FR32RegClass;
21389    else if (VT == MVT::f64 || VT == MVT::i64)
21390      Res.second = &X86::FR64RegClass;
21391    else if (X86::VR128RegClass.hasType(VT))
21392      Res.second = &X86::VR128RegClass;
21393    else if (X86::VR256RegClass.hasType(VT))
21394      Res.second = &X86::VR256RegClass;
21395    else if (X86::VR512RegClass.hasType(VT))
21396      Res.second = &X86::VR512RegClass;
21397  }
21398
21399  return Res;
21400}
21401
21402int X86TargetLowering::getScalingFactorCost(const AddrMode &AM,
21403                                            Type *Ty) const {
21404  // Scaling factors are not free at all.
21405  // An indexed folded instruction, i.e., inst (reg1, reg2, scale),
21406  // will take 2 allocations in the out of order engine instead of 1
21407  // for plain addressing mode, i.e. inst (reg1).
21408  // E.g.,
21409  // vaddps (%rsi,%drx), %ymm0, %ymm1
21410  // Requires two allocations (one for the load, one for the computation)
21411  // whereas:
21412  // vaddps (%rsi), %ymm0, %ymm1
21413  // Requires just 1 allocation, i.e., freeing allocations for other operations
21414  // and having less micro operations to execute.
21415  //
21416  // For some X86 architectures, this is even worse because for instance for
21417  // stores, the complex addressing mode forces the instruction to use the
21418  // "load" ports instead of the dedicated "store" port.
21419  // E.g., on Haswell:
21420  // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
21421  // vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
21422  if (isLegalAddressingMode(AM, Ty))
21423    // Scale represents reg2 * scale, thus account for 1
21424    // as soon as we use a second register.
21425    return AM.Scale != 0;
21426  return -1;
21427}
21428