X86ISelLowering.cpp revision e09cd8d42b7621050d2dcdccc37ee341a1b553d5
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "Utils/X86ShuffleDecode.h"
18#include "X86.h"
19#include "X86CallingConv.h"
20#include "X86InstrBuilder.h"
21#include "X86TargetMachine.h"
22#include "X86TargetObjectFile.h"
23#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/ADT/VariadicFunction.h"
27#include "llvm/CodeGen/IntrinsicLowering.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/IR/CallingConv.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DerivedTypes.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GlobalAlias.h"
39#include "llvm/IR/GlobalVariable.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/Intrinsics.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/MC/MCAsmInfo.h"
44#include "llvm/MC/MCContext.h"
45#include "llvm/MC/MCExpr.h"
46#include "llvm/MC/MCSymbol.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Target/TargetOptions.h"
52#include <bitset>
53#include <cctype>
54using namespace llvm;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57
58// Forward declarations.
59static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
60                       SDValue V2);
61
62static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
63                                SelectionDAG &DAG, SDLoc dl,
64                                unsigned vectorWidth) {
65  assert((vectorWidth == 128 || vectorWidth == 256) &&
66         "Unsupported vector width");
67  EVT VT = Vec.getValueType();
68  EVT ElVT = VT.getVectorElementType();
69  unsigned Factor = VT.getSizeInBits()/vectorWidth;
70  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
71                                  VT.getVectorNumElements()/Factor);
72
73  // Extract from UNDEF is UNDEF.
74  if (Vec.getOpcode() == ISD::UNDEF)
75    return DAG.getUNDEF(ResultVT);
76
77  // Extract the relevant vectorWidth bits.  Generate an EXTRACT_SUBVECTOR
78  unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
79
80  // This is the index of the first element of the vectorWidth-bit chunk
81  // we want.
82  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth)
83                               * ElemsPerChunk);
84
85  // If the input is a buildvector just emit a smaller one.
86  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
87    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
88                       Vec->op_begin()+NormalizedIdxVal, ElemsPerChunk);
89
90  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
91  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
92                               VecIdx);
93
94  return Result;
95
96}
97/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
98/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
99/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
100/// instructions or a simple subregister reference. Idx is an index in the
101/// 128 bits we want.  It need not be aligned to a 128-bit bounday.  That makes
102/// lowering EXTRACT_VECTOR_ELT operations easier.
103static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
104                                   SelectionDAG &DAG, SDLoc dl) {
105  assert((Vec.getValueType().is256BitVector() ||
106          Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
107  return ExtractSubVector(Vec, IdxVal, DAG, dl, 128);
108}
109
110/// Generate a DAG to grab 256-bits from a 512-bit vector.
111static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal,
112                                   SelectionDAG &DAG, SDLoc dl) {
113  assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
114  return ExtractSubVector(Vec, IdxVal, DAG, dl, 256);
115}
116
117static SDValue InsertSubVector(SDValue Result, SDValue Vec,
118                               unsigned IdxVal, SelectionDAG &DAG,
119                               SDLoc dl, unsigned vectorWidth) {
120  assert((vectorWidth == 128 || vectorWidth == 256) &&
121         "Unsupported vector width");
122  // Inserting UNDEF is Result
123  if (Vec.getOpcode() == ISD::UNDEF)
124    return Result;
125  EVT VT = Vec.getValueType();
126  EVT ElVT = VT.getVectorElementType();
127  EVT ResultVT = Result.getValueType();
128
129  // Insert the relevant vectorWidth bits.
130  unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
131
132  // This is the index of the first element of the vectorWidth-bit chunk
133  // we want.
134  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth)
135                               * ElemsPerChunk);
136
137  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
138  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
139                     VecIdx);
140}
141/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
142/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
143/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
144/// simple superregister reference.  Idx is an index in the 128 bits
145/// we want.  It need not be aligned to a 128-bit bounday.  That makes
146/// lowering INSERT_VECTOR_ELT operations easier.
147static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
148                                  unsigned IdxVal, SelectionDAG &DAG,
149                                  SDLoc dl) {
150  assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
151  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
152}
153
154static SDValue Insert256BitVector(SDValue Result, SDValue Vec,
155                                  unsigned IdxVal, SelectionDAG &DAG,
156                                  SDLoc dl) {
157  assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
158  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
159}
160
161/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
162/// instructions. This is used because creating CONCAT_VECTOR nodes of
163/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
164/// large BUILD_VECTORS.
165static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
166                                   unsigned NumElems, SelectionDAG &DAG,
167                                   SDLoc dl) {
168  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
169  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
170}
171
172static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
173                                   unsigned NumElems, SelectionDAG &DAG,
174                                   SDLoc dl) {
175  SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
176  return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
177}
178
179static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
180  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
181  bool is64Bit = Subtarget->is64Bit();
182
183  if (Subtarget->isTargetEnvMacho()) {
184    if (is64Bit)
185      return new X86_64MachoTargetObjectFile();
186    return new TargetLoweringObjectFileMachO();
187  }
188
189  if (Subtarget->isTargetLinux())
190    return new X86LinuxTargetObjectFile();
191  if (Subtarget->isTargetELF())
192    return new TargetLoweringObjectFileELF();
193  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
194    return new TargetLoweringObjectFileCOFF();
195  llvm_unreachable("unknown subtarget type");
196}
197
198X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
199  : TargetLowering(TM, createTLOF(TM)) {
200  Subtarget = &TM.getSubtarget<X86Subtarget>();
201  X86ScalarSSEf64 = Subtarget->hasSSE2();
202  X86ScalarSSEf32 = Subtarget->hasSSE1();
203  TD = getDataLayout();
204
205  resetOperationActions();
206}
207
208void X86TargetLowering::resetOperationActions() {
209  const TargetMachine &TM = getTargetMachine();
210  static bool FirstTimeThrough = true;
211
212  // If none of the target options have changed, then we don't need to reset the
213  // operation actions.
214  if (!FirstTimeThrough && TO == TM.Options) return;
215
216  if (!FirstTimeThrough) {
217    // Reinitialize the actions.
218    initActions();
219    FirstTimeThrough = false;
220  }
221
222  TO = TM.Options;
223
224  // Set up the TargetLowering object.
225  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
226
227  // X86 is weird, it always uses i8 for shift amounts and setcc results.
228  setBooleanContents(ZeroOrOneBooleanContent);
229  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
230  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
231
232  // For 64-bit since we have so many registers use the ILP scheduler, for
233  // 32-bit code use the register pressure specific scheduling.
234  // For Atom, always use ILP scheduling.
235  if (Subtarget->isAtom())
236    setSchedulingPreference(Sched::ILP);
237  else if (Subtarget->is64Bit())
238    setSchedulingPreference(Sched::ILP);
239  else
240    setSchedulingPreference(Sched::RegPressure);
241  const X86RegisterInfo *RegInfo =
242    static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
243  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
244
245  // Bypass expensive divides on Atom when compiling with O2
246  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) {
247    addBypassSlowDiv(32, 8);
248    if (Subtarget->is64Bit())
249      addBypassSlowDiv(64, 16);
250  }
251
252  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
253    // Setup Windows compiler runtime calls.
254    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
255    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
256    setLibcallName(RTLIB::SREM_I64, "_allrem");
257    setLibcallName(RTLIB::UREM_I64, "_aullrem");
258    setLibcallName(RTLIB::MUL_I64, "_allmul");
259    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
260    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
261    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
262    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
263    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
264
265    // The _ftol2 runtime function has an unusual calling conv, which
266    // is modeled by a special pseudo-instruction.
267    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
268    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
269    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
270    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
271  }
272
273  if (Subtarget->isTargetDarwin()) {
274    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
275    setUseUnderscoreSetJmp(false);
276    setUseUnderscoreLongJmp(false);
277  } else if (Subtarget->isTargetMingw()) {
278    // MS runtime is weird: it exports _setjmp, but longjmp!
279    setUseUnderscoreSetJmp(true);
280    setUseUnderscoreLongJmp(false);
281  } else {
282    setUseUnderscoreSetJmp(true);
283    setUseUnderscoreLongJmp(true);
284  }
285
286  // Set up the register classes.
287  addRegisterClass(MVT::i8, &X86::GR8RegClass);
288  addRegisterClass(MVT::i16, &X86::GR16RegClass);
289  addRegisterClass(MVT::i32, &X86::GR32RegClass);
290  if (Subtarget->is64Bit())
291    addRegisterClass(MVT::i64, &X86::GR64RegClass);
292
293  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
294
295  // We don't accept any truncstore of integer registers.
296  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
297  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
298  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
299  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
300  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
301  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
302
303  // SETOEQ and SETUNE require checking two conditions.
304  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
305  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
306  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
307  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
308  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
309  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
310
311  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
312  // operation.
313  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
314  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
315  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
316
317  if (Subtarget->is64Bit()) {
318    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
319    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
320  } else if (!TM.Options.UseSoftFloat) {
321    // We have an algorithm for SSE2->double, and we turn this into a
322    // 64-bit FILD followed by conditional FADD for other targets.
323    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
324    // We have an algorithm for SSE2, and we turn this into a 64-bit
325    // FILD for other targets.
326    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
327  }
328
329  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
330  // this operation.
331  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
332  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
333
334  if (!TM.Options.UseSoftFloat) {
335    // SSE has no i16 to fp conversion, only i32
336    if (X86ScalarSSEf32) {
337      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
338      // f32 and f64 cases are Legal, f80 case is not
339      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
340    } else {
341      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
342      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
343    }
344  } else {
345    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
346    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
347  }
348
349  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
350  // are Legal, f80 is custom lowered.
351  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
352  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
353
354  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
355  // this operation.
356  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
357  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
358
359  if (X86ScalarSSEf32) {
360    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
361    // f32 and f64 cases are Legal, f80 case is not
362    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
363  } else {
364    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
365    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
366  }
367
368  // Handle FP_TO_UINT by promoting the destination to a larger signed
369  // conversion.
370  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
371  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
372  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
373
374  if (Subtarget->is64Bit()) {
375    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
376    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
377  } else if (!TM.Options.UseSoftFloat) {
378    // Since AVX is a superset of SSE3, only check for SSE here.
379    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
380      // Expand FP_TO_UINT into a select.
381      // FIXME: We would like to use a Custom expander here eventually to do
382      // the optimal thing for SSE vs. the default expansion in the legalizer.
383      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
384    else
385      // With SSE3 we can use fisttpll to convert to a signed i64; without
386      // SSE, we're stuck with a fistpll.
387      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
388  }
389
390  if (isTargetFTOL()) {
391    // Use the _ftol2 runtime function, which has a pseudo-instruction
392    // to handle its weird calling convention.
393    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
394  }
395
396  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
397  if (!X86ScalarSSEf64) {
398    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
399    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
400    if (Subtarget->is64Bit()) {
401      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
402      // Without SSE, i64->f64 goes through memory.
403      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
404    }
405  }
406
407  // Scalar integer divide and remainder are lowered to use operations that
408  // produce two results, to match the available instructions. This exposes
409  // the two-result form to trivial CSE, which is able to combine x/y and x%y
410  // into a single instruction.
411  //
412  // Scalar integer multiply-high is also lowered to use two-result
413  // operations, to match the available instructions. However, plain multiply
414  // (low) operations are left as Legal, as there are single-result
415  // instructions for this in x86. Using the two-result multiply instructions
416  // when both high and low results are needed must be arranged by dagcombine.
417  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
418    MVT VT = IntVTs[i];
419    setOperationAction(ISD::MULHS, VT, Expand);
420    setOperationAction(ISD::MULHU, VT, Expand);
421    setOperationAction(ISD::SDIV, VT, Expand);
422    setOperationAction(ISD::UDIV, VT, Expand);
423    setOperationAction(ISD::SREM, VT, Expand);
424    setOperationAction(ISD::UREM, VT, Expand);
425
426    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
427    setOperationAction(ISD::ADDC, VT, Custom);
428    setOperationAction(ISD::ADDE, VT, Custom);
429    setOperationAction(ISD::SUBC, VT, Custom);
430    setOperationAction(ISD::SUBE, VT, Custom);
431  }
432
433  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
434  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
435  setOperationAction(ISD::BR_CC            , MVT::f32,   Expand);
436  setOperationAction(ISD::BR_CC            , MVT::f64,   Expand);
437  setOperationAction(ISD::BR_CC            , MVT::f80,   Expand);
438  setOperationAction(ISD::BR_CC            , MVT::i8,    Expand);
439  setOperationAction(ISD::BR_CC            , MVT::i16,   Expand);
440  setOperationAction(ISD::BR_CC            , MVT::i32,   Expand);
441  setOperationAction(ISD::BR_CC            , MVT::i64,   Expand);
442  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
443  if (Subtarget->is64Bit())
444    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
445  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
446  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
447  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
448  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
449  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
450  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
451  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
452  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
453
454  // Promote the i8 variants and force them on up to i32 which has a shorter
455  // encoding.
456  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
457  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
458  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
459  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
460  if (Subtarget->hasBMI()) {
461    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
462    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
463    if (Subtarget->is64Bit())
464      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
465  } else {
466    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
467    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
468    if (Subtarget->is64Bit())
469      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
470  }
471
472  if (Subtarget->hasLZCNT()) {
473    // When promoting the i8 variants, force them to i32 for a shorter
474    // encoding.
475    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
476    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
477    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
478    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
479    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
480    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
481    if (Subtarget->is64Bit())
482      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
483  } else {
484    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
485    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
486    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
487    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
488    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
489    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
490    if (Subtarget->is64Bit()) {
491      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
492      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
493    }
494  }
495
496  if (Subtarget->hasPOPCNT()) {
497    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
498  } else {
499    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
500    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
501    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
502    if (Subtarget->is64Bit())
503      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
504  }
505
506  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
507  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
508
509  // These should be promoted to a larger select which is supported.
510  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
511  // X86 wants to expand cmov itself.
512  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
513  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
514  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
515  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
516  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
517  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
518  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
519  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
520  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
521  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
522  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
523  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
524  if (Subtarget->is64Bit()) {
525    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
526    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
527  }
528  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
529  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
530  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
531  // support continuation, user-level threading, and etc.. As a result, no
532  // other SjLj exception interfaces are implemented and please don't build
533  // your own exception handling based on them.
534  // LLVM/Clang supports zero-cost DWARF exception handling.
535  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
536  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
537
538  // Darwin ABI issue.
539  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
540  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
541  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
542  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
543  if (Subtarget->is64Bit())
544    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
545  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
546  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
547  if (Subtarget->is64Bit()) {
548    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
549    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
550    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
551    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
552    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
553  }
554  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
555  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
556  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
557  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
558  if (Subtarget->is64Bit()) {
559    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
560    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
561    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
562  }
563
564  if (Subtarget->hasSSE1())
565    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
566
567  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
568
569  // Expand certain atomics
570  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
571    MVT VT = IntVTs[i];
572    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
573    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
574    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
575  }
576
577  if (!Subtarget->is64Bit()) {
578    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
579    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
580    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
581    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
582    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
583    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
584    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
585    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
586    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
587    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
588    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
589    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
590  }
591
592  if (Subtarget->hasCmpxchg16b()) {
593    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
594  }
595
596  // FIXME - use subtarget debug flags
597  if (!Subtarget->isTargetDarwin() &&
598      !Subtarget->isTargetELF() &&
599      !Subtarget->isTargetCygMing()) {
600    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
601  }
602
603  if (Subtarget->is64Bit()) {
604    setExceptionPointerRegister(X86::RAX);
605    setExceptionSelectorRegister(X86::RDX);
606  } else {
607    setExceptionPointerRegister(X86::EAX);
608    setExceptionSelectorRegister(X86::EDX);
609  }
610  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
611  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
612
613  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
614  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
615
616  setOperationAction(ISD::TRAP, MVT::Other, Legal);
617  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
618
619  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
620  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
621  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
622  if (Subtarget->is64Bit() && !Subtarget->isTargetWin64()) {
623    // TargetInfo::X86_64ABIBuiltinVaList
624    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
625    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
626  } else {
627    // TargetInfo::CharPtrBuiltinVaList
628    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
629    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
630  }
631
632  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
633  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
634
635  if (Subtarget->isOSWindows() && !Subtarget->isTargetEnvMacho())
636    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
637                       MVT::i64 : MVT::i32, Custom);
638  else if (TM.Options.EnableSegmentedStacks)
639    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
640                       MVT::i64 : MVT::i32, Custom);
641  else
642    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
643                       MVT::i64 : MVT::i32, Expand);
644
645  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
646    // f32 and f64 use SSE.
647    // Set up the FP register classes.
648    addRegisterClass(MVT::f32, &X86::FR32RegClass);
649    addRegisterClass(MVT::f64, &X86::FR64RegClass);
650
651    // Use ANDPD to simulate FABS.
652    setOperationAction(ISD::FABS , MVT::f64, Custom);
653    setOperationAction(ISD::FABS , MVT::f32, Custom);
654
655    // Use XORP to simulate FNEG.
656    setOperationAction(ISD::FNEG , MVT::f64, Custom);
657    setOperationAction(ISD::FNEG , MVT::f32, Custom);
658
659    // Use ANDPD and ORPD to simulate FCOPYSIGN.
660    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
661    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
662
663    // Lower this to FGETSIGNx86 plus an AND.
664    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
665    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
666
667    // We don't support sin/cos/fmod
668    setOperationAction(ISD::FSIN   , MVT::f64, Expand);
669    setOperationAction(ISD::FCOS   , MVT::f64, Expand);
670    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
671    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
672    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
673    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
674
675    // Expand FP immediates into loads from the stack, except for the special
676    // cases we handle.
677    addLegalFPImmediate(APFloat(+0.0)); // xorpd
678    addLegalFPImmediate(APFloat(+0.0f)); // xorps
679  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
680    // Use SSE for f32, x87 for f64.
681    // Set up the FP register classes.
682    addRegisterClass(MVT::f32, &X86::FR32RegClass);
683    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
684
685    // Use ANDPS to simulate FABS.
686    setOperationAction(ISD::FABS , MVT::f32, Custom);
687
688    // Use XORP to simulate FNEG.
689    setOperationAction(ISD::FNEG , MVT::f32, Custom);
690
691    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
692
693    // Use ANDPS and ORPS to simulate FCOPYSIGN.
694    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
695    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
696
697    // We don't support sin/cos/fmod
698    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
699    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
700    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
701
702    // Special cases we handle for FP constants.
703    addLegalFPImmediate(APFloat(+0.0f)); // xorps
704    addLegalFPImmediate(APFloat(+0.0)); // FLD0
705    addLegalFPImmediate(APFloat(+1.0)); // FLD1
706    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
707    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
708
709    if (!TM.Options.UnsafeFPMath) {
710      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
711      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
712      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
713    }
714  } else if (!TM.Options.UseSoftFloat) {
715    // f32 and f64 in x87.
716    // Set up the FP register classes.
717    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
718    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
719
720    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
721    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
722    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
723    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
724
725    if (!TM.Options.UnsafeFPMath) {
726      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
727      setOperationAction(ISD::FSIN   , MVT::f32, Expand);
728      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
729      setOperationAction(ISD::FCOS   , MVT::f32, Expand);
730      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
731      setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
732    }
733    addLegalFPImmediate(APFloat(+0.0)); // FLD0
734    addLegalFPImmediate(APFloat(+1.0)); // FLD1
735    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
736    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
737    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
738    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
739    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
740    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
741  }
742
743  // We don't support FMA.
744  setOperationAction(ISD::FMA, MVT::f64, Expand);
745  setOperationAction(ISD::FMA, MVT::f32, Expand);
746
747  // Long double always uses X87.
748  if (!TM.Options.UseSoftFloat) {
749    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
750    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
751    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
752    {
753      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
754      addLegalFPImmediate(TmpFlt);  // FLD0
755      TmpFlt.changeSign();
756      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
757
758      bool ignored;
759      APFloat TmpFlt2(+1.0);
760      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
761                      &ignored);
762      addLegalFPImmediate(TmpFlt2);  // FLD1
763      TmpFlt2.changeSign();
764      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
765    }
766
767    if (!TM.Options.UnsafeFPMath) {
768      setOperationAction(ISD::FSIN   , MVT::f80, Expand);
769      setOperationAction(ISD::FCOS   , MVT::f80, Expand);
770      setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
771    }
772
773    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
774    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
775    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
776    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
777    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
778    setOperationAction(ISD::FMA, MVT::f80, Expand);
779  }
780
781  // Always use a library call for pow.
782  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
783  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
784  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
785
786  setOperationAction(ISD::FLOG, MVT::f80, Expand);
787  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
788  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
789  setOperationAction(ISD::FEXP, MVT::f80, Expand);
790  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
791
792  // First set operation action for all vector types to either promote
793  // (for widening) or expand (for scalarization). Then we will selectively
794  // turn on ones that can be effectively codegen'd.
795  for (int i = MVT::FIRST_VECTOR_VALUETYPE;
796           i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
797    MVT VT = (MVT::SimpleValueType)i;
798    setOperationAction(ISD::ADD , VT, Expand);
799    setOperationAction(ISD::SUB , VT, Expand);
800    setOperationAction(ISD::FADD, VT, Expand);
801    setOperationAction(ISD::FNEG, VT, Expand);
802    setOperationAction(ISD::FSUB, VT, Expand);
803    setOperationAction(ISD::MUL , VT, Expand);
804    setOperationAction(ISD::FMUL, VT, Expand);
805    setOperationAction(ISD::SDIV, VT, Expand);
806    setOperationAction(ISD::UDIV, VT, Expand);
807    setOperationAction(ISD::FDIV, VT, Expand);
808    setOperationAction(ISD::SREM, VT, Expand);
809    setOperationAction(ISD::UREM, VT, Expand);
810    setOperationAction(ISD::LOAD, VT, Expand);
811    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
812    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
813    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
814    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
815    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
816    setOperationAction(ISD::FABS, VT, Expand);
817    setOperationAction(ISD::FSIN, VT, Expand);
818    setOperationAction(ISD::FSINCOS, VT, Expand);
819    setOperationAction(ISD::FCOS, VT, Expand);
820    setOperationAction(ISD::FSINCOS, VT, Expand);
821    setOperationAction(ISD::FREM, VT, Expand);
822    setOperationAction(ISD::FMA,  VT, Expand);
823    setOperationAction(ISD::FPOWI, VT, Expand);
824    setOperationAction(ISD::FSQRT, VT, Expand);
825    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
826    setOperationAction(ISD::FFLOOR, VT, Expand);
827    setOperationAction(ISD::FCEIL, VT, Expand);
828    setOperationAction(ISD::FTRUNC, VT, Expand);
829    setOperationAction(ISD::FRINT, VT, Expand);
830    setOperationAction(ISD::FNEARBYINT, VT, Expand);
831    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
832    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
833    setOperationAction(ISD::SDIVREM, VT, Expand);
834    setOperationAction(ISD::UDIVREM, VT, Expand);
835    setOperationAction(ISD::FPOW, VT, Expand);
836    setOperationAction(ISD::CTPOP, VT, Expand);
837    setOperationAction(ISD::CTTZ, VT, Expand);
838    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
839    setOperationAction(ISD::CTLZ, VT, Expand);
840    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
841    setOperationAction(ISD::SHL, VT, Expand);
842    setOperationAction(ISD::SRA, VT, Expand);
843    setOperationAction(ISD::SRL, VT, Expand);
844    setOperationAction(ISD::ROTL, VT, Expand);
845    setOperationAction(ISD::ROTR, VT, Expand);
846    setOperationAction(ISD::BSWAP, VT, Expand);
847    setOperationAction(ISD::SETCC, VT, Expand);
848    setOperationAction(ISD::FLOG, VT, Expand);
849    setOperationAction(ISD::FLOG2, VT, Expand);
850    setOperationAction(ISD::FLOG10, VT, Expand);
851    setOperationAction(ISD::FEXP, VT, Expand);
852    setOperationAction(ISD::FEXP2, VT, Expand);
853    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
854    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
855    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
856    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
857    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
858    setOperationAction(ISD::TRUNCATE, VT, Expand);
859    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
860    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
861    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
862    setOperationAction(ISD::VSELECT, VT, Expand);
863    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
864             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
865      setTruncStoreAction(VT,
866                          (MVT::SimpleValueType)InnerVT, Expand);
867    setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
868    setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
869    setLoadExtAction(ISD::EXTLOAD, VT, Expand);
870  }
871
872  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
873  // with -msoft-float, disable use of MMX as well.
874  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
875    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
876    // No operations on x86mmx supported, everything uses intrinsics.
877  }
878
879  // MMX-sized vectors (other than x86mmx) are expected to be expanded
880  // into smaller operations.
881  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
882  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
883  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
884  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
885  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
886  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
887  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
888  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
889  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
890  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
891  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
892  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
893  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
894  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
895  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
896  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
897  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
898  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
899  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
900  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
901  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
902  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
903  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
904  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
905  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
906  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
907  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
908  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
909  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
910
911  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
912    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
913
914    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
915    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
916    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
917    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
918    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
919    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
920    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
921    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
922    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
923    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
924    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
925    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
926  }
927
928  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
929    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
930
931    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
932    // registers cannot be used even for integer operations.
933    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
934    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
935    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
936    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
937
938    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
939    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
940    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
941    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
942    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
943    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
944    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
945    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
946    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
947    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
948    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
949    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
950    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
951    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
952    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
953    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
954    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
955    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
956
957    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
958    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
959    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
960    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
961
962    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
963    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
964    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
967
968    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
969    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
970      MVT VT = (MVT::SimpleValueType)i;
971      // Do not attempt to custom lower non-power-of-2 vectors
972      if (!isPowerOf2_32(VT.getVectorNumElements()))
973        continue;
974      // Do not attempt to custom lower non-128-bit vectors
975      if (!VT.is128BitVector())
976        continue;
977      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
978      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
979      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
980    }
981
982    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
983    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
984    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
985    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
986    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
987    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
988
989    if (Subtarget->is64Bit()) {
990      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
991      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
992    }
993
994    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
995    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
996      MVT VT = (MVT::SimpleValueType)i;
997
998      // Do not attempt to promote non-128-bit vectors
999      if (!VT.is128BitVector())
1000        continue;
1001
1002      setOperationAction(ISD::AND,    VT, Promote);
1003      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
1004      setOperationAction(ISD::OR,     VT, Promote);
1005      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
1006      setOperationAction(ISD::XOR,    VT, Promote);
1007      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
1008      setOperationAction(ISD::LOAD,   VT, Promote);
1009      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
1010      setOperationAction(ISD::SELECT, VT, Promote);
1011      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
1012    }
1013
1014    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1015
1016    // Custom lower v2i64 and v2f64 selects.
1017    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
1018    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
1019    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
1020    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
1021
1022    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
1023    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
1024
1025    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
1026    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
1027    // As there is no 64-bit GPR available, we need build a special custom
1028    // sequence to convert from v2i32 to v2f32.
1029    if (!Subtarget->is64Bit())
1030      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
1031
1032    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
1033    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
1034
1035    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
1036  }
1037
1038  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE41()) {
1039    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
1040    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
1041    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
1042    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
1043    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
1044    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
1045    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
1046    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
1047    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
1048    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
1049
1050    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
1051    setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
1052    setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
1053    setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
1054    setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
1055    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
1056    setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
1057    setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
1058    setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
1059    setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
1060
1061    // FIXME: Do we need to handle scalar-to-vector here?
1062    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
1063
1064    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
1065    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
1066    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
1067    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
1068    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
1069
1070    // i8 and i16 vectors are custom , because the source register and source
1071    // source memory operand types are not the same width.  f32 vectors are
1072    // custom since the immediate controlling the insert encodes additional
1073    // information.
1074    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1075    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
1076    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
1077    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
1078
1079    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1080    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1081    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1082    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1083
1084    // FIXME: these should be Legal but thats only for the case where
1085    // the index is constant.  For now custom expand to deal with that.
1086    if (Subtarget->is64Bit()) {
1087      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1088      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1089    }
1090  }
1091
1092  if (Subtarget->hasSSE2()) {
1093    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1094    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1095
1096    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1097    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1098
1099    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1100    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1101
1102    // In the customized shift lowering, the legal cases in AVX2 will be
1103    // recognized.
1104    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
1105    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
1106
1107    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
1108    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
1109
1110    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
1111
1112    setOperationAction(ISD::SDIV,              MVT::v8i16, Custom);
1113    setOperationAction(ISD::SDIV,              MVT::v4i32, Custom);
1114  }
1115
1116  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1117    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1118    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1119    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1120    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1121    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1122    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1123
1124    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1125    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1126    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1127
1128    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1129    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1130    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1131    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1132    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1133    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1134    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1135    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1136    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1137    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1138    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1139    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1140
1141    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1142    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1143    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1144    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1145    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1146    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1147    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1148    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1149    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1150    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1151    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1152    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1153
1154    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
1155
1156    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1157    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i16, Promote);
1158    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1159    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1160
1161    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1162    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1163
1164    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1165
1166    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1167    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1168
1169    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1170    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1171
1172    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1173    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1174
1175    setOperationAction(ISD::SDIV,              MVT::v16i16, Custom);
1176
1177    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1178    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1179    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1180    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1181
1182    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1183    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1184    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1185
1186    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1187    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1188    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1189    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1190
1191    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1192    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1193    setOperationAction(ISD::SIGN_EXTEND,       MVT::v16i16, Custom);
1194    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1195    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1196    setOperationAction(ISD::ZERO_EXTEND,       MVT::v16i16, Custom);
1197    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1198    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1199    setOperationAction(ISD::ANY_EXTEND,        MVT::v16i16, Custom);
1200    setOperationAction(ISD::TRUNCATE,          MVT::v16i8, Custom);
1201    setOperationAction(ISD::TRUNCATE,          MVT::v8i16, Custom);
1202    setOperationAction(ISD::TRUNCATE,          MVT::v4i32, Custom);
1203
1204    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1205      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1206      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1207      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1208      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1209      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1210      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1211    }
1212
1213    if (Subtarget->hasInt256()) {
1214      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1215      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1216      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1217      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1218
1219      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1220      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1221      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1222      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1223
1224      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1225      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1226      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1227      // Don't lower v32i8 because there is no 128-bit byte mul
1228
1229      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1230
1231      setOperationAction(ISD::SDIV,            MVT::v8i32, Custom);
1232    } else {
1233      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1234      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1235      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1236      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1237
1238      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1239      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1240      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1241      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1242
1243      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1244      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1245      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1246      // Don't lower v32i8 because there is no 128-bit byte mul
1247    }
1248
1249    // In the customized shift lowering, the legal cases in AVX2 will be
1250    // recognized.
1251    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1252    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1253
1254    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1255    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1256
1257    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1258
1259    // Custom lower several nodes for 256-bit types.
1260    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1261             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1262      MVT VT = (MVT::SimpleValueType)i;
1263
1264      // Extract subvector is special because the value type
1265      // (result) is 128-bit but the source is 256-bit wide.
1266      if (VT.is128BitVector())
1267        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1268
1269      // Do not attempt to custom lower other non-256-bit vectors
1270      if (!VT.is256BitVector())
1271        continue;
1272
1273      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1274      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1275      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1276      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1277      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1278      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1279      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1280    }
1281
1282    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1283    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1284      MVT VT = (MVT::SimpleValueType)i;
1285
1286      // Do not attempt to promote non-256-bit vectors
1287      if (!VT.is256BitVector())
1288        continue;
1289
1290      setOperationAction(ISD::AND,    VT, Promote);
1291      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1292      setOperationAction(ISD::OR,     VT, Promote);
1293      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1294      setOperationAction(ISD::XOR,    VT, Promote);
1295      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1296      setOperationAction(ISD::LOAD,   VT, Promote);
1297      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1298      setOperationAction(ISD::SELECT, VT, Promote);
1299      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1300    }
1301  }
1302
1303  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512()) {
1304    addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
1305    addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
1306    addRegisterClass(MVT::v8i64,  &X86::VR512RegClass);
1307    addRegisterClass(MVT::v8f64,  &X86::VR512RegClass);
1308
1309    addRegisterClass(MVT::v8i1,   &X86::VK8RegClass);
1310    addRegisterClass(MVT::v16i1,  &X86::VK16RegClass);
1311
1312    setLoadExtAction(ISD::EXTLOAD,              MVT::v8f32, Legal);
1313    setOperationAction(ISD::LOAD,               MVT::v16f32, Legal);
1314    setOperationAction(ISD::LOAD,               MVT::v8f64, Legal);
1315    setOperationAction(ISD::LOAD,               MVT::v8i64, Legal);
1316    setOperationAction(ISD::LOAD,               MVT::v16i32, Legal);
1317    setOperationAction(ISD::LOAD,               MVT::v16i1, Legal);
1318
1319    setOperationAction(ISD::FADD,               MVT::v16f32, Legal);
1320    setOperationAction(ISD::FSUB,               MVT::v16f32, Legal);
1321    setOperationAction(ISD::FMUL,               MVT::v16f32, Legal);
1322    setOperationAction(ISD::FDIV,               MVT::v16f32, Legal);
1323    setOperationAction(ISD::FSQRT,              MVT::v16f32, Legal);
1324    setOperationAction(ISD::FNEG,               MVT::v16f32, Custom);
1325
1326    setOperationAction(ISD::FADD,               MVT::v8f64, Legal);
1327    setOperationAction(ISD::FSUB,               MVT::v8f64, Legal);
1328    setOperationAction(ISD::FMUL,               MVT::v8f64, Legal);
1329    setOperationAction(ISD::FDIV,               MVT::v8f64, Legal);
1330    setOperationAction(ISD::FSQRT,              MVT::v8f64, Legal);
1331    setOperationAction(ISD::FNEG,               MVT::v8f64, Custom);
1332    setOperationAction(ISD::FMA,                MVT::v8f64, Legal);
1333    setOperationAction(ISD::FMA,                MVT::v16f32, Legal);
1334    setOperationAction(ISD::SDIV,               MVT::v16i32, Custom);
1335
1336    setOperationAction(ISD::FP_TO_SINT,         MVT::i32, Legal);
1337    setOperationAction(ISD::FP_TO_UINT,         MVT::i32, Legal);
1338    setOperationAction(ISD::SINT_TO_FP,         MVT::i32, Legal);
1339    setOperationAction(ISD::UINT_TO_FP,         MVT::i32, Legal);
1340    if (Subtarget->is64Bit()) {
1341      setOperationAction(ISD::FP_TO_UINT,       MVT::i64, Legal);
1342      setOperationAction(ISD::FP_TO_SINT,       MVT::i64, Legal);
1343      setOperationAction(ISD::SINT_TO_FP,       MVT::i64, Legal);
1344      setOperationAction(ISD::UINT_TO_FP,       MVT::i64, Legal);
1345    }
1346    setOperationAction(ISD::FP_TO_SINT,         MVT::v16i32, Legal);
1347    setOperationAction(ISD::FP_TO_UINT,         MVT::v16i32, Legal);
1348    setOperationAction(ISD::FP_TO_UINT,         MVT::v8i32, Legal);
1349    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i32, Legal);
1350    setOperationAction(ISD::UINT_TO_FP,         MVT::v16i32, Legal);
1351    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i32, Legal);
1352    setOperationAction(ISD::FP_ROUND,           MVT::v8f32, Legal);
1353    setOperationAction(ISD::FP_EXTEND,          MVT::v8f32, Legal);
1354
1355    setOperationAction(ISD::TRUNCATE,           MVT::i1, Legal);
1356    setOperationAction(ISD::TRUNCATE,           MVT::v16i8, Custom);
1357    setOperationAction(ISD::TRUNCATE,           MVT::v8i32, Custom);
1358    setOperationAction(ISD::TRUNCATE,           MVT::v8i1, Custom);
1359    setOperationAction(ISD::TRUNCATE,           MVT::v16i1, Custom);
1360    setOperationAction(ISD::ZERO_EXTEND,        MVT::v16i32, Custom);
1361    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i64, Custom);
1362    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i32, Custom);
1363    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i64, Custom);
1364    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i8, Custom);
1365    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i16, Custom);
1366    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i16, Custom);
1367
1368    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f64,  Custom);
1369    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i64,  Custom);
1370    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16f32,  Custom);
1371    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i32,  Custom);
1372    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i1,    Custom);
1373
1374    setOperationAction(ISD::SETCC,              MVT::v16i1, Custom);
1375    setOperationAction(ISD::SETCC,              MVT::v8i1, Custom);
1376
1377    setOperationAction(ISD::MUL,              MVT::v8i64, Custom);
1378
1379    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i1, Custom);
1380    setOperationAction(ISD::BUILD_VECTOR,       MVT::v16i1, Custom);
1381    setOperationAction(ISD::SELECT,             MVT::v8f64, Custom);
1382    setOperationAction(ISD::SELECT,             MVT::v8i64, Custom);
1383    setOperationAction(ISD::SELECT,             MVT::v16f32, Custom);
1384
1385    setOperationAction(ISD::ADD,                MVT::v8i64, Legal);
1386    setOperationAction(ISD::ADD,                MVT::v16i32, Legal);
1387
1388    setOperationAction(ISD::SUB,                MVT::v8i64, Legal);
1389    setOperationAction(ISD::SUB,                MVT::v16i32, Legal);
1390
1391    setOperationAction(ISD::MUL,                MVT::v16i32, Legal);
1392
1393    setOperationAction(ISD::SRL,                MVT::v8i64, Custom);
1394    setOperationAction(ISD::SRL,                MVT::v16i32, Custom);
1395
1396    setOperationAction(ISD::SHL,                MVT::v8i64, Custom);
1397    setOperationAction(ISD::SHL,                MVT::v16i32, Custom);
1398
1399    setOperationAction(ISD::SRA,                MVT::v8i64, Custom);
1400    setOperationAction(ISD::SRA,                MVT::v16i32, Custom);
1401
1402    setOperationAction(ISD::AND,                MVT::v8i64, Legal);
1403    setOperationAction(ISD::OR,                 MVT::v8i64, Legal);
1404    setOperationAction(ISD::XOR,                MVT::v8i64, Legal);
1405    setOperationAction(ISD::AND,                MVT::v16i32, Legal);
1406    setOperationAction(ISD::OR,                 MVT::v16i32, Legal);
1407    setOperationAction(ISD::XOR,                MVT::v16i32, Legal);
1408
1409    // Custom lower several nodes.
1410    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1411             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1412      MVT VT = (MVT::SimpleValueType)i;
1413
1414      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1415      // Extract subvector is special because the value type
1416      // (result) is 256/128-bit but the source is 512-bit wide.
1417      if (VT.is128BitVector() || VT.is256BitVector())
1418        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1419
1420      if (VT.getVectorElementType() == MVT::i1)
1421        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
1422
1423      // Do not attempt to custom lower other non-512-bit vectors
1424      if (!VT.is512BitVector())
1425        continue;
1426
1427      if ( EltSize >= 32) {
1428        setOperationAction(ISD::VECTOR_SHUFFLE,      VT, Custom);
1429        setOperationAction(ISD::INSERT_VECTOR_ELT,   VT, Custom);
1430        setOperationAction(ISD::BUILD_VECTOR,        VT, Custom);
1431        setOperationAction(ISD::VSELECT,             VT, Legal);
1432        setOperationAction(ISD::EXTRACT_VECTOR_ELT,  VT, Custom);
1433        setOperationAction(ISD::SCALAR_TO_VECTOR,    VT, Custom);
1434        setOperationAction(ISD::INSERT_SUBVECTOR,    VT, Custom);
1435      }
1436    }
1437    for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
1438      MVT VT = (MVT::SimpleValueType)i;
1439
1440      // Do not attempt to promote non-256-bit vectors
1441      if (!VT.is512BitVector())
1442        continue;
1443
1444      setOperationAction(ISD::SELECT, VT, Promote);
1445      AddPromotedToType (ISD::SELECT, VT, MVT::v8i64);
1446    }
1447  }// has  AVX-512
1448
1449  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1450  // of this type with custom code.
1451  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1452           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1453    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1454                       Custom);
1455  }
1456
1457  // We want to custom lower some of our intrinsics.
1458  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1459  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1460  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1461
1462  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1463  // handle type legalization for these operations here.
1464  //
1465  // FIXME: We really should do custom legalization for addition and
1466  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1467  // than generic legalization for 64-bit multiplication-with-overflow, though.
1468  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1469    // Add/Sub/Mul with overflow operations are custom lowered.
1470    MVT VT = IntVTs[i];
1471    setOperationAction(ISD::SADDO, VT, Custom);
1472    setOperationAction(ISD::UADDO, VT, Custom);
1473    setOperationAction(ISD::SSUBO, VT, Custom);
1474    setOperationAction(ISD::USUBO, VT, Custom);
1475    setOperationAction(ISD::SMULO, VT, Custom);
1476    setOperationAction(ISD::UMULO, VT, Custom);
1477  }
1478
1479  // There are no 8-bit 3-address imul/mul instructions
1480  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1481  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1482
1483  if (!Subtarget->is64Bit()) {
1484    // These libcalls are not available in 32-bit.
1485    setLibcallName(RTLIB::SHL_I128, 0);
1486    setLibcallName(RTLIB::SRL_I128, 0);
1487    setLibcallName(RTLIB::SRA_I128, 0);
1488  }
1489
1490  // Combine sin / cos into one node or libcall if possible.
1491  if (Subtarget->hasSinCos()) {
1492    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1493    setLibcallName(RTLIB::SINCOS_F64, "sincos");
1494    if (Subtarget->isTargetDarwin()) {
1495      // For MacOSX, we don't want to the normal expansion of a libcall to
1496      // sincos. We want to issue a libcall to __sincos_stret to avoid memory
1497      // traffic.
1498      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1499      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1500    }
1501  }
1502
1503  // We have target-specific dag combine patterns for the following nodes:
1504  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1505  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1506  setTargetDAGCombine(ISD::VSELECT);
1507  setTargetDAGCombine(ISD::SELECT);
1508  setTargetDAGCombine(ISD::SHL);
1509  setTargetDAGCombine(ISD::SRA);
1510  setTargetDAGCombine(ISD::SRL);
1511  setTargetDAGCombine(ISD::OR);
1512  setTargetDAGCombine(ISD::AND);
1513  setTargetDAGCombine(ISD::ADD);
1514  setTargetDAGCombine(ISD::FADD);
1515  setTargetDAGCombine(ISD::FSUB);
1516  setTargetDAGCombine(ISD::FMA);
1517  setTargetDAGCombine(ISD::SUB);
1518  setTargetDAGCombine(ISD::LOAD);
1519  setTargetDAGCombine(ISD::STORE);
1520  setTargetDAGCombine(ISD::ZERO_EXTEND);
1521  setTargetDAGCombine(ISD::ANY_EXTEND);
1522  setTargetDAGCombine(ISD::SIGN_EXTEND);
1523  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1524  setTargetDAGCombine(ISD::TRUNCATE);
1525  setTargetDAGCombine(ISD::SINT_TO_FP);
1526  setTargetDAGCombine(ISD::SETCC);
1527  if (Subtarget->is64Bit())
1528    setTargetDAGCombine(ISD::MUL);
1529  setTargetDAGCombine(ISD::XOR);
1530
1531  computeRegisterProperties();
1532
1533  // On Darwin, -Os means optimize for size without hurting performance,
1534  // do not reduce the limit.
1535  MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1536  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1537  MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1538  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1539  MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1540  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1541  setPrefLoopAlignment(4); // 2^4 bytes.
1542
1543  // Predictable cmov don't hurt on atom because it's in-order.
1544  PredictableSelectIsExpensive = !Subtarget->isAtom();
1545
1546  setPrefFunctionAlignment(4); // 2^4 bytes.
1547}
1548
1549EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
1550  if (!VT.isVector())
1551    return MVT::i8;
1552
1553  const TargetMachine &TM = getTargetMachine();
1554  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512())
1555    switch(VT.getVectorNumElements()) {
1556    case  8: return MVT::v8i1;
1557    case 16: return MVT::v16i1;
1558    }
1559
1560  return VT.changeVectorElementTypeToInteger();
1561}
1562
1563/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1564/// the desired ByVal argument alignment.
1565static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1566  if (MaxAlign == 16)
1567    return;
1568  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1569    if (VTy->getBitWidth() == 128)
1570      MaxAlign = 16;
1571  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1572    unsigned EltAlign = 0;
1573    getMaxByValAlign(ATy->getElementType(), EltAlign);
1574    if (EltAlign > MaxAlign)
1575      MaxAlign = EltAlign;
1576  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1577    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1578      unsigned EltAlign = 0;
1579      getMaxByValAlign(STy->getElementType(i), EltAlign);
1580      if (EltAlign > MaxAlign)
1581        MaxAlign = EltAlign;
1582      if (MaxAlign == 16)
1583        break;
1584    }
1585  }
1586}
1587
1588/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1589/// function arguments in the caller parameter area. For X86, aggregates
1590/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1591/// are at 4-byte boundaries.
1592unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1593  if (Subtarget->is64Bit()) {
1594    // Max of 8 and alignment of type.
1595    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1596    if (TyAlign > 8)
1597      return TyAlign;
1598    return 8;
1599  }
1600
1601  unsigned Align = 4;
1602  if (Subtarget->hasSSE1())
1603    getMaxByValAlign(Ty, Align);
1604  return Align;
1605}
1606
1607/// getOptimalMemOpType - Returns the target specific optimal type for load
1608/// and store operations as a result of memset, memcpy, and memmove
1609/// lowering. If DstAlign is zero that means it's safe to destination
1610/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1611/// means there isn't a need to check it against alignment requirement,
1612/// probably because the source does not need to be loaded. If 'IsMemset' is
1613/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1614/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1615/// source is constant so it does not need to be loaded.
1616/// It returns EVT::Other if the type should be determined using generic
1617/// target-independent logic.
1618EVT
1619X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1620                                       unsigned DstAlign, unsigned SrcAlign,
1621                                       bool IsMemset, bool ZeroMemset,
1622                                       bool MemcpyStrSrc,
1623                                       MachineFunction &MF) const {
1624  const Function *F = MF.getFunction();
1625  if ((!IsMemset || ZeroMemset) &&
1626      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1627                                       Attribute::NoImplicitFloat)) {
1628    if (Size >= 16 &&
1629        (Subtarget->isUnalignedMemAccessFast() ||
1630         ((DstAlign == 0 || DstAlign >= 16) &&
1631          (SrcAlign == 0 || SrcAlign >= 16)))) {
1632      if (Size >= 32) {
1633        if (Subtarget->hasInt256())
1634          return MVT::v8i32;
1635        if (Subtarget->hasFp256())
1636          return MVT::v8f32;
1637      }
1638      if (Subtarget->hasSSE2())
1639        return MVT::v4i32;
1640      if (Subtarget->hasSSE1())
1641        return MVT::v4f32;
1642    } else if (!MemcpyStrSrc && Size >= 8 &&
1643               !Subtarget->is64Bit() &&
1644               Subtarget->hasSSE2()) {
1645      // Do not use f64 to lower memcpy if source is string constant. It's
1646      // better to use i32 to avoid the loads.
1647      return MVT::f64;
1648    }
1649  }
1650  if (Subtarget->is64Bit() && Size >= 8)
1651    return MVT::i64;
1652  return MVT::i32;
1653}
1654
1655bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1656  if (VT == MVT::f32)
1657    return X86ScalarSSEf32;
1658  else if (VT == MVT::f64)
1659    return X86ScalarSSEf64;
1660  return true;
1661}
1662
1663bool
1664X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
1665  if (Fast)
1666    *Fast = Subtarget->isUnalignedMemAccessFast();
1667  return true;
1668}
1669
1670/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1671/// current function.  The returned value is a member of the
1672/// MachineJumpTableInfo::JTEntryKind enum.
1673unsigned X86TargetLowering::getJumpTableEncoding() const {
1674  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1675  // symbol.
1676  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1677      Subtarget->isPICStyleGOT())
1678    return MachineJumpTableInfo::EK_Custom32;
1679
1680  // Otherwise, use the normal jump table encoding heuristics.
1681  return TargetLowering::getJumpTableEncoding();
1682}
1683
1684const MCExpr *
1685X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1686                                             const MachineBasicBlock *MBB,
1687                                             unsigned uid,MCContext &Ctx) const{
1688  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1689         Subtarget->isPICStyleGOT());
1690  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1691  // entries.
1692  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1693                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1694}
1695
1696/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1697/// jumptable.
1698SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1699                                                    SelectionDAG &DAG) const {
1700  if (!Subtarget->is64Bit())
1701    // This doesn't have SDLoc associated with it, but is not really the
1702    // same as a Register.
1703    return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy());
1704  return Table;
1705}
1706
1707/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1708/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1709/// MCExpr.
1710const MCExpr *X86TargetLowering::
1711getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1712                             MCContext &Ctx) const {
1713  // X86-64 uses RIP relative addressing based on the jump table label.
1714  if (Subtarget->isPICStyleRIPRel())
1715    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1716
1717  // Otherwise, the reference is relative to the PIC base.
1718  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1719}
1720
1721// FIXME: Why this routine is here? Move to RegInfo!
1722std::pair<const TargetRegisterClass*, uint8_t>
1723X86TargetLowering::findRepresentativeClass(MVT VT) const{
1724  const TargetRegisterClass *RRC = 0;
1725  uint8_t Cost = 1;
1726  switch (VT.SimpleTy) {
1727  default:
1728    return TargetLowering::findRepresentativeClass(VT);
1729  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1730    RRC = Subtarget->is64Bit() ?
1731      (const TargetRegisterClass*)&X86::GR64RegClass :
1732      (const TargetRegisterClass*)&X86::GR32RegClass;
1733    break;
1734  case MVT::x86mmx:
1735    RRC = &X86::VR64RegClass;
1736    break;
1737  case MVT::f32: case MVT::f64:
1738  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1739  case MVT::v4f32: case MVT::v2f64:
1740  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1741  case MVT::v4f64:
1742    RRC = &X86::VR128RegClass;
1743    break;
1744  }
1745  return std::make_pair(RRC, Cost);
1746}
1747
1748bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1749                                               unsigned &Offset) const {
1750  if (!Subtarget->isTargetLinux())
1751    return false;
1752
1753  if (Subtarget->is64Bit()) {
1754    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1755    Offset = 0x28;
1756    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1757      AddressSpace = 256;
1758    else
1759      AddressSpace = 257;
1760  } else {
1761    // %gs:0x14 on i386
1762    Offset = 0x14;
1763    AddressSpace = 256;
1764  }
1765  return true;
1766}
1767
1768bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
1769                                            unsigned DestAS) const {
1770  assert(SrcAS != DestAS && "Expected different address spaces!");
1771
1772  return SrcAS < 256 && DestAS < 256;
1773}
1774
1775//===----------------------------------------------------------------------===//
1776//               Return Value Calling Convention Implementation
1777//===----------------------------------------------------------------------===//
1778
1779#include "X86GenCallingConv.inc"
1780
1781bool
1782X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1783                                  MachineFunction &MF, bool isVarArg,
1784                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1785                        LLVMContext &Context) const {
1786  SmallVector<CCValAssign, 16> RVLocs;
1787  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1788                 RVLocs, Context);
1789  return CCInfo.CheckReturn(Outs, RetCC_X86);
1790}
1791
1792const uint16_t *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
1793  static const uint16_t ScratchRegs[] = { X86::R11, 0 };
1794  return ScratchRegs;
1795}
1796
1797SDValue
1798X86TargetLowering::LowerReturn(SDValue Chain,
1799                               CallingConv::ID CallConv, bool isVarArg,
1800                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1801                               const SmallVectorImpl<SDValue> &OutVals,
1802                               SDLoc dl, SelectionDAG &DAG) const {
1803  MachineFunction &MF = DAG.getMachineFunction();
1804  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1805
1806  SmallVector<CCValAssign, 16> RVLocs;
1807  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1808                 RVLocs, *DAG.getContext());
1809  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1810
1811  SDValue Flag;
1812  SmallVector<SDValue, 6> RetOps;
1813  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1814  // Operand #1 = Bytes To Pop
1815  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1816                   MVT::i16));
1817
1818  // Copy the result values into the output registers.
1819  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1820    CCValAssign &VA = RVLocs[i];
1821    assert(VA.isRegLoc() && "Can only return in registers!");
1822    SDValue ValToCopy = OutVals[i];
1823    EVT ValVT = ValToCopy.getValueType();
1824
1825    // Promote values to the appropriate types
1826    if (VA.getLocInfo() == CCValAssign::SExt)
1827      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1828    else if (VA.getLocInfo() == CCValAssign::ZExt)
1829      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1830    else if (VA.getLocInfo() == CCValAssign::AExt)
1831      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1832    else if (VA.getLocInfo() == CCValAssign::BCvt)
1833      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1834
1835    // If this is x86-64, and we disabled SSE, we can't return FP values,
1836    // or SSE or MMX vectors.
1837    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1838         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1839          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1840      report_fatal_error("SSE register return with SSE disabled");
1841    }
1842    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1843    // llvm-gcc has never done it right and no one has noticed, so this
1844    // should be OK for now.
1845    if (ValVT == MVT::f64 &&
1846        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1847      report_fatal_error("SSE2 register return with SSE2 disabled");
1848
1849    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1850    // the RET instruction and handled by the FP Stackifier.
1851    if (VA.getLocReg() == X86::ST0 ||
1852        VA.getLocReg() == X86::ST1) {
1853      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1854      // change the value to the FP stack register class.
1855      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1856        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1857      RetOps.push_back(ValToCopy);
1858      // Don't emit a copytoreg.
1859      continue;
1860    }
1861
1862    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1863    // which is returned in RAX / RDX.
1864    if (Subtarget->is64Bit()) {
1865      if (ValVT == MVT::x86mmx) {
1866        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1867          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1868          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1869                                  ValToCopy);
1870          // If we don't have SSE2 available, convert to v4f32 so the generated
1871          // register is legal.
1872          if (!Subtarget->hasSSE2())
1873            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1874        }
1875      }
1876    }
1877
1878    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1879    Flag = Chain.getValue(1);
1880    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1881  }
1882
1883  // The x86-64 ABIs require that for returning structs by value we copy
1884  // the sret argument into %rax/%eax (depending on ABI) for the return.
1885  // Win32 requires us to put the sret argument to %eax as well.
1886  // We saved the argument into a virtual register in the entry block,
1887  // so now we copy the value out and into %rax/%eax.
1888  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr() &&
1889      (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
1890    MachineFunction &MF = DAG.getMachineFunction();
1891    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1892    unsigned Reg = FuncInfo->getSRetReturnReg();
1893    assert(Reg &&
1894           "SRetReturnReg should have been set in LowerFormalArguments().");
1895    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1896
1897    unsigned RetValReg
1898        = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ?
1899          X86::RAX : X86::EAX;
1900    Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
1901    Flag = Chain.getValue(1);
1902
1903    // RAX/EAX now acts like a return value.
1904    RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy()));
1905  }
1906
1907  RetOps[0] = Chain;  // Update chain.
1908
1909  // Add the flag if we have it.
1910  if (Flag.getNode())
1911    RetOps.push_back(Flag);
1912
1913  return DAG.getNode(X86ISD::RET_FLAG, dl,
1914                     MVT::Other, &RetOps[0], RetOps.size());
1915}
1916
1917bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1918  if (N->getNumValues() != 1)
1919    return false;
1920  if (!N->hasNUsesOfValue(1, 0))
1921    return false;
1922
1923  SDValue TCChain = Chain;
1924  SDNode *Copy = *N->use_begin();
1925  if (Copy->getOpcode() == ISD::CopyToReg) {
1926    // If the copy has a glue operand, we conservatively assume it isn't safe to
1927    // perform a tail call.
1928    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1929      return false;
1930    TCChain = Copy->getOperand(0);
1931  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1932    return false;
1933
1934  bool HasRet = false;
1935  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1936       UI != UE; ++UI) {
1937    if (UI->getOpcode() != X86ISD::RET_FLAG)
1938      return false;
1939    HasRet = true;
1940  }
1941
1942  if (!HasRet)
1943    return false;
1944
1945  Chain = TCChain;
1946  return true;
1947}
1948
1949MVT
1950X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
1951                                            ISD::NodeType ExtendKind) const {
1952  MVT ReturnMVT;
1953  // TODO: Is this also valid on 32-bit?
1954  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1955    ReturnMVT = MVT::i8;
1956  else
1957    ReturnMVT = MVT::i32;
1958
1959  MVT MinVT = getRegisterType(ReturnMVT);
1960  return VT.bitsLT(MinVT) ? MinVT : VT;
1961}
1962
1963/// LowerCallResult - Lower the result values of a call into the
1964/// appropriate copies out of appropriate physical registers.
1965///
1966SDValue
1967X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1968                                   CallingConv::ID CallConv, bool isVarArg,
1969                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1970                                   SDLoc dl, SelectionDAG &DAG,
1971                                   SmallVectorImpl<SDValue> &InVals) const {
1972
1973  // Assign locations to each value returned by this call.
1974  SmallVector<CCValAssign, 16> RVLocs;
1975  bool Is64Bit = Subtarget->is64Bit();
1976  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1977                 getTargetMachine(), RVLocs, *DAG.getContext());
1978  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1979
1980  // Copy all of the result registers out of their specified physreg.
1981  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1982    CCValAssign &VA = RVLocs[i];
1983    EVT CopyVT = VA.getValVT();
1984
1985    // If this is x86-64, and we disabled SSE, we can't return FP values
1986    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1987        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1988      report_fatal_error("SSE register return with SSE disabled");
1989    }
1990
1991    SDValue Val;
1992
1993    // If this is a call to a function that returns an fp value on the floating
1994    // point stack, we must guarantee the value is popped from the stack, so
1995    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1996    // if the return value is not used. We use the FpPOP_RETVAL instruction
1997    // instead.
1998    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1999      // If we prefer to use the value in xmm registers, copy it out as f80 and
2000      // use a truncate to move it from fp stack reg to xmm reg.
2001      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
2002      SDValue Ops[] = { Chain, InFlag };
2003      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
2004                                         MVT::Other, MVT::Glue, Ops), 1);
2005      Val = Chain.getValue(0);
2006
2007      // Round the f80 to the right size, which also moves it to the appropriate
2008      // xmm register.
2009      if (CopyVT != VA.getValVT())
2010        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
2011                          // This truncation won't change the value.
2012                          DAG.getIntPtrConstant(1));
2013    } else {
2014      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
2015                                 CopyVT, InFlag).getValue(1);
2016      Val = Chain.getValue(0);
2017    }
2018    InFlag = Chain.getValue(2);
2019    InVals.push_back(Val);
2020  }
2021
2022  return Chain;
2023}
2024
2025//===----------------------------------------------------------------------===//
2026//                C & StdCall & Fast Calling Convention implementation
2027//===----------------------------------------------------------------------===//
2028//  StdCall calling convention seems to be standard for many Windows' API
2029//  routines and around. It differs from C calling convention just a little:
2030//  callee should clean up the stack, not caller. Symbols should be also
2031//  decorated in some fancy way :) It doesn't support any vector arguments.
2032//  For info on fast calling convention see Fast Calling Convention (tail call)
2033//  implementation LowerX86_32FastCCCallTo.
2034
2035/// CallIsStructReturn - Determines whether a call uses struct return
2036/// semantics.
2037enum StructReturnType {
2038  NotStructReturn,
2039  RegStructReturn,
2040  StackStructReturn
2041};
2042static StructReturnType
2043callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
2044  if (Outs.empty())
2045    return NotStructReturn;
2046
2047  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
2048  if (!Flags.isSRet())
2049    return NotStructReturn;
2050  if (Flags.isInReg())
2051    return RegStructReturn;
2052  return StackStructReturn;
2053}
2054
2055/// ArgsAreStructReturn - Determines whether a function uses struct
2056/// return semantics.
2057static StructReturnType
2058argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
2059  if (Ins.empty())
2060    return NotStructReturn;
2061
2062  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
2063  if (!Flags.isSRet())
2064    return NotStructReturn;
2065  if (Flags.isInReg())
2066    return RegStructReturn;
2067  return StackStructReturn;
2068}
2069
2070/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2071/// by "Src" to address "Dst" with size and alignment information specified by
2072/// the specific parameter attribute. The copy will be passed as a byval
2073/// function parameter.
2074static SDValue
2075CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2076                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2077                          SDLoc dl) {
2078  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2079
2080  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2081                       /*isVolatile*/false, /*AlwaysInline=*/true,
2082                       MachinePointerInfo(), MachinePointerInfo());
2083}
2084
2085/// IsTailCallConvention - Return true if the calling convention is one that
2086/// supports tail call optimization.
2087static bool IsTailCallConvention(CallingConv::ID CC) {
2088  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2089          CC == CallingConv::HiPE);
2090}
2091
2092/// \brief Return true if the calling convention is a C calling convention.
2093static bool IsCCallConvention(CallingConv::ID CC) {
2094  return (CC == CallingConv::C || CC == CallingConv::X86_64_Win64 ||
2095          CC == CallingConv::X86_64_SysV);
2096}
2097
2098bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2099  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
2100    return false;
2101
2102  CallSite CS(CI);
2103  CallingConv::ID CalleeCC = CS.getCallingConv();
2104  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
2105    return false;
2106
2107  return true;
2108}
2109
2110/// FuncIsMadeTailCallSafe - Return true if the function is being made into
2111/// a tailcall target by changing its ABI.
2112static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
2113                                   bool GuaranteedTailCallOpt) {
2114  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
2115}
2116
2117SDValue
2118X86TargetLowering::LowerMemArgument(SDValue Chain,
2119                                    CallingConv::ID CallConv,
2120                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2121                                    SDLoc dl, SelectionDAG &DAG,
2122                                    const CCValAssign &VA,
2123                                    MachineFrameInfo *MFI,
2124                                    unsigned i) const {
2125  // Create the nodes corresponding to a load from this parameter slot.
2126  ISD::ArgFlagsTy Flags = Ins[i].Flags;
2127  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
2128                              getTargetMachine().Options.GuaranteedTailCallOpt);
2129  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
2130  EVT ValVT;
2131
2132  // If value is passed by pointer we have address passed instead of the value
2133  // itself.
2134  if (VA.getLocInfo() == CCValAssign::Indirect)
2135    ValVT = VA.getLocVT();
2136  else
2137    ValVT = VA.getValVT();
2138
2139  // FIXME: For now, all byval parameter objects are marked mutable. This can be
2140  // changed with more analysis.
2141  // In case of tail call optimization mark all arguments mutable. Since they
2142  // could be overwritten by lowering of arguments in case of a tail call.
2143  if (Flags.isByVal()) {
2144    unsigned Bytes = Flags.getByValSize();
2145    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2146    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
2147    return DAG.getFrameIndex(FI, getPointerTy());
2148  } else {
2149    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2150                                    VA.getLocMemOffset(), isImmutable);
2151    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2152    return DAG.getLoad(ValVT, dl, Chain, FIN,
2153                       MachinePointerInfo::getFixedStack(FI),
2154                       false, false, false, 0);
2155  }
2156}
2157
2158SDValue
2159X86TargetLowering::LowerFormalArguments(SDValue Chain,
2160                                        CallingConv::ID CallConv,
2161                                        bool isVarArg,
2162                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2163                                        SDLoc dl,
2164                                        SelectionDAG &DAG,
2165                                        SmallVectorImpl<SDValue> &InVals)
2166                                          const {
2167  MachineFunction &MF = DAG.getMachineFunction();
2168  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2169
2170  const Function* Fn = MF.getFunction();
2171  if (Fn->hasExternalLinkage() &&
2172      Subtarget->isTargetCygMing() &&
2173      Fn->getName() == "main")
2174    FuncInfo->setForceFramePointer(true);
2175
2176  MachineFrameInfo *MFI = MF.getFrameInfo();
2177  bool Is64Bit = Subtarget->is64Bit();
2178  bool IsWindows = Subtarget->isTargetWindows();
2179  bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
2180
2181  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2182         "Var args not supported with calling convention fastcc, ghc or hipe");
2183
2184  // Assign locations to all of the incoming arguments.
2185  SmallVector<CCValAssign, 16> ArgLocs;
2186  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2187                 ArgLocs, *DAG.getContext());
2188
2189  // Allocate shadow area for Win64
2190  if (IsWin64)
2191    CCInfo.AllocateStack(32, 8);
2192
2193  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
2194
2195  unsigned LastVal = ~0U;
2196  SDValue ArgValue;
2197  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2198    CCValAssign &VA = ArgLocs[i];
2199    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
2200    // places.
2201    assert(VA.getValNo() != LastVal &&
2202           "Don't support value assigned to multiple locs yet");
2203    (void)LastVal;
2204    LastVal = VA.getValNo();
2205
2206    if (VA.isRegLoc()) {
2207      EVT RegVT = VA.getLocVT();
2208      const TargetRegisterClass *RC;
2209      if (RegVT == MVT::i32)
2210        RC = &X86::GR32RegClass;
2211      else if (Is64Bit && RegVT == MVT::i64)
2212        RC = &X86::GR64RegClass;
2213      else if (RegVT == MVT::f32)
2214        RC = &X86::FR32RegClass;
2215      else if (RegVT == MVT::f64)
2216        RC = &X86::FR64RegClass;
2217      else if (RegVT.is512BitVector())
2218        RC = &X86::VR512RegClass;
2219      else if (RegVT.is256BitVector())
2220        RC = &X86::VR256RegClass;
2221      else if (RegVT.is128BitVector())
2222        RC = &X86::VR128RegClass;
2223      else if (RegVT == MVT::x86mmx)
2224        RC = &X86::VR64RegClass;
2225      else if (RegVT == MVT::v8i1)
2226        RC = &X86::VK8RegClass;
2227      else if (RegVT == MVT::v16i1)
2228        RC = &X86::VK16RegClass;
2229      else
2230        llvm_unreachable("Unknown argument type!");
2231
2232      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2233      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2234
2235      // If this is an 8 or 16-bit value, it is really passed promoted to 32
2236      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
2237      // right size.
2238      if (VA.getLocInfo() == CCValAssign::SExt)
2239        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2240                               DAG.getValueType(VA.getValVT()));
2241      else if (VA.getLocInfo() == CCValAssign::ZExt)
2242        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2243                               DAG.getValueType(VA.getValVT()));
2244      else if (VA.getLocInfo() == CCValAssign::BCvt)
2245        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2246
2247      if (VA.isExtInLoc()) {
2248        // Handle MMX values passed in XMM regs.
2249        if (RegVT.isVector())
2250          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2251        else
2252          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2253      }
2254    } else {
2255      assert(VA.isMemLoc());
2256      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2257    }
2258
2259    // If value is passed via pointer - do a load.
2260    if (VA.getLocInfo() == CCValAssign::Indirect)
2261      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2262                             MachinePointerInfo(), false, false, false, 0);
2263
2264    InVals.push_back(ArgValue);
2265  }
2266
2267  // The x86-64 ABIs require that for returning structs by value we copy
2268  // the sret argument into %rax/%eax (depending on ABI) for the return.
2269  // Win32 requires us to put the sret argument to %eax as well.
2270  // Save the argument into a virtual register so that we can access it
2271  // from the return points.
2272  if (MF.getFunction()->hasStructRetAttr() &&
2273      (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
2274    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2275    unsigned Reg = FuncInfo->getSRetReturnReg();
2276    if (!Reg) {
2277      MVT PtrTy = getPointerTy();
2278      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
2279      FuncInfo->setSRetReturnReg(Reg);
2280    }
2281    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2282    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2283  }
2284
2285  unsigned StackSize = CCInfo.getNextStackOffset();
2286  // Align stack specially for tail calls.
2287  if (FuncIsMadeTailCallSafe(CallConv,
2288                             MF.getTarget().Options.GuaranteedTailCallOpt))
2289    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2290
2291  // If the function takes variable number of arguments, make a frame index for
2292  // the start of the first vararg value... for expansion of llvm.va_start.
2293  if (isVarArg) {
2294    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2295                    CallConv != CallingConv::X86_ThisCall)) {
2296      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2297    }
2298    if (Is64Bit) {
2299      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2300
2301      // FIXME: We should really autogenerate these arrays
2302      static const uint16_t GPR64ArgRegsWin64[] = {
2303        X86::RCX, X86::RDX, X86::R8,  X86::R9
2304      };
2305      static const uint16_t GPR64ArgRegs64Bit[] = {
2306        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2307      };
2308      static const uint16_t XMMArgRegs64Bit[] = {
2309        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2310        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2311      };
2312      const uint16_t *GPR64ArgRegs;
2313      unsigned NumXMMRegs = 0;
2314
2315      if (IsWin64) {
2316        // The XMM registers which might contain var arg parameters are shadowed
2317        // in their paired GPR.  So we only need to save the GPR to their home
2318        // slots.
2319        TotalNumIntRegs = 4;
2320        GPR64ArgRegs = GPR64ArgRegsWin64;
2321      } else {
2322        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2323        GPR64ArgRegs = GPR64ArgRegs64Bit;
2324
2325        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2326                                                TotalNumXMMRegs);
2327      }
2328      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2329                                                       TotalNumIntRegs);
2330
2331      bool NoImplicitFloatOps = Fn->getAttributes().
2332        hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
2333      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2334             "SSE register cannot be used when SSE is disabled!");
2335      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2336               NoImplicitFloatOps) &&
2337             "SSE register cannot be used when SSE is disabled!");
2338      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2339          !Subtarget->hasSSE1())
2340        // Kernel mode asks for SSE to be disabled, so don't push them
2341        // on the stack.
2342        TotalNumXMMRegs = 0;
2343
2344      if (IsWin64) {
2345        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2346        // Get to the caller-allocated home save location.  Add 8 to account
2347        // for the return address.
2348        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2349        FuncInfo->setRegSaveFrameIndex(
2350          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2351        // Fixup to set vararg frame on shadow area (4 x i64).
2352        if (NumIntRegs < 4)
2353          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2354      } else {
2355        // For X86-64, if there are vararg parameters that are passed via
2356        // registers, then we must store them to their spots on the stack so
2357        // they may be loaded by deferencing the result of va_next.
2358        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2359        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2360        FuncInfo->setRegSaveFrameIndex(
2361          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2362                               false));
2363      }
2364
2365      // Store the integer parameter registers.
2366      SmallVector<SDValue, 8> MemOps;
2367      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2368                                        getPointerTy());
2369      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2370      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2371        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2372                                  DAG.getIntPtrConstant(Offset));
2373        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2374                                     &X86::GR64RegClass);
2375        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2376        SDValue Store =
2377          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2378                       MachinePointerInfo::getFixedStack(
2379                         FuncInfo->getRegSaveFrameIndex(), Offset),
2380                       false, false, 0);
2381        MemOps.push_back(Store);
2382        Offset += 8;
2383      }
2384
2385      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2386        // Now store the XMM (fp + vector) parameter registers.
2387        SmallVector<SDValue, 11> SaveXMMOps;
2388        SaveXMMOps.push_back(Chain);
2389
2390        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2391        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2392        SaveXMMOps.push_back(ALVal);
2393
2394        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2395                               FuncInfo->getRegSaveFrameIndex()));
2396        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2397                               FuncInfo->getVarArgsFPOffset()));
2398
2399        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2400          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2401                                       &X86::VR128RegClass);
2402          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2403          SaveXMMOps.push_back(Val);
2404        }
2405        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2406                                     MVT::Other,
2407                                     &SaveXMMOps[0], SaveXMMOps.size()));
2408      }
2409
2410      if (!MemOps.empty())
2411        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2412                            &MemOps[0], MemOps.size());
2413    }
2414  }
2415
2416  // Some CCs need callee pop.
2417  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2418                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2419    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2420  } else {
2421    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2422    // If this is an sret function, the return should pop the hidden pointer.
2423    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2424        argsAreStructReturn(Ins) == StackStructReturn)
2425      FuncInfo->setBytesToPopOnReturn(4);
2426  }
2427
2428  if (!Is64Bit) {
2429    // RegSaveFrameIndex is X86-64 only.
2430    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2431    if (CallConv == CallingConv::X86_FastCall ||
2432        CallConv == CallingConv::X86_ThisCall)
2433      // fastcc functions can't have varargs.
2434      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2435  }
2436
2437  FuncInfo->setArgumentStackSize(StackSize);
2438
2439  return Chain;
2440}
2441
2442SDValue
2443X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2444                                    SDValue StackPtr, SDValue Arg,
2445                                    SDLoc dl, SelectionDAG &DAG,
2446                                    const CCValAssign &VA,
2447                                    ISD::ArgFlagsTy Flags) const {
2448  unsigned LocMemOffset = VA.getLocMemOffset();
2449  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2450  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2451  if (Flags.isByVal())
2452    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2453
2454  return DAG.getStore(Chain, dl, Arg, PtrOff,
2455                      MachinePointerInfo::getStack(LocMemOffset),
2456                      false, false, 0);
2457}
2458
2459/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2460/// optimization is performed and it is required.
2461SDValue
2462X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2463                                           SDValue &OutRetAddr, SDValue Chain,
2464                                           bool IsTailCall, bool Is64Bit,
2465                                           int FPDiff, SDLoc dl) const {
2466  // Adjust the Return address stack slot.
2467  EVT VT = getPointerTy();
2468  OutRetAddr = getReturnAddressFrameIndex(DAG);
2469
2470  // Load the "old" Return address.
2471  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2472                           false, false, false, 0);
2473  return SDValue(OutRetAddr.getNode(), 1);
2474}
2475
2476/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2477/// optimization is performed and it is required (FPDiff!=0).
2478static SDValue
2479EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2480                         SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
2481                         unsigned SlotSize, int FPDiff, SDLoc dl) {
2482  // Store the return address to the appropriate stack slot.
2483  if (!FPDiff) return Chain;
2484  // Calculate the new stack slot for the return address.
2485  int NewReturnAddrFI =
2486    MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
2487                                         false);
2488  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2489  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2490                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2491                       false, false, 0);
2492  return Chain;
2493}
2494
2495SDValue
2496X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2497                             SmallVectorImpl<SDValue> &InVals) const {
2498  SelectionDAG &DAG                     = CLI.DAG;
2499  SDLoc &dl                             = CLI.DL;
2500  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2501  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2502  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2503  SDValue Chain                         = CLI.Chain;
2504  SDValue Callee                        = CLI.Callee;
2505  CallingConv::ID CallConv              = CLI.CallConv;
2506  bool &isTailCall                      = CLI.IsTailCall;
2507  bool isVarArg                         = CLI.IsVarArg;
2508
2509  MachineFunction &MF = DAG.getMachineFunction();
2510  bool Is64Bit        = Subtarget->is64Bit();
2511  bool IsWin64        = Subtarget->isCallingConvWin64(CallConv);
2512  bool IsWindows      = Subtarget->isTargetWindows();
2513  StructReturnType SR = callIsStructReturn(Outs);
2514  bool IsSibcall      = false;
2515
2516  if (MF.getTarget().Options.DisableTailCalls)
2517    isTailCall = false;
2518
2519  if (isTailCall) {
2520    // Check if it's really possible to do a tail call.
2521    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2522                    isVarArg, SR != NotStructReturn,
2523                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2524                    Outs, OutVals, Ins, DAG);
2525
2526    // Sibcalls are automatically detected tailcalls which do not require
2527    // ABI changes.
2528    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2529      IsSibcall = true;
2530
2531    if (isTailCall)
2532      ++NumTailCalls;
2533  }
2534
2535  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2536         "Var args not supported with calling convention fastcc, ghc or hipe");
2537
2538  // Analyze operands of the call, assigning locations to each operand.
2539  SmallVector<CCValAssign, 16> ArgLocs;
2540  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2541                 ArgLocs, *DAG.getContext());
2542
2543  // Allocate shadow area for Win64
2544  if (IsWin64)
2545    CCInfo.AllocateStack(32, 8);
2546
2547  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2548
2549  // Get a count of how many bytes are to be pushed on the stack.
2550  unsigned NumBytes = CCInfo.getNextStackOffset();
2551  if (IsSibcall)
2552    // This is a sibcall. The memory operands are available in caller's
2553    // own caller's stack.
2554    NumBytes = 0;
2555  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2556           IsTailCallConvention(CallConv))
2557    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2558
2559  int FPDiff = 0;
2560  if (isTailCall && !IsSibcall) {
2561    // Lower arguments at fp - stackoffset + fpdiff.
2562    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2563    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2564
2565    FPDiff = NumBytesCallerPushed - NumBytes;
2566
2567    // Set the delta of movement of the returnaddr stackslot.
2568    // But only set if delta is greater than previous delta.
2569    if (FPDiff < X86Info->getTCReturnAddrDelta())
2570      X86Info->setTCReturnAddrDelta(FPDiff);
2571  }
2572
2573  if (!IsSibcall)
2574    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
2575                                 dl);
2576
2577  SDValue RetAddrFrIdx;
2578  // Load return address for tail calls.
2579  if (isTailCall && FPDiff)
2580    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2581                                    Is64Bit, FPDiff, dl);
2582
2583  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2584  SmallVector<SDValue, 8> MemOpChains;
2585  SDValue StackPtr;
2586
2587  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2588  // of tail call optimization arguments are handle later.
2589  const X86RegisterInfo *RegInfo =
2590    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
2591  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2592    CCValAssign &VA = ArgLocs[i];
2593    EVT RegVT = VA.getLocVT();
2594    SDValue Arg = OutVals[i];
2595    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2596    bool isByVal = Flags.isByVal();
2597
2598    // Promote the value if needed.
2599    switch (VA.getLocInfo()) {
2600    default: llvm_unreachable("Unknown loc info!");
2601    case CCValAssign::Full: break;
2602    case CCValAssign::SExt:
2603      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2604      break;
2605    case CCValAssign::ZExt:
2606      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2607      break;
2608    case CCValAssign::AExt:
2609      if (RegVT.is128BitVector()) {
2610        // Special case: passing MMX values in XMM registers.
2611        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2612        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2613        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2614      } else
2615        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2616      break;
2617    case CCValAssign::BCvt:
2618      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2619      break;
2620    case CCValAssign::Indirect: {
2621      // Store the argument.
2622      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2623      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2624      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2625                           MachinePointerInfo::getFixedStack(FI),
2626                           false, false, 0);
2627      Arg = SpillSlot;
2628      break;
2629    }
2630    }
2631
2632    if (VA.isRegLoc()) {
2633      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2634      if (isVarArg && IsWin64) {
2635        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2636        // shadow reg if callee is a varargs function.
2637        unsigned ShadowReg = 0;
2638        switch (VA.getLocReg()) {
2639        case X86::XMM0: ShadowReg = X86::RCX; break;
2640        case X86::XMM1: ShadowReg = X86::RDX; break;
2641        case X86::XMM2: ShadowReg = X86::R8; break;
2642        case X86::XMM3: ShadowReg = X86::R9; break;
2643        }
2644        if (ShadowReg)
2645          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2646      }
2647    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2648      assert(VA.isMemLoc());
2649      if (StackPtr.getNode() == 0)
2650        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2651                                      getPointerTy());
2652      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2653                                             dl, DAG, VA, Flags));
2654    }
2655  }
2656
2657  if (!MemOpChains.empty())
2658    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2659                        &MemOpChains[0], MemOpChains.size());
2660
2661  if (Subtarget->isPICStyleGOT()) {
2662    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2663    // GOT pointer.
2664    if (!isTailCall) {
2665      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2666               DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy())));
2667    } else {
2668      // If we are tail calling and generating PIC/GOT style code load the
2669      // address of the callee into ECX. The value in ecx is used as target of
2670      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2671      // for tail calls on PIC/GOT architectures. Normally we would just put the
2672      // address of GOT into ebx and then call target@PLT. But for tail calls
2673      // ebx would be restored (since ebx is callee saved) before jumping to the
2674      // target@PLT.
2675
2676      // Note: The actual moving to ECX is done further down.
2677      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2678      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2679          !G->getGlobal()->hasProtectedVisibility())
2680        Callee = LowerGlobalAddress(Callee, DAG);
2681      else if (isa<ExternalSymbolSDNode>(Callee))
2682        Callee = LowerExternalSymbol(Callee, DAG);
2683    }
2684  }
2685
2686  if (Is64Bit && isVarArg && !IsWin64) {
2687    // From AMD64 ABI document:
2688    // For calls that may call functions that use varargs or stdargs
2689    // (prototype-less calls or calls to functions containing ellipsis (...) in
2690    // the declaration) %al is used as hidden argument to specify the number
2691    // of SSE registers used. The contents of %al do not need to match exactly
2692    // the number of registers, but must be an ubound on the number of SSE
2693    // registers used and is in the range 0 - 8 inclusive.
2694
2695    // Count the number of XMM registers allocated.
2696    static const uint16_t XMMArgRegs[] = {
2697      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2698      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2699    };
2700    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2701    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2702           && "SSE registers cannot be used when SSE is disabled");
2703
2704    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2705                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2706  }
2707
2708  // For tail calls lower the arguments to the 'real' stack slot.
2709  if (isTailCall) {
2710    // Force all the incoming stack arguments to be loaded from the stack
2711    // before any new outgoing arguments are stored to the stack, because the
2712    // outgoing stack slots may alias the incoming argument stack slots, and
2713    // the alias isn't otherwise explicit. This is slightly more conservative
2714    // than necessary, because it means that each store effectively depends
2715    // on every argument instead of just those arguments it would clobber.
2716    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2717
2718    SmallVector<SDValue, 8> MemOpChains2;
2719    SDValue FIN;
2720    int FI = 0;
2721    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2722      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2723        CCValAssign &VA = ArgLocs[i];
2724        if (VA.isRegLoc())
2725          continue;
2726        assert(VA.isMemLoc());
2727        SDValue Arg = OutVals[i];
2728        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2729        // Create frame index.
2730        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2731        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2732        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2733        FIN = DAG.getFrameIndex(FI, getPointerTy());
2734
2735        if (Flags.isByVal()) {
2736          // Copy relative to framepointer.
2737          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2738          if (StackPtr.getNode() == 0)
2739            StackPtr = DAG.getCopyFromReg(Chain, dl,
2740                                          RegInfo->getStackRegister(),
2741                                          getPointerTy());
2742          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2743
2744          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2745                                                           ArgChain,
2746                                                           Flags, DAG, dl));
2747        } else {
2748          // Store relative to framepointer.
2749          MemOpChains2.push_back(
2750            DAG.getStore(ArgChain, dl, Arg, FIN,
2751                         MachinePointerInfo::getFixedStack(FI),
2752                         false, false, 0));
2753        }
2754      }
2755    }
2756
2757    if (!MemOpChains2.empty())
2758      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2759                          &MemOpChains2[0], MemOpChains2.size());
2760
2761    // Store the return address to the appropriate stack slot.
2762    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2763                                     getPointerTy(), RegInfo->getSlotSize(),
2764                                     FPDiff, dl);
2765  }
2766
2767  // Build a sequence of copy-to-reg nodes chained together with token chain
2768  // and flag operands which copy the outgoing args into registers.
2769  SDValue InFlag;
2770  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2771    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2772                             RegsToPass[i].second, InFlag);
2773    InFlag = Chain.getValue(1);
2774  }
2775
2776  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2777    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2778    // In the 64-bit large code model, we have to make all calls
2779    // through a register, since the call instruction's 32-bit
2780    // pc-relative offset may not be large enough to hold the whole
2781    // address.
2782  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2783    // If the callee is a GlobalAddress node (quite common, every direct call
2784    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2785    // it.
2786
2787    // We should use extra load for direct calls to dllimported functions in
2788    // non-JIT mode.
2789    const GlobalValue *GV = G->getGlobal();
2790    if (!GV->hasDLLImportLinkage()) {
2791      unsigned char OpFlags = 0;
2792      bool ExtraLoad = false;
2793      unsigned WrapperKind = ISD::DELETED_NODE;
2794
2795      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2796      // external symbols most go through the PLT in PIC mode.  If the symbol
2797      // has hidden or protected visibility, or if it is static or local, then
2798      // we don't need to use the PLT - we can directly call it.
2799      if (Subtarget->isTargetELF() &&
2800          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2801          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2802        OpFlags = X86II::MO_PLT;
2803      } else if (Subtarget->isPICStyleStubAny() &&
2804                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2805                 (!Subtarget->getTargetTriple().isMacOSX() ||
2806                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2807        // PC-relative references to external symbols should go through $stub,
2808        // unless we're building with the leopard linker or later, which
2809        // automatically synthesizes these stubs.
2810        OpFlags = X86II::MO_DARWIN_STUB;
2811      } else if (Subtarget->isPICStyleRIPRel() &&
2812                 isa<Function>(GV) &&
2813                 cast<Function>(GV)->getAttributes().
2814                   hasAttribute(AttributeSet::FunctionIndex,
2815                                Attribute::NonLazyBind)) {
2816        // If the function is marked as non-lazy, generate an indirect call
2817        // which loads from the GOT directly. This avoids runtime overhead
2818        // at the cost of eager binding (and one extra byte of encoding).
2819        OpFlags = X86II::MO_GOTPCREL;
2820        WrapperKind = X86ISD::WrapperRIP;
2821        ExtraLoad = true;
2822      }
2823
2824      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2825                                          G->getOffset(), OpFlags);
2826
2827      // Add a wrapper if needed.
2828      if (WrapperKind != ISD::DELETED_NODE)
2829        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2830      // Add extra indirection if needed.
2831      if (ExtraLoad)
2832        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2833                             MachinePointerInfo::getGOT(),
2834                             false, false, false, 0);
2835    }
2836  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2837    unsigned char OpFlags = 0;
2838
2839    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2840    // external symbols should go through the PLT.
2841    if (Subtarget->isTargetELF() &&
2842        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2843      OpFlags = X86II::MO_PLT;
2844    } else if (Subtarget->isPICStyleStubAny() &&
2845               (!Subtarget->getTargetTriple().isMacOSX() ||
2846                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2847      // PC-relative references to external symbols should go through $stub,
2848      // unless we're building with the leopard linker or later, which
2849      // automatically synthesizes these stubs.
2850      OpFlags = X86II::MO_DARWIN_STUB;
2851    }
2852
2853    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2854                                         OpFlags);
2855  }
2856
2857  // Returns a chain & a flag for retval copy to use.
2858  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2859  SmallVector<SDValue, 8> Ops;
2860
2861  if (!IsSibcall && isTailCall) {
2862    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2863                           DAG.getIntPtrConstant(0, true), InFlag, dl);
2864    InFlag = Chain.getValue(1);
2865  }
2866
2867  Ops.push_back(Chain);
2868  Ops.push_back(Callee);
2869
2870  if (isTailCall)
2871    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2872
2873  // Add argument registers to the end of the list so that they are known live
2874  // into the call.
2875  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2876    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2877                                  RegsToPass[i].second.getValueType()));
2878
2879  // Add a register mask operand representing the call-preserved registers.
2880  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2881  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2882  assert(Mask && "Missing call preserved mask for calling convention");
2883  Ops.push_back(DAG.getRegisterMask(Mask));
2884
2885  if (InFlag.getNode())
2886    Ops.push_back(InFlag);
2887
2888  if (isTailCall) {
2889    // We used to do:
2890    //// If this is the first return lowered for this function, add the regs
2891    //// to the liveout set for the function.
2892    // This isn't right, although it's probably harmless on x86; liveouts
2893    // should be computed from returns not tail calls.  Consider a void
2894    // function making a tail call to a function returning int.
2895    return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
2896  }
2897
2898  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2899  InFlag = Chain.getValue(1);
2900
2901  // Create the CALLSEQ_END node.
2902  unsigned NumBytesForCalleeToPush;
2903  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2904                       getTargetMachine().Options.GuaranteedTailCallOpt))
2905    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2906  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2907           SR == StackStructReturn)
2908    // If this is a call to a struct-return function, the callee
2909    // pops the hidden struct pointer, so we have to push it back.
2910    // This is common for Darwin/X86, Linux & Mingw32 targets.
2911    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2912    NumBytesForCalleeToPush = 4;
2913  else
2914    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2915
2916  // Returns a flag for retval copy to use.
2917  if (!IsSibcall) {
2918    Chain = DAG.getCALLSEQ_END(Chain,
2919                               DAG.getIntPtrConstant(NumBytes, true),
2920                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2921                                                     true),
2922                               InFlag, dl);
2923    InFlag = Chain.getValue(1);
2924  }
2925
2926  // Handle result values, copying them out of physregs into vregs that we
2927  // return.
2928  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2929                         Ins, dl, DAG, InVals);
2930}
2931
2932//===----------------------------------------------------------------------===//
2933//                Fast Calling Convention (tail call) implementation
2934//===----------------------------------------------------------------------===//
2935
2936//  Like std call, callee cleans arguments, convention except that ECX is
2937//  reserved for storing the tail called function address. Only 2 registers are
2938//  free for argument passing (inreg). Tail call optimization is performed
2939//  provided:
2940//                * tailcallopt is enabled
2941//                * caller/callee are fastcc
2942//  On X86_64 architecture with GOT-style position independent code only local
2943//  (within module) calls are supported at the moment.
2944//  To keep the stack aligned according to platform abi the function
2945//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2946//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2947//  If a tail called function callee has more arguments than the caller the
2948//  caller needs to make sure that there is room to move the RETADDR to. This is
2949//  achieved by reserving an area the size of the argument delta right after the
2950//  original REtADDR, but before the saved framepointer or the spilled registers
2951//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2952//  stack layout:
2953//    arg1
2954//    arg2
2955//    RETADDR
2956//    [ new RETADDR
2957//      move area ]
2958//    (possible EBP)
2959//    ESI
2960//    EDI
2961//    local1 ..
2962
2963/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2964/// for a 16 byte align requirement.
2965unsigned
2966X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2967                                               SelectionDAG& DAG) const {
2968  MachineFunction &MF = DAG.getMachineFunction();
2969  const TargetMachine &TM = MF.getTarget();
2970  const X86RegisterInfo *RegInfo =
2971    static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
2972  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2973  unsigned StackAlignment = TFI.getStackAlignment();
2974  uint64_t AlignMask = StackAlignment - 1;
2975  int64_t Offset = StackSize;
2976  unsigned SlotSize = RegInfo->getSlotSize();
2977  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2978    // Number smaller than 12 so just add the difference.
2979    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2980  } else {
2981    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2982    Offset = ((~AlignMask) & Offset) + StackAlignment +
2983      (StackAlignment-SlotSize);
2984  }
2985  return Offset;
2986}
2987
2988/// MatchingStackOffset - Return true if the given stack call argument is
2989/// already available in the same position (relatively) of the caller's
2990/// incoming argument stack.
2991static
2992bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2993                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2994                         const X86InstrInfo *TII) {
2995  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2996  int FI = INT_MAX;
2997  if (Arg.getOpcode() == ISD::CopyFromReg) {
2998    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2999    if (!TargetRegisterInfo::isVirtualRegister(VR))
3000      return false;
3001    MachineInstr *Def = MRI->getVRegDef(VR);
3002    if (!Def)
3003      return false;
3004    if (!Flags.isByVal()) {
3005      if (!TII->isLoadFromStackSlot(Def, FI))
3006        return false;
3007    } else {
3008      unsigned Opcode = Def->getOpcode();
3009      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
3010          Def->getOperand(1).isFI()) {
3011        FI = Def->getOperand(1).getIndex();
3012        Bytes = Flags.getByValSize();
3013      } else
3014        return false;
3015    }
3016  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
3017    if (Flags.isByVal())
3018      // ByVal argument is passed in as a pointer but it's now being
3019      // dereferenced. e.g.
3020      // define @foo(%struct.X* %A) {
3021      //   tail call @bar(%struct.X* byval %A)
3022      // }
3023      return false;
3024    SDValue Ptr = Ld->getBasePtr();
3025    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
3026    if (!FINode)
3027      return false;
3028    FI = FINode->getIndex();
3029  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
3030    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
3031    FI = FINode->getIndex();
3032    Bytes = Flags.getByValSize();
3033  } else
3034    return false;
3035
3036  assert(FI != INT_MAX);
3037  if (!MFI->isFixedObjectIndex(FI))
3038    return false;
3039  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
3040}
3041
3042/// IsEligibleForTailCallOptimization - Check whether the call is eligible
3043/// for tail call optimization. Targets which want to do tail call
3044/// optimization should implement this function.
3045bool
3046X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
3047                                                     CallingConv::ID CalleeCC,
3048                                                     bool isVarArg,
3049                                                     bool isCalleeStructRet,
3050                                                     bool isCallerStructRet,
3051                                                     Type *RetTy,
3052                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3053                                    const SmallVectorImpl<SDValue> &OutVals,
3054                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3055                                                     SelectionDAG &DAG) const {
3056  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
3057    return false;
3058
3059  // If -tailcallopt is specified, make fastcc functions tail-callable.
3060  const MachineFunction &MF = DAG.getMachineFunction();
3061  const Function *CallerF = MF.getFunction();
3062
3063  // If the function return type is x86_fp80 and the callee return type is not,
3064  // then the FP_EXTEND of the call result is not a nop. It's not safe to
3065  // perform a tailcall optimization here.
3066  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
3067    return false;
3068
3069  CallingConv::ID CallerCC = CallerF->getCallingConv();
3070  bool CCMatch = CallerCC == CalleeCC;
3071  bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);
3072  bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC);
3073
3074  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
3075    if (IsTailCallConvention(CalleeCC) && CCMatch)
3076      return true;
3077    return false;
3078  }
3079
3080  // Look for obvious safe cases to perform tail call optimization that do not
3081  // require ABI changes. This is what gcc calls sibcall.
3082
3083  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
3084  // emit a special epilogue.
3085  const X86RegisterInfo *RegInfo =
3086    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
3087  if (RegInfo->needsStackRealignment(MF))
3088    return false;
3089
3090  // Also avoid sibcall optimization if either caller or callee uses struct
3091  // return semantics.
3092  if (isCalleeStructRet || isCallerStructRet)
3093    return false;
3094
3095  // An stdcall caller is expected to clean up its arguments; the callee
3096  // isn't going to do that.
3097  if (!CCMatch && CallerCC == CallingConv::X86_StdCall)
3098    return false;
3099
3100  // Do not sibcall optimize vararg calls unless all arguments are passed via
3101  // registers.
3102  if (isVarArg && !Outs.empty()) {
3103
3104    // Optimizing for varargs on Win64 is unlikely to be safe without
3105    // additional testing.
3106    if (IsCalleeWin64 || IsCallerWin64)
3107      return false;
3108
3109    SmallVector<CCValAssign, 16> ArgLocs;
3110    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
3111                   getTargetMachine(), ArgLocs, *DAG.getContext());
3112
3113    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3114    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
3115      if (!ArgLocs[i].isRegLoc())
3116        return false;
3117  }
3118
3119  // If the call result is in ST0 / ST1, it needs to be popped off the x87
3120  // stack.  Therefore, if it's not used by the call it is not safe to optimize
3121  // this into a sibcall.
3122  bool Unused = false;
3123  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3124    if (!Ins[i].Used) {
3125      Unused = true;
3126      break;
3127    }
3128  }
3129  if (Unused) {
3130    SmallVector<CCValAssign, 16> RVLocs;
3131    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
3132                   getTargetMachine(), RVLocs, *DAG.getContext());
3133    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
3134    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3135      CCValAssign &VA = RVLocs[i];
3136      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
3137        return false;
3138    }
3139  }
3140
3141  // If the calling conventions do not match, then we'd better make sure the
3142  // results are returned in the same way as what the caller expects.
3143  if (!CCMatch) {
3144    SmallVector<CCValAssign, 16> RVLocs1;
3145    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
3146                    getTargetMachine(), RVLocs1, *DAG.getContext());
3147    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
3148
3149    SmallVector<CCValAssign, 16> RVLocs2;
3150    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
3151                    getTargetMachine(), RVLocs2, *DAG.getContext());
3152    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
3153
3154    if (RVLocs1.size() != RVLocs2.size())
3155      return false;
3156    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
3157      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
3158        return false;
3159      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
3160        return false;
3161      if (RVLocs1[i].isRegLoc()) {
3162        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
3163          return false;
3164      } else {
3165        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
3166          return false;
3167      }
3168    }
3169  }
3170
3171  // If the callee takes no arguments then go on to check the results of the
3172  // call.
3173  if (!Outs.empty()) {
3174    // Check if stack adjustment is needed. For now, do not do this if any
3175    // argument is passed on the stack.
3176    SmallVector<CCValAssign, 16> ArgLocs;
3177    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
3178                   getTargetMachine(), ArgLocs, *DAG.getContext());
3179
3180    // Allocate shadow area for Win64
3181    if (IsCalleeWin64)
3182      CCInfo.AllocateStack(32, 8);
3183
3184    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3185    if (CCInfo.getNextStackOffset()) {
3186      MachineFunction &MF = DAG.getMachineFunction();
3187      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
3188        return false;
3189
3190      // Check if the arguments are already laid out in the right way as
3191      // the caller's fixed stack objects.
3192      MachineFrameInfo *MFI = MF.getFrameInfo();
3193      const MachineRegisterInfo *MRI = &MF.getRegInfo();
3194      const X86InstrInfo *TII =
3195        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
3196      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3197        CCValAssign &VA = ArgLocs[i];
3198        SDValue Arg = OutVals[i];
3199        ISD::ArgFlagsTy Flags = Outs[i].Flags;
3200        if (VA.getLocInfo() == CCValAssign::Indirect)
3201          return false;
3202        if (!VA.isRegLoc()) {
3203          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
3204                                   MFI, MRI, TII))
3205            return false;
3206        }
3207      }
3208    }
3209
3210    // If the tailcall address may be in a register, then make sure it's
3211    // possible to register allocate for it. In 32-bit, the call address can
3212    // only target EAX, EDX, or ECX since the tail call must be scheduled after
3213    // callee-saved registers are restored. These happen to be the same
3214    // registers used to pass 'inreg' arguments so watch out for those.
3215    if (!Subtarget->is64Bit() &&
3216        ((!isa<GlobalAddressSDNode>(Callee) &&
3217          !isa<ExternalSymbolSDNode>(Callee)) ||
3218         getTargetMachine().getRelocationModel() == Reloc::PIC_)) {
3219      unsigned NumInRegs = 0;
3220      // In PIC we need an extra register to formulate the address computation
3221      // for the callee.
3222      unsigned MaxInRegs =
3223          (getTargetMachine().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
3224
3225      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3226        CCValAssign &VA = ArgLocs[i];
3227        if (!VA.isRegLoc())
3228          continue;
3229        unsigned Reg = VA.getLocReg();
3230        switch (Reg) {
3231        default: break;
3232        case X86::EAX: case X86::EDX: case X86::ECX:
3233          if (++NumInRegs == MaxInRegs)
3234            return false;
3235          break;
3236        }
3237      }
3238    }
3239  }
3240
3241  return true;
3242}
3243
3244FastISel *
3245X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
3246                                  const TargetLibraryInfo *libInfo) const {
3247  return X86::createFastISel(funcInfo, libInfo);
3248}
3249
3250//===----------------------------------------------------------------------===//
3251//                           Other Lowering Hooks
3252//===----------------------------------------------------------------------===//
3253
3254static bool MayFoldLoad(SDValue Op) {
3255  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
3256}
3257
3258static bool MayFoldIntoStore(SDValue Op) {
3259  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
3260}
3261
3262static bool isTargetShuffle(unsigned Opcode) {
3263  switch(Opcode) {
3264  default: return false;
3265  case X86ISD::PSHUFD:
3266  case X86ISD::PSHUFHW:
3267  case X86ISD::PSHUFLW:
3268  case X86ISD::SHUFP:
3269  case X86ISD::PALIGNR:
3270  case X86ISD::MOVLHPS:
3271  case X86ISD::MOVLHPD:
3272  case X86ISD::MOVHLPS:
3273  case X86ISD::MOVLPS:
3274  case X86ISD::MOVLPD:
3275  case X86ISD::MOVSHDUP:
3276  case X86ISD::MOVSLDUP:
3277  case X86ISD::MOVDDUP:
3278  case X86ISD::MOVSS:
3279  case X86ISD::MOVSD:
3280  case X86ISD::UNPCKL:
3281  case X86ISD::UNPCKH:
3282  case X86ISD::VPERMILP:
3283  case X86ISD::VPERM2X128:
3284  case X86ISD::VPERMI:
3285    return true;
3286  }
3287}
3288
3289static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3290                                    SDValue V1, SelectionDAG &DAG) {
3291  switch(Opc) {
3292  default: llvm_unreachable("Unknown x86 shuffle node");
3293  case X86ISD::MOVSHDUP:
3294  case X86ISD::MOVSLDUP:
3295  case X86ISD::MOVDDUP:
3296    return DAG.getNode(Opc, dl, VT, V1);
3297  }
3298}
3299
3300static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3301                                    SDValue V1, unsigned TargetMask,
3302                                    SelectionDAG &DAG) {
3303  switch(Opc) {
3304  default: llvm_unreachable("Unknown x86 shuffle node");
3305  case X86ISD::PSHUFD:
3306  case X86ISD::PSHUFHW:
3307  case X86ISD::PSHUFLW:
3308  case X86ISD::VPERMILP:
3309  case X86ISD::VPERMI:
3310    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3311  }
3312}
3313
3314static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3315                                    SDValue V1, SDValue V2, unsigned TargetMask,
3316                                    SelectionDAG &DAG) {
3317  switch(Opc) {
3318  default: llvm_unreachable("Unknown x86 shuffle node");
3319  case X86ISD::PALIGNR:
3320  case X86ISD::SHUFP:
3321  case X86ISD::VPERM2X128:
3322    return DAG.getNode(Opc, dl, VT, V1, V2,
3323                       DAG.getConstant(TargetMask, MVT::i8));
3324  }
3325}
3326
3327static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3328                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3329  switch(Opc) {
3330  default: llvm_unreachable("Unknown x86 shuffle node");
3331  case X86ISD::MOVLHPS:
3332  case X86ISD::MOVLHPD:
3333  case X86ISD::MOVHLPS:
3334  case X86ISD::MOVLPS:
3335  case X86ISD::MOVLPD:
3336  case X86ISD::MOVSS:
3337  case X86ISD::MOVSD:
3338  case X86ISD::UNPCKL:
3339  case X86ISD::UNPCKH:
3340    return DAG.getNode(Opc, dl, VT, V1, V2);
3341  }
3342}
3343
3344SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3345  MachineFunction &MF = DAG.getMachineFunction();
3346  const X86RegisterInfo *RegInfo =
3347    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
3348  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3349  int ReturnAddrIndex = FuncInfo->getRAIndex();
3350
3351  if (ReturnAddrIndex == 0) {
3352    // Set up a frame object for the return address.
3353    unsigned SlotSize = RegInfo->getSlotSize();
3354    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3355                                                           -(int64_t)SlotSize,
3356                                                           false);
3357    FuncInfo->setRAIndex(ReturnAddrIndex);
3358  }
3359
3360  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3361}
3362
3363bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3364                                       bool hasSymbolicDisplacement) {
3365  // Offset should fit into 32 bit immediate field.
3366  if (!isInt<32>(Offset))
3367    return false;
3368
3369  // If we don't have a symbolic displacement - we don't have any extra
3370  // restrictions.
3371  if (!hasSymbolicDisplacement)
3372    return true;
3373
3374  // FIXME: Some tweaks might be needed for medium code model.
3375  if (M != CodeModel::Small && M != CodeModel::Kernel)
3376    return false;
3377
3378  // For small code model we assume that latest object is 16MB before end of 31
3379  // bits boundary. We may also accept pretty large negative constants knowing
3380  // that all objects are in the positive half of address space.
3381  if (M == CodeModel::Small && Offset < 16*1024*1024)
3382    return true;
3383
3384  // For kernel code model we know that all object resist in the negative half
3385  // of 32bits address space. We may not accept negative offsets, since they may
3386  // be just off and we may accept pretty large positive ones.
3387  if (M == CodeModel::Kernel && Offset > 0)
3388    return true;
3389
3390  return false;
3391}
3392
3393/// isCalleePop - Determines whether the callee is required to pop its
3394/// own arguments. Callee pop is necessary to support tail calls.
3395bool X86::isCalleePop(CallingConv::ID CallingConv,
3396                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3397  if (IsVarArg)
3398    return false;
3399
3400  switch (CallingConv) {
3401  default:
3402    return false;
3403  case CallingConv::X86_StdCall:
3404    return !is64Bit;
3405  case CallingConv::X86_FastCall:
3406    return !is64Bit;
3407  case CallingConv::X86_ThisCall:
3408    return !is64Bit;
3409  case CallingConv::Fast:
3410    return TailCallOpt;
3411  case CallingConv::GHC:
3412    return TailCallOpt;
3413  case CallingConv::HiPE:
3414    return TailCallOpt;
3415  }
3416}
3417
3418/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3419/// specific condition code, returning the condition code and the LHS/RHS of the
3420/// comparison to make.
3421static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3422                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3423  if (!isFP) {
3424    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3425      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3426        // X > -1   -> X == 0, jump !sign.
3427        RHS = DAG.getConstant(0, RHS.getValueType());
3428        return X86::COND_NS;
3429      }
3430      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3431        // X < 0   -> X == 0, jump on sign.
3432        return X86::COND_S;
3433      }
3434      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3435        // X < 1   -> X <= 0
3436        RHS = DAG.getConstant(0, RHS.getValueType());
3437        return X86::COND_LE;
3438      }
3439    }
3440
3441    switch (SetCCOpcode) {
3442    default: llvm_unreachable("Invalid integer condition!");
3443    case ISD::SETEQ:  return X86::COND_E;
3444    case ISD::SETGT:  return X86::COND_G;
3445    case ISD::SETGE:  return X86::COND_GE;
3446    case ISD::SETLT:  return X86::COND_L;
3447    case ISD::SETLE:  return X86::COND_LE;
3448    case ISD::SETNE:  return X86::COND_NE;
3449    case ISD::SETULT: return X86::COND_B;
3450    case ISD::SETUGT: return X86::COND_A;
3451    case ISD::SETULE: return X86::COND_BE;
3452    case ISD::SETUGE: return X86::COND_AE;
3453    }
3454  }
3455
3456  // First determine if it is required or is profitable to flip the operands.
3457
3458  // If LHS is a foldable load, but RHS is not, flip the condition.
3459  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3460      !ISD::isNON_EXTLoad(RHS.getNode())) {
3461    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3462    std::swap(LHS, RHS);
3463  }
3464
3465  switch (SetCCOpcode) {
3466  default: break;
3467  case ISD::SETOLT:
3468  case ISD::SETOLE:
3469  case ISD::SETUGT:
3470  case ISD::SETUGE:
3471    std::swap(LHS, RHS);
3472    break;
3473  }
3474
3475  // On a floating point condition, the flags are set as follows:
3476  // ZF  PF  CF   op
3477  //  0 | 0 | 0 | X > Y
3478  //  0 | 0 | 1 | X < Y
3479  //  1 | 0 | 0 | X == Y
3480  //  1 | 1 | 1 | unordered
3481  switch (SetCCOpcode) {
3482  default: llvm_unreachable("Condcode should be pre-legalized away");
3483  case ISD::SETUEQ:
3484  case ISD::SETEQ:   return X86::COND_E;
3485  case ISD::SETOLT:              // flipped
3486  case ISD::SETOGT:
3487  case ISD::SETGT:   return X86::COND_A;
3488  case ISD::SETOLE:              // flipped
3489  case ISD::SETOGE:
3490  case ISD::SETGE:   return X86::COND_AE;
3491  case ISD::SETUGT:              // flipped
3492  case ISD::SETULT:
3493  case ISD::SETLT:   return X86::COND_B;
3494  case ISD::SETUGE:              // flipped
3495  case ISD::SETULE:
3496  case ISD::SETLE:   return X86::COND_BE;
3497  case ISD::SETONE:
3498  case ISD::SETNE:   return X86::COND_NE;
3499  case ISD::SETUO:   return X86::COND_P;
3500  case ISD::SETO:    return X86::COND_NP;
3501  case ISD::SETOEQ:
3502  case ISD::SETUNE:  return X86::COND_INVALID;
3503  }
3504}
3505
3506/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3507/// code. Current x86 isa includes the following FP cmov instructions:
3508/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3509static bool hasFPCMov(unsigned X86CC) {
3510  switch (X86CC) {
3511  default:
3512    return false;
3513  case X86::COND_B:
3514  case X86::COND_BE:
3515  case X86::COND_E:
3516  case X86::COND_P:
3517  case X86::COND_A:
3518  case X86::COND_AE:
3519  case X86::COND_NE:
3520  case X86::COND_NP:
3521    return true;
3522  }
3523}
3524
3525/// isFPImmLegal - Returns true if the target can instruction select the
3526/// specified FP immediate natively. If false, the legalizer will
3527/// materialize the FP immediate as a load from a constant pool.
3528bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3529  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3530    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3531      return true;
3532  }
3533  return false;
3534}
3535
3536/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3537/// the specified range (L, H].
3538static bool isUndefOrInRange(int Val, int Low, int Hi) {
3539  return (Val < 0) || (Val >= Low && Val < Hi);
3540}
3541
3542/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3543/// specified value.
3544static bool isUndefOrEqual(int Val, int CmpVal) {
3545  return (Val < 0 || Val == CmpVal);
3546}
3547
3548/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3549/// from position Pos and ending in Pos+Size, falls within the specified
3550/// sequential range (L, L+Pos]. or is undef.
3551static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3552                                       unsigned Pos, unsigned Size, int Low) {
3553  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3554    if (!isUndefOrEqual(Mask[i], Low))
3555      return false;
3556  return true;
3557}
3558
3559/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3560/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3561/// the second operand.
3562static bool isPSHUFDMask(ArrayRef<int> Mask, MVT VT) {
3563  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3564    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3565  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3566    return (Mask[0] < 2 && Mask[1] < 2);
3567  return false;
3568}
3569
3570/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3571/// is suitable for input to PSHUFHW.
3572static bool isPSHUFHWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
3573  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3574    return false;
3575
3576  // Lower quadword copied in order or undef.
3577  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3578    return false;
3579
3580  // Upper quadword shuffled.
3581  for (unsigned i = 4; i != 8; ++i)
3582    if (!isUndefOrInRange(Mask[i], 4, 8))
3583      return false;
3584
3585  if (VT == MVT::v16i16) {
3586    // Lower quadword copied in order or undef.
3587    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3588      return false;
3589
3590    // Upper quadword shuffled.
3591    for (unsigned i = 12; i != 16; ++i)
3592      if (!isUndefOrInRange(Mask[i], 12, 16))
3593        return false;
3594  }
3595
3596  return true;
3597}
3598
3599/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3600/// is suitable for input to PSHUFLW.
3601static bool isPSHUFLWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
3602  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3603    return false;
3604
3605  // Upper quadword copied in order.
3606  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3607    return false;
3608
3609  // Lower quadword shuffled.
3610  for (unsigned i = 0; i != 4; ++i)
3611    if (!isUndefOrInRange(Mask[i], 0, 4))
3612      return false;
3613
3614  if (VT == MVT::v16i16) {
3615    // Upper quadword copied in order.
3616    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3617      return false;
3618
3619    // Lower quadword shuffled.
3620    for (unsigned i = 8; i != 12; ++i)
3621      if (!isUndefOrInRange(Mask[i], 8, 12))
3622        return false;
3623  }
3624
3625  return true;
3626}
3627
3628/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3629/// is suitable for input to PALIGNR.
3630static bool isPALIGNRMask(ArrayRef<int> Mask, MVT VT,
3631                          const X86Subtarget *Subtarget) {
3632  if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
3633      (VT.is256BitVector() && !Subtarget->hasInt256()))
3634    return false;
3635
3636  unsigned NumElts = VT.getVectorNumElements();
3637  unsigned NumLanes = VT.is512BitVector() ? 1: VT.getSizeInBits()/128;
3638  unsigned NumLaneElts = NumElts/NumLanes;
3639
3640  // Do not handle 64-bit element shuffles with palignr.
3641  if (NumLaneElts == 2)
3642    return false;
3643
3644  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3645    unsigned i;
3646    for (i = 0; i != NumLaneElts; ++i) {
3647      if (Mask[i+l] >= 0)
3648        break;
3649    }
3650
3651    // Lane is all undef, go to next lane
3652    if (i == NumLaneElts)
3653      continue;
3654
3655    int Start = Mask[i+l];
3656
3657    // Make sure its in this lane in one of the sources
3658    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3659        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3660      return false;
3661
3662    // If not lane 0, then we must match lane 0
3663    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3664      return false;
3665
3666    // Correct second source to be contiguous with first source
3667    if (Start >= (int)NumElts)
3668      Start -= NumElts - NumLaneElts;
3669
3670    // Make sure we're shifting in the right direction.
3671    if (Start <= (int)(i+l))
3672      return false;
3673
3674    Start -= i;
3675
3676    // Check the rest of the elements to see if they are consecutive.
3677    for (++i; i != NumLaneElts; ++i) {
3678      int Idx = Mask[i+l];
3679
3680      // Make sure its in this lane
3681      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3682          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3683        return false;
3684
3685      // If not lane 0, then we must match lane 0
3686      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3687        return false;
3688
3689      if (Idx >= (int)NumElts)
3690        Idx -= NumElts - NumLaneElts;
3691
3692      if (!isUndefOrEqual(Idx, Start+i))
3693        return false;
3694
3695    }
3696  }
3697
3698  return true;
3699}
3700
3701/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3702/// the two vector operands have swapped position.
3703static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3704                                     unsigned NumElems) {
3705  for (unsigned i = 0; i != NumElems; ++i) {
3706    int idx = Mask[i];
3707    if (idx < 0)
3708      continue;
3709    else if (idx < (int)NumElems)
3710      Mask[i] = idx + NumElems;
3711    else
3712      Mask[i] = idx - NumElems;
3713  }
3714}
3715
3716/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3717/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3718/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3719/// reverse of what x86 shuffles want.
3720static bool isSHUFPMask(ArrayRef<int> Mask, MVT VT, bool Commuted = false) {
3721
3722  unsigned NumElems = VT.getVectorNumElements();
3723  unsigned NumLanes = VT.getSizeInBits()/128;
3724  unsigned NumLaneElems = NumElems/NumLanes;
3725
3726  if (NumLaneElems != 2 && NumLaneElems != 4)
3727    return false;
3728
3729  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3730  bool symetricMaskRequired =
3731    (VT.getSizeInBits() >= 256) && (EltSize == 32);
3732
3733  // VSHUFPSY divides the resulting vector into 4 chunks.
3734  // The sources are also splitted into 4 chunks, and each destination
3735  // chunk must come from a different source chunk.
3736  //
3737  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3738  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3739  //
3740  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3741  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3742  //
3743  // VSHUFPDY divides the resulting vector into 4 chunks.
3744  // The sources are also splitted into 4 chunks, and each destination
3745  // chunk must come from a different source chunk.
3746  //
3747  //  SRC1 =>      X3       X2       X1       X0
3748  //  SRC2 =>      Y3       Y2       Y1       Y0
3749  //
3750  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3751  //
3752  SmallVector<int, 4> MaskVal(NumLaneElems, -1);
3753  unsigned HalfLaneElems = NumLaneElems/2;
3754  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3755    for (unsigned i = 0; i != NumLaneElems; ++i) {
3756      int Idx = Mask[i+l];
3757      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3758      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3759        return false;
3760      // For VSHUFPSY, the mask of the second half must be the same as the
3761      // first but with the appropriate offsets. This works in the same way as
3762      // VPERMILPS works with masks.
3763      if (!symetricMaskRequired || Idx < 0)
3764        continue;
3765      if (MaskVal[i] < 0) {
3766        MaskVal[i] = Idx - l;
3767        continue;
3768      }
3769      if ((signed)(Idx - l) != MaskVal[i])
3770        return false;
3771    }
3772  }
3773
3774  return true;
3775}
3776
3777/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3778/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3779static bool isMOVHLPSMask(ArrayRef<int> Mask, MVT VT) {
3780  if (!VT.is128BitVector())
3781    return false;
3782
3783  unsigned NumElems = VT.getVectorNumElements();
3784
3785  if (NumElems != 4)
3786    return false;
3787
3788  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3789  return isUndefOrEqual(Mask[0], 6) &&
3790         isUndefOrEqual(Mask[1], 7) &&
3791         isUndefOrEqual(Mask[2], 2) &&
3792         isUndefOrEqual(Mask[3], 3);
3793}
3794
3795/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3796/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3797/// <2, 3, 2, 3>
3798static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, MVT VT) {
3799  if (!VT.is128BitVector())
3800    return false;
3801
3802  unsigned NumElems = VT.getVectorNumElements();
3803
3804  if (NumElems != 4)
3805    return false;
3806
3807  return isUndefOrEqual(Mask[0], 2) &&
3808         isUndefOrEqual(Mask[1], 3) &&
3809         isUndefOrEqual(Mask[2], 2) &&
3810         isUndefOrEqual(Mask[3], 3);
3811}
3812
3813/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3814/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3815static bool isMOVLPMask(ArrayRef<int> Mask, MVT VT) {
3816  if (!VT.is128BitVector())
3817    return false;
3818
3819  unsigned NumElems = VT.getVectorNumElements();
3820
3821  if (NumElems != 2 && NumElems != 4)
3822    return false;
3823
3824  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3825    if (!isUndefOrEqual(Mask[i], i + NumElems))
3826      return false;
3827
3828  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3829    if (!isUndefOrEqual(Mask[i], i))
3830      return false;
3831
3832  return true;
3833}
3834
3835/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3836/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3837static bool isMOVLHPSMask(ArrayRef<int> Mask, MVT VT) {
3838  if (!VT.is128BitVector())
3839    return false;
3840
3841  unsigned NumElems = VT.getVectorNumElements();
3842
3843  if (NumElems != 2 && NumElems != 4)
3844    return false;
3845
3846  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3847    if (!isUndefOrEqual(Mask[i], i))
3848      return false;
3849
3850  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3851    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3852      return false;
3853
3854  return true;
3855}
3856
3857//
3858// Some special combinations that can be optimized.
3859//
3860static
3861SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3862                               SelectionDAG &DAG) {
3863  MVT VT = SVOp->getSimpleValueType(0);
3864  SDLoc dl(SVOp);
3865
3866  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3867    return SDValue();
3868
3869  ArrayRef<int> Mask = SVOp->getMask();
3870
3871  // These are the special masks that may be optimized.
3872  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3873  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3874  bool MatchEvenMask = true;
3875  bool MatchOddMask  = true;
3876  for (int i=0; i<8; ++i) {
3877    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3878      MatchEvenMask = false;
3879    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3880      MatchOddMask = false;
3881  }
3882
3883  if (!MatchEvenMask && !MatchOddMask)
3884    return SDValue();
3885
3886  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3887
3888  SDValue Op0 = SVOp->getOperand(0);
3889  SDValue Op1 = SVOp->getOperand(1);
3890
3891  if (MatchEvenMask) {
3892    // Shift the second operand right to 32 bits.
3893    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3894    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3895  } else {
3896    // Shift the first operand left to 32 bits.
3897    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3898    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3899  }
3900  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3901  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3902}
3903
3904/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3905/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3906static bool isUNPCKLMask(ArrayRef<int> Mask, MVT VT,
3907                         bool HasInt256, bool V2IsSplat = false) {
3908
3909  assert(VT.getSizeInBits() >= 128 &&
3910         "Unsupported vector type for unpckl");
3911
3912  // AVX defines UNPCK* to operate independently on 128-bit lanes.
3913  unsigned NumLanes;
3914  unsigned NumOf256BitLanes;
3915  unsigned NumElts = VT.getVectorNumElements();
3916  if (VT.is256BitVector()) {
3917    if (NumElts != 4 && NumElts != 8 &&
3918        (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3919    return false;
3920    NumLanes = 2;
3921    NumOf256BitLanes = 1;
3922  } else if (VT.is512BitVector()) {
3923    assert(VT.getScalarType().getSizeInBits() >= 32 &&
3924           "Unsupported vector type for unpckh");
3925    NumLanes = 2;
3926    NumOf256BitLanes = 2;
3927  } else {
3928    NumLanes = 1;
3929    NumOf256BitLanes = 1;
3930  }
3931
3932  unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
3933  unsigned NumLaneElts = NumEltsInStride/NumLanes;
3934
3935  for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
3936    for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
3937      for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
3938        int BitI  = Mask[l256*NumEltsInStride+l+i];
3939        int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
3940        if (!isUndefOrEqual(BitI, j+l256*NumElts))
3941          return false;
3942        if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
3943          return false;
3944        if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
3945          return false;
3946      }
3947    }
3948  }
3949  return true;
3950}
3951
3952/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3953/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3954static bool isUNPCKHMask(ArrayRef<int> Mask, MVT VT,
3955                         bool HasInt256, bool V2IsSplat = false) {
3956  assert(VT.getSizeInBits() >= 128 &&
3957         "Unsupported vector type for unpckh");
3958
3959  // AVX defines UNPCK* to operate independently on 128-bit lanes.
3960  unsigned NumLanes;
3961  unsigned NumOf256BitLanes;
3962  unsigned NumElts = VT.getVectorNumElements();
3963  if (VT.is256BitVector()) {
3964    if (NumElts != 4 && NumElts != 8 &&
3965        (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3966    return false;
3967    NumLanes = 2;
3968    NumOf256BitLanes = 1;
3969  } else if (VT.is512BitVector()) {
3970    assert(VT.getScalarType().getSizeInBits() >= 32 &&
3971           "Unsupported vector type for unpckh");
3972    NumLanes = 2;
3973    NumOf256BitLanes = 2;
3974  } else {
3975    NumLanes = 1;
3976    NumOf256BitLanes = 1;
3977  }
3978
3979  unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
3980  unsigned NumLaneElts = NumEltsInStride/NumLanes;
3981
3982  for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
3983    for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
3984      for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
3985        int BitI  = Mask[l256*NumEltsInStride+l+i];
3986        int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
3987        if (!isUndefOrEqual(BitI, j+l256*NumElts))
3988          return false;
3989        if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
3990          return false;
3991        if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
3992          return false;
3993      }
3994    }
3995  }
3996  return true;
3997}
3998
3999/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
4000/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
4001/// <0, 0, 1, 1>
4002static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
4003  unsigned NumElts = VT.getVectorNumElements();
4004  bool Is256BitVec = VT.is256BitVector();
4005
4006  if (VT.is512BitVector())
4007    return false;
4008  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4009         "Unsupported vector type for unpckh");
4010
4011  if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
4012      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4013    return false;
4014
4015  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
4016  // FIXME: Need a better way to get rid of this, there's no latency difference
4017  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
4018  // the former later. We should also remove the "_undef" special mask.
4019  if (NumElts == 4 && Is256BitVec)
4020    return false;
4021
4022  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
4023  // independently on 128-bit lanes.
4024  unsigned NumLanes = VT.getSizeInBits()/128;
4025  unsigned NumLaneElts = NumElts/NumLanes;
4026
4027  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
4028    for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
4029      int BitI  = Mask[l+i];
4030      int BitI1 = Mask[l+i+1];
4031
4032      if (!isUndefOrEqual(BitI, j))
4033        return false;
4034      if (!isUndefOrEqual(BitI1, j))
4035        return false;
4036    }
4037  }
4038
4039  return true;
4040}
4041
4042/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
4043/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
4044/// <2, 2, 3, 3>
4045static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
4046  unsigned NumElts = VT.getVectorNumElements();
4047
4048  if (VT.is512BitVector())
4049    return false;
4050
4051  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4052         "Unsupported vector type for unpckh");
4053
4054  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
4055      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4056    return false;
4057
4058  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
4059  // independently on 128-bit lanes.
4060  unsigned NumLanes = VT.getSizeInBits()/128;
4061  unsigned NumLaneElts = NumElts/NumLanes;
4062
4063  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
4064    for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
4065      int BitI  = Mask[l+i];
4066      int BitI1 = Mask[l+i+1];
4067      if (!isUndefOrEqual(BitI, j))
4068        return false;
4069      if (!isUndefOrEqual(BitI1, j))
4070        return false;
4071    }
4072  }
4073  return true;
4074}
4075
4076/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
4077/// specifies a shuffle of elements that is suitable for input to MOVSS,
4078/// MOVSD, and MOVD, i.e. setting the lowest element.
4079static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
4080  if (VT.getVectorElementType().getSizeInBits() < 32)
4081    return false;
4082  if (!VT.is128BitVector())
4083    return false;
4084
4085  unsigned NumElts = VT.getVectorNumElements();
4086
4087  if (!isUndefOrEqual(Mask[0], NumElts))
4088    return false;
4089
4090  for (unsigned i = 1; i != NumElts; ++i)
4091    if (!isUndefOrEqual(Mask[i], i))
4092      return false;
4093
4094  return true;
4095}
4096
4097/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
4098/// as permutations between 128-bit chunks or halves. As an example: this
4099/// shuffle bellow:
4100///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
4101/// The first half comes from the second half of V1 and the second half from the
4102/// the second half of V2.
4103static bool isVPERM2X128Mask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
4104  if (!HasFp256 || !VT.is256BitVector())
4105    return false;
4106
4107  // The shuffle result is divided into half A and half B. In total the two
4108  // sources have 4 halves, namely: C, D, E, F. The final values of A and
4109  // B must come from C, D, E or F.
4110  unsigned HalfSize = VT.getVectorNumElements()/2;
4111  bool MatchA = false, MatchB = false;
4112
4113  // Check if A comes from one of C, D, E, F.
4114  for (unsigned Half = 0; Half != 4; ++Half) {
4115    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
4116      MatchA = true;
4117      break;
4118    }
4119  }
4120
4121  // Check if B comes from one of C, D, E, F.
4122  for (unsigned Half = 0; Half != 4; ++Half) {
4123    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
4124      MatchB = true;
4125      break;
4126    }
4127  }
4128
4129  return MatchA && MatchB;
4130}
4131
4132/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
4133/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
4134static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
4135  MVT VT = SVOp->getSimpleValueType(0);
4136
4137  unsigned HalfSize = VT.getVectorNumElements()/2;
4138
4139  unsigned FstHalf = 0, SndHalf = 0;
4140  for (unsigned i = 0; i < HalfSize; ++i) {
4141    if (SVOp->getMaskElt(i) > 0) {
4142      FstHalf = SVOp->getMaskElt(i)/HalfSize;
4143      break;
4144    }
4145  }
4146  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
4147    if (SVOp->getMaskElt(i) > 0) {
4148      SndHalf = SVOp->getMaskElt(i)/HalfSize;
4149      break;
4150    }
4151  }
4152
4153  return (FstHalf | (SndHalf << 4));
4154}
4155
4156// Symetric in-lane mask. Each lane has 4 elements (for imm8)
4157static bool isPermImmMask(ArrayRef<int> Mask, MVT VT, unsigned& Imm8) {
4158  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4159  if (EltSize < 32)
4160    return false;
4161
4162  unsigned NumElts = VT.getVectorNumElements();
4163  Imm8 = 0;
4164  if (VT.is128BitVector() || (VT.is256BitVector() && EltSize == 64)) {
4165    for (unsigned i = 0; i != NumElts; ++i) {
4166      if (Mask[i] < 0)
4167        continue;
4168      Imm8 |= Mask[i] << (i*2);
4169    }
4170    return true;
4171  }
4172
4173  unsigned LaneSize = 4;
4174  SmallVector<int, 4> MaskVal(LaneSize, -1);
4175
4176  for (unsigned l = 0; l != NumElts; l += LaneSize) {
4177    for (unsigned i = 0; i != LaneSize; ++i) {
4178      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
4179        return false;
4180      if (Mask[i+l] < 0)
4181        continue;
4182      if (MaskVal[i] < 0) {
4183        MaskVal[i] = Mask[i+l] - l;
4184        Imm8 |= MaskVal[i] << (i*2);
4185        continue;
4186      }
4187      if (Mask[i+l] != (signed)(MaskVal[i]+l))
4188        return false;
4189    }
4190  }
4191  return true;
4192}
4193
4194/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
4195/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
4196/// Note that VPERMIL mask matching is different depending whether theunderlying
4197/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
4198/// to the same elements of the low, but to the higher half of the source.
4199/// In VPERMILPD the two lanes could be shuffled independently of each other
4200/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
4201static bool isVPERMILPMask(ArrayRef<int> Mask, MVT VT) {
4202  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4203  if (VT.getSizeInBits() < 256 || EltSize < 32)
4204    return false;
4205  bool symetricMaskRequired = (EltSize == 32);
4206  unsigned NumElts = VT.getVectorNumElements();
4207
4208  unsigned NumLanes = VT.getSizeInBits()/128;
4209  unsigned LaneSize = NumElts/NumLanes;
4210  // 2 or 4 elements in one lane
4211
4212  SmallVector<int, 4> ExpectedMaskVal(LaneSize, -1);
4213  for (unsigned l = 0; l != NumElts; l += LaneSize) {
4214    for (unsigned i = 0; i != LaneSize; ++i) {
4215      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
4216        return false;
4217      if (symetricMaskRequired) {
4218        if (ExpectedMaskVal[i] < 0 && Mask[i+l] >= 0) {
4219          ExpectedMaskVal[i] = Mask[i+l] - l;
4220          continue;
4221        }
4222        if (!isUndefOrEqual(Mask[i+l], ExpectedMaskVal[i]+l))
4223          return false;
4224      }
4225    }
4226  }
4227  return true;
4228}
4229
4230/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
4231/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
4232/// element of vector 2 and the other elements to come from vector 1 in order.
4233static bool isCommutedMOVLMask(ArrayRef<int> Mask, MVT VT,
4234                               bool V2IsSplat = false, bool V2IsUndef = false) {
4235  if (!VT.is128BitVector())
4236    return false;
4237
4238  unsigned NumOps = VT.getVectorNumElements();
4239  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
4240    return false;
4241
4242  if (!isUndefOrEqual(Mask[0], 0))
4243    return false;
4244
4245  for (unsigned i = 1; i != NumOps; ++i)
4246    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
4247          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
4248          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
4249      return false;
4250
4251  return true;
4252}
4253
4254/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4255/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
4256/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
4257static bool isMOVSHDUPMask(ArrayRef<int> Mask, MVT VT,
4258                           const X86Subtarget *Subtarget) {
4259  if (!Subtarget->hasSSE3())
4260    return false;
4261
4262  unsigned NumElems = VT.getVectorNumElements();
4263
4264  if ((VT.is128BitVector() && NumElems != 4) ||
4265      (VT.is256BitVector() && NumElems != 8) ||
4266      (VT.is512BitVector() && NumElems != 16))
4267    return false;
4268
4269  // "i+1" is the value the indexed mask element must have
4270  for (unsigned i = 0; i != NumElems; i += 2)
4271    if (!isUndefOrEqual(Mask[i], i+1) ||
4272        !isUndefOrEqual(Mask[i+1], i+1))
4273      return false;
4274
4275  return true;
4276}
4277
4278/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4279/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
4280/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
4281static bool isMOVSLDUPMask(ArrayRef<int> Mask, MVT VT,
4282                           const X86Subtarget *Subtarget) {
4283  if (!Subtarget->hasSSE3())
4284    return false;
4285
4286  unsigned NumElems = VT.getVectorNumElements();
4287
4288  if ((VT.is128BitVector() && NumElems != 4) ||
4289      (VT.is256BitVector() && NumElems != 8) ||
4290      (VT.is512BitVector() && NumElems != 16))
4291    return false;
4292
4293  // "i" is the value the indexed mask element must have
4294  for (unsigned i = 0; i != NumElems; i += 2)
4295    if (!isUndefOrEqual(Mask[i], i) ||
4296        !isUndefOrEqual(Mask[i+1], i))
4297      return false;
4298
4299  return true;
4300}
4301
4302/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
4303/// specifies a shuffle of elements that is suitable for input to 256-bit
4304/// version of MOVDDUP.
4305static bool isMOVDDUPYMask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
4306  if (!HasFp256 || !VT.is256BitVector())
4307    return false;
4308
4309  unsigned NumElts = VT.getVectorNumElements();
4310  if (NumElts != 4)
4311    return false;
4312
4313  for (unsigned i = 0; i != NumElts/2; ++i)
4314    if (!isUndefOrEqual(Mask[i], 0))
4315      return false;
4316  for (unsigned i = NumElts/2; i != NumElts; ++i)
4317    if (!isUndefOrEqual(Mask[i], NumElts/2))
4318      return false;
4319  return true;
4320}
4321
4322/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4323/// specifies a shuffle of elements that is suitable for input to 128-bit
4324/// version of MOVDDUP.
4325static bool isMOVDDUPMask(ArrayRef<int> Mask, MVT VT) {
4326  if (!VT.is128BitVector())
4327    return false;
4328
4329  unsigned e = VT.getVectorNumElements() / 2;
4330  for (unsigned i = 0; i != e; ++i)
4331    if (!isUndefOrEqual(Mask[i], i))
4332      return false;
4333  for (unsigned i = 0; i != e; ++i)
4334    if (!isUndefOrEqual(Mask[e+i], i))
4335      return false;
4336  return true;
4337}
4338
4339/// isVEXTRACTIndex - Return true if the specified
4340/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4341/// suitable for instruction that extract 128 or 256 bit vectors
4342static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
4343  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
4344  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4345    return false;
4346
4347  // The index should be aligned on a vecWidth-bit boundary.
4348  uint64_t Index =
4349    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4350
4351  MVT VT = N->getSimpleValueType(0);
4352  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4353  bool Result = (Index * ElSize) % vecWidth == 0;
4354
4355  return Result;
4356}
4357
4358/// isVINSERTIndex - Return true if the specified INSERT_SUBVECTOR
4359/// operand specifies a subvector insert that is suitable for input to
4360/// insertion of 128 or 256-bit subvectors
4361static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
4362  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
4363  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4364    return false;
4365  // The index should be aligned on a vecWidth-bit boundary.
4366  uint64_t Index =
4367    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4368
4369  MVT VT = N->getSimpleValueType(0);
4370  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4371  bool Result = (Index * ElSize) % vecWidth == 0;
4372
4373  return Result;
4374}
4375
4376bool X86::isVINSERT128Index(SDNode *N) {
4377  return isVINSERTIndex(N, 128);
4378}
4379
4380bool X86::isVINSERT256Index(SDNode *N) {
4381  return isVINSERTIndex(N, 256);
4382}
4383
4384bool X86::isVEXTRACT128Index(SDNode *N) {
4385  return isVEXTRACTIndex(N, 128);
4386}
4387
4388bool X86::isVEXTRACT256Index(SDNode *N) {
4389  return isVEXTRACTIndex(N, 256);
4390}
4391
4392/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4393/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4394/// Handles 128-bit and 256-bit.
4395static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4396  MVT VT = N->getSimpleValueType(0);
4397
4398  assert((VT.getSizeInBits() >= 128) &&
4399         "Unsupported vector type for PSHUF/SHUFP");
4400
4401  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4402  // independently on 128-bit lanes.
4403  unsigned NumElts = VT.getVectorNumElements();
4404  unsigned NumLanes = VT.getSizeInBits()/128;
4405  unsigned NumLaneElts = NumElts/NumLanes;
4406
4407  assert((NumLaneElts == 2 || NumLaneElts == 4 || NumLaneElts == 8) &&
4408         "Only supports 2, 4 or 8 elements per lane");
4409
4410  unsigned Shift = (NumLaneElts >= 4) ? 1 : 0;
4411  unsigned Mask = 0;
4412  for (unsigned i = 0; i != NumElts; ++i) {
4413    int Elt = N->getMaskElt(i);
4414    if (Elt < 0) continue;
4415    Elt &= NumLaneElts - 1;
4416    unsigned ShAmt = (i << Shift) % 8;
4417    Mask |= Elt << ShAmt;
4418  }
4419
4420  return Mask;
4421}
4422
4423/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4424/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4425static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4426  MVT VT = N->getSimpleValueType(0);
4427
4428  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4429         "Unsupported vector type for PSHUFHW");
4430
4431  unsigned NumElts = VT.getVectorNumElements();
4432
4433  unsigned Mask = 0;
4434  for (unsigned l = 0; l != NumElts; l += 8) {
4435    // 8 nodes per lane, but we only care about the last 4.
4436    for (unsigned i = 0; i < 4; ++i) {
4437      int Elt = N->getMaskElt(l+i+4);
4438      if (Elt < 0) continue;
4439      Elt &= 0x3; // only 2-bits.
4440      Mask |= Elt << (i * 2);
4441    }
4442  }
4443
4444  return Mask;
4445}
4446
4447/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4448/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4449static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4450  MVT VT = N->getSimpleValueType(0);
4451
4452  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4453         "Unsupported vector type for PSHUFHW");
4454
4455  unsigned NumElts = VT.getVectorNumElements();
4456
4457  unsigned Mask = 0;
4458  for (unsigned l = 0; l != NumElts; l += 8) {
4459    // 8 nodes per lane, but we only care about the first 4.
4460    for (unsigned i = 0; i < 4; ++i) {
4461      int Elt = N->getMaskElt(l+i);
4462      if (Elt < 0) continue;
4463      Elt &= 0x3; // only 2-bits
4464      Mask |= Elt << (i * 2);
4465    }
4466  }
4467
4468  return Mask;
4469}
4470
4471/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4472/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4473static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4474  MVT VT = SVOp->getSimpleValueType(0);
4475  unsigned EltSize = VT.is512BitVector() ? 1 :
4476    VT.getVectorElementType().getSizeInBits() >> 3;
4477
4478  unsigned NumElts = VT.getVectorNumElements();
4479  unsigned NumLanes = VT.is512BitVector() ? 1 : VT.getSizeInBits()/128;
4480  unsigned NumLaneElts = NumElts/NumLanes;
4481
4482  int Val = 0;
4483  unsigned i;
4484  for (i = 0; i != NumElts; ++i) {
4485    Val = SVOp->getMaskElt(i);
4486    if (Val >= 0)
4487      break;
4488  }
4489  if (Val >= (int)NumElts)
4490    Val -= NumElts - NumLaneElts;
4491
4492  assert(Val - i > 0 && "PALIGNR imm should be positive");
4493  return (Val - i) * EltSize;
4494}
4495
4496static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
4497  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
4498  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4499    llvm_unreachable("Illegal extract subvector for VEXTRACT");
4500
4501  uint64_t Index =
4502    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4503
4504  MVT VecVT = N->getOperand(0).getSimpleValueType();
4505  MVT ElVT = VecVT.getVectorElementType();
4506
4507  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
4508  return Index / NumElemsPerChunk;
4509}
4510
4511static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
4512  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
4513  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4514    llvm_unreachable("Illegal insert subvector for VINSERT");
4515
4516  uint64_t Index =
4517    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4518
4519  MVT VecVT = N->getSimpleValueType(0);
4520  MVT ElVT = VecVT.getVectorElementType();
4521
4522  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
4523  return Index / NumElemsPerChunk;
4524}
4525
4526/// getExtractVEXTRACT128Immediate - Return the appropriate immediate
4527/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4528/// and VINSERTI128 instructions.
4529unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
4530  return getExtractVEXTRACTImmediate(N, 128);
4531}
4532
4533/// getExtractVEXTRACT256Immediate - Return the appropriate immediate
4534/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF64x4
4535/// and VINSERTI64x4 instructions.
4536unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
4537  return getExtractVEXTRACTImmediate(N, 256);
4538}
4539
4540/// getInsertVINSERT128Immediate - Return the appropriate immediate
4541/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4542/// and VINSERTI128 instructions.
4543unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
4544  return getInsertVINSERTImmediate(N, 128);
4545}
4546
4547/// getInsertVINSERT256Immediate - Return the appropriate immediate
4548/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF46x4
4549/// and VINSERTI64x4 instructions.
4550unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
4551  return getInsertVINSERTImmediate(N, 256);
4552}
4553
4554/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4555/// constant +0.0.
4556bool X86::isZeroNode(SDValue Elt) {
4557  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Elt))
4558    return CN->isNullValue();
4559  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
4560    return CFP->getValueAPF().isPosZero();
4561  return false;
4562}
4563
4564/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4565/// their permute mask.
4566static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4567                                    SelectionDAG &DAG) {
4568  MVT VT = SVOp->getSimpleValueType(0);
4569  unsigned NumElems = VT.getVectorNumElements();
4570  SmallVector<int, 8> MaskVec;
4571
4572  for (unsigned i = 0; i != NumElems; ++i) {
4573    int Idx = SVOp->getMaskElt(i);
4574    if (Idx >= 0) {
4575      if (Idx < (int)NumElems)
4576        Idx += NumElems;
4577      else
4578        Idx -= NumElems;
4579    }
4580    MaskVec.push_back(Idx);
4581  }
4582  return DAG.getVectorShuffle(VT, SDLoc(SVOp), SVOp->getOperand(1),
4583                              SVOp->getOperand(0), &MaskVec[0]);
4584}
4585
4586/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4587/// match movhlps. The lower half elements should come from upper half of
4588/// V1 (and in order), and the upper half elements should come from the upper
4589/// half of V2 (and in order).
4590static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, MVT VT) {
4591  if (!VT.is128BitVector())
4592    return false;
4593  if (VT.getVectorNumElements() != 4)
4594    return false;
4595  for (unsigned i = 0, e = 2; i != e; ++i)
4596    if (!isUndefOrEqual(Mask[i], i+2))
4597      return false;
4598  for (unsigned i = 2; i != 4; ++i)
4599    if (!isUndefOrEqual(Mask[i], i+4))
4600      return false;
4601  return true;
4602}
4603
4604/// isScalarLoadToVector - Returns true if the node is a scalar load that
4605/// is promoted to a vector. It also returns the LoadSDNode by reference if
4606/// required.
4607static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4608  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4609    return false;
4610  N = N->getOperand(0).getNode();
4611  if (!ISD::isNON_EXTLoad(N))
4612    return false;
4613  if (LD)
4614    *LD = cast<LoadSDNode>(N);
4615  return true;
4616}
4617
4618// Test whether the given value is a vector value which will be legalized
4619// into a load.
4620static bool WillBeConstantPoolLoad(SDNode *N) {
4621  if (N->getOpcode() != ISD::BUILD_VECTOR)
4622    return false;
4623
4624  // Check for any non-constant elements.
4625  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4626    switch (N->getOperand(i).getNode()->getOpcode()) {
4627    case ISD::UNDEF:
4628    case ISD::ConstantFP:
4629    case ISD::Constant:
4630      break;
4631    default:
4632      return false;
4633    }
4634
4635  // Vectors of all-zeros and all-ones are materialized with special
4636  // instructions rather than being loaded.
4637  return !ISD::isBuildVectorAllZeros(N) &&
4638         !ISD::isBuildVectorAllOnes(N);
4639}
4640
4641/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4642/// match movlp{s|d}. The lower half elements should come from lower half of
4643/// V1 (and in order), and the upper half elements should come from the upper
4644/// half of V2 (and in order). And since V1 will become the source of the
4645/// MOVLP, it must be either a vector load or a scalar load to vector.
4646static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4647                               ArrayRef<int> Mask, MVT VT) {
4648  if (!VT.is128BitVector())
4649    return false;
4650
4651  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4652    return false;
4653  // Is V2 is a vector load, don't do this transformation. We will try to use
4654  // load folding shufps op.
4655  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4656    return false;
4657
4658  unsigned NumElems = VT.getVectorNumElements();
4659
4660  if (NumElems != 2 && NumElems != 4)
4661    return false;
4662  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4663    if (!isUndefOrEqual(Mask[i], i))
4664      return false;
4665  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4666    if (!isUndefOrEqual(Mask[i], i+NumElems))
4667      return false;
4668  return true;
4669}
4670
4671/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4672/// all the same.
4673static bool isSplatVector(SDNode *N) {
4674  if (N->getOpcode() != ISD::BUILD_VECTOR)
4675    return false;
4676
4677  SDValue SplatValue = N->getOperand(0);
4678  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4679    if (N->getOperand(i) != SplatValue)
4680      return false;
4681  return true;
4682}
4683
4684/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4685/// to an zero vector.
4686/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4687static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4688  SDValue V1 = N->getOperand(0);
4689  SDValue V2 = N->getOperand(1);
4690  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4691  for (unsigned i = 0; i != NumElems; ++i) {
4692    int Idx = N->getMaskElt(i);
4693    if (Idx >= (int)NumElems) {
4694      unsigned Opc = V2.getOpcode();
4695      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4696        continue;
4697      if (Opc != ISD::BUILD_VECTOR ||
4698          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4699        return false;
4700    } else if (Idx >= 0) {
4701      unsigned Opc = V1.getOpcode();
4702      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4703        continue;
4704      if (Opc != ISD::BUILD_VECTOR ||
4705          !X86::isZeroNode(V1.getOperand(Idx)))
4706        return false;
4707    }
4708  }
4709  return true;
4710}
4711
4712/// getZeroVector - Returns a vector of specified type with all zero elements.
4713///
4714static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4715                             SelectionDAG &DAG, SDLoc dl) {
4716  assert(VT.isVector() && "Expected a vector type");
4717
4718  // Always build SSE zero vectors as <4 x i32> bitcasted
4719  // to their dest type. This ensures they get CSE'd.
4720  SDValue Vec;
4721  if (VT.is128BitVector()) {  // SSE
4722    if (Subtarget->hasSSE2()) {  // SSE2
4723      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4724      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4725    } else { // SSE1
4726      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4727      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4728    }
4729  } else if (VT.is256BitVector()) { // AVX
4730    if (Subtarget->hasInt256()) { // AVX2
4731      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4732      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4733      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops,
4734                        array_lengthof(Ops));
4735    } else {
4736      // 256-bit logic and arithmetic instructions in AVX are all
4737      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4738      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4739      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4740      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops,
4741                        array_lengthof(Ops));
4742    }
4743  } else if (VT.is512BitVector()) { // AVX-512
4744      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4745      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
4746                        Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4747      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops, 16);
4748  } else
4749    llvm_unreachable("Unexpected vector type");
4750
4751  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4752}
4753
4754/// getOnesVector - Returns a vector of specified type with all bits set.
4755/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4756/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4757/// Then bitcast to their original type, ensuring they get CSE'd.
4758static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
4759                             SDLoc dl) {
4760  assert(VT.isVector() && "Expected a vector type");
4761
4762  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4763  SDValue Vec;
4764  if (VT.is256BitVector()) {
4765    if (HasInt256) { // AVX2
4766      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4767      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops,
4768                        array_lengthof(Ops));
4769    } else { // AVX
4770      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4771      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4772    }
4773  } else if (VT.is128BitVector()) {
4774    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4775  } else
4776    llvm_unreachable("Unexpected vector type");
4777
4778  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4779}
4780
4781/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4782/// that point to V2 points to its first element.
4783static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4784  for (unsigned i = 0; i != NumElems; ++i) {
4785    if (Mask[i] > (int)NumElems) {
4786      Mask[i] = NumElems;
4787    }
4788  }
4789}
4790
4791/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4792/// operation of specified width.
4793static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
4794                       SDValue V2) {
4795  unsigned NumElems = VT.getVectorNumElements();
4796  SmallVector<int, 8> Mask;
4797  Mask.push_back(NumElems);
4798  for (unsigned i = 1; i != NumElems; ++i)
4799    Mask.push_back(i);
4800  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4801}
4802
4803/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4804static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4805                          SDValue V2) {
4806  unsigned NumElems = VT.getVectorNumElements();
4807  SmallVector<int, 8> Mask;
4808  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4809    Mask.push_back(i);
4810    Mask.push_back(i + NumElems);
4811  }
4812  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4813}
4814
4815/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4816static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4817                          SDValue V2) {
4818  unsigned NumElems = VT.getVectorNumElements();
4819  SmallVector<int, 8> Mask;
4820  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4821    Mask.push_back(i + Half);
4822    Mask.push_back(i + NumElems + Half);
4823  }
4824  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4825}
4826
4827// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4828// a generic shuffle instruction because the target has no such instructions.
4829// Generate shuffles which repeat i16 and i8 several times until they can be
4830// represented by v4f32 and then be manipulated by target suported shuffles.
4831static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4832  MVT VT = V.getSimpleValueType();
4833  int NumElems = VT.getVectorNumElements();
4834  SDLoc dl(V);
4835
4836  while (NumElems > 4) {
4837    if (EltNo < NumElems/2) {
4838      V = getUnpackl(DAG, dl, VT, V, V);
4839    } else {
4840      V = getUnpackh(DAG, dl, VT, V, V);
4841      EltNo -= NumElems/2;
4842    }
4843    NumElems >>= 1;
4844  }
4845  return V;
4846}
4847
4848/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4849static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4850  MVT VT = V.getSimpleValueType();
4851  SDLoc dl(V);
4852
4853  if (VT.is128BitVector()) {
4854    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4855    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4856    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4857                             &SplatMask[0]);
4858  } else if (VT.is256BitVector()) {
4859    // To use VPERMILPS to splat scalars, the second half of indicies must
4860    // refer to the higher part, which is a duplication of the lower one,
4861    // because VPERMILPS can only handle in-lane permutations.
4862    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4863                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4864
4865    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4866    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4867                             &SplatMask[0]);
4868  } else
4869    llvm_unreachable("Vector size not supported");
4870
4871  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4872}
4873
4874/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4875static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4876  MVT SrcVT = SV->getSimpleValueType(0);
4877  SDValue V1 = SV->getOperand(0);
4878  SDLoc dl(SV);
4879
4880  int EltNo = SV->getSplatIndex();
4881  int NumElems = SrcVT.getVectorNumElements();
4882  bool Is256BitVec = SrcVT.is256BitVector();
4883
4884  assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
4885         "Unknown how to promote splat for type");
4886
4887  // Extract the 128-bit part containing the splat element and update
4888  // the splat element index when it refers to the higher register.
4889  if (Is256BitVec) {
4890    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4891    if (EltNo >= NumElems/2)
4892      EltNo -= NumElems/2;
4893  }
4894
4895  // All i16 and i8 vector types can't be used directly by a generic shuffle
4896  // instruction because the target has no such instruction. Generate shuffles
4897  // which repeat i16 and i8 several times until they fit in i32, and then can
4898  // be manipulated by target suported shuffles.
4899  MVT EltVT = SrcVT.getVectorElementType();
4900  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4901    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4902
4903  // Recreate the 256-bit vector and place the same 128-bit vector
4904  // into the low and high part. This is necessary because we want
4905  // to use VPERM* to shuffle the vectors
4906  if (Is256BitVec) {
4907    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4908  }
4909
4910  return getLegalSplat(DAG, V1, EltNo);
4911}
4912
4913/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4914/// vector of zero or undef vector.  This produces a shuffle where the low
4915/// element of V2 is swizzled into the zero/undef vector, landing at element
4916/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4917static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4918                                           bool IsZero,
4919                                           const X86Subtarget *Subtarget,
4920                                           SelectionDAG &DAG) {
4921  MVT VT = V2.getSimpleValueType();
4922  SDValue V1 = IsZero
4923    ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
4924  unsigned NumElems = VT.getVectorNumElements();
4925  SmallVector<int, 16> MaskVec;
4926  for (unsigned i = 0; i != NumElems; ++i)
4927    // If this is the insertion idx, put the low elt of V2 here.
4928    MaskVec.push_back(i == Idx ? NumElems : i);
4929  return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
4930}
4931
4932/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4933/// target specific opcode. Returns true if the Mask could be calculated.
4934/// Sets IsUnary to true if only uses one source.
4935static bool getTargetShuffleMask(SDNode *N, MVT VT,
4936                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4937  unsigned NumElems = VT.getVectorNumElements();
4938  SDValue ImmN;
4939
4940  IsUnary = false;
4941  switch(N->getOpcode()) {
4942  case X86ISD::SHUFP:
4943    ImmN = N->getOperand(N->getNumOperands()-1);
4944    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4945    break;
4946  case X86ISD::UNPCKH:
4947    DecodeUNPCKHMask(VT, Mask);
4948    break;
4949  case X86ISD::UNPCKL:
4950    DecodeUNPCKLMask(VT, Mask);
4951    break;
4952  case X86ISD::MOVHLPS:
4953    DecodeMOVHLPSMask(NumElems, Mask);
4954    break;
4955  case X86ISD::MOVLHPS:
4956    DecodeMOVLHPSMask(NumElems, Mask);
4957    break;
4958  case X86ISD::PALIGNR:
4959    ImmN = N->getOperand(N->getNumOperands()-1);
4960    DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4961    break;
4962  case X86ISD::PSHUFD:
4963  case X86ISD::VPERMILP:
4964    ImmN = N->getOperand(N->getNumOperands()-1);
4965    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4966    IsUnary = true;
4967    break;
4968  case X86ISD::PSHUFHW:
4969    ImmN = N->getOperand(N->getNumOperands()-1);
4970    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4971    IsUnary = true;
4972    break;
4973  case X86ISD::PSHUFLW:
4974    ImmN = N->getOperand(N->getNumOperands()-1);
4975    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4976    IsUnary = true;
4977    break;
4978  case X86ISD::VPERMI:
4979    ImmN = N->getOperand(N->getNumOperands()-1);
4980    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4981    IsUnary = true;
4982    break;
4983  case X86ISD::MOVSS:
4984  case X86ISD::MOVSD: {
4985    // The index 0 always comes from the first element of the second source,
4986    // this is why MOVSS and MOVSD are used in the first place. The other
4987    // elements come from the other positions of the first source vector
4988    Mask.push_back(NumElems);
4989    for (unsigned i = 1; i != NumElems; ++i) {
4990      Mask.push_back(i);
4991    }
4992    break;
4993  }
4994  case X86ISD::VPERM2X128:
4995    ImmN = N->getOperand(N->getNumOperands()-1);
4996    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4997    if (Mask.empty()) return false;
4998    break;
4999  case X86ISD::MOVDDUP:
5000  case X86ISD::MOVLHPD:
5001  case X86ISD::MOVLPD:
5002  case X86ISD::MOVLPS:
5003  case X86ISD::MOVSHDUP:
5004  case X86ISD::MOVSLDUP:
5005    // Not yet implemented
5006    return false;
5007  default: llvm_unreachable("unknown target shuffle node");
5008  }
5009
5010  return true;
5011}
5012
5013/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5014/// element of the result of the vector shuffle.
5015static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
5016                                   unsigned Depth) {
5017  if (Depth == 6)
5018    return SDValue();  // Limit search depth.
5019
5020  SDValue V = SDValue(N, 0);
5021  EVT VT = V.getValueType();
5022  unsigned Opcode = V.getOpcode();
5023
5024  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
5025  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
5026    int Elt = SV->getMaskElt(Index);
5027
5028    if (Elt < 0)
5029      return DAG.getUNDEF(VT.getVectorElementType());
5030
5031    unsigned NumElems = VT.getVectorNumElements();
5032    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
5033                                         : SV->getOperand(1);
5034    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
5035  }
5036
5037  // Recurse into target specific vector shuffles to find scalars.
5038  if (isTargetShuffle(Opcode)) {
5039    MVT ShufVT = V.getSimpleValueType();
5040    unsigned NumElems = ShufVT.getVectorNumElements();
5041    SmallVector<int, 16> ShuffleMask;
5042    bool IsUnary;
5043
5044    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
5045      return SDValue();
5046
5047    int Elt = ShuffleMask[Index];
5048    if (Elt < 0)
5049      return DAG.getUNDEF(ShufVT.getVectorElementType());
5050
5051    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
5052                                         : N->getOperand(1);
5053    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
5054                               Depth+1);
5055  }
5056
5057  // Actual nodes that may contain scalar elements
5058  if (Opcode == ISD::BITCAST) {
5059    V = V.getOperand(0);
5060    EVT SrcVT = V.getValueType();
5061    unsigned NumElems = VT.getVectorNumElements();
5062
5063    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
5064      return SDValue();
5065  }
5066
5067  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5068    return (Index == 0) ? V.getOperand(0)
5069                        : DAG.getUNDEF(VT.getVectorElementType());
5070
5071  if (V.getOpcode() == ISD::BUILD_VECTOR)
5072    return V.getOperand(Index);
5073
5074  return SDValue();
5075}
5076
5077/// getNumOfConsecutiveZeros - Return the number of elements of a vector
5078/// shuffle operation which come from a consecutively from a zero. The
5079/// search can start in two different directions, from left or right.
5080/// We count undefs as zeros until PreferredNum is reached.
5081static unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp,
5082                                         unsigned NumElems, bool ZerosFromLeft,
5083                                         SelectionDAG &DAG,
5084                                         unsigned PreferredNum = -1U) {
5085  unsigned NumZeros = 0;
5086  for (unsigned i = 0; i != NumElems; ++i) {
5087    unsigned Index = ZerosFromLeft ? i : NumElems - i - 1;
5088    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
5089    if (!Elt.getNode())
5090      break;
5091
5092    if (X86::isZeroNode(Elt))
5093      ++NumZeros;
5094    else if (Elt.getOpcode() == ISD::UNDEF) // Undef as zero up to PreferredNum.
5095      NumZeros = std::min(NumZeros + 1, PreferredNum);
5096    else
5097      break;
5098  }
5099
5100  return NumZeros;
5101}
5102
5103/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
5104/// correspond consecutively to elements from one of the vector operands,
5105/// starting from its index OpIdx. Also tell OpNum which source vector operand.
5106static
5107bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
5108                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
5109                              unsigned NumElems, unsigned &OpNum) {
5110  bool SeenV1 = false;
5111  bool SeenV2 = false;
5112
5113  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
5114    int Idx = SVOp->getMaskElt(i);
5115    // Ignore undef indicies
5116    if (Idx < 0)
5117      continue;
5118
5119    if (Idx < (int)NumElems)
5120      SeenV1 = true;
5121    else
5122      SeenV2 = true;
5123
5124    // Only accept consecutive elements from the same vector
5125    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
5126      return false;
5127  }
5128
5129  OpNum = SeenV1 ? 0 : 1;
5130  return true;
5131}
5132
5133/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
5134/// logical left shift of a vector.
5135static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5136                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5137  unsigned NumElems =
5138    SVOp->getSimpleValueType(0).getVectorNumElements();
5139  unsigned NumZeros = getNumOfConsecutiveZeros(
5140      SVOp, NumElems, false /* check zeros from right */, DAG,
5141      SVOp->getMaskElt(0));
5142  unsigned OpSrc;
5143
5144  if (!NumZeros)
5145    return false;
5146
5147  // Considering the elements in the mask that are not consecutive zeros,
5148  // check if they consecutively come from only one of the source vectors.
5149  //
5150  //               V1 = {X, A, B, C}     0
5151  //                         \  \  \    /
5152  //   vector_shuffle V1, V2 <1, 2, 3, X>
5153  //
5154  if (!isShuffleMaskConsecutive(SVOp,
5155            0,                   // Mask Start Index
5156            NumElems-NumZeros,   // Mask End Index(exclusive)
5157            NumZeros,            // Where to start looking in the src vector
5158            NumElems,            // Number of elements in vector
5159            OpSrc))              // Which source operand ?
5160    return false;
5161
5162  isLeft = false;
5163  ShAmt = NumZeros;
5164  ShVal = SVOp->getOperand(OpSrc);
5165  return true;
5166}
5167
5168/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
5169/// logical left shift of a vector.
5170static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5171                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5172  unsigned NumElems =
5173    SVOp->getSimpleValueType(0).getVectorNumElements();
5174  unsigned NumZeros = getNumOfConsecutiveZeros(
5175      SVOp, NumElems, true /* check zeros from left */, DAG,
5176      NumElems - SVOp->getMaskElt(NumElems - 1) - 1);
5177  unsigned OpSrc;
5178
5179  if (!NumZeros)
5180    return false;
5181
5182  // Considering the elements in the mask that are not consecutive zeros,
5183  // check if they consecutively come from only one of the source vectors.
5184  //
5185  //                           0    { A, B, X, X } = V2
5186  //                          / \    /  /
5187  //   vector_shuffle V1, V2 <X, X, 4, 5>
5188  //
5189  if (!isShuffleMaskConsecutive(SVOp,
5190            NumZeros,     // Mask Start Index
5191            NumElems,     // Mask End Index(exclusive)
5192            0,            // Where to start looking in the src vector
5193            NumElems,     // Number of elements in vector
5194            OpSrc))       // Which source operand ?
5195    return false;
5196
5197  isLeft = true;
5198  ShAmt = NumZeros;
5199  ShVal = SVOp->getOperand(OpSrc);
5200  return true;
5201}
5202
5203/// isVectorShift - Returns true if the shuffle can be implemented as a
5204/// logical left or right shift of a vector.
5205static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5206                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5207  // Although the logic below support any bitwidth size, there are no
5208  // shift instructions which handle more than 128-bit vectors.
5209  if (!SVOp->getSimpleValueType(0).is128BitVector())
5210    return false;
5211
5212  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
5213      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
5214    return true;
5215
5216  return false;
5217}
5218
5219/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
5220///
5221static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
5222                                       unsigned NumNonZero, unsigned NumZero,
5223                                       SelectionDAG &DAG,
5224                                       const X86Subtarget* Subtarget,
5225                                       const TargetLowering &TLI) {
5226  if (NumNonZero > 8)
5227    return SDValue();
5228
5229  SDLoc dl(Op);
5230  SDValue V(0, 0);
5231  bool First = true;
5232  for (unsigned i = 0; i < 16; ++i) {
5233    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
5234    if (ThisIsNonZero && First) {
5235      if (NumZero)
5236        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
5237      else
5238        V = DAG.getUNDEF(MVT::v8i16);
5239      First = false;
5240    }
5241
5242    if ((i & 1) != 0) {
5243      SDValue ThisElt(0, 0), LastElt(0, 0);
5244      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
5245      if (LastIsNonZero) {
5246        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
5247                              MVT::i16, Op.getOperand(i-1));
5248      }
5249      if (ThisIsNonZero) {
5250        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
5251        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
5252                              ThisElt, DAG.getConstant(8, MVT::i8));
5253        if (LastIsNonZero)
5254          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
5255      } else
5256        ThisElt = LastElt;
5257
5258      if (ThisElt.getNode())
5259        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
5260                        DAG.getIntPtrConstant(i/2));
5261    }
5262  }
5263
5264  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
5265}
5266
5267/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
5268///
5269static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
5270                                     unsigned NumNonZero, unsigned NumZero,
5271                                     SelectionDAG &DAG,
5272                                     const X86Subtarget* Subtarget,
5273                                     const TargetLowering &TLI) {
5274  if (NumNonZero > 4)
5275    return SDValue();
5276
5277  SDLoc dl(Op);
5278  SDValue V(0, 0);
5279  bool First = true;
5280  for (unsigned i = 0; i < 8; ++i) {
5281    bool isNonZero = (NonZeros & (1 << i)) != 0;
5282    if (isNonZero) {
5283      if (First) {
5284        if (NumZero)
5285          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
5286        else
5287          V = DAG.getUNDEF(MVT::v8i16);
5288        First = false;
5289      }
5290      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
5291                      MVT::v8i16, V, Op.getOperand(i),
5292                      DAG.getIntPtrConstant(i));
5293    }
5294  }
5295
5296  return V;
5297}
5298
5299/// getVShift - Return a vector logical shift node.
5300///
5301static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
5302                         unsigned NumBits, SelectionDAG &DAG,
5303                         const TargetLowering &TLI, SDLoc dl) {
5304  assert(VT.is128BitVector() && "Unknown type for VShift");
5305  EVT ShVT = MVT::v2i64;
5306  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
5307  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
5308  return DAG.getNode(ISD::BITCAST, dl, VT,
5309                     DAG.getNode(Opc, dl, ShVT, SrcOp,
5310                             DAG.getConstant(NumBits,
5311                                  TLI.getScalarShiftAmountTy(SrcOp.getValueType()))));
5312}
5313
5314static SDValue
5315LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) {
5316
5317  // Check if the scalar load can be widened into a vector load. And if
5318  // the address is "base + cst" see if the cst can be "absorbed" into
5319  // the shuffle mask.
5320  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
5321    SDValue Ptr = LD->getBasePtr();
5322    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
5323      return SDValue();
5324    EVT PVT = LD->getValueType(0);
5325    if (PVT != MVT::i32 && PVT != MVT::f32)
5326      return SDValue();
5327
5328    int FI = -1;
5329    int64_t Offset = 0;
5330    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
5331      FI = FINode->getIndex();
5332      Offset = 0;
5333    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
5334               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
5335      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5336      Offset = Ptr.getConstantOperandVal(1);
5337      Ptr = Ptr.getOperand(0);
5338    } else {
5339      return SDValue();
5340    }
5341
5342    // FIXME: 256-bit vector instructions don't require a strict alignment,
5343    // improve this code to support it better.
5344    unsigned RequiredAlign = VT.getSizeInBits()/8;
5345    SDValue Chain = LD->getChain();
5346    // Make sure the stack object alignment is at least 16 or 32.
5347    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5348    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
5349      if (MFI->isFixedObjectIndex(FI)) {
5350        // Can't change the alignment. FIXME: It's possible to compute
5351        // the exact stack offset and reference FI + adjust offset instead.
5352        // If someone *really* cares about this. That's the way to implement it.
5353        return SDValue();
5354      } else {
5355        MFI->setObjectAlignment(FI, RequiredAlign);
5356      }
5357    }
5358
5359    // (Offset % 16 or 32) must be multiple of 4. Then address is then
5360    // Ptr + (Offset & ~15).
5361    if (Offset < 0)
5362      return SDValue();
5363    if ((Offset % RequiredAlign) & 3)
5364      return SDValue();
5365    int64_t StartOffset = Offset & ~(RequiredAlign-1);
5366    if (StartOffset)
5367      Ptr = DAG.getNode(ISD::ADD, SDLoc(Ptr), Ptr.getValueType(),
5368                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
5369
5370    int EltNo = (Offset - StartOffset) >> 2;
5371    unsigned NumElems = VT.getVectorNumElements();
5372
5373    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
5374    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
5375                             LD->getPointerInfo().getWithOffset(StartOffset),
5376                             false, false, false, 0);
5377
5378    SmallVector<int, 8> Mask;
5379    for (unsigned i = 0; i != NumElems; ++i)
5380      Mask.push_back(EltNo);
5381
5382    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
5383  }
5384
5385  return SDValue();
5386}
5387
5388/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5389/// vector of type 'VT', see if the elements can be replaced by a single large
5390/// load which has the same value as a build_vector whose operands are 'elts'.
5391///
5392/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5393///
5394/// FIXME: we'd also like to handle the case where the last elements are zero
5395/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5396/// There's even a handy isZeroNode for that purpose.
5397static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5398                                        SDLoc &DL, SelectionDAG &DAG) {
5399  EVT EltVT = VT.getVectorElementType();
5400  unsigned NumElems = Elts.size();
5401
5402  LoadSDNode *LDBase = NULL;
5403  unsigned LastLoadedElt = -1U;
5404
5405  // For each element in the initializer, see if we've found a load or an undef.
5406  // If we don't find an initial load element, or later load elements are
5407  // non-consecutive, bail out.
5408  for (unsigned i = 0; i < NumElems; ++i) {
5409    SDValue Elt = Elts[i];
5410
5411    if (!Elt.getNode() ||
5412        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5413      return SDValue();
5414    if (!LDBase) {
5415      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5416        return SDValue();
5417      LDBase = cast<LoadSDNode>(Elt.getNode());
5418      LastLoadedElt = i;
5419      continue;
5420    }
5421    if (Elt.getOpcode() == ISD::UNDEF)
5422      continue;
5423
5424    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5425    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5426      return SDValue();
5427    LastLoadedElt = i;
5428  }
5429
5430  // If we have found an entire vector of loads and undefs, then return a large
5431  // load of the entire vector width starting at the base pointer.  If we found
5432  // consecutive loads for the low half, generate a vzext_load node.
5433  if (LastLoadedElt == NumElems - 1) {
5434    SDValue NewLd = SDValue();
5435    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5436      NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5437                          LDBase->getPointerInfo(),
5438                          LDBase->isVolatile(), LDBase->isNonTemporal(),
5439                          LDBase->isInvariant(), 0);
5440    NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5441                        LDBase->getPointerInfo(),
5442                        LDBase->isVolatile(), LDBase->isNonTemporal(),
5443                        LDBase->isInvariant(), LDBase->getAlignment());
5444
5445    if (LDBase->hasAnyUseOfValue(1)) {
5446      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5447                                     SDValue(LDBase, 1),
5448                                     SDValue(NewLd.getNode(), 1));
5449      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5450      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5451                             SDValue(NewLd.getNode(), 1));
5452    }
5453
5454    return NewLd;
5455  }
5456  if (NumElems == 4 && LastLoadedElt == 1 &&
5457      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5458    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5459    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5460    SDValue ResNode =
5461        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops,
5462                                array_lengthof(Ops), MVT::i64,
5463                                LDBase->getPointerInfo(),
5464                                LDBase->getAlignment(),
5465                                false/*isVolatile*/, true/*ReadMem*/,
5466                                false/*WriteMem*/);
5467
5468    // Make sure the newly-created LOAD is in the same position as LDBase in
5469    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5470    // update uses of LDBase's output chain to use the TokenFactor.
5471    if (LDBase->hasAnyUseOfValue(1)) {
5472      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5473                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5474      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5475      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5476                             SDValue(ResNode.getNode(), 1));
5477    }
5478
5479    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5480  }
5481  return SDValue();
5482}
5483
5484/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5485/// to generate a splat value for the following cases:
5486/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5487/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5488/// a scalar load, or a constant.
5489/// The VBROADCAST node is returned when a pattern is found,
5490/// or SDValue() otherwise.
5491static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
5492                                    SelectionDAG &DAG) {
5493  if (!Subtarget->hasFp256())
5494    return SDValue();
5495
5496  MVT VT = Op.getSimpleValueType();
5497  SDLoc dl(Op);
5498
5499  assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
5500         "Unsupported vector type for broadcast.");
5501
5502  SDValue Ld;
5503  bool ConstSplatVal;
5504
5505  switch (Op.getOpcode()) {
5506    default:
5507      // Unknown pattern found.
5508      return SDValue();
5509
5510    case ISD::BUILD_VECTOR: {
5511      // The BUILD_VECTOR node must be a splat.
5512      if (!isSplatVector(Op.getNode()))
5513        return SDValue();
5514
5515      Ld = Op.getOperand(0);
5516      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5517                     Ld.getOpcode() == ISD::ConstantFP);
5518
5519      // The suspected load node has several users. Make sure that all
5520      // of its users are from the BUILD_VECTOR node.
5521      // Constants may have multiple users.
5522      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5523        return SDValue();
5524      break;
5525    }
5526
5527    case ISD::VECTOR_SHUFFLE: {
5528      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5529
5530      // Shuffles must have a splat mask where the first element is
5531      // broadcasted.
5532      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5533        return SDValue();
5534
5535      SDValue Sc = Op.getOperand(0);
5536      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5537          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5538
5539        if (!Subtarget->hasInt256())
5540          return SDValue();
5541
5542        // Use the register form of the broadcast instruction available on AVX2.
5543        if (VT.getSizeInBits() >= 256)
5544          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5545        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5546      }
5547
5548      Ld = Sc.getOperand(0);
5549      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5550                       Ld.getOpcode() == ISD::ConstantFP);
5551
5552      // The scalar_to_vector node and the suspected
5553      // load node must have exactly one user.
5554      // Constants may have multiple users.
5555
5556      // AVX-512 has register version of the broadcast
5557      bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() &&
5558        Ld.getValueType().getSizeInBits() >= 32;
5559      if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) &&
5560          !hasRegVer))
5561        return SDValue();
5562      break;
5563    }
5564  }
5565
5566  bool IsGE256 = (VT.getSizeInBits() >= 256);
5567
5568  // Handle the broadcasting a single constant scalar from the constant pool
5569  // into a vector. On Sandybridge it is still better to load a constant vector
5570  // from the constant pool and not to broadcast it from a scalar.
5571  if (ConstSplatVal && Subtarget->hasInt256()) {
5572    EVT CVT = Ld.getValueType();
5573    assert(!CVT.isVector() && "Must not broadcast a vector type");
5574    unsigned ScalarSize = CVT.getSizeInBits();
5575
5576    if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)) {
5577      const Constant *C = 0;
5578      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5579        C = CI->getConstantIntValue();
5580      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5581        C = CF->getConstantFPValue();
5582
5583      assert(C && "Invalid constant type");
5584
5585      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5586      SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
5587      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5588      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5589                       MachinePointerInfo::getConstantPool(),
5590                       false, false, false, Alignment);
5591
5592      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5593    }
5594  }
5595
5596  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5597  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5598
5599  // Handle AVX2 in-register broadcasts.
5600  if (!IsLoad && Subtarget->hasInt256() &&
5601      (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
5602    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5603
5604  // The scalar source must be a normal load.
5605  if (!IsLoad)
5606    return SDValue();
5607
5608  if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))
5609    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5610
5611  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5612  // double since there is no vbroadcastsd xmm
5613  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5614    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5615      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5616  }
5617
5618  // Unsupported broadcast.
5619  return SDValue();
5620}
5621
5622static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
5623  MVT VT = Op.getSimpleValueType();
5624
5625  // Skip if insert_vec_elt is not supported.
5626  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5627  if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5628    return SDValue();
5629
5630  SDLoc DL(Op);
5631  unsigned NumElems = Op.getNumOperands();
5632
5633  SDValue VecIn1;
5634  SDValue VecIn2;
5635  SmallVector<unsigned, 4> InsertIndices;
5636  SmallVector<int, 8> Mask(NumElems, -1);
5637
5638  for (unsigned i = 0; i != NumElems; ++i) {
5639    unsigned Opc = Op.getOperand(i).getOpcode();
5640
5641    if (Opc == ISD::UNDEF)
5642      continue;
5643
5644    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5645      // Quit if more than 1 elements need inserting.
5646      if (InsertIndices.size() > 1)
5647        return SDValue();
5648
5649      InsertIndices.push_back(i);
5650      continue;
5651    }
5652
5653    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5654    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5655
5656    // Quit if extracted from vector of different type.
5657    if (ExtractedFromVec.getValueType() != VT)
5658      return SDValue();
5659
5660    // Quit if non-constant index.
5661    if (!isa<ConstantSDNode>(ExtIdx))
5662      return SDValue();
5663
5664    if (VecIn1.getNode() == 0)
5665      VecIn1 = ExtractedFromVec;
5666    else if (VecIn1 != ExtractedFromVec) {
5667      if (VecIn2.getNode() == 0)
5668        VecIn2 = ExtractedFromVec;
5669      else if (VecIn2 != ExtractedFromVec)
5670        // Quit if more than 2 vectors to shuffle
5671        return SDValue();
5672    }
5673
5674    unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5675
5676    if (ExtractedFromVec == VecIn1)
5677      Mask[i] = Idx;
5678    else if (ExtractedFromVec == VecIn2)
5679      Mask[i] = Idx + NumElems;
5680  }
5681
5682  if (VecIn1.getNode() == 0)
5683    return SDValue();
5684
5685  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5686  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5687  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5688    unsigned Idx = InsertIndices[i];
5689    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5690                     DAG.getIntPtrConstant(Idx));
5691  }
5692
5693  return NV;
5694}
5695
5696// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
5697SDValue
5698X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
5699
5700  MVT VT = Op.getSimpleValueType();
5701  assert((VT.getVectorElementType() == MVT::i1) && (VT.getSizeInBits() <= 16) &&
5702         "Unexpected type in LowerBUILD_VECTORvXi1!");
5703
5704  SDLoc dl(Op);
5705  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5706    SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
5707    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
5708                      Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
5709    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
5710                       Ops, VT.getVectorNumElements());
5711  }
5712
5713  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5714    SDValue Cst = DAG.getTargetConstant(1, MVT::i1);
5715    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
5716                      Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
5717    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
5718                       Ops, VT.getVectorNumElements());
5719  }
5720
5721  bool AllContants = true;
5722  uint64_t Immediate = 0;
5723  for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
5724    SDValue In = Op.getOperand(idx);
5725    if (In.getOpcode() == ISD::UNDEF)
5726      continue;
5727    if (!isa<ConstantSDNode>(In)) {
5728      AllContants = false;
5729      break;
5730    }
5731    if (cast<ConstantSDNode>(In)->getZExtValue())
5732      Immediate |= (1ULL << idx);
5733  }
5734
5735  if (AllContants) {
5736    SDValue FullMask = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1,
5737      DAG.getConstant(Immediate, MVT::i16));
5738    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, FullMask,
5739                       DAG.getIntPtrConstant(0));
5740  }
5741
5742  // Splat vector (with undefs)
5743  SDValue In = Op.getOperand(0);
5744  for (unsigned i = 1, e = Op.getNumOperands(); i != e; ++i) {
5745    if (Op.getOperand(i) != In && Op.getOperand(i).getOpcode() != ISD::UNDEF)
5746      llvm_unreachable("Unsupported predicate operation");
5747  }
5748
5749  SDValue EFLAGS, X86CC;
5750  if (In.getOpcode() == ISD::SETCC) {
5751    SDValue Op0 = In.getOperand(0);
5752    SDValue Op1 = In.getOperand(1);
5753    ISD::CondCode CC = cast<CondCodeSDNode>(In.getOperand(2))->get();
5754    bool isFP = Op1.getValueType().isFloatingPoint();
5755    unsigned X86CCVal = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5756
5757    assert(X86CCVal != X86::COND_INVALID && "Unsupported predicate operation");
5758
5759    X86CC = DAG.getConstant(X86CCVal, MVT::i8);
5760    EFLAGS = EmitCmp(Op0, Op1, X86CCVal, DAG);
5761    EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
5762  } else if (In.getOpcode() == X86ISD::SETCC) {
5763    X86CC = In.getOperand(0);
5764    EFLAGS = In.getOperand(1);
5765  } else {
5766    // The algorithm:
5767    //   Bit1 = In & 0x1
5768    //   if (Bit1 != 0)
5769    //     ZF = 0
5770    //   else
5771    //     ZF = 1
5772    //   if (ZF == 0)
5773    //     res = allOnes ### CMOVNE -1, %res
5774    //   else
5775    //     res = allZero
5776    MVT InVT = In.getSimpleValueType();
5777    SDValue Bit1 = DAG.getNode(ISD::AND, dl, InVT, In, DAG.getConstant(1, InVT));
5778    EFLAGS = EmitTest(Bit1, X86::COND_NE, DAG);
5779    X86CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5780  }
5781
5782  if (VT == MVT::v16i1) {
5783    SDValue Cst1 = DAG.getConstant(-1, MVT::i16);
5784    SDValue Cst0 = DAG.getConstant(0, MVT::i16);
5785    SDValue CmovOp = DAG.getNode(X86ISD::CMOV, dl, MVT::i16,
5786          Cst0, Cst1, X86CC, EFLAGS);
5787    return DAG.getNode(ISD::BITCAST, dl, VT, CmovOp);
5788  }
5789
5790  if (VT == MVT::v8i1) {
5791    SDValue Cst1 = DAG.getConstant(-1, MVT::i32);
5792    SDValue Cst0 = DAG.getConstant(0, MVT::i32);
5793    SDValue CmovOp = DAG.getNode(X86ISD::CMOV, dl, MVT::i32,
5794          Cst0, Cst1, X86CC, EFLAGS);
5795    CmovOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CmovOp);
5796    return DAG.getNode(ISD::BITCAST, dl, VT, CmovOp);
5797  }
5798  llvm_unreachable("Unsupported predicate operation");
5799}
5800
5801SDValue
5802X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5803  SDLoc dl(Op);
5804
5805  MVT VT = Op.getSimpleValueType();
5806  MVT ExtVT = VT.getVectorElementType();
5807  unsigned NumElems = Op.getNumOperands();
5808
5809  // Generate vectors for predicate vectors.
5810  if (VT.getScalarType() == MVT::i1 && Subtarget->hasAVX512())
5811    return LowerBUILD_VECTORvXi1(Op, DAG);
5812
5813  // Vectors containing all zeros can be matched by pxor and xorps later
5814  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5815    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5816    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5817    if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
5818      return Op;
5819
5820    return getZeroVector(VT, Subtarget, DAG, dl);
5821  }
5822
5823  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5824  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5825  // vpcmpeqd on 256-bit vectors.
5826  if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
5827    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
5828      return Op;
5829
5830    if (!VT.is512BitVector())
5831      return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
5832  }
5833
5834  SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
5835  if (Broadcast.getNode())
5836    return Broadcast;
5837
5838  unsigned EVTBits = ExtVT.getSizeInBits();
5839
5840  unsigned NumZero  = 0;
5841  unsigned NumNonZero = 0;
5842  unsigned NonZeros = 0;
5843  bool IsAllConstants = true;
5844  SmallSet<SDValue, 8> Values;
5845  for (unsigned i = 0; i < NumElems; ++i) {
5846    SDValue Elt = Op.getOperand(i);
5847    if (Elt.getOpcode() == ISD::UNDEF)
5848      continue;
5849    Values.insert(Elt);
5850    if (Elt.getOpcode() != ISD::Constant &&
5851        Elt.getOpcode() != ISD::ConstantFP)
5852      IsAllConstants = false;
5853    if (X86::isZeroNode(Elt))
5854      NumZero++;
5855    else {
5856      NonZeros |= (1 << i);
5857      NumNonZero++;
5858    }
5859  }
5860
5861  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5862  if (NumNonZero == 0)
5863    return DAG.getUNDEF(VT);
5864
5865  // Special case for single non-zero, non-undef, element.
5866  if (NumNonZero == 1) {
5867    unsigned Idx = countTrailingZeros(NonZeros);
5868    SDValue Item = Op.getOperand(Idx);
5869
5870    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5871    // the value are obviously zero, truncate the value to i32 and do the
5872    // insertion that way.  Only do this if the value is non-constant or if the
5873    // value is a constant being inserted into element 0.  It is cheaper to do
5874    // a constant pool load than it is to do a movd + shuffle.
5875    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5876        (!IsAllConstants || Idx == 0)) {
5877      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5878        // Handle SSE only.
5879        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5880        EVT VecVT = MVT::v4i32;
5881        unsigned VecElts = 4;
5882
5883        // Truncate the value (which may itself be a constant) to i32, and
5884        // convert it to a vector with movd (S2V+shuffle to zero extend).
5885        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5886        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5887        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5888
5889        // Now we have our 32-bit value zero extended in the low element of
5890        // a vector.  If Idx != 0, swizzle it into place.
5891        if (Idx != 0) {
5892          SmallVector<int, 4> Mask;
5893          Mask.push_back(Idx);
5894          for (unsigned i = 1; i != VecElts; ++i)
5895            Mask.push_back(i);
5896          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5897                                      &Mask[0]);
5898        }
5899        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5900      }
5901    }
5902
5903    // If we have a constant or non-constant insertion into the low element of
5904    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5905    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5906    // depending on what the source datatype is.
5907    if (Idx == 0) {
5908      if (NumZero == 0)
5909        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5910
5911      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5912          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5913        if (VT.is256BitVector() || VT.is512BitVector()) {
5914          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5915          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5916                             Item, DAG.getIntPtrConstant(0));
5917        }
5918        assert(VT.is128BitVector() && "Expected an SSE value type!");
5919        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5920        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5921        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5922      }
5923
5924      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5925        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5926        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5927        if (VT.is256BitVector()) {
5928          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5929          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5930        } else {
5931          assert(VT.is128BitVector() && "Expected an SSE value type!");
5932          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5933        }
5934        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5935      }
5936    }
5937
5938    // Is it a vector logical left shift?
5939    if (NumElems == 2 && Idx == 1 &&
5940        X86::isZeroNode(Op.getOperand(0)) &&
5941        !X86::isZeroNode(Op.getOperand(1))) {
5942      unsigned NumBits = VT.getSizeInBits();
5943      return getVShift(true, VT,
5944                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5945                                   VT, Op.getOperand(1)),
5946                       NumBits/2, DAG, *this, dl);
5947    }
5948
5949    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5950      return SDValue();
5951
5952    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5953    // is a non-constant being inserted into an element other than the low one,
5954    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5955    // movd/movss) to move this into the low element, then shuffle it into
5956    // place.
5957    if (EVTBits == 32) {
5958      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5959
5960      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5961      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5962      SmallVector<int, 8> MaskVec;
5963      for (unsigned i = 0; i != NumElems; ++i)
5964        MaskVec.push_back(i == Idx ? 0 : 1);
5965      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5966    }
5967  }
5968
5969  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5970  if (Values.size() == 1) {
5971    if (EVTBits == 32) {
5972      // Instead of a shuffle like this:
5973      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5974      // Check if it's possible to issue this instead.
5975      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5976      unsigned Idx = countTrailingZeros(NonZeros);
5977      SDValue Item = Op.getOperand(Idx);
5978      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5979        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5980    }
5981    return SDValue();
5982  }
5983
5984  // A vector full of immediates; various special cases are already
5985  // handled, so this is best done with a single constant-pool load.
5986  if (IsAllConstants)
5987    return SDValue();
5988
5989  // For AVX-length vectors, build the individual 128-bit pieces and use
5990  // shuffles to put them in place.
5991  if (VT.is256BitVector()) {
5992    SmallVector<SDValue, 32> V;
5993    for (unsigned i = 0; i != NumElems; ++i)
5994      V.push_back(Op.getOperand(i));
5995
5996    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5997
5998    // Build both the lower and upper subvector.
5999    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
6000    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
6001                                NumElems/2);
6002
6003    // Recreate the wider vector with the lower and upper part.
6004    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
6005  }
6006
6007  // Let legalizer expand 2-wide build_vectors.
6008  if (EVTBits == 64) {
6009    if (NumNonZero == 1) {
6010      // One half is zero or undef.
6011      unsigned Idx = countTrailingZeros(NonZeros);
6012      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
6013                                 Op.getOperand(Idx));
6014      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
6015    }
6016    return SDValue();
6017  }
6018
6019  // If element VT is < 32 bits, convert it to inserts into a zero vector.
6020  if (EVTBits == 8 && NumElems == 16) {
6021    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
6022                                        Subtarget, *this);
6023    if (V.getNode()) return V;
6024  }
6025
6026  if (EVTBits == 16 && NumElems == 8) {
6027    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
6028                                      Subtarget, *this);
6029    if (V.getNode()) return V;
6030  }
6031
6032  // If element VT is == 32 bits, turn it into a number of shuffles.
6033  SmallVector<SDValue, 8> V(NumElems);
6034  if (NumElems == 4 && NumZero > 0) {
6035    for (unsigned i = 0; i < 4; ++i) {
6036      bool isZero = !(NonZeros & (1 << i));
6037      if (isZero)
6038        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
6039      else
6040        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
6041    }
6042
6043    for (unsigned i = 0; i < 2; ++i) {
6044      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
6045        default: break;
6046        case 0:
6047          V[i] = V[i*2];  // Must be a zero vector.
6048          break;
6049        case 1:
6050          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
6051          break;
6052        case 2:
6053          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
6054          break;
6055        case 3:
6056          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
6057          break;
6058      }
6059    }
6060
6061    bool Reverse1 = (NonZeros & 0x3) == 2;
6062    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
6063    int MaskVec[] = {
6064      Reverse1 ? 1 : 0,
6065      Reverse1 ? 0 : 1,
6066      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
6067      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
6068    };
6069    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
6070  }
6071
6072  if (Values.size() > 1 && VT.is128BitVector()) {
6073    // Check for a build vector of consecutive loads.
6074    for (unsigned i = 0; i < NumElems; ++i)
6075      V[i] = Op.getOperand(i);
6076
6077    // Check for elements which are consecutive loads.
6078    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
6079    if (LD.getNode())
6080      return LD;
6081
6082    // Check for a build vector from mostly shuffle plus few inserting.
6083    SDValue Sh = buildFromShuffleMostly(Op, DAG);
6084    if (Sh.getNode())
6085      return Sh;
6086
6087    // For SSE 4.1, use insertps to put the high elements into the low element.
6088    if (getSubtarget()->hasSSE41()) {
6089      SDValue Result;
6090      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
6091        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
6092      else
6093        Result = DAG.getUNDEF(VT);
6094
6095      for (unsigned i = 1; i < NumElems; ++i) {
6096        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
6097        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
6098                             Op.getOperand(i), DAG.getIntPtrConstant(i));
6099      }
6100      return Result;
6101    }
6102
6103    // Otherwise, expand into a number of unpckl*, start by extending each of
6104    // our (non-undef) elements to the full vector width with the element in the
6105    // bottom slot of the vector (which generates no code for SSE).
6106    for (unsigned i = 0; i < NumElems; ++i) {
6107      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
6108        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
6109      else
6110        V[i] = DAG.getUNDEF(VT);
6111    }
6112
6113    // Next, we iteratively mix elements, e.g. for v4f32:
6114    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
6115    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
6116    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
6117    unsigned EltStride = NumElems >> 1;
6118    while (EltStride != 0) {
6119      for (unsigned i = 0; i < EltStride; ++i) {
6120        // If V[i+EltStride] is undef and this is the first round of mixing,
6121        // then it is safe to just drop this shuffle: V[i] is already in the
6122        // right place, the one element (since it's the first round) being
6123        // inserted as undef can be dropped.  This isn't safe for successive
6124        // rounds because they will permute elements within both vectors.
6125        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
6126            EltStride == NumElems/2)
6127          continue;
6128
6129        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
6130      }
6131      EltStride >>= 1;
6132    }
6133    return V[0];
6134  }
6135  return SDValue();
6136}
6137
6138// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
6139// to create 256-bit vectors from two other 128-bit ones.
6140static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6141  SDLoc dl(Op);
6142  MVT ResVT = Op.getSimpleValueType();
6143
6144  assert((ResVT.is256BitVector() ||
6145          ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
6146
6147  SDValue V1 = Op.getOperand(0);
6148  SDValue V2 = Op.getOperand(1);
6149  unsigned NumElems = ResVT.getVectorNumElements();
6150  if(ResVT.is256BitVector())
6151    return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
6152
6153  return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
6154}
6155
6156static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6157  assert(Op.getNumOperands() == 2);
6158
6159  // AVX/AVX-512 can use the vinsertf128 instruction to create 256-bit vectors
6160  // from two other 128-bit ones.
6161  return LowerAVXCONCAT_VECTORS(Op, DAG);
6162}
6163
6164// Try to lower a shuffle node into a simple blend instruction.
6165static SDValue
6166LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
6167                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
6168  SDValue V1 = SVOp->getOperand(0);
6169  SDValue V2 = SVOp->getOperand(1);
6170  SDLoc dl(SVOp);
6171  MVT VT = SVOp->getSimpleValueType(0);
6172  MVT EltVT = VT.getVectorElementType();
6173  unsigned NumElems = VT.getVectorNumElements();
6174
6175  // There is no blend with immediate in AVX-512.
6176  if (VT.is512BitVector())
6177    return SDValue();
6178
6179  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
6180    return SDValue();
6181  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
6182    return SDValue();
6183
6184  // Check the mask for BLEND and build the value.
6185  unsigned MaskValue = 0;
6186  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
6187  unsigned NumLanes = (NumElems-1)/8 + 1;
6188  unsigned NumElemsInLane = NumElems / NumLanes;
6189
6190  // Blend for v16i16 should be symetric for the both lanes.
6191  for (unsigned i = 0; i < NumElemsInLane; ++i) {
6192
6193    int SndLaneEltIdx = (NumLanes == 2) ?
6194      SVOp->getMaskElt(i + NumElemsInLane) : -1;
6195    int EltIdx = SVOp->getMaskElt(i);
6196
6197    if ((EltIdx < 0 || EltIdx == (int)i) &&
6198        (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
6199      continue;
6200
6201    if (((unsigned)EltIdx == (i + NumElems)) &&
6202        (SndLaneEltIdx < 0 ||
6203         (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
6204      MaskValue |= (1<<i);
6205    else
6206      return SDValue();
6207  }
6208
6209  // Convert i32 vectors to floating point if it is not AVX2.
6210  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
6211  MVT BlendVT = VT;
6212  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
6213    BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
6214                               NumElems);
6215    V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
6216    V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
6217  }
6218
6219  SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
6220                            DAG.getConstant(MaskValue, MVT::i32));
6221  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
6222}
6223
6224// v8i16 shuffles - Prefer shuffles in the following order:
6225// 1. [all]   pshuflw, pshufhw, optional move
6226// 2. [ssse3] 1 x pshufb
6227// 3. [ssse3] 2 x pshufb + 1 x por
6228// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
6229static SDValue
6230LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
6231                         SelectionDAG &DAG) {
6232  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6233  SDValue V1 = SVOp->getOperand(0);
6234  SDValue V2 = SVOp->getOperand(1);
6235  SDLoc dl(SVOp);
6236  SmallVector<int, 8> MaskVals;
6237
6238  // Determine if more than 1 of the words in each of the low and high quadwords
6239  // of the result come from the same quadword of one of the two inputs.  Undef
6240  // mask values count as coming from any quadword, for better codegen.
6241  unsigned LoQuad[] = { 0, 0, 0, 0 };
6242  unsigned HiQuad[] = { 0, 0, 0, 0 };
6243  std::bitset<4> InputQuads;
6244  for (unsigned i = 0; i < 8; ++i) {
6245    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
6246    int EltIdx = SVOp->getMaskElt(i);
6247    MaskVals.push_back(EltIdx);
6248    if (EltIdx < 0) {
6249      ++Quad[0];
6250      ++Quad[1];
6251      ++Quad[2];
6252      ++Quad[3];
6253      continue;
6254    }
6255    ++Quad[EltIdx / 4];
6256    InputQuads.set(EltIdx / 4);
6257  }
6258
6259  int BestLoQuad = -1;
6260  unsigned MaxQuad = 1;
6261  for (unsigned i = 0; i < 4; ++i) {
6262    if (LoQuad[i] > MaxQuad) {
6263      BestLoQuad = i;
6264      MaxQuad = LoQuad[i];
6265    }
6266  }
6267
6268  int BestHiQuad = -1;
6269  MaxQuad = 1;
6270  for (unsigned i = 0; i < 4; ++i) {
6271    if (HiQuad[i] > MaxQuad) {
6272      BestHiQuad = i;
6273      MaxQuad = HiQuad[i];
6274    }
6275  }
6276
6277  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
6278  // of the two input vectors, shuffle them into one input vector so only a
6279  // single pshufb instruction is necessary. If There are more than 2 input
6280  // quads, disable the next transformation since it does not help SSSE3.
6281  bool V1Used = InputQuads[0] || InputQuads[1];
6282  bool V2Used = InputQuads[2] || InputQuads[3];
6283  if (Subtarget->hasSSSE3()) {
6284    if (InputQuads.count() == 2 && V1Used && V2Used) {
6285      BestLoQuad = InputQuads[0] ? 0 : 1;
6286      BestHiQuad = InputQuads[2] ? 2 : 3;
6287    }
6288    if (InputQuads.count() > 2) {
6289      BestLoQuad = -1;
6290      BestHiQuad = -1;
6291    }
6292  }
6293
6294  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
6295  // the shuffle mask.  If a quad is scored as -1, that means that it contains
6296  // words from all 4 input quadwords.
6297  SDValue NewV;
6298  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
6299    int MaskV[] = {
6300      BestLoQuad < 0 ? 0 : BestLoQuad,
6301      BestHiQuad < 0 ? 1 : BestHiQuad
6302    };
6303    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
6304                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
6305                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
6306    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
6307
6308    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
6309    // source words for the shuffle, to aid later transformations.
6310    bool AllWordsInNewV = true;
6311    bool InOrder[2] = { true, true };
6312    for (unsigned i = 0; i != 8; ++i) {
6313      int idx = MaskVals[i];
6314      if (idx != (int)i)
6315        InOrder[i/4] = false;
6316      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
6317        continue;
6318      AllWordsInNewV = false;
6319      break;
6320    }
6321
6322    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
6323    if (AllWordsInNewV) {
6324      for (int i = 0; i != 8; ++i) {
6325        int idx = MaskVals[i];
6326        if (idx < 0)
6327          continue;
6328        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
6329        if ((idx != i) && idx < 4)
6330          pshufhw = false;
6331        if ((idx != i) && idx > 3)
6332          pshuflw = false;
6333      }
6334      V1 = NewV;
6335      V2Used = false;
6336      BestLoQuad = 0;
6337      BestHiQuad = 1;
6338    }
6339
6340    // If we've eliminated the use of V2, and the new mask is a pshuflw or
6341    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
6342    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
6343      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
6344      unsigned TargetMask = 0;
6345      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
6346                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
6347      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6348      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
6349                             getShufflePSHUFLWImmediate(SVOp);
6350      V1 = NewV.getOperand(0);
6351      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
6352    }
6353  }
6354
6355  // Promote splats to a larger type which usually leads to more efficient code.
6356  // FIXME: Is this true if pshufb is available?
6357  if (SVOp->isSplat())
6358    return PromoteSplat(SVOp, DAG);
6359
6360  // If we have SSSE3, and all words of the result are from 1 input vector,
6361  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
6362  // is present, fall back to case 4.
6363  if (Subtarget->hasSSSE3()) {
6364    SmallVector<SDValue,16> pshufbMask;
6365
6366    // If we have elements from both input vectors, set the high bit of the
6367    // shuffle mask element to zero out elements that come from V2 in the V1
6368    // mask, and elements that come from V1 in the V2 mask, so that the two
6369    // results can be OR'd together.
6370    bool TwoInputs = V1Used && V2Used;
6371    for (unsigned i = 0; i != 8; ++i) {
6372      int EltIdx = MaskVals[i] * 2;
6373      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
6374      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
6375      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
6376      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
6377    }
6378    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
6379    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
6380                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6381                                 MVT::v16i8, &pshufbMask[0], 16));
6382    if (!TwoInputs)
6383      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6384
6385    // Calculate the shuffle mask for the second input, shuffle it, and
6386    // OR it with the first shuffled input.
6387    pshufbMask.clear();
6388    for (unsigned i = 0; i != 8; ++i) {
6389      int EltIdx = MaskVals[i] * 2;
6390      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6391      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
6392      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
6393      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
6394    }
6395    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
6396    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6397                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6398                                 MVT::v16i8, &pshufbMask[0], 16));
6399    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6400    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6401  }
6402
6403  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
6404  // and update MaskVals with new element order.
6405  std::bitset<8> InOrder;
6406  if (BestLoQuad >= 0) {
6407    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
6408    for (int i = 0; i != 4; ++i) {
6409      int idx = MaskVals[i];
6410      if (idx < 0) {
6411        InOrder.set(i);
6412      } else if ((idx / 4) == BestLoQuad) {
6413        MaskV[i] = idx & 3;
6414        InOrder.set(i);
6415      }
6416    }
6417    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
6418                                &MaskV[0]);
6419
6420    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
6421      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6422      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
6423                                  NewV.getOperand(0),
6424                                  getShufflePSHUFLWImmediate(SVOp), DAG);
6425    }
6426  }
6427
6428  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
6429  // and update MaskVals with the new element order.
6430  if (BestHiQuad >= 0) {
6431    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
6432    for (unsigned i = 4; i != 8; ++i) {
6433      int idx = MaskVals[i];
6434      if (idx < 0) {
6435        InOrder.set(i);
6436      } else if ((idx / 4) == BestHiQuad) {
6437        MaskV[i] = (idx & 3) + 4;
6438        InOrder.set(i);
6439      }
6440    }
6441    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
6442                                &MaskV[0]);
6443
6444    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
6445      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6446      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
6447                                  NewV.getOperand(0),
6448                                  getShufflePSHUFHWImmediate(SVOp), DAG);
6449    }
6450  }
6451
6452  // In case BestHi & BestLo were both -1, which means each quadword has a word
6453  // from each of the four input quadwords, calculate the InOrder bitvector now
6454  // before falling through to the insert/extract cleanup.
6455  if (BestLoQuad == -1 && BestHiQuad == -1) {
6456    NewV = V1;
6457    for (int i = 0; i != 8; ++i)
6458      if (MaskVals[i] < 0 || MaskVals[i] == i)
6459        InOrder.set(i);
6460  }
6461
6462  // The other elements are put in the right place using pextrw and pinsrw.
6463  for (unsigned i = 0; i != 8; ++i) {
6464    if (InOrder[i])
6465      continue;
6466    int EltIdx = MaskVals[i];
6467    if (EltIdx < 0)
6468      continue;
6469    SDValue ExtOp = (EltIdx < 8) ?
6470      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
6471                  DAG.getIntPtrConstant(EltIdx)) :
6472      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
6473                  DAG.getIntPtrConstant(EltIdx - 8));
6474    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
6475                       DAG.getIntPtrConstant(i));
6476  }
6477  return NewV;
6478}
6479
6480// v16i8 shuffles - Prefer shuffles in the following order:
6481// 1. [ssse3] 1 x pshufb
6482// 2. [ssse3] 2 x pshufb + 1 x por
6483// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
6484static SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
6485                                        const X86Subtarget* Subtarget,
6486                                        SelectionDAG &DAG) {
6487  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6488  SDValue V1 = SVOp->getOperand(0);
6489  SDValue V2 = SVOp->getOperand(1);
6490  SDLoc dl(SVOp);
6491  ArrayRef<int> MaskVals = SVOp->getMask();
6492
6493  // Promote splats to a larger type which usually leads to more efficient code.
6494  // FIXME: Is this true if pshufb is available?
6495  if (SVOp->isSplat())
6496    return PromoteSplat(SVOp, DAG);
6497
6498  // If we have SSSE3, case 1 is generated when all result bytes come from
6499  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
6500  // present, fall back to case 3.
6501
6502  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
6503  if (Subtarget->hasSSSE3()) {
6504    SmallVector<SDValue,16> pshufbMask;
6505
6506    // If all result elements are from one input vector, then only translate
6507    // undef mask values to 0x80 (zero out result) in the pshufb mask.
6508    //
6509    // Otherwise, we have elements from both input vectors, and must zero out
6510    // elements that come from V2 in the first mask, and V1 in the second mask
6511    // so that we can OR them together.
6512    for (unsigned i = 0; i != 16; ++i) {
6513      int EltIdx = MaskVals[i];
6514      if (EltIdx < 0 || EltIdx >= 16)
6515        EltIdx = 0x80;
6516      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6517    }
6518    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
6519                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6520                                 MVT::v16i8, &pshufbMask[0], 16));
6521
6522    // As PSHUFB will zero elements with negative indices, it's safe to ignore
6523    // the 2nd operand if it's undefined or zero.
6524    if (V2.getOpcode() == ISD::UNDEF ||
6525        ISD::isBuildVectorAllZeros(V2.getNode()))
6526      return V1;
6527
6528    // Calculate the shuffle mask for the second input, shuffle it, and
6529    // OR it with the first shuffled input.
6530    pshufbMask.clear();
6531    for (unsigned i = 0; i != 16; ++i) {
6532      int EltIdx = MaskVals[i];
6533      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6534      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6535    }
6536    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6537                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6538                                 MVT::v16i8, &pshufbMask[0], 16));
6539    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6540  }
6541
6542  // No SSSE3 - Calculate in place words and then fix all out of place words
6543  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
6544  // the 16 different words that comprise the two doublequadword input vectors.
6545  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6546  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
6547  SDValue NewV = V1;
6548  for (int i = 0; i != 8; ++i) {
6549    int Elt0 = MaskVals[i*2];
6550    int Elt1 = MaskVals[i*2+1];
6551
6552    // This word of the result is all undef, skip it.
6553    if (Elt0 < 0 && Elt1 < 0)
6554      continue;
6555
6556    // This word of the result is already in the correct place, skip it.
6557    if ((Elt0 == i*2) && (Elt1 == i*2+1))
6558      continue;
6559
6560    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6561    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6562    SDValue InsElt;
6563
6564    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6565    // using a single extract together, load it and store it.
6566    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6567      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6568                           DAG.getIntPtrConstant(Elt1 / 2));
6569      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6570                        DAG.getIntPtrConstant(i));
6571      continue;
6572    }
6573
6574    // If Elt1 is defined, extract it from the appropriate source.  If the
6575    // source byte is not also odd, shift the extracted word left 8 bits
6576    // otherwise clear the bottom 8 bits if we need to do an or.
6577    if (Elt1 >= 0) {
6578      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6579                           DAG.getIntPtrConstant(Elt1 / 2));
6580      if ((Elt1 & 1) == 0)
6581        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6582                             DAG.getConstant(8,
6583                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6584      else if (Elt0 >= 0)
6585        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6586                             DAG.getConstant(0xFF00, MVT::i16));
6587    }
6588    // If Elt0 is defined, extract it from the appropriate source.  If the
6589    // source byte is not also even, shift the extracted word right 8 bits. If
6590    // Elt1 was also defined, OR the extracted values together before
6591    // inserting them in the result.
6592    if (Elt0 >= 0) {
6593      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6594                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6595      if ((Elt0 & 1) != 0)
6596        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6597                              DAG.getConstant(8,
6598                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6599      else if (Elt1 >= 0)
6600        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6601                             DAG.getConstant(0x00FF, MVT::i16));
6602      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6603                         : InsElt0;
6604    }
6605    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6606                       DAG.getIntPtrConstant(i));
6607  }
6608  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6609}
6610
6611// v32i8 shuffles - Translate to VPSHUFB if possible.
6612static
6613SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6614                                 const X86Subtarget *Subtarget,
6615                                 SelectionDAG &DAG) {
6616  MVT VT = SVOp->getSimpleValueType(0);
6617  SDValue V1 = SVOp->getOperand(0);
6618  SDValue V2 = SVOp->getOperand(1);
6619  SDLoc dl(SVOp);
6620  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6621
6622  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6623  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6624  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6625
6626  // VPSHUFB may be generated if
6627  // (1) one of input vector is undefined or zeroinitializer.
6628  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6629  // And (2) the mask indexes don't cross the 128-bit lane.
6630  if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
6631      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6632    return SDValue();
6633
6634  if (V1IsAllZero && !V2IsAllZero) {
6635    CommuteVectorShuffleMask(MaskVals, 32);
6636    V1 = V2;
6637  }
6638  SmallVector<SDValue, 32> pshufbMask;
6639  for (unsigned i = 0; i != 32; i++) {
6640    int EltIdx = MaskVals[i];
6641    if (EltIdx < 0 || EltIdx >= 32)
6642      EltIdx = 0x80;
6643    else {
6644      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6645        // Cross lane is not allowed.
6646        return SDValue();
6647      EltIdx &= 0xf;
6648    }
6649    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6650  }
6651  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6652                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6653                                  MVT::v32i8, &pshufbMask[0], 32));
6654}
6655
6656/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6657/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6658/// done when every pair / quad of shuffle mask elements point to elements in
6659/// the right sequence. e.g.
6660/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6661static
6662SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6663                                 SelectionDAG &DAG) {
6664  MVT VT = SVOp->getSimpleValueType(0);
6665  SDLoc dl(SVOp);
6666  unsigned NumElems = VT.getVectorNumElements();
6667  MVT NewVT;
6668  unsigned Scale;
6669  switch (VT.SimpleTy) {
6670  default: llvm_unreachable("Unexpected!");
6671  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6672  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6673  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6674  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6675  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6676  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6677  }
6678
6679  SmallVector<int, 8> MaskVec;
6680  for (unsigned i = 0; i != NumElems; i += Scale) {
6681    int StartIdx = -1;
6682    for (unsigned j = 0; j != Scale; ++j) {
6683      int EltIdx = SVOp->getMaskElt(i+j);
6684      if (EltIdx < 0)
6685        continue;
6686      if (StartIdx < 0)
6687        StartIdx = (EltIdx / Scale);
6688      if (EltIdx != (int)(StartIdx*Scale + j))
6689        return SDValue();
6690    }
6691    MaskVec.push_back(StartIdx);
6692  }
6693
6694  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6695  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6696  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6697}
6698
6699/// getVZextMovL - Return a zero-extending vector move low node.
6700///
6701static SDValue getVZextMovL(MVT VT, MVT OpVT,
6702                            SDValue SrcOp, SelectionDAG &DAG,
6703                            const X86Subtarget *Subtarget, SDLoc dl) {
6704  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6705    LoadSDNode *LD = NULL;
6706    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6707      LD = dyn_cast<LoadSDNode>(SrcOp);
6708    if (!LD) {
6709      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6710      // instead.
6711      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6712      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6713          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6714          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6715          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6716        // PR2108
6717        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6718        return DAG.getNode(ISD::BITCAST, dl, VT,
6719                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6720                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6721                                                   OpVT,
6722                                                   SrcOp.getOperand(0)
6723                                                          .getOperand(0))));
6724      }
6725    }
6726  }
6727
6728  return DAG.getNode(ISD::BITCAST, dl, VT,
6729                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6730                                 DAG.getNode(ISD::BITCAST, dl,
6731                                             OpVT, SrcOp)));
6732}
6733
6734/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6735/// which could not be matched by any known target speficic shuffle
6736static SDValue
6737LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6738
6739  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6740  if (NewOp.getNode())
6741    return NewOp;
6742
6743  MVT VT = SVOp->getSimpleValueType(0);
6744
6745  unsigned NumElems = VT.getVectorNumElements();
6746  unsigned NumLaneElems = NumElems / 2;
6747
6748  SDLoc dl(SVOp);
6749  MVT EltVT = VT.getVectorElementType();
6750  MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6751  SDValue Output[2];
6752
6753  SmallVector<int, 16> Mask;
6754  for (unsigned l = 0; l < 2; ++l) {
6755    // Build a shuffle mask for the output, discovering on the fly which
6756    // input vectors to use as shuffle operands (recorded in InputUsed).
6757    // If building a suitable shuffle vector proves too hard, then bail
6758    // out with UseBuildVector set.
6759    bool UseBuildVector = false;
6760    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6761    unsigned LaneStart = l * NumLaneElems;
6762    for (unsigned i = 0; i != NumLaneElems; ++i) {
6763      // The mask element.  This indexes into the input.
6764      int Idx = SVOp->getMaskElt(i+LaneStart);
6765      if (Idx < 0) {
6766        // the mask element does not index into any input vector.
6767        Mask.push_back(-1);
6768        continue;
6769      }
6770
6771      // The input vector this mask element indexes into.
6772      int Input = Idx / NumLaneElems;
6773
6774      // Turn the index into an offset from the start of the input vector.
6775      Idx -= Input * NumLaneElems;
6776
6777      // Find or create a shuffle vector operand to hold this input.
6778      unsigned OpNo;
6779      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6780        if (InputUsed[OpNo] == Input)
6781          // This input vector is already an operand.
6782          break;
6783        if (InputUsed[OpNo] < 0) {
6784          // Create a new operand for this input vector.
6785          InputUsed[OpNo] = Input;
6786          break;
6787        }
6788      }
6789
6790      if (OpNo >= array_lengthof(InputUsed)) {
6791        // More than two input vectors used!  Give up on trying to create a
6792        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6793        UseBuildVector = true;
6794        break;
6795      }
6796
6797      // Add the mask index for the new shuffle vector.
6798      Mask.push_back(Idx + OpNo * NumLaneElems);
6799    }
6800
6801    if (UseBuildVector) {
6802      SmallVector<SDValue, 16> SVOps;
6803      for (unsigned i = 0; i != NumLaneElems; ++i) {
6804        // The mask element.  This indexes into the input.
6805        int Idx = SVOp->getMaskElt(i+LaneStart);
6806        if (Idx < 0) {
6807          SVOps.push_back(DAG.getUNDEF(EltVT));
6808          continue;
6809        }
6810
6811        // The input vector this mask element indexes into.
6812        int Input = Idx / NumElems;
6813
6814        // Turn the index into an offset from the start of the input vector.
6815        Idx -= Input * NumElems;
6816
6817        // Extract the vector element by hand.
6818        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6819                                    SVOp->getOperand(Input),
6820                                    DAG.getIntPtrConstant(Idx)));
6821      }
6822
6823      // Construct the output using a BUILD_VECTOR.
6824      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6825                              SVOps.size());
6826    } else if (InputUsed[0] < 0) {
6827      // No input vectors were used! The result is undefined.
6828      Output[l] = DAG.getUNDEF(NVT);
6829    } else {
6830      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6831                                        (InputUsed[0] % 2) * NumLaneElems,
6832                                        DAG, dl);
6833      // If only one input was used, use an undefined vector for the other.
6834      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6835        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6836                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6837      // At least one input vector was used. Create a new shuffle vector.
6838      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6839    }
6840
6841    Mask.clear();
6842  }
6843
6844  // Concatenate the result back
6845  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6846}
6847
6848/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6849/// 4 elements, and match them with several different shuffle types.
6850static SDValue
6851LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6852  SDValue V1 = SVOp->getOperand(0);
6853  SDValue V2 = SVOp->getOperand(1);
6854  SDLoc dl(SVOp);
6855  MVT VT = SVOp->getSimpleValueType(0);
6856
6857  assert(VT.is128BitVector() && "Unsupported vector size");
6858
6859  std::pair<int, int> Locs[4];
6860  int Mask1[] = { -1, -1, -1, -1 };
6861  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6862
6863  unsigned NumHi = 0;
6864  unsigned NumLo = 0;
6865  for (unsigned i = 0; i != 4; ++i) {
6866    int Idx = PermMask[i];
6867    if (Idx < 0) {
6868      Locs[i] = std::make_pair(-1, -1);
6869    } else {
6870      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6871      if (Idx < 4) {
6872        Locs[i] = std::make_pair(0, NumLo);
6873        Mask1[NumLo] = Idx;
6874        NumLo++;
6875      } else {
6876        Locs[i] = std::make_pair(1, NumHi);
6877        if (2+NumHi < 4)
6878          Mask1[2+NumHi] = Idx;
6879        NumHi++;
6880      }
6881    }
6882  }
6883
6884  if (NumLo <= 2 && NumHi <= 2) {
6885    // If no more than two elements come from either vector. This can be
6886    // implemented with two shuffles. First shuffle gather the elements.
6887    // The second shuffle, which takes the first shuffle as both of its
6888    // vector operands, put the elements into the right order.
6889    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6890
6891    int Mask2[] = { -1, -1, -1, -1 };
6892
6893    for (unsigned i = 0; i != 4; ++i)
6894      if (Locs[i].first != -1) {
6895        unsigned Idx = (i < 2) ? 0 : 4;
6896        Idx += Locs[i].first * 2 + Locs[i].second;
6897        Mask2[i] = Idx;
6898      }
6899
6900    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6901  }
6902
6903  if (NumLo == 3 || NumHi == 3) {
6904    // Otherwise, we must have three elements from one vector, call it X, and
6905    // one element from the other, call it Y.  First, use a shufps to build an
6906    // intermediate vector with the one element from Y and the element from X
6907    // that will be in the same half in the final destination (the indexes don't
6908    // matter). Then, use a shufps to build the final vector, taking the half
6909    // containing the element from Y from the intermediate, and the other half
6910    // from X.
6911    if (NumHi == 3) {
6912      // Normalize it so the 3 elements come from V1.
6913      CommuteVectorShuffleMask(PermMask, 4);
6914      std::swap(V1, V2);
6915    }
6916
6917    // Find the element from V2.
6918    unsigned HiIndex;
6919    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6920      int Val = PermMask[HiIndex];
6921      if (Val < 0)
6922        continue;
6923      if (Val >= 4)
6924        break;
6925    }
6926
6927    Mask1[0] = PermMask[HiIndex];
6928    Mask1[1] = -1;
6929    Mask1[2] = PermMask[HiIndex^1];
6930    Mask1[3] = -1;
6931    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6932
6933    if (HiIndex >= 2) {
6934      Mask1[0] = PermMask[0];
6935      Mask1[1] = PermMask[1];
6936      Mask1[2] = HiIndex & 1 ? 6 : 4;
6937      Mask1[3] = HiIndex & 1 ? 4 : 6;
6938      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6939    }
6940
6941    Mask1[0] = HiIndex & 1 ? 2 : 0;
6942    Mask1[1] = HiIndex & 1 ? 0 : 2;
6943    Mask1[2] = PermMask[2];
6944    Mask1[3] = PermMask[3];
6945    if (Mask1[2] >= 0)
6946      Mask1[2] += 4;
6947    if (Mask1[3] >= 0)
6948      Mask1[3] += 4;
6949    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6950  }
6951
6952  // Break it into (shuffle shuffle_hi, shuffle_lo).
6953  int LoMask[] = { -1, -1, -1, -1 };
6954  int HiMask[] = { -1, -1, -1, -1 };
6955
6956  int *MaskPtr = LoMask;
6957  unsigned MaskIdx = 0;
6958  unsigned LoIdx = 0;
6959  unsigned HiIdx = 2;
6960  for (unsigned i = 0; i != 4; ++i) {
6961    if (i == 2) {
6962      MaskPtr = HiMask;
6963      MaskIdx = 1;
6964      LoIdx = 0;
6965      HiIdx = 2;
6966    }
6967    int Idx = PermMask[i];
6968    if (Idx < 0) {
6969      Locs[i] = std::make_pair(-1, -1);
6970    } else if (Idx < 4) {
6971      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6972      MaskPtr[LoIdx] = Idx;
6973      LoIdx++;
6974    } else {
6975      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6976      MaskPtr[HiIdx] = Idx;
6977      HiIdx++;
6978    }
6979  }
6980
6981  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6982  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6983  int MaskOps[] = { -1, -1, -1, -1 };
6984  for (unsigned i = 0; i != 4; ++i)
6985    if (Locs[i].first != -1)
6986      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6987  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6988}
6989
6990static bool MayFoldVectorLoad(SDValue V) {
6991  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6992    V = V.getOperand(0);
6993
6994  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6995    V = V.getOperand(0);
6996  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6997      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6998    // BUILD_VECTOR (load), undef
6999    V = V.getOperand(0);
7000
7001  return MayFoldLoad(V);
7002}
7003
7004static
7005SDValue getMOVDDup(SDValue &Op, SDLoc &dl, SDValue V1, SelectionDAG &DAG) {
7006  MVT VT = Op.getSimpleValueType();
7007
7008  // Canonizalize to v2f64.
7009  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
7010  return DAG.getNode(ISD::BITCAST, dl, VT,
7011                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
7012                                          V1, DAG));
7013}
7014
7015static
7016SDValue getMOVLowToHigh(SDValue &Op, SDLoc &dl, SelectionDAG &DAG,
7017                        bool HasSSE2) {
7018  SDValue V1 = Op.getOperand(0);
7019  SDValue V2 = Op.getOperand(1);
7020  MVT VT = Op.getSimpleValueType();
7021
7022  assert(VT != MVT::v2i64 && "unsupported shuffle type");
7023
7024  if (HasSSE2 && VT == MVT::v2f64)
7025    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
7026
7027  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
7028  return DAG.getNode(ISD::BITCAST, dl, VT,
7029                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
7030                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
7031                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
7032}
7033
7034static
7035SDValue getMOVHighToLow(SDValue &Op, SDLoc &dl, SelectionDAG &DAG) {
7036  SDValue V1 = Op.getOperand(0);
7037  SDValue V2 = Op.getOperand(1);
7038  MVT VT = Op.getSimpleValueType();
7039
7040  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
7041         "unsupported shuffle type");
7042
7043  if (V2.getOpcode() == ISD::UNDEF)
7044    V2 = V1;
7045
7046  // v4i32 or v4f32
7047  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
7048}
7049
7050static
7051SDValue getMOVLP(SDValue &Op, SDLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
7052  SDValue V1 = Op.getOperand(0);
7053  SDValue V2 = Op.getOperand(1);
7054  MVT VT = Op.getSimpleValueType();
7055  unsigned NumElems = VT.getVectorNumElements();
7056
7057  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
7058  // operand of these instructions is only memory, so check if there's a
7059  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
7060  // same masks.
7061  bool CanFoldLoad = false;
7062
7063  // Trivial case, when V2 comes from a load.
7064  if (MayFoldVectorLoad(V2))
7065    CanFoldLoad = true;
7066
7067  // When V1 is a load, it can be folded later into a store in isel, example:
7068  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
7069  //    turns into:
7070  //  (MOVLPSmr addr:$src1, VR128:$src2)
7071  // So, recognize this potential and also use MOVLPS or MOVLPD
7072  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
7073    CanFoldLoad = true;
7074
7075  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7076  if (CanFoldLoad) {
7077    if (HasSSE2 && NumElems == 2)
7078      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
7079
7080    if (NumElems == 4)
7081      // If we don't care about the second element, proceed to use movss.
7082      if (SVOp->getMaskElt(1) != -1)
7083        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
7084  }
7085
7086  // movl and movlp will both match v2i64, but v2i64 is never matched by
7087  // movl earlier because we make it strict to avoid messing with the movlp load
7088  // folding logic (see the code above getMOVLP call). Match it here then,
7089  // this is horrible, but will stay like this until we move all shuffle
7090  // matching to x86 specific nodes. Note that for the 1st condition all
7091  // types are matched with movsd.
7092  if (HasSSE2) {
7093    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
7094    // as to remove this logic from here, as much as possible
7095    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
7096      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
7097    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
7098  }
7099
7100  assert(VT != MVT::v4i32 && "unsupported shuffle type");
7101
7102  // Invert the operand order and use SHUFPS to match it.
7103  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
7104                              getShuffleSHUFImmediate(SVOp), DAG);
7105}
7106
7107// Reduce a vector shuffle to zext.
7108static SDValue LowerVectorIntExtend(SDValue Op, const X86Subtarget *Subtarget,
7109                                    SelectionDAG &DAG) {
7110  // PMOVZX is only available from SSE41.
7111  if (!Subtarget->hasSSE41())
7112    return SDValue();
7113
7114  MVT VT = Op.getSimpleValueType();
7115
7116  // Only AVX2 support 256-bit vector integer extending.
7117  if (!Subtarget->hasInt256() && VT.is256BitVector())
7118    return SDValue();
7119
7120  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7121  SDLoc DL(Op);
7122  SDValue V1 = Op.getOperand(0);
7123  SDValue V2 = Op.getOperand(1);
7124  unsigned NumElems = VT.getVectorNumElements();
7125
7126  // Extending is an unary operation and the element type of the source vector
7127  // won't be equal to or larger than i64.
7128  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
7129      VT.getVectorElementType() == MVT::i64)
7130    return SDValue();
7131
7132  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
7133  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
7134  while ((1U << Shift) < NumElems) {
7135    if (SVOp->getMaskElt(1U << Shift) == 1)
7136      break;
7137    Shift += 1;
7138    // The maximal ratio is 8, i.e. from i8 to i64.
7139    if (Shift > 3)
7140      return SDValue();
7141  }
7142
7143  // Check the shuffle mask.
7144  unsigned Mask = (1U << Shift) - 1;
7145  for (unsigned i = 0; i != NumElems; ++i) {
7146    int EltIdx = SVOp->getMaskElt(i);
7147    if ((i & Mask) != 0 && EltIdx != -1)
7148      return SDValue();
7149    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
7150      return SDValue();
7151  }
7152
7153  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
7154  MVT NeVT = MVT::getIntegerVT(NBits);
7155  MVT NVT = MVT::getVectorVT(NeVT, NumElems >> Shift);
7156
7157  if (!DAG.getTargetLoweringInfo().isTypeLegal(NVT))
7158    return SDValue();
7159
7160  // Simplify the operand as it's prepared to be fed into shuffle.
7161  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
7162  if (V1.getOpcode() == ISD::BITCAST &&
7163      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
7164      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7165      V1.getOperand(0).getOperand(0)
7166        .getSimpleValueType().getSizeInBits() == SignificantBits) {
7167    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
7168    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
7169    ConstantSDNode *CIdx =
7170      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
7171    // If it's foldable, i.e. normal load with single use, we will let code
7172    // selection to fold it. Otherwise, we will short the conversion sequence.
7173    if (CIdx && CIdx->getZExtValue() == 0 &&
7174        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) {
7175      MVT FullVT = V.getSimpleValueType();
7176      MVT V1VT = V1.getSimpleValueType();
7177      if (FullVT.getSizeInBits() > V1VT.getSizeInBits()) {
7178        // The "ext_vec_elt" node is wider than the result node.
7179        // In this case we should extract subvector from V.
7180        // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)).
7181        unsigned Ratio = FullVT.getSizeInBits() / V1VT.getSizeInBits();
7182        MVT SubVecVT = MVT::getVectorVT(FullVT.getVectorElementType(),
7183                                        FullVT.getVectorNumElements()/Ratio);
7184        V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
7185                        DAG.getIntPtrConstant(0));
7186      }
7187      V1 = DAG.getNode(ISD::BITCAST, DL, V1VT, V);
7188    }
7189  }
7190
7191  return DAG.getNode(ISD::BITCAST, DL, VT,
7192                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
7193}
7194
7195static SDValue
7196NormalizeVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
7197                       SelectionDAG &DAG) {
7198  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7199  MVT VT = Op.getSimpleValueType();
7200  SDLoc dl(Op);
7201  SDValue V1 = Op.getOperand(0);
7202  SDValue V2 = Op.getOperand(1);
7203
7204  if (isZeroShuffle(SVOp))
7205    return getZeroVector(VT, Subtarget, DAG, dl);
7206
7207  // Handle splat operations
7208  if (SVOp->isSplat()) {
7209    // Use vbroadcast whenever the splat comes from a foldable load
7210    SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
7211    if (Broadcast.getNode())
7212      return Broadcast;
7213  }
7214
7215  // Check integer expanding shuffles.
7216  SDValue NewOp = LowerVectorIntExtend(Op, Subtarget, DAG);
7217  if (NewOp.getNode())
7218    return NewOp;
7219
7220  // If the shuffle can be profitably rewritten as a narrower shuffle, then
7221  // do it!
7222  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
7223      VT == MVT::v16i16 || VT == MVT::v32i8) {
7224    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
7225    if (NewOp.getNode())
7226      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
7227  } else if ((VT == MVT::v4i32 ||
7228             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
7229    // FIXME: Figure out a cleaner way to do this.
7230    // Try to make use of movq to zero out the top part.
7231    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
7232      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
7233      if (NewOp.getNode()) {
7234        MVT NewVT = NewOp.getSimpleValueType();
7235        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
7236                               NewVT, true, false))
7237          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
7238                              DAG, Subtarget, dl);
7239      }
7240    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
7241      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
7242      if (NewOp.getNode()) {
7243        MVT NewVT = NewOp.getSimpleValueType();
7244        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
7245          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
7246                              DAG, Subtarget, dl);
7247      }
7248    }
7249  }
7250  return SDValue();
7251}
7252
7253SDValue
7254X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
7255  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7256  SDValue V1 = Op.getOperand(0);
7257  SDValue V2 = Op.getOperand(1);
7258  MVT VT = Op.getSimpleValueType();
7259  SDLoc dl(Op);
7260  unsigned NumElems = VT.getVectorNumElements();
7261  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
7262  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
7263  bool V1IsSplat = false;
7264  bool V2IsSplat = false;
7265  bool HasSSE2 = Subtarget->hasSSE2();
7266  bool HasFp256    = Subtarget->hasFp256();
7267  bool HasInt256   = Subtarget->hasInt256();
7268  MachineFunction &MF = DAG.getMachineFunction();
7269  bool OptForSize = MF.getFunction()->getAttributes().
7270    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
7271
7272  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
7273
7274  if (V1IsUndef && V2IsUndef)
7275    return DAG.getUNDEF(VT);
7276
7277  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
7278
7279  // Vector shuffle lowering takes 3 steps:
7280  //
7281  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
7282  //    narrowing and commutation of operands should be handled.
7283  // 2) Matching of shuffles with known shuffle masks to x86 target specific
7284  //    shuffle nodes.
7285  // 3) Rewriting of unmatched masks into new generic shuffle operations,
7286  //    so the shuffle can be broken into other shuffles and the legalizer can
7287  //    try the lowering again.
7288  //
7289  // The general idea is that no vector_shuffle operation should be left to
7290  // be matched during isel, all of them must be converted to a target specific
7291  // node here.
7292
7293  // Normalize the input vectors. Here splats, zeroed vectors, profitable
7294  // narrowing and commutation of operands should be handled. The actual code
7295  // doesn't include all of those, work in progress...
7296  SDValue NewOp = NormalizeVectorShuffle(Op, Subtarget, DAG);
7297  if (NewOp.getNode())
7298    return NewOp;
7299
7300  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
7301
7302  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
7303  // unpckh_undef). Only use pshufd if speed is more important than size.
7304  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
7305    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7306  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
7307    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7308
7309  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
7310      V2IsUndef && MayFoldVectorLoad(V1))
7311    return getMOVDDup(Op, dl, V1, DAG);
7312
7313  if (isMOVHLPS_v_undef_Mask(M, VT))
7314    return getMOVHighToLow(Op, dl, DAG);
7315
7316  // Use to match splats
7317  if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
7318      (VT == MVT::v2f64 || VT == MVT::v2i64))
7319    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7320
7321  if (isPSHUFDMask(M, VT)) {
7322    // The actual implementation will match the mask in the if above and then
7323    // during isel it can match several different instructions, not only pshufd
7324    // as its name says, sad but true, emulate the behavior for now...
7325    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
7326      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
7327
7328    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
7329
7330    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
7331      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
7332
7333    if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
7334      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
7335                                  DAG);
7336
7337    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
7338                                TargetMask, DAG);
7339  }
7340
7341  if (isPALIGNRMask(M, VT, Subtarget))
7342    return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
7343                                getShufflePALIGNRImmediate(SVOp),
7344                                DAG);
7345
7346  // Check if this can be converted into a logical shift.
7347  bool isLeft = false;
7348  unsigned ShAmt = 0;
7349  SDValue ShVal;
7350  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
7351  if (isShift && ShVal.hasOneUse()) {
7352    // If the shifted value has multiple uses, it may be cheaper to use
7353    // v_set0 + movlhps or movhlps, etc.
7354    MVT EltVT = VT.getVectorElementType();
7355    ShAmt *= EltVT.getSizeInBits();
7356    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
7357  }
7358
7359  if (isMOVLMask(M, VT)) {
7360    if (ISD::isBuildVectorAllZeros(V1.getNode()))
7361      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
7362    if (!isMOVLPMask(M, VT)) {
7363      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
7364        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
7365
7366      if (VT == MVT::v4i32 || VT == MVT::v4f32)
7367        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
7368    }
7369  }
7370
7371  // FIXME: fold these into legal mask.
7372  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
7373    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
7374
7375  if (isMOVHLPSMask(M, VT))
7376    return getMOVHighToLow(Op, dl, DAG);
7377
7378  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
7379    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
7380
7381  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
7382    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
7383
7384  if (isMOVLPMask(M, VT))
7385    return getMOVLP(Op, dl, DAG, HasSSE2);
7386
7387  if (ShouldXformToMOVHLPS(M, VT) ||
7388      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
7389    return CommuteVectorShuffle(SVOp, DAG);
7390
7391  if (isShift) {
7392    // No better options. Use a vshldq / vsrldq.
7393    MVT EltVT = VT.getVectorElementType();
7394    ShAmt *= EltVT.getSizeInBits();
7395    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
7396  }
7397
7398  bool Commuted = false;
7399  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
7400  // 1,1,1,1 -> v8i16 though.
7401  V1IsSplat = isSplatVector(V1.getNode());
7402  V2IsSplat = isSplatVector(V2.getNode());
7403
7404  // Canonicalize the splat or undef, if present, to be on the RHS.
7405  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
7406    CommuteVectorShuffleMask(M, NumElems);
7407    std::swap(V1, V2);
7408    std::swap(V1IsSplat, V2IsSplat);
7409    Commuted = true;
7410  }
7411
7412  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
7413    // Shuffling low element of v1 into undef, just return v1.
7414    if (V2IsUndef)
7415      return V1;
7416    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
7417    // the instruction selector will not match, so get a canonical MOVL with
7418    // swapped operands to undo the commute.
7419    return getMOVL(DAG, dl, VT, V2, V1);
7420  }
7421
7422  if (isUNPCKLMask(M, VT, HasInt256))
7423    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7424
7425  if (isUNPCKHMask(M, VT, HasInt256))
7426    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7427
7428  if (V2IsSplat) {
7429    // Normalize mask so all entries that point to V2 points to its first
7430    // element then try to match unpck{h|l} again. If match, return a
7431    // new vector_shuffle with the corrected mask.p
7432    SmallVector<int, 8> NewMask(M.begin(), M.end());
7433    NormalizeMask(NewMask, NumElems);
7434    if (isUNPCKLMask(NewMask, VT, HasInt256, true))
7435      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7436    if (isUNPCKHMask(NewMask, VT, HasInt256, true))
7437      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7438  }
7439
7440  if (Commuted) {
7441    // Commute is back and try unpck* again.
7442    // FIXME: this seems wrong.
7443    CommuteVectorShuffleMask(M, NumElems);
7444    std::swap(V1, V2);
7445    std::swap(V1IsSplat, V2IsSplat);
7446    Commuted = false;
7447
7448    if (isUNPCKLMask(M, VT, HasInt256))
7449      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7450
7451    if (isUNPCKHMask(M, VT, HasInt256))
7452      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7453  }
7454
7455  // Normalize the node to match x86 shuffle ops if needed
7456  if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true)))
7457    return CommuteVectorShuffle(SVOp, DAG);
7458
7459  // The checks below are all present in isShuffleMaskLegal, but they are
7460  // inlined here right now to enable us to directly emit target specific
7461  // nodes, and remove one by one until they don't return Op anymore.
7462
7463  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
7464      SVOp->getSplatIndex() == 0 && V2IsUndef) {
7465    if (VT == MVT::v2f64 || VT == MVT::v2i64)
7466      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7467  }
7468
7469  if (isPSHUFHWMask(M, VT, HasInt256))
7470    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
7471                                getShufflePSHUFHWImmediate(SVOp),
7472                                DAG);
7473
7474  if (isPSHUFLWMask(M, VT, HasInt256))
7475    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
7476                                getShufflePSHUFLWImmediate(SVOp),
7477                                DAG);
7478
7479  if (isSHUFPMask(M, VT))
7480    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
7481                                getShuffleSHUFImmediate(SVOp), DAG);
7482
7483  if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
7484    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7485  if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
7486    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7487
7488  //===--------------------------------------------------------------------===//
7489  // Generate target specific nodes for 128 or 256-bit shuffles only
7490  // supported in the AVX instruction set.
7491  //
7492
7493  // Handle VMOVDDUPY permutations
7494  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
7495    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
7496
7497  // Handle VPERMILPS/D* permutations
7498  if (isVPERMILPMask(M, VT)) {
7499    if ((HasInt256 && VT == MVT::v8i32) || VT == MVT::v16i32)
7500      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
7501                                  getShuffleSHUFImmediate(SVOp), DAG);
7502    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
7503                                getShuffleSHUFImmediate(SVOp), DAG);
7504  }
7505
7506  // Handle VPERM2F128/VPERM2I128 permutations
7507  if (isVPERM2X128Mask(M, VT, HasFp256))
7508    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
7509                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
7510
7511  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
7512  if (BlendOp.getNode())
7513    return BlendOp;
7514
7515  unsigned Imm8;
7516  if (V2IsUndef && HasInt256 && isPermImmMask(M, VT, Imm8))
7517    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1, Imm8, DAG);
7518
7519  if ((V2IsUndef && HasInt256 && VT.is256BitVector() && NumElems == 8) ||
7520      VT.is512BitVector()) {
7521    MVT MaskEltVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
7522    MVT MaskVectorVT = MVT::getVectorVT(MaskEltVT, NumElems);
7523    SmallVector<SDValue, 16> permclMask;
7524    for (unsigned i = 0; i != NumElems; ++i) {
7525      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MaskEltVT));
7526    }
7527
7528    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVectorVT,
7529                                &permclMask[0], NumElems);
7530    if (V2IsUndef)
7531      // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
7532      return DAG.getNode(X86ISD::VPERMV, dl, VT,
7533                          DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
7534    return DAG.getNode(X86ISD::VPERMV3, dl, VT,
7535                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1, V2);
7536  }
7537
7538  //===--------------------------------------------------------------------===//
7539  // Since no target specific shuffle was selected for this generic one,
7540  // lower it into other known shuffles. FIXME: this isn't true yet, but
7541  // this is the plan.
7542  //
7543
7544  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
7545  if (VT == MVT::v8i16) {
7546    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
7547    if (NewOp.getNode())
7548      return NewOp;
7549  }
7550
7551  if (VT == MVT::v16i8) {
7552    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, Subtarget, DAG);
7553    if (NewOp.getNode())
7554      return NewOp;
7555  }
7556
7557  if (VT == MVT::v32i8) {
7558    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
7559    if (NewOp.getNode())
7560      return NewOp;
7561  }
7562
7563  // Handle all 128-bit wide vectors with 4 elements, and match them with
7564  // several different shuffle types.
7565  if (NumElems == 4 && VT.is128BitVector())
7566    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7567
7568  // Handle general 256-bit shuffles
7569  if (VT.is256BitVector())
7570    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7571
7572  return SDValue();
7573}
7574
7575static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7576  MVT VT = Op.getSimpleValueType();
7577  SDLoc dl(Op);
7578
7579  if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
7580    return SDValue();
7581
7582  if (VT.getSizeInBits() == 8) {
7583    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
7584                                  Op.getOperand(0), Op.getOperand(1));
7585    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7586                                  DAG.getValueType(VT));
7587    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7588  }
7589
7590  if (VT.getSizeInBits() == 16) {
7591    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7592    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
7593    if (Idx == 0)
7594      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7595                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7596                                     DAG.getNode(ISD::BITCAST, dl,
7597                                                 MVT::v4i32,
7598                                                 Op.getOperand(0)),
7599                                     Op.getOperand(1)));
7600    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
7601                                  Op.getOperand(0), Op.getOperand(1));
7602    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7603                                  DAG.getValueType(VT));
7604    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7605  }
7606
7607  if (VT == MVT::f32) {
7608    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
7609    // the result back to FR32 register. It's only worth matching if the
7610    // result has a single use which is a store or a bitcast to i32.  And in
7611    // the case of a store, it's not worth it if the index is a constant 0,
7612    // because a MOVSSmr can be used instead, which is smaller and faster.
7613    if (!Op.hasOneUse())
7614      return SDValue();
7615    SDNode *User = *Op.getNode()->use_begin();
7616    if ((User->getOpcode() != ISD::STORE ||
7617         (isa<ConstantSDNode>(Op.getOperand(1)) &&
7618          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
7619        (User->getOpcode() != ISD::BITCAST ||
7620         User->getValueType(0) != MVT::i32))
7621      return SDValue();
7622    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7623                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7624                                              Op.getOperand(0)),
7625                                              Op.getOperand(1));
7626    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7627  }
7628
7629  if (VT == MVT::i32 || VT == MVT::i64) {
7630    // ExtractPS/pextrq works with constant index.
7631    if (isa<ConstantSDNode>(Op.getOperand(1)))
7632      return Op;
7633  }
7634  return SDValue();
7635}
7636
7637SDValue
7638X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7639                                           SelectionDAG &DAG) const {
7640  SDLoc dl(Op);
7641  SDValue Vec = Op.getOperand(0);
7642  MVT VecVT = Vec.getSimpleValueType();
7643  SDValue Idx = Op.getOperand(1);
7644  if (!isa<ConstantSDNode>(Idx)) {
7645    if (VecVT.is512BitVector() ||
7646        (VecVT.is256BitVector() && Subtarget->hasInt256() &&
7647         VecVT.getVectorElementType().getSizeInBits() == 32)) {
7648
7649      MVT MaskEltVT =
7650        MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits());
7651      MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() /
7652                                    MaskEltVT.getSizeInBits());
7653
7654      Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT);
7655      SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT,
7656                                getZeroVector(MaskVT, Subtarget, DAG, dl),
7657                                Idx, DAG.getConstant(0, getPointerTy()));
7658      SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec);
7659      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(),
7660                        Perm, DAG.getConstant(0, getPointerTy()));
7661    }
7662    return SDValue();
7663  }
7664
7665  // If this is a 256-bit vector result, first extract the 128-bit vector and
7666  // then extract the element from the 128-bit vector.
7667  if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
7668
7669    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7670    // Get the 128-bit vector.
7671    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7672    MVT EltVT = VecVT.getVectorElementType();
7673
7674    unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
7675
7676    //if (IdxVal >= NumElems/2)
7677    //  IdxVal -= NumElems/2;
7678    IdxVal -= (IdxVal/ElemsPerChunk)*ElemsPerChunk;
7679    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7680                       DAG.getConstant(IdxVal, MVT::i32));
7681  }
7682
7683  assert(VecVT.is128BitVector() && "Unexpected vector length");
7684
7685  if (Subtarget->hasSSE41()) {
7686    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7687    if (Res.getNode())
7688      return Res;
7689  }
7690
7691  MVT VT = Op.getSimpleValueType();
7692  // TODO: handle v16i8.
7693  if (VT.getSizeInBits() == 16) {
7694    SDValue Vec = Op.getOperand(0);
7695    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7696    if (Idx == 0)
7697      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7698                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7699                                     DAG.getNode(ISD::BITCAST, dl,
7700                                                 MVT::v4i32, Vec),
7701                                     Op.getOperand(1)));
7702    // Transform it so it match pextrw which produces a 32-bit result.
7703    MVT EltVT = MVT::i32;
7704    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7705                                  Op.getOperand(0), Op.getOperand(1));
7706    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7707                                  DAG.getValueType(VT));
7708    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7709  }
7710
7711  if (VT.getSizeInBits() == 32) {
7712    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7713    if (Idx == 0)
7714      return Op;
7715
7716    // SHUFPS the element to the lowest double word, then movss.
7717    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7718    MVT VVT = Op.getOperand(0).getSimpleValueType();
7719    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7720                                       DAG.getUNDEF(VVT), Mask);
7721    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7722                       DAG.getIntPtrConstant(0));
7723  }
7724
7725  if (VT.getSizeInBits() == 64) {
7726    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7727    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7728    //        to match extract_elt for f64.
7729    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7730    if (Idx == 0)
7731      return Op;
7732
7733    // UNPCKHPD the element to the lowest double word, then movsd.
7734    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7735    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7736    int Mask[2] = { 1, -1 };
7737    MVT VVT = Op.getOperand(0).getSimpleValueType();
7738    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7739                                       DAG.getUNDEF(VVT), Mask);
7740    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7741                       DAG.getIntPtrConstant(0));
7742  }
7743
7744  return SDValue();
7745}
7746
7747static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7748  MVT VT = Op.getSimpleValueType();
7749  MVT EltVT = VT.getVectorElementType();
7750  SDLoc dl(Op);
7751
7752  SDValue N0 = Op.getOperand(0);
7753  SDValue N1 = Op.getOperand(1);
7754  SDValue N2 = Op.getOperand(2);
7755
7756  if (!VT.is128BitVector())
7757    return SDValue();
7758
7759  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7760      isa<ConstantSDNode>(N2)) {
7761    unsigned Opc;
7762    if (VT == MVT::v8i16)
7763      Opc = X86ISD::PINSRW;
7764    else if (VT == MVT::v16i8)
7765      Opc = X86ISD::PINSRB;
7766    else
7767      Opc = X86ISD::PINSRB;
7768
7769    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7770    // argument.
7771    if (N1.getValueType() != MVT::i32)
7772      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7773    if (N2.getValueType() != MVT::i32)
7774      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7775    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7776  }
7777
7778  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7779    // Bits [7:6] of the constant are the source select.  This will always be
7780    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7781    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7782    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7783    // Bits [5:4] of the constant are the destination select.  This is the
7784    //  value of the incoming immediate.
7785    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7786    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7787    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7788    // Create this as a scalar to vector..
7789    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7790    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7791  }
7792
7793  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7794    // PINSR* works with constant index.
7795    return Op;
7796  }
7797  return SDValue();
7798}
7799
7800SDValue
7801X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7802  MVT VT = Op.getSimpleValueType();
7803  MVT EltVT = VT.getVectorElementType();
7804
7805  SDLoc dl(Op);
7806  SDValue N0 = Op.getOperand(0);
7807  SDValue N1 = Op.getOperand(1);
7808  SDValue N2 = Op.getOperand(2);
7809
7810  // If this is a 256-bit vector result, first extract the 128-bit vector,
7811  // insert the element into the extracted half and then place it back.
7812  if (VT.is256BitVector() || VT.is512BitVector()) {
7813    if (!isa<ConstantSDNode>(N2))
7814      return SDValue();
7815
7816    // Get the desired 128-bit vector half.
7817    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7818    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7819
7820    // Insert the element into the desired half.
7821    unsigned NumEltsIn128 = 128/EltVT.getSizeInBits();
7822    unsigned IdxIn128 = IdxVal - (IdxVal/NumEltsIn128) * NumEltsIn128;
7823
7824    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7825                    DAG.getConstant(IdxIn128, MVT::i32));
7826
7827    // Insert the changed part back to the 256-bit vector
7828    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7829  }
7830
7831  if (Subtarget->hasSSE41())
7832    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7833
7834  if (EltVT == MVT::i8)
7835    return SDValue();
7836
7837  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7838    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7839    // as its second argument.
7840    if (N1.getValueType() != MVT::i32)
7841      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7842    if (N2.getValueType() != MVT::i32)
7843      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7844    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7845  }
7846  return SDValue();
7847}
7848
7849static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7850  SDLoc dl(Op);
7851  MVT OpVT = Op.getSimpleValueType();
7852
7853  // If this is a 256-bit vector result, first insert into a 128-bit
7854  // vector and then insert into the 256-bit vector.
7855  if (!OpVT.is128BitVector()) {
7856    // Insert into a 128-bit vector.
7857    unsigned SizeFactor = OpVT.getSizeInBits()/128;
7858    MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
7859                                 OpVT.getVectorNumElements() / SizeFactor);
7860
7861    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7862
7863    // Insert the 128-bit vector.
7864    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7865  }
7866
7867  if (OpVT == MVT::v1i64 &&
7868      Op.getOperand(0).getValueType() == MVT::i64)
7869    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7870
7871  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7872  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7873  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7874                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7875}
7876
7877// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7878// a simple subregister reference or explicit instructions to grab
7879// upper bits of a vector.
7880static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7881                                      SelectionDAG &DAG) {
7882  SDLoc dl(Op);
7883  SDValue In =  Op.getOperand(0);
7884  SDValue Idx = Op.getOperand(1);
7885  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7886  MVT ResVT   = Op.getSimpleValueType();
7887  MVT InVT    = In.getSimpleValueType();
7888
7889  if (Subtarget->hasFp256()) {
7890    if (ResVT.is128BitVector() &&
7891        (InVT.is256BitVector() || InVT.is512BitVector()) &&
7892        isa<ConstantSDNode>(Idx)) {
7893      return Extract128BitVector(In, IdxVal, DAG, dl);
7894    }
7895    if (ResVT.is256BitVector() && InVT.is512BitVector() &&
7896        isa<ConstantSDNode>(Idx)) {
7897      return Extract256BitVector(In, IdxVal, DAG, dl);
7898    }
7899  }
7900  return SDValue();
7901}
7902
7903// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7904// simple superregister reference or explicit instructions to insert
7905// the upper bits of a vector.
7906static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7907                                     SelectionDAG &DAG) {
7908  if (Subtarget->hasFp256()) {
7909    SDLoc dl(Op.getNode());
7910    SDValue Vec = Op.getNode()->getOperand(0);
7911    SDValue SubVec = Op.getNode()->getOperand(1);
7912    SDValue Idx = Op.getNode()->getOperand(2);
7913
7914    if ((Op.getNode()->getSimpleValueType(0).is256BitVector() ||
7915         Op.getNode()->getSimpleValueType(0).is512BitVector()) &&
7916        SubVec.getNode()->getSimpleValueType(0).is128BitVector() &&
7917        isa<ConstantSDNode>(Idx)) {
7918      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7919      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7920    }
7921
7922    if (Op.getNode()->getSimpleValueType(0).is512BitVector() &&
7923        SubVec.getNode()->getSimpleValueType(0).is256BitVector() &&
7924        isa<ConstantSDNode>(Idx)) {
7925      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7926      return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
7927    }
7928  }
7929  return SDValue();
7930}
7931
7932// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7933// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7934// one of the above mentioned nodes. It has to be wrapped because otherwise
7935// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7936// be used to form addressing mode. These wrapped nodes will be selected
7937// into MOV32ri.
7938SDValue
7939X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7940  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7941
7942  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7943  // global base reg.
7944  unsigned char OpFlag = 0;
7945  unsigned WrapperKind = X86ISD::Wrapper;
7946  CodeModel::Model M = getTargetMachine().getCodeModel();
7947
7948  if (Subtarget->isPICStyleRIPRel() &&
7949      (M == CodeModel::Small || M == CodeModel::Kernel))
7950    WrapperKind = X86ISD::WrapperRIP;
7951  else if (Subtarget->isPICStyleGOT())
7952    OpFlag = X86II::MO_GOTOFF;
7953  else if (Subtarget->isPICStyleStubPIC())
7954    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7955
7956  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7957                                             CP->getAlignment(),
7958                                             CP->getOffset(), OpFlag);
7959  SDLoc DL(CP);
7960  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7961  // With PIC, the address is actually $g + Offset.
7962  if (OpFlag) {
7963    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7964                         DAG.getNode(X86ISD::GlobalBaseReg,
7965                                     SDLoc(), getPointerTy()),
7966                         Result);
7967  }
7968
7969  return Result;
7970}
7971
7972SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7973  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7974
7975  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7976  // global base reg.
7977  unsigned char OpFlag = 0;
7978  unsigned WrapperKind = X86ISD::Wrapper;
7979  CodeModel::Model M = getTargetMachine().getCodeModel();
7980
7981  if (Subtarget->isPICStyleRIPRel() &&
7982      (M == CodeModel::Small || M == CodeModel::Kernel))
7983    WrapperKind = X86ISD::WrapperRIP;
7984  else if (Subtarget->isPICStyleGOT())
7985    OpFlag = X86II::MO_GOTOFF;
7986  else if (Subtarget->isPICStyleStubPIC())
7987    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7988
7989  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7990                                          OpFlag);
7991  SDLoc DL(JT);
7992  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7993
7994  // With PIC, the address is actually $g + Offset.
7995  if (OpFlag)
7996    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7997                         DAG.getNode(X86ISD::GlobalBaseReg,
7998                                     SDLoc(), getPointerTy()),
7999                         Result);
8000
8001  return Result;
8002}
8003
8004SDValue
8005X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
8006  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8007
8008  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
8009  // global base reg.
8010  unsigned char OpFlag = 0;
8011  unsigned WrapperKind = X86ISD::Wrapper;
8012  CodeModel::Model M = getTargetMachine().getCodeModel();
8013
8014  if (Subtarget->isPICStyleRIPRel() &&
8015      (M == CodeModel::Small || M == CodeModel::Kernel)) {
8016    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
8017      OpFlag = X86II::MO_GOTPCREL;
8018    WrapperKind = X86ISD::WrapperRIP;
8019  } else if (Subtarget->isPICStyleGOT()) {
8020    OpFlag = X86II::MO_GOT;
8021  } else if (Subtarget->isPICStyleStubPIC()) {
8022    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
8023  } else if (Subtarget->isPICStyleStubNoDynamic()) {
8024    OpFlag = X86II::MO_DARWIN_NONLAZY;
8025  }
8026
8027  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
8028
8029  SDLoc DL(Op);
8030  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
8031
8032  // With PIC, the address is actually $g + Offset.
8033  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
8034      !Subtarget->is64Bit()) {
8035    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8036                         DAG.getNode(X86ISD::GlobalBaseReg,
8037                                     SDLoc(), getPointerTy()),
8038                         Result);
8039  }
8040
8041  // For symbols that require a load from a stub to get the address, emit the
8042  // load.
8043  if (isGlobalStubReference(OpFlag))
8044    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
8045                         MachinePointerInfo::getGOT(), false, false, false, 0);
8046
8047  return Result;
8048}
8049
8050SDValue
8051X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
8052  // Create the TargetBlockAddressAddress node.
8053  unsigned char OpFlags =
8054    Subtarget->ClassifyBlockAddressReference();
8055  CodeModel::Model M = getTargetMachine().getCodeModel();
8056  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
8057  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
8058  SDLoc dl(Op);
8059  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
8060                                             OpFlags);
8061
8062  if (Subtarget->isPICStyleRIPRel() &&
8063      (M == CodeModel::Small || M == CodeModel::Kernel))
8064    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
8065  else
8066    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
8067
8068  // With PIC, the address is actually $g + Offset.
8069  if (isGlobalRelativeToPICBase(OpFlags)) {
8070    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
8071                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
8072                         Result);
8073  }
8074
8075  return Result;
8076}
8077
8078SDValue
8079X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
8080                                      int64_t Offset, SelectionDAG &DAG) const {
8081  // Create the TargetGlobalAddress node, folding in the constant
8082  // offset if it is legal.
8083  unsigned char OpFlags =
8084    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
8085  CodeModel::Model M = getTargetMachine().getCodeModel();
8086  SDValue Result;
8087  if (OpFlags == X86II::MO_NO_FLAG &&
8088      X86::isOffsetSuitableForCodeModel(Offset, M)) {
8089    // A direct static reference to a global.
8090    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
8091    Offset = 0;
8092  } else {
8093    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
8094  }
8095
8096  if (Subtarget->isPICStyleRIPRel() &&
8097      (M == CodeModel::Small || M == CodeModel::Kernel))
8098    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
8099  else
8100    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
8101
8102  // With PIC, the address is actually $g + Offset.
8103  if (isGlobalRelativeToPICBase(OpFlags)) {
8104    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
8105                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
8106                         Result);
8107  }
8108
8109  // For globals that require a load from a stub to get the address, emit the
8110  // load.
8111  if (isGlobalStubReference(OpFlags))
8112    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
8113                         MachinePointerInfo::getGOT(), false, false, false, 0);
8114
8115  // If there was a non-zero offset that we didn't fold, create an explicit
8116  // addition for it.
8117  if (Offset != 0)
8118    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
8119                         DAG.getConstant(Offset, getPointerTy()));
8120
8121  return Result;
8122}
8123
8124SDValue
8125X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
8126  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
8127  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
8128  return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
8129}
8130
8131static SDValue
8132GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
8133           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
8134           unsigned char OperandFlags, bool LocalDynamic = false) {
8135  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8136  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8137  SDLoc dl(GA);
8138  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8139                                           GA->getValueType(0),
8140                                           GA->getOffset(),
8141                                           OperandFlags);
8142
8143  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
8144                                           : X86ISD::TLSADDR;
8145
8146  if (InFlag) {
8147    SDValue Ops[] = { Chain,  TGA, *InFlag };
8148    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops));
8149  } else {
8150    SDValue Ops[]  = { Chain, TGA };
8151    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops));
8152  }
8153
8154  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8155  MFI->setAdjustsStack(true);
8156
8157  SDValue Flag = Chain.getValue(1);
8158  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
8159}
8160
8161// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
8162static SDValue
8163LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
8164                                const EVT PtrVT) {
8165  SDValue InFlag;
8166  SDLoc dl(GA);  // ? function entry point might be better
8167  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
8168                                   DAG.getNode(X86ISD::GlobalBaseReg,
8169                                               SDLoc(), PtrVT), InFlag);
8170  InFlag = Chain.getValue(1);
8171
8172  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
8173}
8174
8175// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
8176static SDValue
8177LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
8178                                const EVT PtrVT) {
8179  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
8180                    X86::RAX, X86II::MO_TLSGD);
8181}
8182
8183static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
8184                                           SelectionDAG &DAG,
8185                                           const EVT PtrVT,
8186                                           bool is64Bit) {
8187  SDLoc dl(GA);
8188
8189  // Get the start address of the TLS block for this module.
8190  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
8191      .getInfo<X86MachineFunctionInfo>();
8192  MFI->incNumLocalDynamicTLSAccesses();
8193
8194  SDValue Base;
8195  if (is64Bit) {
8196    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
8197                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
8198  } else {
8199    SDValue InFlag;
8200    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
8201        DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
8202    InFlag = Chain.getValue(1);
8203    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
8204                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
8205  }
8206
8207  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
8208  // of Base.
8209
8210  // Build x@dtpoff.
8211  unsigned char OperandFlags = X86II::MO_DTPOFF;
8212  unsigned WrapperKind = X86ISD::Wrapper;
8213  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8214                                           GA->getValueType(0),
8215                                           GA->getOffset(), OperandFlags);
8216  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
8217
8218  // Add x@dtpoff with the base.
8219  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
8220}
8221
8222// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
8223static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
8224                                   const EVT PtrVT, TLSModel::Model model,
8225                                   bool is64Bit, bool isPIC) {
8226  SDLoc dl(GA);
8227
8228  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
8229  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
8230                                                         is64Bit ? 257 : 256));
8231
8232  SDValue ThreadPointer =
8233      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0),
8234                  MachinePointerInfo(Ptr), false, false, false, 0);
8235
8236  unsigned char OperandFlags = 0;
8237  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
8238  // initialexec.
8239  unsigned WrapperKind = X86ISD::Wrapper;
8240  if (model == TLSModel::LocalExec) {
8241    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
8242  } else if (model == TLSModel::InitialExec) {
8243    if (is64Bit) {
8244      OperandFlags = X86II::MO_GOTTPOFF;
8245      WrapperKind = X86ISD::WrapperRIP;
8246    } else {
8247      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
8248    }
8249  } else {
8250    llvm_unreachable("Unexpected model");
8251  }
8252
8253  // emit "addl x@ntpoff,%eax" (local exec)
8254  // or "addl x@indntpoff,%eax" (initial exec)
8255  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
8256  SDValue TGA =
8257      DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
8258                                 GA->getOffset(), OperandFlags);
8259  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
8260
8261  if (model == TLSModel::InitialExec) {
8262    if (isPIC && !is64Bit) {
8263      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
8264                           DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
8265                           Offset);
8266    }
8267
8268    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
8269                         MachinePointerInfo::getGOT(), false, false, false, 0);
8270  }
8271
8272  // The address of the thread local variable is the add of the thread
8273  // pointer with the offset of the variable.
8274  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
8275}
8276
8277SDValue
8278X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
8279
8280  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
8281  const GlobalValue *GV = GA->getGlobal();
8282
8283  if (Subtarget->isTargetELF()) {
8284    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
8285
8286    switch (model) {
8287      case TLSModel::GeneralDynamic:
8288        if (Subtarget->is64Bit())
8289          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
8290        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
8291      case TLSModel::LocalDynamic:
8292        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
8293                                           Subtarget->is64Bit());
8294      case TLSModel::InitialExec:
8295      case TLSModel::LocalExec:
8296        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
8297                                   Subtarget->is64Bit(),
8298                        getTargetMachine().getRelocationModel() == Reloc::PIC_);
8299    }
8300    llvm_unreachable("Unknown TLS model.");
8301  }
8302
8303  if (Subtarget->isTargetDarwin()) {
8304    // Darwin only has one model of TLS.  Lower to that.
8305    unsigned char OpFlag = 0;
8306    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
8307                           X86ISD::WrapperRIP : X86ISD::Wrapper;
8308
8309    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
8310    // global base reg.
8311    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
8312                  !Subtarget->is64Bit();
8313    if (PIC32)
8314      OpFlag = X86II::MO_TLVP_PIC_BASE;
8315    else
8316      OpFlag = X86II::MO_TLVP;
8317    SDLoc DL(Op);
8318    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
8319                                                GA->getValueType(0),
8320                                                GA->getOffset(), OpFlag);
8321    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
8322
8323    // With PIC32, the address is actually $g + Offset.
8324    if (PIC32)
8325      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8326                           DAG.getNode(X86ISD::GlobalBaseReg,
8327                                       SDLoc(), getPointerTy()),
8328                           Offset);
8329
8330    // Lowering the machine isd will make sure everything is in the right
8331    // location.
8332    SDValue Chain = DAG.getEntryNode();
8333    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8334    SDValue Args[] = { Chain, Offset };
8335    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
8336
8337    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
8338    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8339    MFI->setAdjustsStack(true);
8340
8341    // And our return value (tls address) is in the standard call return value
8342    // location.
8343    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
8344    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
8345                              Chain.getValue(1));
8346  }
8347
8348  if (Subtarget->isTargetWindows() || Subtarget->isTargetMingw()) {
8349    // Just use the implicit TLS architecture
8350    // Need to generate someting similar to:
8351    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
8352    //                                  ; from TEB
8353    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
8354    //   mov     rcx, qword [rdx+rcx*8]
8355    //   mov     eax, .tls$:tlsvar
8356    //   [rax+rcx] contains the address
8357    // Windows 64bit: gs:0x58
8358    // Windows 32bit: fs:__tls_array
8359
8360    // If GV is an alias then use the aliasee for determining
8361    // thread-localness.
8362    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
8363      GV = GA->resolveAliasedGlobal(false);
8364    SDLoc dl(GA);
8365    SDValue Chain = DAG.getEntryNode();
8366
8367    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
8368    // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
8369    // use its literal value of 0x2C.
8370    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
8371                                        ? Type::getInt8PtrTy(*DAG.getContext(),
8372                                                             256)
8373                                        : Type::getInt32PtrTy(*DAG.getContext(),
8374                                                              257));
8375
8376    SDValue TlsArray = Subtarget->is64Bit() ? DAG.getIntPtrConstant(0x58) :
8377      (Subtarget->isTargetMingw() ? DAG.getIntPtrConstant(0x2C) :
8378        DAG.getExternalSymbol("_tls_array", getPointerTy()));
8379
8380    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
8381                                        MachinePointerInfo(Ptr),
8382                                        false, false, false, 0);
8383
8384    // Load the _tls_index variable
8385    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
8386    if (Subtarget->is64Bit())
8387      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
8388                           IDX, MachinePointerInfo(), MVT::i32,
8389                           false, false, 0);
8390    else
8391      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
8392                        false, false, false, 0);
8393
8394    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
8395                                    getPointerTy());
8396    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
8397
8398    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
8399    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
8400                      false, false, false, 0);
8401
8402    // Get the offset of start of .tls section
8403    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8404                                             GA->getValueType(0),
8405                                             GA->getOffset(), X86II::MO_SECREL);
8406    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
8407
8408    // The address of the thread local variable is the add of the thread
8409    // pointer with the offset of the variable.
8410    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
8411  }
8412
8413  llvm_unreachable("TLS not implemented for this target.");
8414}
8415
8416/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
8417/// and take a 2 x i32 value to shift plus a shift amount.
8418SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
8419  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
8420  EVT VT = Op.getValueType();
8421  unsigned VTBits = VT.getSizeInBits();
8422  SDLoc dl(Op);
8423  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
8424  SDValue ShOpLo = Op.getOperand(0);
8425  SDValue ShOpHi = Op.getOperand(1);
8426  SDValue ShAmt  = Op.getOperand(2);
8427  // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the
8428  // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away
8429  // during isel.
8430  SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
8431                                  DAG.getConstant(VTBits - 1, MVT::i8));
8432  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
8433                                     DAG.getConstant(VTBits - 1, MVT::i8))
8434                       : DAG.getConstant(0, VT);
8435
8436  SDValue Tmp2, Tmp3;
8437  if (Op.getOpcode() == ISD::SHL_PARTS) {
8438    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
8439    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
8440  } else {
8441    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
8442    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
8443  }
8444
8445  // If the shift amount is larger or equal than the width of a part we can't
8446  // rely on the results of shld/shrd. Insert a test and select the appropriate
8447  // values for large shift amounts.
8448  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
8449                                DAG.getConstant(VTBits, MVT::i8));
8450  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8451                             AndNode, DAG.getConstant(0, MVT::i8));
8452
8453  SDValue Hi, Lo;
8454  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8455  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
8456  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
8457
8458  if (Op.getOpcode() == ISD::SHL_PARTS) {
8459    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
8460    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
8461  } else {
8462    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
8463    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
8464  }
8465
8466  SDValue Ops[2] = { Lo, Hi };
8467  return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
8468}
8469
8470SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
8471                                           SelectionDAG &DAG) const {
8472  EVT SrcVT = Op.getOperand(0).getValueType();
8473
8474  if (SrcVT.isVector())
8475    return SDValue();
8476
8477  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
8478         "Unknown SINT_TO_FP to lower!");
8479
8480  // These are really Legal; return the operand so the caller accepts it as
8481  // Legal.
8482  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
8483    return Op;
8484  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
8485      Subtarget->is64Bit()) {
8486    return Op;
8487  }
8488
8489  SDLoc dl(Op);
8490  unsigned Size = SrcVT.getSizeInBits()/8;
8491  MachineFunction &MF = DAG.getMachineFunction();
8492  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
8493  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8494  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8495                               StackSlot,
8496                               MachinePointerInfo::getFixedStack(SSFI),
8497                               false, false, 0);
8498  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
8499}
8500
8501SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
8502                                     SDValue StackSlot,
8503                                     SelectionDAG &DAG) const {
8504  // Build the FILD
8505  SDLoc DL(Op);
8506  SDVTList Tys;
8507  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
8508  if (useSSE)
8509    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
8510  else
8511    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
8512
8513  unsigned ByteSize = SrcVT.getSizeInBits()/8;
8514
8515  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
8516  MachineMemOperand *MMO;
8517  if (FI) {
8518    int SSFI = FI->getIndex();
8519    MMO =
8520      DAG.getMachineFunction()
8521      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8522                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
8523  } else {
8524    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
8525    StackSlot = StackSlot.getOperand(1);
8526  }
8527  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
8528  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
8529                                           X86ISD::FILD, DL,
8530                                           Tys, Ops, array_lengthof(Ops),
8531                                           SrcVT, MMO);
8532
8533  if (useSSE) {
8534    Chain = Result.getValue(1);
8535    SDValue InFlag = Result.getValue(2);
8536
8537    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
8538    // shouldn't be necessary except that RFP cannot be live across
8539    // multiple blocks. When stackifier is fixed, they can be uncoupled.
8540    MachineFunction &MF = DAG.getMachineFunction();
8541    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
8542    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
8543    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8544    Tys = DAG.getVTList(MVT::Other);
8545    SDValue Ops[] = {
8546      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
8547    };
8548    MachineMemOperand *MMO =
8549      DAG.getMachineFunction()
8550      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8551                            MachineMemOperand::MOStore, SSFISize, SSFISize);
8552
8553    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
8554                                    Ops, array_lengthof(Ops),
8555                                    Op.getValueType(), MMO);
8556    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
8557                         MachinePointerInfo::getFixedStack(SSFI),
8558                         false, false, false, 0);
8559  }
8560
8561  return Result;
8562}
8563
8564// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
8565SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
8566                                               SelectionDAG &DAG) const {
8567  // This algorithm is not obvious. Here it is what we're trying to output:
8568  /*
8569     movq       %rax,  %xmm0
8570     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
8571     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
8572     #ifdef __SSE3__
8573       haddpd   %xmm0, %xmm0
8574     #else
8575       pshufd   $0x4e, %xmm0, %xmm1
8576       addpd    %xmm1, %xmm0
8577     #endif
8578  */
8579
8580  SDLoc dl(Op);
8581  LLVMContext *Context = DAG.getContext();
8582
8583  // Build some magic constants.
8584  static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
8585  Constant *C0 = ConstantDataVector::get(*Context, CV0);
8586  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
8587
8588  SmallVector<Constant*,2> CV1;
8589  CV1.push_back(
8590    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8591                                      APInt(64, 0x4330000000000000ULL))));
8592  CV1.push_back(
8593    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8594                                      APInt(64, 0x4530000000000000ULL))));
8595  Constant *C1 = ConstantVector::get(CV1);
8596  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
8597
8598  // Load the 64-bit value into an XMM register.
8599  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
8600                            Op.getOperand(0));
8601  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
8602                              MachinePointerInfo::getConstantPool(),
8603                              false, false, false, 16);
8604  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
8605                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
8606                              CLod0);
8607
8608  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
8609                              MachinePointerInfo::getConstantPool(),
8610                              false, false, false, 16);
8611  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
8612  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
8613  SDValue Result;
8614
8615  if (Subtarget->hasSSE3()) {
8616    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
8617    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
8618  } else {
8619    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
8620    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
8621                                           S2F, 0x4E, DAG);
8622    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
8623                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
8624                         Sub);
8625  }
8626
8627  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
8628                     DAG.getIntPtrConstant(0));
8629}
8630
8631// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
8632SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
8633                                               SelectionDAG &DAG) const {
8634  SDLoc dl(Op);
8635  // FP constant to bias correct the final result.
8636  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
8637                                   MVT::f64);
8638
8639  // Load the 32-bit value into an XMM register.
8640  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
8641                             Op.getOperand(0));
8642
8643  // Zero out the upper parts of the register.
8644  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
8645
8646  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8647                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
8648                     DAG.getIntPtrConstant(0));
8649
8650  // Or the load with the bias.
8651  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
8652                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8653                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8654                                                   MVT::v2f64, Load)),
8655                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8656                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8657                                                   MVT::v2f64, Bias)));
8658  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8659                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
8660                   DAG.getIntPtrConstant(0));
8661
8662  // Subtract the bias.
8663  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
8664
8665  // Handle final rounding.
8666  EVT DestVT = Op.getValueType();
8667
8668  if (DestVT.bitsLT(MVT::f64))
8669    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
8670                       DAG.getIntPtrConstant(0));
8671  if (DestVT.bitsGT(MVT::f64))
8672    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
8673
8674  // Handle final rounding.
8675  return Sub;
8676}
8677
8678SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
8679                                               SelectionDAG &DAG) const {
8680  SDValue N0 = Op.getOperand(0);
8681  EVT SVT = N0.getValueType();
8682  SDLoc dl(Op);
8683
8684  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
8685          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
8686         "Custom UINT_TO_FP is not supported!");
8687
8688  EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
8689                             SVT.getVectorNumElements());
8690  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
8691                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
8692}
8693
8694SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8695                                           SelectionDAG &DAG) const {
8696  SDValue N0 = Op.getOperand(0);
8697  SDLoc dl(Op);
8698
8699  if (Op.getValueType().isVector())
8700    return lowerUINT_TO_FP_vec(Op, DAG);
8701
8702  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8703  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8704  // the optimization here.
8705  if (DAG.SignBitIsZero(N0))
8706    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8707
8708  EVT SrcVT = N0.getValueType();
8709  EVT DstVT = Op.getValueType();
8710  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8711    return LowerUINT_TO_FP_i64(Op, DAG);
8712  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8713    return LowerUINT_TO_FP_i32(Op, DAG);
8714  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8715    return SDValue();
8716
8717  // Make a 64-bit buffer, and use it to build an FILD.
8718  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8719  if (SrcVT == MVT::i32) {
8720    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8721    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8722                                     getPointerTy(), StackSlot, WordOff);
8723    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8724                                  StackSlot, MachinePointerInfo(),
8725                                  false, false, 0);
8726    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8727                                  OffsetSlot, MachinePointerInfo(),
8728                                  false, false, 0);
8729    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8730    return Fild;
8731  }
8732
8733  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8734  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8735                               StackSlot, MachinePointerInfo(),
8736                               false, false, 0);
8737  // For i64 source, we need to add the appropriate power of 2 if the input
8738  // was negative.  This is the same as the optimization in
8739  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8740  // we must be careful to do the computation in x87 extended precision, not
8741  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8742  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8743  MachineMemOperand *MMO =
8744    DAG.getMachineFunction()
8745    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8746                          MachineMemOperand::MOLoad, 8, 8);
8747
8748  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8749  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8750  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
8751                                         array_lengthof(Ops), MVT::i64, MMO);
8752
8753  APInt FF(32, 0x5F800000ULL);
8754
8755  // Check whether the sign bit is set.
8756  SDValue SignSet = DAG.getSetCC(dl,
8757                                 getSetCCResultType(*DAG.getContext(), MVT::i64),
8758                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8759                                 ISD::SETLT);
8760
8761  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8762  SDValue FudgePtr = DAG.getConstantPool(
8763                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8764                                         getPointerTy());
8765
8766  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8767  SDValue Zero = DAG.getIntPtrConstant(0);
8768  SDValue Four = DAG.getIntPtrConstant(4);
8769  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8770                               Zero, Four);
8771  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8772
8773  // Load the value out, extending it from f32 to f80.
8774  // FIXME: Avoid the extend by constructing the right constant pool?
8775  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8776                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8777                                 MVT::f32, false, false, 4);
8778  // Extend everything to 80 bits to force it to be done on x87.
8779  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8780  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8781}
8782
8783std::pair<SDValue,SDValue>
8784X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
8785                                    bool IsSigned, bool IsReplace) const {
8786  SDLoc DL(Op);
8787
8788  EVT DstTy = Op.getValueType();
8789
8790  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8791    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8792    DstTy = MVT::i64;
8793  }
8794
8795  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8796         DstTy.getSimpleVT() >= MVT::i16 &&
8797         "Unknown FP_TO_INT to lower!");
8798
8799  // These are really Legal.
8800  if (DstTy == MVT::i32 &&
8801      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8802    return std::make_pair(SDValue(), SDValue());
8803  if (Subtarget->is64Bit() &&
8804      DstTy == MVT::i64 &&
8805      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8806    return std::make_pair(SDValue(), SDValue());
8807
8808  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8809  // stack slot, or into the FTOL runtime function.
8810  MachineFunction &MF = DAG.getMachineFunction();
8811  unsigned MemSize = DstTy.getSizeInBits()/8;
8812  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8813  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8814
8815  unsigned Opc;
8816  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8817    Opc = X86ISD::WIN_FTOL;
8818  else
8819    switch (DstTy.getSimpleVT().SimpleTy) {
8820    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8821    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8822    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8823    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8824    }
8825
8826  SDValue Chain = DAG.getEntryNode();
8827  SDValue Value = Op.getOperand(0);
8828  EVT TheVT = Op.getOperand(0).getValueType();
8829  // FIXME This causes a redundant load/store if the SSE-class value is already
8830  // in memory, such as if it is on the callstack.
8831  if (isScalarFPTypeInSSEReg(TheVT)) {
8832    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8833    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8834                         MachinePointerInfo::getFixedStack(SSFI),
8835                         false, false, 0);
8836    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8837    SDValue Ops[] = {
8838      Chain, StackSlot, DAG.getValueType(TheVT)
8839    };
8840
8841    MachineMemOperand *MMO =
8842      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8843                              MachineMemOperand::MOLoad, MemSize, MemSize);
8844    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops,
8845                                    array_lengthof(Ops), DstTy, MMO);
8846    Chain = Value.getValue(1);
8847    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8848    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8849  }
8850
8851  MachineMemOperand *MMO =
8852    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8853                            MachineMemOperand::MOStore, MemSize, MemSize);
8854
8855  if (Opc != X86ISD::WIN_FTOL) {
8856    // Build the FP_TO_INT*_IN_MEM
8857    SDValue Ops[] = { Chain, Value, StackSlot };
8858    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8859                                           Ops, array_lengthof(Ops), DstTy,
8860                                           MMO);
8861    return std::make_pair(FIST, StackSlot);
8862  } else {
8863    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8864      DAG.getVTList(MVT::Other, MVT::Glue),
8865      Chain, Value);
8866    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8867      MVT::i32, ftol.getValue(1));
8868    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8869      MVT::i32, eax.getValue(2));
8870    SDValue Ops[] = { eax, edx };
8871    SDValue pair = IsReplace
8872      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, array_lengthof(Ops))
8873      : DAG.getMergeValues(Ops, array_lengthof(Ops), DL);
8874    return std::make_pair(pair, SDValue());
8875  }
8876}
8877
8878static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
8879                              const X86Subtarget *Subtarget) {
8880  MVT VT = Op->getSimpleValueType(0);
8881  SDValue In = Op->getOperand(0);
8882  MVT InVT = In.getSimpleValueType();
8883  SDLoc dl(Op);
8884
8885  // Optimize vectors in AVX mode:
8886  //
8887  //   v8i16 -> v8i32
8888  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
8889  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
8890  //   Concat upper and lower parts.
8891  //
8892  //   v4i32 -> v4i64
8893  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
8894  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
8895  //   Concat upper and lower parts.
8896  //
8897
8898  if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) &&
8899      ((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
8900      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
8901    return SDValue();
8902
8903  if (Subtarget->hasInt256())
8904    return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, In);
8905
8906  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
8907  SDValue Undef = DAG.getUNDEF(InVT);
8908  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
8909  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8910  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8911
8912  MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
8913                             VT.getVectorNumElements()/2);
8914
8915  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
8916  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
8917
8918  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
8919}
8920
8921static  SDValue LowerZERO_EXTEND_AVX512(SDValue Op,
8922                                        SelectionDAG &DAG) {
8923  MVT VT = Op->getValueType(0).getSimpleVT();
8924  SDValue In = Op->getOperand(0);
8925  MVT InVT = In.getValueType().getSimpleVT();
8926  SDLoc DL(Op);
8927  unsigned int NumElts = VT.getVectorNumElements();
8928  if (NumElts != 8 && NumElts != 16)
8929    return SDValue();
8930
8931  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
8932    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8933
8934  EVT ExtVT = (NumElts == 8)? MVT::v8i64 : MVT::v16i32;
8935  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8936  // Now we have only mask extension
8937  assert(InVT.getVectorElementType() == MVT::i1);
8938  SDValue Cst = DAG.getTargetConstant(1, ExtVT.getScalarType());
8939  const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
8940  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
8941  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
8942  SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
8943                           MachinePointerInfo::getConstantPool(),
8944                           false, false, false, Alignment);
8945
8946  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, DL, ExtVT, In, Ld);
8947  if (VT.is512BitVector())
8948    return Brcst;
8949  return DAG.getNode(X86ISD::VTRUNC, DL, VT, Brcst);
8950}
8951
8952static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
8953                               SelectionDAG &DAG) {
8954  if (Subtarget->hasFp256()) {
8955    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8956    if (Res.getNode())
8957      return Res;
8958  }
8959
8960  return SDValue();
8961}
8962
8963static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
8964                                SelectionDAG &DAG) {
8965  SDLoc DL(Op);
8966  MVT VT = Op.getSimpleValueType();
8967  SDValue In = Op.getOperand(0);
8968  MVT SVT = In.getSimpleValueType();
8969
8970  if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1)
8971    return LowerZERO_EXTEND_AVX512(Op, DAG);
8972
8973  if (Subtarget->hasFp256()) {
8974    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8975    if (Res.getNode())
8976      return Res;
8977  }
8978
8979  assert(!VT.is256BitVector() || !SVT.is128BitVector() ||
8980         VT.getVectorNumElements() != SVT.getVectorNumElements());
8981  return SDValue();
8982}
8983
8984SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8985  SDLoc DL(Op);
8986  MVT VT = Op.getSimpleValueType();
8987  SDValue In = Op.getOperand(0);
8988  MVT InVT = In.getSimpleValueType();
8989  assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
8990         "Invalid TRUNCATE operation");
8991
8992  if (InVT.is512BitVector() || VT.getVectorElementType() == MVT::i1) {
8993    if (VT.getVectorElementType().getSizeInBits() >=8)
8994      return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
8995
8996    assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
8997    unsigned NumElts = InVT.getVectorNumElements();
8998    assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type");
8999    if (InVT.getSizeInBits() < 512) {
9000      MVT ExtVT = (NumElts == 16)? MVT::v16i32 : MVT::v8i64;
9001      In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
9002      InVT = ExtVT;
9003    }
9004    SDValue Cst = DAG.getTargetConstant(1, InVT.getVectorElementType());
9005    const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
9006    SDValue CP = DAG.getConstantPool(C, getPointerTy());
9007    unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
9008    SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
9009                           MachinePointerInfo::getConstantPool(),
9010                           false, false, false, Alignment);
9011    SDValue OneV = DAG.getNode(X86ISD::VBROADCAST, DL, InVT, Ld);
9012    SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In);
9013    return DAG.getNode(X86ISD::TESTM, DL, VT, And, And);
9014  }
9015
9016  if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
9017    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
9018    if (Subtarget->hasInt256()) {
9019      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
9020      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
9021      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
9022                                ShufMask);
9023      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
9024                         DAG.getIntPtrConstant(0));
9025    }
9026
9027    // On AVX, v4i64 -> v4i32 becomes a sequence that uses PSHUFD and MOVLHPS.
9028    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
9029                               DAG.getIntPtrConstant(0));
9030    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
9031                               DAG.getIntPtrConstant(2));
9032
9033    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
9034    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
9035
9036    // The PSHUFD mask:
9037    static const int ShufMask1[] = {0, 2, 0, 0};
9038    SDValue Undef = DAG.getUNDEF(VT);
9039    OpLo = DAG.getVectorShuffle(VT, DL, OpLo, Undef, ShufMask1);
9040    OpHi = DAG.getVectorShuffle(VT, DL, OpHi, Undef, ShufMask1);
9041
9042    // The MOVLHPS mask:
9043    static const int ShufMask2[] = {0, 1, 4, 5};
9044    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2);
9045  }
9046
9047  if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
9048    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
9049    if (Subtarget->hasInt256()) {
9050      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
9051
9052      SmallVector<SDValue,32> pshufbMask;
9053      for (unsigned i = 0; i < 2; ++i) {
9054        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
9055        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
9056        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
9057        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
9058        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
9059        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
9060        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
9061        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
9062        for (unsigned j = 0; j < 8; ++j)
9063          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
9064      }
9065      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8,
9066                               &pshufbMask[0], 32);
9067      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
9068      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
9069
9070      static const int ShufMask[] = {0,  2,  -1,  -1};
9071      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
9072                                &ShufMask[0]);
9073      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
9074                       DAG.getIntPtrConstant(0));
9075      return DAG.getNode(ISD::BITCAST, DL, VT, In);
9076    }
9077
9078    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
9079                               DAG.getIntPtrConstant(0));
9080
9081    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
9082                               DAG.getIntPtrConstant(4));
9083
9084    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
9085    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
9086
9087    // The PSHUFB mask:
9088    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
9089                                   -1, -1, -1, -1, -1, -1, -1, -1};
9090
9091    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
9092    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
9093    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
9094
9095    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
9096    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
9097
9098    // The MOVLHPS Mask:
9099    static const int ShufMask2[] = {0, 1, 4, 5};
9100    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
9101    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
9102  }
9103
9104  // Handle truncation of V256 to V128 using shuffles.
9105  if (!VT.is128BitVector() || !InVT.is256BitVector())
9106    return SDValue();
9107
9108  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
9109
9110  unsigned NumElems = VT.getVectorNumElements();
9111  EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9112                             NumElems * 2);
9113
9114  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
9115  // Prepare truncation shuffle mask
9116  for (unsigned i = 0; i != NumElems; ++i)
9117    MaskVec[i] = i * 2;
9118  SDValue V = DAG.getVectorShuffle(NVT, DL,
9119                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
9120                                   DAG.getUNDEF(NVT), &MaskVec[0]);
9121  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
9122                     DAG.getIntPtrConstant(0));
9123}
9124
9125SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
9126                                           SelectionDAG &DAG) const {
9127  MVT VT = Op.getSimpleValueType();
9128  if (VT.isVector()) {
9129    if (VT == MVT::v8i16)
9130      return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT,
9131                         DAG.getNode(ISD::FP_TO_SINT, SDLoc(Op),
9132                                     MVT::v8i32, Op.getOperand(0)));
9133    return SDValue();
9134  }
9135
9136  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
9137    /*IsSigned=*/ true, /*IsReplace=*/ false);
9138  SDValue FIST = Vals.first, StackSlot = Vals.second;
9139  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
9140  if (FIST.getNode() == 0) return Op;
9141
9142  if (StackSlot.getNode())
9143    // Load the result.
9144    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
9145                       FIST, StackSlot, MachinePointerInfo(),
9146                       false, false, false, 0);
9147
9148  // The node is the result.
9149  return FIST;
9150}
9151
9152SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
9153                                           SelectionDAG &DAG) const {
9154  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
9155    /*IsSigned=*/ false, /*IsReplace=*/ false);
9156  SDValue FIST = Vals.first, StackSlot = Vals.second;
9157  assert(FIST.getNode() && "Unexpected failure");
9158
9159  if (StackSlot.getNode())
9160    // Load the result.
9161    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
9162                       FIST, StackSlot, MachinePointerInfo(),
9163                       false, false, false, 0);
9164
9165  // The node is the result.
9166  return FIST;
9167}
9168
9169static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
9170  SDLoc DL(Op);
9171  MVT VT = Op.getSimpleValueType();
9172  SDValue In = Op.getOperand(0);
9173  MVT SVT = In.getSimpleValueType();
9174
9175  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
9176
9177  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
9178                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
9179                                 In, DAG.getUNDEF(SVT)));
9180}
9181
9182SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
9183  LLVMContext *Context = DAG.getContext();
9184  SDLoc dl(Op);
9185  MVT VT = Op.getSimpleValueType();
9186  MVT EltVT = VT;
9187  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
9188  if (VT.isVector()) {
9189    EltVT = VT.getVectorElementType();
9190    NumElts = VT.getVectorNumElements();
9191  }
9192  Constant *C;
9193  if (EltVT == MVT::f64)
9194    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
9195                                          APInt(64, ~(1ULL << 63))));
9196  else
9197    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
9198                                          APInt(32, ~(1U << 31))));
9199  C = ConstantVector::getSplat(NumElts, C);
9200  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
9201  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9202  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9203                             MachinePointerInfo::getConstantPool(),
9204                             false, false, false, Alignment);
9205  if (VT.isVector()) {
9206    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
9207    return DAG.getNode(ISD::BITCAST, dl, VT,
9208                       DAG.getNode(ISD::AND, dl, ANDVT,
9209                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
9210                                               Op.getOperand(0)),
9211                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
9212  }
9213  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
9214}
9215
9216SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
9217  LLVMContext *Context = DAG.getContext();
9218  SDLoc dl(Op);
9219  MVT VT = Op.getSimpleValueType();
9220  MVT EltVT = VT;
9221  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
9222  if (VT.isVector()) {
9223    EltVT = VT.getVectorElementType();
9224    NumElts = VT.getVectorNumElements();
9225  }
9226  Constant *C;
9227  if (EltVT == MVT::f64)
9228    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
9229                                          APInt(64, 1ULL << 63)));
9230  else
9231    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
9232                                          APInt(32, 1U << 31)));
9233  C = ConstantVector::getSplat(NumElts, C);
9234  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
9235  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9236  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9237                             MachinePointerInfo::getConstantPool(),
9238                             false, false, false, Alignment);
9239  if (VT.isVector()) {
9240    MVT XORVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits()/64);
9241    return DAG.getNode(ISD::BITCAST, dl, VT,
9242                       DAG.getNode(ISD::XOR, dl, XORVT,
9243                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
9244                                               Op.getOperand(0)),
9245                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
9246  }
9247
9248  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
9249}
9250
9251SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
9252  LLVMContext *Context = DAG.getContext();
9253  SDValue Op0 = Op.getOperand(0);
9254  SDValue Op1 = Op.getOperand(1);
9255  SDLoc dl(Op);
9256  MVT VT = Op.getSimpleValueType();
9257  MVT SrcVT = Op1.getSimpleValueType();
9258
9259  // If second operand is smaller, extend it first.
9260  if (SrcVT.bitsLT(VT)) {
9261    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
9262    SrcVT = VT;
9263  }
9264  // And if it is bigger, shrink it first.
9265  if (SrcVT.bitsGT(VT)) {
9266    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
9267    SrcVT = VT;
9268  }
9269
9270  // At this point the operands and the result should have the same
9271  // type, and that won't be f80 since that is not custom lowered.
9272
9273  // First get the sign bit of second operand.
9274  SmallVector<Constant*,4> CV;
9275  if (SrcVT == MVT::f64) {
9276    const fltSemantics &Sem = APFloat::IEEEdouble;
9277    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
9278    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
9279  } else {
9280    const fltSemantics &Sem = APFloat::IEEEsingle;
9281    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
9282    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9283    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9284    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9285  }
9286  Constant *C = ConstantVector::get(CV);
9287  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9288  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
9289                              MachinePointerInfo::getConstantPool(),
9290                              false, false, false, 16);
9291  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
9292
9293  // Shift sign bit right or left if the two operands have different types.
9294  if (SrcVT.bitsGT(VT)) {
9295    // Op0 is MVT::f32, Op1 is MVT::f64.
9296    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
9297    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
9298                          DAG.getConstant(32, MVT::i32));
9299    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
9300    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
9301                          DAG.getIntPtrConstant(0));
9302  }
9303
9304  // Clear first operand sign bit.
9305  CV.clear();
9306  if (VT == MVT::f64) {
9307    const fltSemantics &Sem = APFloat::IEEEdouble;
9308    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
9309                                                   APInt(64, ~(1ULL << 63)))));
9310    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
9311  } else {
9312    const fltSemantics &Sem = APFloat::IEEEsingle;
9313    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
9314                                                   APInt(32, ~(1U << 31)))));
9315    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9316    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9317    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9318  }
9319  C = ConstantVector::get(CV);
9320  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9321  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9322                              MachinePointerInfo::getConstantPool(),
9323                              false, false, false, 16);
9324  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
9325
9326  // Or the value with the sign bit.
9327  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
9328}
9329
9330static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
9331  SDValue N0 = Op.getOperand(0);
9332  SDLoc dl(Op);
9333  MVT VT = Op.getSimpleValueType();
9334
9335  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
9336  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
9337                                  DAG.getConstant(1, VT));
9338  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
9339}
9340
9341// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
9342//
9343static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget,
9344                                      SelectionDAG &DAG) {
9345  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
9346
9347  if (!Subtarget->hasSSE41())
9348    return SDValue();
9349
9350  if (!Op->hasOneUse())
9351    return SDValue();
9352
9353  SDNode *N = Op.getNode();
9354  SDLoc DL(N);
9355
9356  SmallVector<SDValue, 8> Opnds;
9357  DenseMap<SDValue, unsigned> VecInMap;
9358  EVT VT = MVT::Other;
9359
9360  // Recognize a special case where a vector is casted into wide integer to
9361  // test all 0s.
9362  Opnds.push_back(N->getOperand(0));
9363  Opnds.push_back(N->getOperand(1));
9364
9365  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
9366    SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
9367    // BFS traverse all OR'd operands.
9368    if (I->getOpcode() == ISD::OR) {
9369      Opnds.push_back(I->getOperand(0));
9370      Opnds.push_back(I->getOperand(1));
9371      // Re-evaluate the number of nodes to be traversed.
9372      e += 2; // 2 more nodes (LHS and RHS) are pushed.
9373      continue;
9374    }
9375
9376    // Quit if a non-EXTRACT_VECTOR_ELT
9377    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9378      return SDValue();
9379
9380    // Quit if without a constant index.
9381    SDValue Idx = I->getOperand(1);
9382    if (!isa<ConstantSDNode>(Idx))
9383      return SDValue();
9384
9385    SDValue ExtractedFromVec = I->getOperand(0);
9386    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
9387    if (M == VecInMap.end()) {
9388      VT = ExtractedFromVec.getValueType();
9389      // Quit if not 128/256-bit vector.
9390      if (!VT.is128BitVector() && !VT.is256BitVector())
9391        return SDValue();
9392      // Quit if not the same type.
9393      if (VecInMap.begin() != VecInMap.end() &&
9394          VT != VecInMap.begin()->first.getValueType())
9395        return SDValue();
9396      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
9397    }
9398    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
9399  }
9400
9401  assert((VT.is128BitVector() || VT.is256BitVector()) &&
9402         "Not extracted from 128-/256-bit vector.");
9403
9404  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
9405  SmallVector<SDValue, 8> VecIns;
9406
9407  for (DenseMap<SDValue, unsigned>::const_iterator
9408        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
9409    // Quit if not all elements are used.
9410    if (I->second != FullMask)
9411      return SDValue();
9412    VecIns.push_back(I->first);
9413  }
9414
9415  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
9416
9417  // Cast all vectors into TestVT for PTEST.
9418  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
9419    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
9420
9421  // If more than one full vectors are evaluated, OR them first before PTEST.
9422  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
9423    // Each iteration will OR 2 nodes and append the result until there is only
9424    // 1 node left, i.e. the final OR'd value of all vectors.
9425    SDValue LHS = VecIns[Slot];
9426    SDValue RHS = VecIns[Slot + 1];
9427    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
9428  }
9429
9430  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
9431                     VecIns.back(), VecIns.back());
9432}
9433
9434/// Emit nodes that will be selected as "test Op0,Op0", or something
9435/// equivalent.
9436SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
9437                                    SelectionDAG &DAG) const {
9438  SDLoc dl(Op);
9439
9440  // CF and OF aren't always set the way we want. Determine which
9441  // of these we need.
9442  bool NeedCF = false;
9443  bool NeedOF = false;
9444  switch (X86CC) {
9445  default: break;
9446  case X86::COND_A: case X86::COND_AE:
9447  case X86::COND_B: case X86::COND_BE:
9448    NeedCF = true;
9449    break;
9450  case X86::COND_G: case X86::COND_GE:
9451  case X86::COND_L: case X86::COND_LE:
9452  case X86::COND_O: case X86::COND_NO:
9453    NeedOF = true;
9454    break;
9455  }
9456
9457  // See if we can use the EFLAGS value from the operand instead of
9458  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
9459  // we prove that the arithmetic won't overflow, we can't use OF or CF.
9460  if (Op.getResNo() != 0 || NeedOF || NeedCF)
9461    // Emit a CMP with 0, which is the TEST pattern.
9462    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
9463                       DAG.getConstant(0, Op.getValueType()));
9464
9465  unsigned Opcode = 0;
9466  unsigned NumOperands = 0;
9467
9468  // Truncate operations may prevent the merge of the SETCC instruction
9469  // and the arithmetic instruction before it. Attempt to truncate the operands
9470  // of the arithmetic instruction and use a reduced bit-width instruction.
9471  bool NeedTruncation = false;
9472  SDValue ArithOp = Op;
9473  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
9474    SDValue Arith = Op->getOperand(0);
9475    // Both the trunc and the arithmetic op need to have one user each.
9476    if (Arith->hasOneUse())
9477      switch (Arith.getOpcode()) {
9478        default: break;
9479        case ISD::ADD:
9480        case ISD::SUB:
9481        case ISD::AND:
9482        case ISD::OR:
9483        case ISD::XOR: {
9484          NeedTruncation = true;
9485          ArithOp = Arith;
9486        }
9487      }
9488  }
9489
9490  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
9491  // which may be the result of a CAST.  We use the variable 'Op', which is the
9492  // non-casted variable when we check for possible users.
9493  switch (ArithOp.getOpcode()) {
9494  case ISD::ADD:
9495    // Due to an isel shortcoming, be conservative if this add is likely to be
9496    // selected as part of a load-modify-store instruction. When the root node
9497    // in a match is a store, isel doesn't know how to remap non-chain non-flag
9498    // uses of other nodes in the match, such as the ADD in this case. This
9499    // leads to the ADD being left around and reselected, with the result being
9500    // two adds in the output.  Alas, even if none our users are stores, that
9501    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
9502    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
9503    // climbing the DAG back to the root, and it doesn't seem to be worth the
9504    // effort.
9505    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9506         UE = Op.getNode()->use_end(); UI != UE; ++UI)
9507      if (UI->getOpcode() != ISD::CopyToReg &&
9508          UI->getOpcode() != ISD::SETCC &&
9509          UI->getOpcode() != ISD::STORE)
9510        goto default_case;
9511
9512    if (ConstantSDNode *C =
9513        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
9514      // An add of one will be selected as an INC.
9515      if (C->getAPIntValue() == 1) {
9516        Opcode = X86ISD::INC;
9517        NumOperands = 1;
9518        break;
9519      }
9520
9521      // An add of negative one (subtract of one) will be selected as a DEC.
9522      if (C->getAPIntValue().isAllOnesValue()) {
9523        Opcode = X86ISD::DEC;
9524        NumOperands = 1;
9525        break;
9526      }
9527    }
9528
9529    // Otherwise use a regular EFLAGS-setting add.
9530    Opcode = X86ISD::ADD;
9531    NumOperands = 2;
9532    break;
9533  case ISD::AND: {
9534    // If the primary and result isn't used, don't bother using X86ISD::AND,
9535    // because a TEST instruction will be better.
9536    bool NonFlagUse = false;
9537    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9538           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
9539      SDNode *User = *UI;
9540      unsigned UOpNo = UI.getOperandNo();
9541      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
9542        // Look pass truncate.
9543        UOpNo = User->use_begin().getOperandNo();
9544        User = *User->use_begin();
9545      }
9546
9547      if (User->getOpcode() != ISD::BRCOND &&
9548          User->getOpcode() != ISD::SETCC &&
9549          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
9550        NonFlagUse = true;
9551        break;
9552      }
9553    }
9554
9555    if (!NonFlagUse)
9556      break;
9557  }
9558    // FALL THROUGH
9559  case ISD::SUB:
9560  case ISD::OR:
9561  case ISD::XOR:
9562    // Due to the ISEL shortcoming noted above, be conservative if this op is
9563    // likely to be selected as part of a load-modify-store instruction.
9564    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9565           UE = Op.getNode()->use_end(); UI != UE; ++UI)
9566      if (UI->getOpcode() == ISD::STORE)
9567        goto default_case;
9568
9569    // Otherwise use a regular EFLAGS-setting instruction.
9570    switch (ArithOp.getOpcode()) {
9571    default: llvm_unreachable("unexpected operator!");
9572    case ISD::SUB: Opcode = X86ISD::SUB; break;
9573    case ISD::XOR: Opcode = X86ISD::XOR; break;
9574    case ISD::AND: Opcode = X86ISD::AND; break;
9575    case ISD::OR: {
9576      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
9577        SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG);
9578        if (EFLAGS.getNode())
9579          return EFLAGS;
9580      }
9581      Opcode = X86ISD::OR;
9582      break;
9583    }
9584    }
9585
9586    NumOperands = 2;
9587    break;
9588  case X86ISD::ADD:
9589  case X86ISD::SUB:
9590  case X86ISD::INC:
9591  case X86ISD::DEC:
9592  case X86ISD::OR:
9593  case X86ISD::XOR:
9594  case X86ISD::AND:
9595    return SDValue(Op.getNode(), 1);
9596  default:
9597  default_case:
9598    break;
9599  }
9600
9601  // If we found that truncation is beneficial, perform the truncation and
9602  // update 'Op'.
9603  if (NeedTruncation) {
9604    EVT VT = Op.getValueType();
9605    SDValue WideVal = Op->getOperand(0);
9606    EVT WideVT = WideVal.getValueType();
9607    unsigned ConvertedOp = 0;
9608    // Use a target machine opcode to prevent further DAGCombine
9609    // optimizations that may separate the arithmetic operations
9610    // from the setcc node.
9611    switch (WideVal.getOpcode()) {
9612      default: break;
9613      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
9614      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
9615      case ISD::AND: ConvertedOp = X86ISD::AND; break;
9616      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
9617      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
9618    }
9619
9620    if (ConvertedOp) {
9621      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9622      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
9623        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
9624        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
9625        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
9626      }
9627    }
9628  }
9629
9630  if (Opcode == 0)
9631    // Emit a CMP with 0, which is the TEST pattern.
9632    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
9633                       DAG.getConstant(0, Op.getValueType()));
9634
9635  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
9636  SmallVector<SDValue, 4> Ops;
9637  for (unsigned i = 0; i != NumOperands; ++i)
9638    Ops.push_back(Op.getOperand(i));
9639
9640  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
9641  DAG.ReplaceAllUsesWith(Op, New);
9642  return SDValue(New.getNode(), 1);
9643}
9644
9645/// Emit nodes that will be selected as "cmp Op0,Op1", or something
9646/// equivalent.
9647SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
9648                                   SelectionDAG &DAG) const {
9649  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
9650    if (C->getAPIntValue() == 0)
9651      return EmitTest(Op0, X86CC, DAG);
9652
9653  SDLoc dl(Op0);
9654  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
9655       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
9656    // Use SUB instead of CMP to enable CSE between SUB and CMP.
9657    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
9658    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
9659                              Op0, Op1);
9660    return SDValue(Sub.getNode(), 1);
9661  }
9662  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
9663}
9664
9665/// Convert a comparison if required by the subtarget.
9666SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
9667                                                 SelectionDAG &DAG) const {
9668  // If the subtarget does not support the FUCOMI instruction, floating-point
9669  // comparisons have to be converted.
9670  if (Subtarget->hasCMov() ||
9671      Cmp.getOpcode() != X86ISD::CMP ||
9672      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
9673      !Cmp.getOperand(1).getValueType().isFloatingPoint())
9674    return Cmp;
9675
9676  // The instruction selector will select an FUCOM instruction instead of
9677  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
9678  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
9679  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
9680  SDLoc dl(Cmp);
9681  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
9682  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
9683  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
9684                            DAG.getConstant(8, MVT::i8));
9685  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
9686  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
9687}
9688
9689static bool isAllOnes(SDValue V) {
9690  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9691  return C && C->isAllOnesValue();
9692}
9693
9694/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
9695/// if it's possible.
9696SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
9697                                     SDLoc dl, SelectionDAG &DAG) const {
9698  SDValue Op0 = And.getOperand(0);
9699  SDValue Op1 = And.getOperand(1);
9700  if (Op0.getOpcode() == ISD::TRUNCATE)
9701    Op0 = Op0.getOperand(0);
9702  if (Op1.getOpcode() == ISD::TRUNCATE)
9703    Op1 = Op1.getOperand(0);
9704
9705  SDValue LHS, RHS;
9706  if (Op1.getOpcode() == ISD::SHL)
9707    std::swap(Op0, Op1);
9708  if (Op0.getOpcode() == ISD::SHL) {
9709    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
9710      if (And00C->getZExtValue() == 1) {
9711        // If we looked past a truncate, check that it's only truncating away
9712        // known zeros.
9713        unsigned BitWidth = Op0.getValueSizeInBits();
9714        unsigned AndBitWidth = And.getValueSizeInBits();
9715        if (BitWidth > AndBitWidth) {
9716          APInt Zeros, Ones;
9717          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
9718          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
9719            return SDValue();
9720        }
9721        LHS = Op1;
9722        RHS = Op0.getOperand(1);
9723      }
9724  } else if (Op1.getOpcode() == ISD::Constant) {
9725    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
9726    uint64_t AndRHSVal = AndRHS->getZExtValue();
9727    SDValue AndLHS = Op0;
9728
9729    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
9730      LHS = AndLHS.getOperand(0);
9731      RHS = AndLHS.getOperand(1);
9732    }
9733
9734    // Use BT if the immediate can't be encoded in a TEST instruction.
9735    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
9736      LHS = AndLHS;
9737      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
9738    }
9739  }
9740
9741  if (LHS.getNode()) {
9742    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
9743    // instruction.  Since the shift amount is in-range-or-undefined, we know
9744    // that doing a bittest on the i32 value is ok.  We extend to i32 because
9745    // the encoding for the i16 version is larger than the i32 version.
9746    // Also promote i16 to i32 for performance / code size reason.
9747    if (LHS.getValueType() == MVT::i8 ||
9748        LHS.getValueType() == MVT::i16)
9749      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
9750
9751    // If the operand types disagree, extend the shift amount to match.  Since
9752    // BT ignores high bits (like shifts) we can use anyextend.
9753    if (LHS.getValueType() != RHS.getValueType())
9754      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
9755
9756    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
9757    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
9758    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9759                       DAG.getConstant(Cond, MVT::i8), BT);
9760  }
9761
9762  return SDValue();
9763}
9764
9765/// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point
9766/// mask CMPs.
9767static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
9768                              SDValue &Op1) {
9769  unsigned SSECC;
9770  bool Swap = false;
9771
9772  // SSE Condition code mapping:
9773  //  0 - EQ
9774  //  1 - LT
9775  //  2 - LE
9776  //  3 - UNORD
9777  //  4 - NEQ
9778  //  5 - NLT
9779  //  6 - NLE
9780  //  7 - ORD
9781  switch (SetCCOpcode) {
9782  default: llvm_unreachable("Unexpected SETCC condition");
9783  case ISD::SETOEQ:
9784  case ISD::SETEQ:  SSECC = 0; break;
9785  case ISD::SETOGT:
9786  case ISD::SETGT:  Swap = true; // Fallthrough
9787  case ISD::SETLT:
9788  case ISD::SETOLT: SSECC = 1; break;
9789  case ISD::SETOGE:
9790  case ISD::SETGE:  Swap = true; // Fallthrough
9791  case ISD::SETLE:
9792  case ISD::SETOLE: SSECC = 2; break;
9793  case ISD::SETUO:  SSECC = 3; break;
9794  case ISD::SETUNE:
9795  case ISD::SETNE:  SSECC = 4; break;
9796  case ISD::SETULE: Swap = true; // Fallthrough
9797  case ISD::SETUGE: SSECC = 5; break;
9798  case ISD::SETULT: Swap = true; // Fallthrough
9799  case ISD::SETUGT: SSECC = 6; break;
9800  case ISD::SETO:   SSECC = 7; break;
9801  case ISD::SETUEQ:
9802  case ISD::SETONE: SSECC = 8; break;
9803  }
9804  if (Swap)
9805    std::swap(Op0, Op1);
9806
9807  return SSECC;
9808}
9809
9810// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
9811// ones, and then concatenate the result back.
9812static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
9813  MVT VT = Op.getSimpleValueType();
9814
9815  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
9816         "Unsupported value type for operation");
9817
9818  unsigned NumElems = VT.getVectorNumElements();
9819  SDLoc dl(Op);
9820  SDValue CC = Op.getOperand(2);
9821
9822  // Extract the LHS vectors
9823  SDValue LHS = Op.getOperand(0);
9824  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
9825  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
9826
9827  // Extract the RHS vectors
9828  SDValue RHS = Op.getOperand(1);
9829  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
9830  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
9831
9832  // Issue the operation on the smaller types and concatenate the result back
9833  MVT EltVT = VT.getVectorElementType();
9834  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9835  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9836                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
9837                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
9838}
9839
9840static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) {
9841  SDValue Op0 = Op.getOperand(0);
9842  SDValue Op1 = Op.getOperand(1);
9843  SDValue CC = Op.getOperand(2);
9844  MVT VT = Op.getSimpleValueType();
9845
9846  assert(Op0.getValueType().getVectorElementType().getSizeInBits() >= 32 &&
9847         Op.getValueType().getScalarType() == MVT::i1 &&
9848         "Cannot set masked compare for this operation");
9849
9850  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9851  SDLoc dl(Op);
9852
9853  bool Unsigned = false;
9854  unsigned SSECC;
9855  switch (SetCCOpcode) {
9856  default: llvm_unreachable("Unexpected SETCC condition");
9857  case ISD::SETNE:  SSECC = 4; break;
9858  case ISD::SETEQ:  SSECC = 0; break;
9859  case ISD::SETUGT: Unsigned = true;
9860  case ISD::SETGT:  SSECC = 6; break; // NLE
9861  case ISD::SETULT: Unsigned = true;
9862  case ISD::SETLT:  SSECC = 1; break;
9863  case ISD::SETUGE: Unsigned = true;
9864  case ISD::SETGE:  SSECC = 5; break; // NLT
9865  case ISD::SETULE: Unsigned = true;
9866  case ISD::SETLE:  SSECC = 2; break;
9867  }
9868  unsigned  Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
9869  return DAG.getNode(Opc, dl, VT, Op0, Op1,
9870                     DAG.getConstant(SSECC, MVT::i8));
9871
9872}
9873
9874static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
9875                           SelectionDAG &DAG) {
9876  SDValue Op0 = Op.getOperand(0);
9877  SDValue Op1 = Op.getOperand(1);
9878  SDValue CC = Op.getOperand(2);
9879  MVT VT = Op.getSimpleValueType();
9880  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9881  bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
9882  SDLoc dl(Op);
9883
9884  if (isFP) {
9885#ifndef NDEBUG
9886    MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
9887    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
9888#endif
9889
9890    unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
9891    unsigned Opc = X86ISD::CMPP;
9892    if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) {
9893      assert(VT.getVectorNumElements() <= 16);
9894      Opc = X86ISD::CMPM;
9895    }
9896    // In the two special cases we can't handle, emit two comparisons.
9897    if (SSECC == 8) {
9898      unsigned CC0, CC1;
9899      unsigned CombineOpc;
9900      if (SetCCOpcode == ISD::SETUEQ) {
9901        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
9902      } else {
9903        assert(SetCCOpcode == ISD::SETONE);
9904        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
9905      }
9906
9907      SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
9908                                 DAG.getConstant(CC0, MVT::i8));
9909      SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
9910                                 DAG.getConstant(CC1, MVT::i8));
9911      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
9912    }
9913    // Handle all other FP comparisons here.
9914    return DAG.getNode(Opc, dl, VT, Op0, Op1,
9915                       DAG.getConstant(SSECC, MVT::i8));
9916  }
9917
9918  // Break 256-bit integer vector compare into smaller ones.
9919  if (VT.is256BitVector() && !Subtarget->hasInt256())
9920    return Lower256IntVSETCC(Op, DAG);
9921
9922  bool MaskResult = (VT.getVectorElementType() == MVT::i1);
9923  EVT OpVT = Op1.getValueType();
9924  if (Subtarget->hasAVX512()) {
9925    if (Op1.getValueType().is512BitVector() ||
9926        (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32))
9927      return LowerIntVSETCC_AVX512(Op, DAG);
9928
9929    // In AVX-512 architecture setcc returns mask with i1 elements,
9930    // But there is no compare instruction for i8 and i16 elements.
9931    // We are not talking about 512-bit operands in this case, these
9932    // types are illegal.
9933    if (MaskResult &&
9934        (OpVT.getVectorElementType().getSizeInBits() < 32 &&
9935         OpVT.getVectorElementType().getSizeInBits() >= 8))
9936      return DAG.getNode(ISD::TRUNCATE, dl, VT,
9937                         DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC));
9938  }
9939
9940  // We are handling one of the integer comparisons here.  Since SSE only has
9941  // GT and EQ comparisons for integer, swapping operands and multiple
9942  // operations may be required for some comparisons.
9943  unsigned Opc;
9944  bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
9945
9946  switch (SetCCOpcode) {
9947  default: llvm_unreachable("Unexpected SETCC condition");
9948  case ISD::SETNE:  Invert = true;
9949  case ISD::SETEQ:  Opc = MaskResult? X86ISD::PCMPEQM: X86ISD::PCMPEQ; break;
9950  case ISD::SETLT:  Swap = true;
9951  case ISD::SETGT:  Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT; break;
9952  case ISD::SETGE:  Swap = true;
9953  case ISD::SETLE:  Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT;
9954                    Invert = true; break;
9955  case ISD::SETULT: Swap = true;
9956  case ISD::SETUGT: Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT;
9957                    FlipSigns = true; break;
9958  case ISD::SETUGE: Swap = true;
9959  case ISD::SETULE: Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT;
9960                    FlipSigns = true; Invert = true; break;
9961  }
9962
9963  // Special case: Use min/max operations for SETULE/SETUGE
9964  MVT VET = VT.getVectorElementType();
9965  bool hasMinMax =
9966       (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
9967    || (Subtarget->hasSSE2()  && (VET == MVT::i8));
9968
9969  if (hasMinMax) {
9970    switch (SetCCOpcode) {
9971    default: break;
9972    case ISD::SETULE: Opc = X86ISD::UMIN; MinMax = true; break;
9973    case ISD::SETUGE: Opc = X86ISD::UMAX; MinMax = true; break;
9974    }
9975
9976    if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
9977  }
9978
9979  if (Swap)
9980    std::swap(Op0, Op1);
9981
9982  // Check that the operation in question is available (most are plain SSE2,
9983  // but PCMPGTQ and PCMPEQQ have different requirements).
9984  if (VT == MVT::v2i64) {
9985    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) {
9986      assert(Subtarget->hasSSE2() && "Don't know how to lower!");
9987
9988      // First cast everything to the right type.
9989      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
9990      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
9991
9992      // Since SSE has no unsigned integer comparisons, we need to flip the sign
9993      // bits of the inputs before performing those operations. The lower
9994      // compare is always unsigned.
9995      SDValue SB;
9996      if (FlipSigns) {
9997        SB = DAG.getConstant(0x80000000U, MVT::v4i32);
9998      } else {
9999        SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32);
10000        SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32);
10001        SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
10002                         Sign, Zero, Sign, Zero);
10003      }
10004      Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
10005      Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
10006
10007      // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
10008      SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
10009      SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
10010
10011      // Create masks for only the low parts/high parts of the 64 bit integers.
10012      static const int MaskHi[] = { 1, 1, 3, 3 };
10013      static const int MaskLo[] = { 0, 0, 2, 2 };
10014      SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
10015      SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
10016      SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
10017
10018      SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
10019      Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
10020
10021      if (Invert)
10022        Result = DAG.getNOT(dl, Result, MVT::v4i32);
10023
10024      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
10025    }
10026
10027    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
10028      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
10029      // pcmpeqd + pshufd + pand.
10030      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
10031
10032      // First cast everything to the right type.
10033      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
10034      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
10035
10036      // Do the compare.
10037      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
10038
10039      // Make sure the lower and upper halves are both all-ones.
10040      static const int Mask[] = { 1, 0, 3, 2 };
10041      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
10042      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
10043
10044      if (Invert)
10045        Result = DAG.getNOT(dl, Result, MVT::v4i32);
10046
10047      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
10048    }
10049  }
10050
10051  // Since SSE has no unsigned integer comparisons, we need to flip the sign
10052  // bits of the inputs before performing those operations.
10053  if (FlipSigns) {
10054    EVT EltVT = VT.getVectorElementType();
10055    SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT);
10056    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
10057    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
10058  }
10059
10060  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
10061
10062  // If the logical-not of the result is required, perform that now.
10063  if (Invert)
10064    Result = DAG.getNOT(dl, Result, VT);
10065
10066  if (MinMax)
10067    Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
10068
10069  return Result;
10070}
10071
10072SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
10073
10074  MVT VT = Op.getSimpleValueType();
10075
10076  if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
10077
10078  assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
10079  SDValue Op0 = Op.getOperand(0);
10080  SDValue Op1 = Op.getOperand(1);
10081  SDLoc dl(Op);
10082  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10083
10084  // Optimize to BT if possible.
10085  // Lower (X & (1 << N)) == 0 to BT(X, N).
10086  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
10087  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
10088  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
10089      Op1.getOpcode() == ISD::Constant &&
10090      cast<ConstantSDNode>(Op1)->isNullValue() &&
10091      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
10092    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
10093    if (NewSetCC.getNode())
10094      return NewSetCC;
10095  }
10096
10097  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
10098  // these.
10099  if (Op1.getOpcode() == ISD::Constant &&
10100      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
10101       cast<ConstantSDNode>(Op1)->isNullValue()) &&
10102      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
10103
10104    // If the input is a setcc, then reuse the input setcc or use a new one with
10105    // the inverted condition.
10106    if (Op0.getOpcode() == X86ISD::SETCC) {
10107      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
10108      bool Invert = (CC == ISD::SETNE) ^
10109        cast<ConstantSDNode>(Op1)->isNullValue();
10110      if (!Invert) return Op0;
10111
10112      CCode = X86::GetOppositeBranchCondition(CCode);
10113      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10114                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
10115    }
10116  }
10117
10118  bool isFP = Op1.getSimpleValueType().isFloatingPoint();
10119  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
10120  if (X86CC == X86::COND_INVALID)
10121    return SDValue();
10122
10123  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
10124  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
10125  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10126                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
10127}
10128
10129// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
10130static bool isX86LogicalCmp(SDValue Op) {
10131  unsigned Opc = Op.getNode()->getOpcode();
10132  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
10133      Opc == X86ISD::SAHF)
10134    return true;
10135  if (Op.getResNo() == 1 &&
10136      (Opc == X86ISD::ADD ||
10137       Opc == X86ISD::SUB ||
10138       Opc == X86ISD::ADC ||
10139       Opc == X86ISD::SBB ||
10140       Opc == X86ISD::SMUL ||
10141       Opc == X86ISD::UMUL ||
10142       Opc == X86ISD::INC ||
10143       Opc == X86ISD::DEC ||
10144       Opc == X86ISD::OR ||
10145       Opc == X86ISD::XOR ||
10146       Opc == X86ISD::AND))
10147    return true;
10148
10149  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
10150    return true;
10151
10152  return false;
10153}
10154
10155static bool isZero(SDValue V) {
10156  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
10157  return C && C->isNullValue();
10158}
10159
10160static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
10161  if (V.getOpcode() != ISD::TRUNCATE)
10162    return false;
10163
10164  SDValue VOp0 = V.getOperand(0);
10165  unsigned InBits = VOp0.getValueSizeInBits();
10166  unsigned Bits = V.getValueSizeInBits();
10167  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
10168}
10169
10170SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
10171  bool addTest = true;
10172  SDValue Cond  = Op.getOperand(0);
10173  SDValue Op1 = Op.getOperand(1);
10174  SDValue Op2 = Op.getOperand(2);
10175  SDLoc DL(Op);
10176  EVT VT = Op1.getValueType();
10177  SDValue CC;
10178
10179  // Lower fp selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
10180  // are available. Otherwise fp cmovs get lowered into a less efficient branch
10181  // sequence later on.
10182  if (Cond.getOpcode() == ISD::SETCC &&
10183      ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
10184       (Subtarget->hasSSE1() && VT == MVT::f32)) &&
10185      VT == Cond.getOperand(0).getValueType() && Cond->hasOneUse()) {
10186    SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
10187    int SSECC = translateX86FSETCC(
10188        cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
10189
10190    if (SSECC != 8) {
10191      unsigned Opcode = VT == MVT::f32 ? X86ISD::FSETCCss : X86ISD::FSETCCsd;
10192      SDValue Cmp = DAG.getNode(Opcode, DL, VT, CondOp0, CondOp1,
10193                                DAG.getConstant(SSECC, MVT::i8));
10194      SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
10195      SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
10196      return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
10197    }
10198  }
10199
10200  if (Cond.getOpcode() == ISD::SETCC) {
10201    SDValue NewCond = LowerSETCC(Cond, DAG);
10202    if (NewCond.getNode())
10203      Cond = NewCond;
10204  }
10205
10206  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
10207  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
10208  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
10209  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
10210  if (Cond.getOpcode() == X86ISD::SETCC &&
10211      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
10212      isZero(Cond.getOperand(1).getOperand(1))) {
10213    SDValue Cmp = Cond.getOperand(1);
10214
10215    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
10216
10217    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
10218        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
10219      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
10220
10221      SDValue CmpOp0 = Cmp.getOperand(0);
10222      // Apply further optimizations for special cases
10223      // (select (x != 0), -1, 0) -> neg & sbb
10224      // (select (x == 0), 0, -1) -> neg & sbb
10225      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
10226        if (YC->isNullValue() &&
10227            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
10228          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
10229          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
10230                                    DAG.getConstant(0, CmpOp0.getValueType()),
10231                                    CmpOp0);
10232          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
10233                                    DAG.getConstant(X86::COND_B, MVT::i8),
10234                                    SDValue(Neg.getNode(), 1));
10235          return Res;
10236        }
10237
10238      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
10239                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
10240      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10241
10242      SDValue Res =   // Res = 0 or -1.
10243        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
10244                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
10245
10246      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
10247        Res = DAG.getNOT(DL, Res, Res.getValueType());
10248
10249      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
10250      if (N2C == 0 || !N2C->isNullValue())
10251        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
10252      return Res;
10253    }
10254  }
10255
10256  // Look past (and (setcc_carry (cmp ...)), 1).
10257  if (Cond.getOpcode() == ISD::AND &&
10258      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
10259    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
10260    if (C && C->getAPIntValue() == 1)
10261      Cond = Cond.getOperand(0);
10262  }
10263
10264  // If condition flag is set by a X86ISD::CMP, then use it as the condition
10265  // setting operand in place of the X86ISD::SETCC.
10266  unsigned CondOpcode = Cond.getOpcode();
10267  if (CondOpcode == X86ISD::SETCC ||
10268      CondOpcode == X86ISD::SETCC_CARRY) {
10269    CC = Cond.getOperand(0);
10270
10271    SDValue Cmp = Cond.getOperand(1);
10272    unsigned Opc = Cmp.getOpcode();
10273    MVT VT = Op.getSimpleValueType();
10274
10275    bool IllegalFPCMov = false;
10276    if (VT.isFloatingPoint() && !VT.isVector() &&
10277        !isScalarFPTypeInSSEReg(VT))  // FPStack?
10278      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
10279
10280    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
10281        Opc == X86ISD::BT) { // FIXME
10282      Cond = Cmp;
10283      addTest = false;
10284    }
10285  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
10286             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
10287             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
10288              Cond.getOperand(0).getValueType() != MVT::i8)) {
10289    SDValue LHS = Cond.getOperand(0);
10290    SDValue RHS = Cond.getOperand(1);
10291    unsigned X86Opcode;
10292    unsigned X86Cond;
10293    SDVTList VTs;
10294    switch (CondOpcode) {
10295    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
10296    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
10297    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
10298    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
10299    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
10300    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
10301    default: llvm_unreachable("unexpected overflowing operator");
10302    }
10303    if (CondOpcode == ISD::UMULO)
10304      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
10305                          MVT::i32);
10306    else
10307      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
10308
10309    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
10310
10311    if (CondOpcode == ISD::UMULO)
10312      Cond = X86Op.getValue(2);
10313    else
10314      Cond = X86Op.getValue(1);
10315
10316    CC = DAG.getConstant(X86Cond, MVT::i8);
10317    addTest = false;
10318  }
10319
10320  if (addTest) {
10321    // Look pass the truncate if the high bits are known zero.
10322    if (isTruncWithZeroHighBitsInput(Cond, DAG))
10323        Cond = Cond.getOperand(0);
10324
10325    // We know the result of AND is compared against zero. Try to match
10326    // it to BT.
10327    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
10328      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
10329      if (NewSetCC.getNode()) {
10330        CC = NewSetCC.getOperand(0);
10331        Cond = NewSetCC.getOperand(1);
10332        addTest = false;
10333      }
10334    }
10335  }
10336
10337  if (addTest) {
10338    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10339    Cond = EmitTest(Cond, X86::COND_NE, DAG);
10340  }
10341
10342  // a <  b ? -1 :  0 -> RES = ~setcc_carry
10343  // a <  b ?  0 : -1 -> RES = setcc_carry
10344  // a >= b ? -1 :  0 -> RES = setcc_carry
10345  // a >= b ?  0 : -1 -> RES = ~setcc_carry
10346  if (Cond.getOpcode() == X86ISD::SUB) {
10347    Cond = ConvertCmpIfNecessary(Cond, DAG);
10348    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
10349
10350    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
10351        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
10352      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
10353                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
10354      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
10355        return DAG.getNOT(DL, Res, Res.getValueType());
10356      return Res;
10357    }
10358  }
10359
10360  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
10361  // widen the cmov and push the truncate through. This avoids introducing a new
10362  // branch during isel and doesn't add any extensions.
10363  if (Op.getValueType() == MVT::i8 &&
10364      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
10365    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
10366    if (T1.getValueType() == T2.getValueType() &&
10367        // Blacklist CopyFromReg to avoid partial register stalls.
10368        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
10369      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
10370      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
10371      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
10372    }
10373  }
10374
10375  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
10376  // condition is true.
10377  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
10378  SDValue Ops[] = { Op2, Op1, CC, Cond };
10379  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
10380}
10381
10382static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, SelectionDAG &DAG) {
10383  MVT VT = Op->getSimpleValueType(0);
10384  SDValue In = Op->getOperand(0);
10385  MVT InVT = In.getSimpleValueType();
10386  SDLoc dl(Op);
10387
10388  unsigned int NumElts = VT.getVectorNumElements();
10389  if (NumElts != 8 && NumElts != 16)
10390    return SDValue();
10391
10392  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
10393    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
10394
10395  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10396  assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
10397
10398  MVT ExtVT = (NumElts == 8) ? MVT::v8i64 : MVT::v16i32;
10399  Constant *C = ConstantInt::get(*DAG.getContext(),
10400    APInt::getAllOnesValue(ExtVT.getScalarType().getSizeInBits()));
10401
10402  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
10403  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
10404  SDValue Ld = DAG.getLoad(ExtVT.getScalarType(), dl, DAG.getEntryNode(), CP,
10405                          MachinePointerInfo::getConstantPool(),
10406                          false, false, false, Alignment);
10407  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, dl, ExtVT, In, Ld);
10408  if (VT.is512BitVector())
10409    return Brcst;
10410  return DAG.getNode(X86ISD::VTRUNC, dl, VT, Brcst);
10411}
10412
10413static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
10414                                SelectionDAG &DAG) {
10415  MVT VT = Op->getSimpleValueType(0);
10416  SDValue In = Op->getOperand(0);
10417  MVT InVT = In.getSimpleValueType();
10418  SDLoc dl(Op);
10419
10420  if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
10421    return LowerSIGN_EXTEND_AVX512(Op, DAG);
10422
10423  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
10424      (VT != MVT::v8i32 || InVT != MVT::v8i16) &&
10425      (VT != MVT::v16i16 || InVT != MVT::v16i8))
10426    return SDValue();
10427
10428  if (Subtarget->hasInt256())
10429    return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, In);
10430
10431  // Optimize vectors in AVX mode
10432  // Sign extend  v8i16 to v8i32 and
10433  //              v4i32 to v4i64
10434  //
10435  // Divide input vector into two parts
10436  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
10437  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
10438  // concat the vectors to original VT
10439
10440  unsigned NumElems = InVT.getVectorNumElements();
10441  SDValue Undef = DAG.getUNDEF(InVT);
10442
10443  SmallVector<int,8> ShufMask1(NumElems, -1);
10444  for (unsigned i = 0; i != NumElems/2; ++i)
10445    ShufMask1[i] = i;
10446
10447  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
10448
10449  SmallVector<int,8> ShufMask2(NumElems, -1);
10450  for (unsigned i = 0; i != NumElems/2; ++i)
10451    ShufMask2[i] = i + NumElems/2;
10452
10453  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
10454
10455  MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
10456                                VT.getVectorNumElements()/2);
10457
10458  OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
10459  OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
10460
10461  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
10462}
10463
10464// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
10465// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
10466// from the AND / OR.
10467static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
10468  Opc = Op.getOpcode();
10469  if (Opc != ISD::OR && Opc != ISD::AND)
10470    return false;
10471  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
10472          Op.getOperand(0).hasOneUse() &&
10473          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
10474          Op.getOperand(1).hasOneUse());
10475}
10476
10477// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
10478// 1 and that the SETCC node has a single use.
10479static bool isXor1OfSetCC(SDValue Op) {
10480  if (Op.getOpcode() != ISD::XOR)
10481    return false;
10482  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
10483  if (N1C && N1C->getAPIntValue() == 1) {
10484    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
10485      Op.getOperand(0).hasOneUse();
10486  }
10487  return false;
10488}
10489
10490SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
10491  bool addTest = true;
10492  SDValue Chain = Op.getOperand(0);
10493  SDValue Cond  = Op.getOperand(1);
10494  SDValue Dest  = Op.getOperand(2);
10495  SDLoc dl(Op);
10496  SDValue CC;
10497  bool Inverted = false;
10498
10499  if (Cond.getOpcode() == ISD::SETCC) {
10500    // Check for setcc([su]{add,sub,mul}o == 0).
10501    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
10502        isa<ConstantSDNode>(Cond.getOperand(1)) &&
10503        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
10504        Cond.getOperand(0).getResNo() == 1 &&
10505        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
10506         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
10507         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
10508         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
10509         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
10510         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
10511      Inverted = true;
10512      Cond = Cond.getOperand(0);
10513    } else {
10514      SDValue NewCond = LowerSETCC(Cond, DAG);
10515      if (NewCond.getNode())
10516        Cond = NewCond;
10517    }
10518  }
10519#if 0
10520  // FIXME: LowerXALUO doesn't handle these!!
10521  else if (Cond.getOpcode() == X86ISD::ADD  ||
10522           Cond.getOpcode() == X86ISD::SUB  ||
10523           Cond.getOpcode() == X86ISD::SMUL ||
10524           Cond.getOpcode() == X86ISD::UMUL)
10525    Cond = LowerXALUO(Cond, DAG);
10526#endif
10527
10528  // Look pass (and (setcc_carry (cmp ...)), 1).
10529  if (Cond.getOpcode() == ISD::AND &&
10530      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
10531    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
10532    if (C && C->getAPIntValue() == 1)
10533      Cond = Cond.getOperand(0);
10534  }
10535
10536  // If condition flag is set by a X86ISD::CMP, then use it as the condition
10537  // setting operand in place of the X86ISD::SETCC.
10538  unsigned CondOpcode = Cond.getOpcode();
10539  if (CondOpcode == X86ISD::SETCC ||
10540      CondOpcode == X86ISD::SETCC_CARRY) {
10541    CC = Cond.getOperand(0);
10542
10543    SDValue Cmp = Cond.getOperand(1);
10544    unsigned Opc = Cmp.getOpcode();
10545    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
10546    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
10547      Cond = Cmp;
10548      addTest = false;
10549    } else {
10550      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
10551      default: break;
10552      case X86::COND_O:
10553      case X86::COND_B:
10554        // These can only come from an arithmetic instruction with overflow,
10555        // e.g. SADDO, UADDO.
10556        Cond = Cond.getNode()->getOperand(1);
10557        addTest = false;
10558        break;
10559      }
10560    }
10561  }
10562  CondOpcode = Cond.getOpcode();
10563  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
10564      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
10565      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
10566       Cond.getOperand(0).getValueType() != MVT::i8)) {
10567    SDValue LHS = Cond.getOperand(0);
10568    SDValue RHS = Cond.getOperand(1);
10569    unsigned X86Opcode;
10570    unsigned X86Cond;
10571    SDVTList VTs;
10572    switch (CondOpcode) {
10573    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
10574    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
10575    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
10576    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
10577    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
10578    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
10579    default: llvm_unreachable("unexpected overflowing operator");
10580    }
10581    if (Inverted)
10582      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
10583    if (CondOpcode == ISD::UMULO)
10584      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
10585                          MVT::i32);
10586    else
10587      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
10588
10589    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
10590
10591    if (CondOpcode == ISD::UMULO)
10592      Cond = X86Op.getValue(2);
10593    else
10594      Cond = X86Op.getValue(1);
10595
10596    CC = DAG.getConstant(X86Cond, MVT::i8);
10597    addTest = false;
10598  } else {
10599    unsigned CondOpc;
10600    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
10601      SDValue Cmp = Cond.getOperand(0).getOperand(1);
10602      if (CondOpc == ISD::OR) {
10603        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
10604        // two branches instead of an explicit OR instruction with a
10605        // separate test.
10606        if (Cmp == Cond.getOperand(1).getOperand(1) &&
10607            isX86LogicalCmp(Cmp)) {
10608          CC = Cond.getOperand(0).getOperand(0);
10609          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10610                              Chain, Dest, CC, Cmp);
10611          CC = Cond.getOperand(1).getOperand(0);
10612          Cond = Cmp;
10613          addTest = false;
10614        }
10615      } else { // ISD::AND
10616        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
10617        // two branches instead of an explicit AND instruction with a
10618        // separate test. However, we only do this if this block doesn't
10619        // have a fall-through edge, because this requires an explicit
10620        // jmp when the condition is false.
10621        if (Cmp == Cond.getOperand(1).getOperand(1) &&
10622            isX86LogicalCmp(Cmp) &&
10623            Op.getNode()->hasOneUse()) {
10624          X86::CondCode CCode =
10625            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
10626          CCode = X86::GetOppositeBranchCondition(CCode);
10627          CC = DAG.getConstant(CCode, MVT::i8);
10628          SDNode *User = *Op.getNode()->use_begin();
10629          // Look for an unconditional branch following this conditional branch.
10630          // We need this because we need to reverse the successors in order
10631          // to implement FCMP_OEQ.
10632          if (User->getOpcode() == ISD::BR) {
10633            SDValue FalseBB = User->getOperand(1);
10634            SDNode *NewBR =
10635              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10636            assert(NewBR == User);
10637            (void)NewBR;
10638            Dest = FalseBB;
10639
10640            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10641                                Chain, Dest, CC, Cmp);
10642            X86::CondCode CCode =
10643              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
10644            CCode = X86::GetOppositeBranchCondition(CCode);
10645            CC = DAG.getConstant(CCode, MVT::i8);
10646            Cond = Cmp;
10647            addTest = false;
10648          }
10649        }
10650      }
10651    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
10652      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
10653      // It should be transformed during dag combiner except when the condition
10654      // is set by a arithmetics with overflow node.
10655      X86::CondCode CCode =
10656        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
10657      CCode = X86::GetOppositeBranchCondition(CCode);
10658      CC = DAG.getConstant(CCode, MVT::i8);
10659      Cond = Cond.getOperand(0).getOperand(1);
10660      addTest = false;
10661    } else if (Cond.getOpcode() == ISD::SETCC &&
10662               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
10663      // For FCMP_OEQ, we can emit
10664      // two branches instead of an explicit AND instruction with a
10665      // separate test. However, we only do this if this block doesn't
10666      // have a fall-through edge, because this requires an explicit
10667      // jmp when the condition is false.
10668      if (Op.getNode()->hasOneUse()) {
10669        SDNode *User = *Op.getNode()->use_begin();
10670        // Look for an unconditional branch following this conditional branch.
10671        // We need this because we need to reverse the successors in order
10672        // to implement FCMP_OEQ.
10673        if (User->getOpcode() == ISD::BR) {
10674          SDValue FalseBB = User->getOperand(1);
10675          SDNode *NewBR =
10676            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10677          assert(NewBR == User);
10678          (void)NewBR;
10679          Dest = FalseBB;
10680
10681          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
10682                                    Cond.getOperand(0), Cond.getOperand(1));
10683          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10684          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10685          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10686                              Chain, Dest, CC, Cmp);
10687          CC = DAG.getConstant(X86::COND_P, MVT::i8);
10688          Cond = Cmp;
10689          addTest = false;
10690        }
10691      }
10692    } else if (Cond.getOpcode() == ISD::SETCC &&
10693               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
10694      // For FCMP_UNE, we can emit
10695      // two branches instead of an explicit AND instruction with a
10696      // separate test. However, we only do this if this block doesn't
10697      // have a fall-through edge, because this requires an explicit
10698      // jmp when the condition is false.
10699      if (Op.getNode()->hasOneUse()) {
10700        SDNode *User = *Op.getNode()->use_begin();
10701        // Look for an unconditional branch following this conditional branch.
10702        // We need this because we need to reverse the successors in order
10703        // to implement FCMP_UNE.
10704        if (User->getOpcode() == ISD::BR) {
10705          SDValue FalseBB = User->getOperand(1);
10706          SDNode *NewBR =
10707            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10708          assert(NewBR == User);
10709          (void)NewBR;
10710
10711          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
10712                                    Cond.getOperand(0), Cond.getOperand(1));
10713          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10714          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10715          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10716                              Chain, Dest, CC, Cmp);
10717          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
10718          Cond = Cmp;
10719          addTest = false;
10720          Dest = FalseBB;
10721        }
10722      }
10723    }
10724  }
10725
10726  if (addTest) {
10727    // Look pass the truncate if the high bits are known zero.
10728    if (isTruncWithZeroHighBitsInput(Cond, DAG))
10729        Cond = Cond.getOperand(0);
10730
10731    // We know the result of AND is compared against zero. Try to match
10732    // it to BT.
10733    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
10734      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
10735      if (NewSetCC.getNode()) {
10736        CC = NewSetCC.getOperand(0);
10737        Cond = NewSetCC.getOperand(1);
10738        addTest = false;
10739      }
10740    }
10741  }
10742
10743  if (addTest) {
10744    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10745    Cond = EmitTest(Cond, X86::COND_NE, DAG);
10746  }
10747  Cond = ConvertCmpIfNecessary(Cond, DAG);
10748  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10749                     Chain, Dest, CC, Cond);
10750}
10751
10752// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
10753// Calls to _alloca is needed to probe the stack when allocating more than 4k
10754// bytes in one go. Touching the stack at 4K increments is necessary to ensure
10755// that the guard pages used by the OS virtual memory manager are allocated in
10756// correct sequence.
10757SDValue
10758X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
10759                                           SelectionDAG &DAG) const {
10760  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
10761          getTargetMachine().Options.EnableSegmentedStacks) &&
10762         "This should be used only on Windows targets or when segmented stacks "
10763         "are being used");
10764  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
10765  SDLoc dl(Op);
10766
10767  // Get the inputs.
10768  SDValue Chain = Op.getOperand(0);
10769  SDValue Size  = Op.getOperand(1);
10770  unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10771  EVT VT = Op.getNode()->getValueType(0);
10772
10773  bool Is64Bit = Subtarget->is64Bit();
10774  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
10775
10776  if (getTargetMachine().Options.EnableSegmentedStacks) {
10777    MachineFunction &MF = DAG.getMachineFunction();
10778    MachineRegisterInfo &MRI = MF.getRegInfo();
10779
10780    if (Is64Bit) {
10781      // The 64 bit implementation of segmented stacks needs to clobber both r10
10782      // r11. This makes it impossible to use it along with nested parameters.
10783      const Function *F = MF.getFunction();
10784
10785      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
10786           I != E; ++I)
10787        if (I->hasNestAttr())
10788          report_fatal_error("Cannot use segmented stacks with functions that "
10789                             "have nested arguments.");
10790    }
10791
10792    const TargetRegisterClass *AddrRegClass =
10793      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
10794    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
10795    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
10796    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
10797                                DAG.getRegister(Vreg, SPTy));
10798    SDValue Ops1[2] = { Value, Chain };
10799    return DAG.getMergeValues(Ops1, 2, dl);
10800  } else {
10801    SDValue Flag;
10802    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
10803
10804    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
10805    Flag = Chain.getValue(1);
10806    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10807
10808    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
10809
10810    const X86RegisterInfo *RegInfo =
10811      static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
10812    unsigned SPReg = RegInfo->getStackRegister();
10813    SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
10814    Chain = SP.getValue(1);
10815
10816    if (Align) {
10817      SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
10818                       DAG.getConstant(-(uint64_t)Align, VT));
10819      Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
10820    }
10821
10822    SDValue Ops1[2] = { SP, Chain };
10823    return DAG.getMergeValues(Ops1, 2, dl);
10824  }
10825}
10826
10827SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
10828  MachineFunction &MF = DAG.getMachineFunction();
10829  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
10830
10831  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10832  SDLoc DL(Op);
10833
10834  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
10835    // vastart just stores the address of the VarArgsFrameIndex slot into the
10836    // memory location argument.
10837    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10838                                   getPointerTy());
10839    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
10840                        MachinePointerInfo(SV), false, false, 0);
10841  }
10842
10843  // __va_list_tag:
10844  //   gp_offset         (0 - 6 * 8)
10845  //   fp_offset         (48 - 48 + 8 * 16)
10846  //   overflow_arg_area (point to parameters coming in memory).
10847  //   reg_save_area
10848  SmallVector<SDValue, 8> MemOps;
10849  SDValue FIN = Op.getOperand(1);
10850  // Store gp_offset
10851  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
10852                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
10853                                               MVT::i32),
10854                               FIN, MachinePointerInfo(SV), false, false, 0);
10855  MemOps.push_back(Store);
10856
10857  // Store fp_offset
10858  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10859                    FIN, DAG.getIntPtrConstant(4));
10860  Store = DAG.getStore(Op.getOperand(0), DL,
10861                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
10862                                       MVT::i32),
10863                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
10864  MemOps.push_back(Store);
10865
10866  // Store ptr to overflow_arg_area
10867  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10868                    FIN, DAG.getIntPtrConstant(4));
10869  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10870                                    getPointerTy());
10871  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
10872                       MachinePointerInfo(SV, 8),
10873                       false, false, 0);
10874  MemOps.push_back(Store);
10875
10876  // Store ptr to reg_save_area.
10877  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10878                    FIN, DAG.getIntPtrConstant(8));
10879  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
10880                                    getPointerTy());
10881  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
10882                       MachinePointerInfo(SV, 16), false, false, 0);
10883  MemOps.push_back(Store);
10884  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
10885                     &MemOps[0], MemOps.size());
10886}
10887
10888SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
10889  assert(Subtarget->is64Bit() &&
10890         "LowerVAARG only handles 64-bit va_arg!");
10891  assert((Subtarget->isTargetLinux() ||
10892          Subtarget->isTargetDarwin()) &&
10893          "Unhandled target in LowerVAARG");
10894  assert(Op.getNode()->getNumOperands() == 4);
10895  SDValue Chain = Op.getOperand(0);
10896  SDValue SrcPtr = Op.getOperand(1);
10897  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10898  unsigned Align = Op.getConstantOperandVal(3);
10899  SDLoc dl(Op);
10900
10901  EVT ArgVT = Op.getNode()->getValueType(0);
10902  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
10903  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
10904  uint8_t ArgMode;
10905
10906  // Decide which area this value should be read from.
10907  // TODO: Implement the AMD64 ABI in its entirety. This simple
10908  // selection mechanism works only for the basic types.
10909  if (ArgVT == MVT::f80) {
10910    llvm_unreachable("va_arg for f80 not yet implemented");
10911  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
10912    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
10913  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
10914    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
10915  } else {
10916    llvm_unreachable("Unhandled argument type in LowerVAARG");
10917  }
10918
10919  if (ArgMode == 2) {
10920    // Sanity Check: Make sure using fp_offset makes sense.
10921    assert(!getTargetMachine().Options.UseSoftFloat &&
10922           !(DAG.getMachineFunction()
10923                .getFunction()->getAttributes()
10924                .hasAttribute(AttributeSet::FunctionIndex,
10925                              Attribute::NoImplicitFloat)) &&
10926           Subtarget->hasSSE1());
10927  }
10928
10929  // Insert VAARG_64 node into the DAG
10930  // VAARG_64 returns two values: Variable Argument Address, Chain
10931  SmallVector<SDValue, 11> InstOps;
10932  InstOps.push_back(Chain);
10933  InstOps.push_back(SrcPtr);
10934  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
10935  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
10936  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
10937  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
10938  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
10939                                          VTs, &InstOps[0], InstOps.size(),
10940                                          MVT::i64,
10941                                          MachinePointerInfo(SV),
10942                                          /*Align=*/0,
10943                                          /*Volatile=*/false,
10944                                          /*ReadMem=*/true,
10945                                          /*WriteMem=*/true);
10946  Chain = VAARG.getValue(1);
10947
10948  // Load the next argument and return it
10949  return DAG.getLoad(ArgVT, dl,
10950                     Chain,
10951                     VAARG,
10952                     MachinePointerInfo(),
10953                     false, false, false, 0);
10954}
10955
10956static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
10957                           SelectionDAG &DAG) {
10958  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
10959  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
10960  SDValue Chain = Op.getOperand(0);
10961  SDValue DstPtr = Op.getOperand(1);
10962  SDValue SrcPtr = Op.getOperand(2);
10963  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
10964  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10965  SDLoc DL(Op);
10966
10967  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
10968                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
10969                       false,
10970                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
10971}
10972
10973// getTargetVShiftByConstNode - Handle vector element shifts where the shift
10974// amount is a constant. Takes immediate version of shift as input.
10975static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, EVT VT,
10976                                          SDValue SrcOp, uint64_t ShiftAmt,
10977                                          SelectionDAG &DAG) {
10978
10979  // Check for ShiftAmt >= element width
10980  if (ShiftAmt >= VT.getVectorElementType().getSizeInBits()) {
10981    if (Opc == X86ISD::VSRAI)
10982      ShiftAmt = VT.getVectorElementType().getSizeInBits() - 1;
10983    else
10984      return DAG.getConstant(0, VT);
10985  }
10986
10987  assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
10988         && "Unknown target vector shift-by-constant node");
10989
10990  return DAG.getNode(Opc, dl, VT, SrcOp, DAG.getConstant(ShiftAmt, MVT::i8));
10991}
10992
10993// getTargetVShiftNode - Handle vector element shifts where the shift amount
10994// may or may not be a constant. Takes immediate version of shift as input.
10995static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, EVT VT,
10996                                   SDValue SrcOp, SDValue ShAmt,
10997                                   SelectionDAG &DAG) {
10998  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
10999
11000  // Catch shift-by-constant.
11001  if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
11002    return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
11003                                      CShAmt->getZExtValue(), DAG);
11004
11005  // Change opcode to non-immediate version
11006  switch (Opc) {
11007    default: llvm_unreachable("Unknown target vector shift node");
11008    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
11009    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
11010    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
11011  }
11012
11013  // Need to build a vector containing shift amount
11014  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
11015  SDValue ShOps[4];
11016  ShOps[0] = ShAmt;
11017  ShOps[1] = DAG.getConstant(0, MVT::i32);
11018  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
11019  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
11020
11021  // The return type has to be a 128-bit type with the same element
11022  // type as the input type.
11023  MVT EltVT = VT.getVectorElementType().getSimpleVT();
11024  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
11025
11026  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
11027  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
11028}
11029
11030static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
11031  SDLoc dl(Op);
11032  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11033  switch (IntNo) {
11034  default: return SDValue();    // Don't custom lower most intrinsics.
11035  // Comparison intrinsics.
11036  case Intrinsic::x86_sse_comieq_ss:
11037  case Intrinsic::x86_sse_comilt_ss:
11038  case Intrinsic::x86_sse_comile_ss:
11039  case Intrinsic::x86_sse_comigt_ss:
11040  case Intrinsic::x86_sse_comige_ss:
11041  case Intrinsic::x86_sse_comineq_ss:
11042  case Intrinsic::x86_sse_ucomieq_ss:
11043  case Intrinsic::x86_sse_ucomilt_ss:
11044  case Intrinsic::x86_sse_ucomile_ss:
11045  case Intrinsic::x86_sse_ucomigt_ss:
11046  case Intrinsic::x86_sse_ucomige_ss:
11047  case Intrinsic::x86_sse_ucomineq_ss:
11048  case Intrinsic::x86_sse2_comieq_sd:
11049  case Intrinsic::x86_sse2_comilt_sd:
11050  case Intrinsic::x86_sse2_comile_sd:
11051  case Intrinsic::x86_sse2_comigt_sd:
11052  case Intrinsic::x86_sse2_comige_sd:
11053  case Intrinsic::x86_sse2_comineq_sd:
11054  case Intrinsic::x86_sse2_ucomieq_sd:
11055  case Intrinsic::x86_sse2_ucomilt_sd:
11056  case Intrinsic::x86_sse2_ucomile_sd:
11057  case Intrinsic::x86_sse2_ucomigt_sd:
11058  case Intrinsic::x86_sse2_ucomige_sd:
11059  case Intrinsic::x86_sse2_ucomineq_sd: {
11060    unsigned Opc;
11061    ISD::CondCode CC;
11062    switch (IntNo) {
11063    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11064    case Intrinsic::x86_sse_comieq_ss:
11065    case Intrinsic::x86_sse2_comieq_sd:
11066      Opc = X86ISD::COMI;
11067      CC = ISD::SETEQ;
11068      break;
11069    case Intrinsic::x86_sse_comilt_ss:
11070    case Intrinsic::x86_sse2_comilt_sd:
11071      Opc = X86ISD::COMI;
11072      CC = ISD::SETLT;
11073      break;
11074    case Intrinsic::x86_sse_comile_ss:
11075    case Intrinsic::x86_sse2_comile_sd:
11076      Opc = X86ISD::COMI;
11077      CC = ISD::SETLE;
11078      break;
11079    case Intrinsic::x86_sse_comigt_ss:
11080    case Intrinsic::x86_sse2_comigt_sd:
11081      Opc = X86ISD::COMI;
11082      CC = ISD::SETGT;
11083      break;
11084    case Intrinsic::x86_sse_comige_ss:
11085    case Intrinsic::x86_sse2_comige_sd:
11086      Opc = X86ISD::COMI;
11087      CC = ISD::SETGE;
11088      break;
11089    case Intrinsic::x86_sse_comineq_ss:
11090    case Intrinsic::x86_sse2_comineq_sd:
11091      Opc = X86ISD::COMI;
11092      CC = ISD::SETNE;
11093      break;
11094    case Intrinsic::x86_sse_ucomieq_ss:
11095    case Intrinsic::x86_sse2_ucomieq_sd:
11096      Opc = X86ISD::UCOMI;
11097      CC = ISD::SETEQ;
11098      break;
11099    case Intrinsic::x86_sse_ucomilt_ss:
11100    case Intrinsic::x86_sse2_ucomilt_sd:
11101      Opc = X86ISD::UCOMI;
11102      CC = ISD::SETLT;
11103      break;
11104    case Intrinsic::x86_sse_ucomile_ss:
11105    case Intrinsic::x86_sse2_ucomile_sd:
11106      Opc = X86ISD::UCOMI;
11107      CC = ISD::SETLE;
11108      break;
11109    case Intrinsic::x86_sse_ucomigt_ss:
11110    case Intrinsic::x86_sse2_ucomigt_sd:
11111      Opc = X86ISD::UCOMI;
11112      CC = ISD::SETGT;
11113      break;
11114    case Intrinsic::x86_sse_ucomige_ss:
11115    case Intrinsic::x86_sse2_ucomige_sd:
11116      Opc = X86ISD::UCOMI;
11117      CC = ISD::SETGE;
11118      break;
11119    case Intrinsic::x86_sse_ucomineq_ss:
11120    case Intrinsic::x86_sse2_ucomineq_sd:
11121      Opc = X86ISD::UCOMI;
11122      CC = ISD::SETNE;
11123      break;
11124    }
11125
11126    SDValue LHS = Op.getOperand(1);
11127    SDValue RHS = Op.getOperand(2);
11128    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
11129    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
11130    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
11131    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
11132                                DAG.getConstant(X86CC, MVT::i8), Cond);
11133    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11134  }
11135
11136  // Arithmetic intrinsics.
11137  case Intrinsic::x86_sse2_pmulu_dq:
11138  case Intrinsic::x86_avx2_pmulu_dq:
11139    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
11140                       Op.getOperand(1), Op.getOperand(2));
11141
11142  // SSE2/AVX2 sub with unsigned saturation intrinsics
11143  case Intrinsic::x86_sse2_psubus_b:
11144  case Intrinsic::x86_sse2_psubus_w:
11145  case Intrinsic::x86_avx2_psubus_b:
11146  case Intrinsic::x86_avx2_psubus_w:
11147    return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
11148                       Op.getOperand(1), Op.getOperand(2));
11149
11150  // SSE3/AVX horizontal add/sub intrinsics
11151  case Intrinsic::x86_sse3_hadd_ps:
11152  case Intrinsic::x86_sse3_hadd_pd:
11153  case Intrinsic::x86_avx_hadd_ps_256:
11154  case Intrinsic::x86_avx_hadd_pd_256:
11155  case Intrinsic::x86_sse3_hsub_ps:
11156  case Intrinsic::x86_sse3_hsub_pd:
11157  case Intrinsic::x86_avx_hsub_ps_256:
11158  case Intrinsic::x86_avx_hsub_pd_256:
11159  case Intrinsic::x86_ssse3_phadd_w_128:
11160  case Intrinsic::x86_ssse3_phadd_d_128:
11161  case Intrinsic::x86_avx2_phadd_w:
11162  case Intrinsic::x86_avx2_phadd_d:
11163  case Intrinsic::x86_ssse3_phsub_w_128:
11164  case Intrinsic::x86_ssse3_phsub_d_128:
11165  case Intrinsic::x86_avx2_phsub_w:
11166  case Intrinsic::x86_avx2_phsub_d: {
11167    unsigned Opcode;
11168    switch (IntNo) {
11169    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11170    case Intrinsic::x86_sse3_hadd_ps:
11171    case Intrinsic::x86_sse3_hadd_pd:
11172    case Intrinsic::x86_avx_hadd_ps_256:
11173    case Intrinsic::x86_avx_hadd_pd_256:
11174      Opcode = X86ISD::FHADD;
11175      break;
11176    case Intrinsic::x86_sse3_hsub_ps:
11177    case Intrinsic::x86_sse3_hsub_pd:
11178    case Intrinsic::x86_avx_hsub_ps_256:
11179    case Intrinsic::x86_avx_hsub_pd_256:
11180      Opcode = X86ISD::FHSUB;
11181      break;
11182    case Intrinsic::x86_ssse3_phadd_w_128:
11183    case Intrinsic::x86_ssse3_phadd_d_128:
11184    case Intrinsic::x86_avx2_phadd_w:
11185    case Intrinsic::x86_avx2_phadd_d:
11186      Opcode = X86ISD::HADD;
11187      break;
11188    case Intrinsic::x86_ssse3_phsub_w_128:
11189    case Intrinsic::x86_ssse3_phsub_d_128:
11190    case Intrinsic::x86_avx2_phsub_w:
11191    case Intrinsic::x86_avx2_phsub_d:
11192      Opcode = X86ISD::HSUB;
11193      break;
11194    }
11195    return DAG.getNode(Opcode, dl, Op.getValueType(),
11196                       Op.getOperand(1), Op.getOperand(2));
11197  }
11198
11199  // SSE2/SSE41/AVX2 integer max/min intrinsics.
11200  case Intrinsic::x86_sse2_pmaxu_b:
11201  case Intrinsic::x86_sse41_pmaxuw:
11202  case Intrinsic::x86_sse41_pmaxud:
11203  case Intrinsic::x86_avx2_pmaxu_b:
11204  case Intrinsic::x86_avx2_pmaxu_w:
11205  case Intrinsic::x86_avx2_pmaxu_d:
11206  case Intrinsic::x86_avx512_pmaxu_d:
11207  case Intrinsic::x86_avx512_pmaxu_q:
11208  case Intrinsic::x86_sse2_pminu_b:
11209  case Intrinsic::x86_sse41_pminuw:
11210  case Intrinsic::x86_sse41_pminud:
11211  case Intrinsic::x86_avx2_pminu_b:
11212  case Intrinsic::x86_avx2_pminu_w:
11213  case Intrinsic::x86_avx2_pminu_d:
11214  case Intrinsic::x86_avx512_pminu_d:
11215  case Intrinsic::x86_avx512_pminu_q:
11216  case Intrinsic::x86_sse41_pmaxsb:
11217  case Intrinsic::x86_sse2_pmaxs_w:
11218  case Intrinsic::x86_sse41_pmaxsd:
11219  case Intrinsic::x86_avx2_pmaxs_b:
11220  case Intrinsic::x86_avx2_pmaxs_w:
11221  case Intrinsic::x86_avx2_pmaxs_d:
11222  case Intrinsic::x86_avx512_pmaxs_d:
11223  case Intrinsic::x86_avx512_pmaxs_q:
11224  case Intrinsic::x86_sse41_pminsb:
11225  case Intrinsic::x86_sse2_pmins_w:
11226  case Intrinsic::x86_sse41_pminsd:
11227  case Intrinsic::x86_avx2_pmins_b:
11228  case Intrinsic::x86_avx2_pmins_w:
11229  case Intrinsic::x86_avx2_pmins_d:
11230  case Intrinsic::x86_avx512_pmins_d:
11231  case Intrinsic::x86_avx512_pmins_q: {
11232    unsigned Opcode;
11233    switch (IntNo) {
11234    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11235    case Intrinsic::x86_sse2_pmaxu_b:
11236    case Intrinsic::x86_sse41_pmaxuw:
11237    case Intrinsic::x86_sse41_pmaxud:
11238    case Intrinsic::x86_avx2_pmaxu_b:
11239    case Intrinsic::x86_avx2_pmaxu_w:
11240    case Intrinsic::x86_avx2_pmaxu_d:
11241    case Intrinsic::x86_avx512_pmaxu_d:
11242    case Intrinsic::x86_avx512_pmaxu_q:
11243      Opcode = X86ISD::UMAX;
11244      break;
11245    case Intrinsic::x86_sse2_pminu_b:
11246    case Intrinsic::x86_sse41_pminuw:
11247    case Intrinsic::x86_sse41_pminud:
11248    case Intrinsic::x86_avx2_pminu_b:
11249    case Intrinsic::x86_avx2_pminu_w:
11250    case Intrinsic::x86_avx2_pminu_d:
11251    case Intrinsic::x86_avx512_pminu_d:
11252    case Intrinsic::x86_avx512_pminu_q:
11253      Opcode = X86ISD::UMIN;
11254      break;
11255    case Intrinsic::x86_sse41_pmaxsb:
11256    case Intrinsic::x86_sse2_pmaxs_w:
11257    case Intrinsic::x86_sse41_pmaxsd:
11258    case Intrinsic::x86_avx2_pmaxs_b:
11259    case Intrinsic::x86_avx2_pmaxs_w:
11260    case Intrinsic::x86_avx2_pmaxs_d:
11261    case Intrinsic::x86_avx512_pmaxs_d:
11262    case Intrinsic::x86_avx512_pmaxs_q:
11263      Opcode = X86ISD::SMAX;
11264      break;
11265    case Intrinsic::x86_sse41_pminsb:
11266    case Intrinsic::x86_sse2_pmins_w:
11267    case Intrinsic::x86_sse41_pminsd:
11268    case Intrinsic::x86_avx2_pmins_b:
11269    case Intrinsic::x86_avx2_pmins_w:
11270    case Intrinsic::x86_avx2_pmins_d:
11271    case Intrinsic::x86_avx512_pmins_d:
11272    case Intrinsic::x86_avx512_pmins_q:
11273      Opcode = X86ISD::SMIN;
11274      break;
11275    }
11276    return DAG.getNode(Opcode, dl, Op.getValueType(),
11277                       Op.getOperand(1), Op.getOperand(2));
11278  }
11279
11280  // SSE/SSE2/AVX floating point max/min intrinsics.
11281  case Intrinsic::x86_sse_max_ps:
11282  case Intrinsic::x86_sse2_max_pd:
11283  case Intrinsic::x86_avx_max_ps_256:
11284  case Intrinsic::x86_avx_max_pd_256:
11285  case Intrinsic::x86_avx512_max_ps_512:
11286  case Intrinsic::x86_avx512_max_pd_512:
11287  case Intrinsic::x86_sse_min_ps:
11288  case Intrinsic::x86_sse2_min_pd:
11289  case Intrinsic::x86_avx_min_ps_256:
11290  case Intrinsic::x86_avx_min_pd_256:
11291  case Intrinsic::x86_avx512_min_ps_512:
11292  case Intrinsic::x86_avx512_min_pd_512:  {
11293    unsigned Opcode;
11294    switch (IntNo) {
11295    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11296    case Intrinsic::x86_sse_max_ps:
11297    case Intrinsic::x86_sse2_max_pd:
11298    case Intrinsic::x86_avx_max_ps_256:
11299    case Intrinsic::x86_avx_max_pd_256:
11300    case Intrinsic::x86_avx512_max_ps_512:
11301    case Intrinsic::x86_avx512_max_pd_512:
11302      Opcode = X86ISD::FMAX;
11303      break;
11304    case Intrinsic::x86_sse_min_ps:
11305    case Intrinsic::x86_sse2_min_pd:
11306    case Intrinsic::x86_avx_min_ps_256:
11307    case Intrinsic::x86_avx_min_pd_256:
11308    case Intrinsic::x86_avx512_min_ps_512:
11309    case Intrinsic::x86_avx512_min_pd_512:
11310      Opcode = X86ISD::FMIN;
11311      break;
11312    }
11313    return DAG.getNode(Opcode, dl, Op.getValueType(),
11314                       Op.getOperand(1), Op.getOperand(2));
11315  }
11316
11317  // AVX2 variable shift intrinsics
11318  case Intrinsic::x86_avx2_psllv_d:
11319  case Intrinsic::x86_avx2_psllv_q:
11320  case Intrinsic::x86_avx2_psllv_d_256:
11321  case Intrinsic::x86_avx2_psllv_q_256:
11322  case Intrinsic::x86_avx2_psrlv_d:
11323  case Intrinsic::x86_avx2_psrlv_q:
11324  case Intrinsic::x86_avx2_psrlv_d_256:
11325  case Intrinsic::x86_avx2_psrlv_q_256:
11326  case Intrinsic::x86_avx2_psrav_d:
11327  case Intrinsic::x86_avx2_psrav_d_256: {
11328    unsigned Opcode;
11329    switch (IntNo) {
11330    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11331    case Intrinsic::x86_avx2_psllv_d:
11332    case Intrinsic::x86_avx2_psllv_q:
11333    case Intrinsic::x86_avx2_psllv_d_256:
11334    case Intrinsic::x86_avx2_psllv_q_256:
11335      Opcode = ISD::SHL;
11336      break;
11337    case Intrinsic::x86_avx2_psrlv_d:
11338    case Intrinsic::x86_avx2_psrlv_q:
11339    case Intrinsic::x86_avx2_psrlv_d_256:
11340    case Intrinsic::x86_avx2_psrlv_q_256:
11341      Opcode = ISD::SRL;
11342      break;
11343    case Intrinsic::x86_avx2_psrav_d:
11344    case Intrinsic::x86_avx2_psrav_d_256:
11345      Opcode = ISD::SRA;
11346      break;
11347    }
11348    return DAG.getNode(Opcode, dl, Op.getValueType(),
11349                       Op.getOperand(1), Op.getOperand(2));
11350  }
11351
11352  case Intrinsic::x86_ssse3_pshuf_b_128:
11353  case Intrinsic::x86_avx2_pshuf_b:
11354    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
11355                       Op.getOperand(1), Op.getOperand(2));
11356
11357  case Intrinsic::x86_ssse3_psign_b_128:
11358  case Intrinsic::x86_ssse3_psign_w_128:
11359  case Intrinsic::x86_ssse3_psign_d_128:
11360  case Intrinsic::x86_avx2_psign_b:
11361  case Intrinsic::x86_avx2_psign_w:
11362  case Intrinsic::x86_avx2_psign_d:
11363    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
11364                       Op.getOperand(1), Op.getOperand(2));
11365
11366  case Intrinsic::x86_sse41_insertps:
11367    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
11368                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
11369
11370  case Intrinsic::x86_avx_vperm2f128_ps_256:
11371  case Intrinsic::x86_avx_vperm2f128_pd_256:
11372  case Intrinsic::x86_avx_vperm2f128_si_256:
11373  case Intrinsic::x86_avx2_vperm2i128:
11374    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
11375                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
11376
11377  case Intrinsic::x86_avx2_permd:
11378  case Intrinsic::x86_avx2_permps:
11379    // Operands intentionally swapped. Mask is last operand to intrinsic,
11380    // but second operand for node/instruction.
11381    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
11382                       Op.getOperand(2), Op.getOperand(1));
11383
11384  case Intrinsic::x86_sse_sqrt_ps:
11385  case Intrinsic::x86_sse2_sqrt_pd:
11386  case Intrinsic::x86_avx_sqrt_ps_256:
11387  case Intrinsic::x86_avx_sqrt_pd_256:
11388    return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
11389
11390  // ptest and testp intrinsics. The intrinsic these come from are designed to
11391  // return an integer value, not just an instruction so lower it to the ptest
11392  // or testp pattern and a setcc for the result.
11393  case Intrinsic::x86_sse41_ptestz:
11394  case Intrinsic::x86_sse41_ptestc:
11395  case Intrinsic::x86_sse41_ptestnzc:
11396  case Intrinsic::x86_avx_ptestz_256:
11397  case Intrinsic::x86_avx_ptestc_256:
11398  case Intrinsic::x86_avx_ptestnzc_256:
11399  case Intrinsic::x86_avx_vtestz_ps:
11400  case Intrinsic::x86_avx_vtestc_ps:
11401  case Intrinsic::x86_avx_vtestnzc_ps:
11402  case Intrinsic::x86_avx_vtestz_pd:
11403  case Intrinsic::x86_avx_vtestc_pd:
11404  case Intrinsic::x86_avx_vtestnzc_pd:
11405  case Intrinsic::x86_avx_vtestz_ps_256:
11406  case Intrinsic::x86_avx_vtestc_ps_256:
11407  case Intrinsic::x86_avx_vtestnzc_ps_256:
11408  case Intrinsic::x86_avx_vtestz_pd_256:
11409  case Intrinsic::x86_avx_vtestc_pd_256:
11410  case Intrinsic::x86_avx_vtestnzc_pd_256: {
11411    bool IsTestPacked = false;
11412    unsigned X86CC;
11413    switch (IntNo) {
11414    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
11415    case Intrinsic::x86_avx_vtestz_ps:
11416    case Intrinsic::x86_avx_vtestz_pd:
11417    case Intrinsic::x86_avx_vtestz_ps_256:
11418    case Intrinsic::x86_avx_vtestz_pd_256:
11419      IsTestPacked = true; // Fallthrough
11420    case Intrinsic::x86_sse41_ptestz:
11421    case Intrinsic::x86_avx_ptestz_256:
11422      // ZF = 1
11423      X86CC = X86::COND_E;
11424      break;
11425    case Intrinsic::x86_avx_vtestc_ps:
11426    case Intrinsic::x86_avx_vtestc_pd:
11427    case Intrinsic::x86_avx_vtestc_ps_256:
11428    case Intrinsic::x86_avx_vtestc_pd_256:
11429      IsTestPacked = true; // Fallthrough
11430    case Intrinsic::x86_sse41_ptestc:
11431    case Intrinsic::x86_avx_ptestc_256:
11432      // CF = 1
11433      X86CC = X86::COND_B;
11434      break;
11435    case Intrinsic::x86_avx_vtestnzc_ps:
11436    case Intrinsic::x86_avx_vtestnzc_pd:
11437    case Intrinsic::x86_avx_vtestnzc_ps_256:
11438    case Intrinsic::x86_avx_vtestnzc_pd_256:
11439      IsTestPacked = true; // Fallthrough
11440    case Intrinsic::x86_sse41_ptestnzc:
11441    case Intrinsic::x86_avx_ptestnzc_256:
11442      // ZF and CF = 0
11443      X86CC = X86::COND_A;
11444      break;
11445    }
11446
11447    SDValue LHS = Op.getOperand(1);
11448    SDValue RHS = Op.getOperand(2);
11449    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
11450    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
11451    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
11452    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
11453    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11454  }
11455  case Intrinsic::x86_avx512_kortestz:
11456  case Intrinsic::x86_avx512_kortestc: {
11457    unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz)? X86::COND_E: X86::COND_B;
11458    SDValue LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(1));
11459    SDValue RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(2));
11460    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
11461    SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
11462    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
11463    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11464  }
11465
11466  // SSE/AVX shift intrinsics
11467  case Intrinsic::x86_sse2_psll_w:
11468  case Intrinsic::x86_sse2_psll_d:
11469  case Intrinsic::x86_sse2_psll_q:
11470  case Intrinsic::x86_avx2_psll_w:
11471  case Intrinsic::x86_avx2_psll_d:
11472  case Intrinsic::x86_avx2_psll_q:
11473  case Intrinsic::x86_sse2_psrl_w:
11474  case Intrinsic::x86_sse2_psrl_d:
11475  case Intrinsic::x86_sse2_psrl_q:
11476  case Intrinsic::x86_avx2_psrl_w:
11477  case Intrinsic::x86_avx2_psrl_d:
11478  case Intrinsic::x86_avx2_psrl_q:
11479  case Intrinsic::x86_sse2_psra_w:
11480  case Intrinsic::x86_sse2_psra_d:
11481  case Intrinsic::x86_avx2_psra_w:
11482  case Intrinsic::x86_avx2_psra_d: {
11483    unsigned Opcode;
11484    switch (IntNo) {
11485    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11486    case Intrinsic::x86_sse2_psll_w:
11487    case Intrinsic::x86_sse2_psll_d:
11488    case Intrinsic::x86_sse2_psll_q:
11489    case Intrinsic::x86_avx2_psll_w:
11490    case Intrinsic::x86_avx2_psll_d:
11491    case Intrinsic::x86_avx2_psll_q:
11492      Opcode = X86ISD::VSHL;
11493      break;
11494    case Intrinsic::x86_sse2_psrl_w:
11495    case Intrinsic::x86_sse2_psrl_d:
11496    case Intrinsic::x86_sse2_psrl_q:
11497    case Intrinsic::x86_avx2_psrl_w:
11498    case Intrinsic::x86_avx2_psrl_d:
11499    case Intrinsic::x86_avx2_psrl_q:
11500      Opcode = X86ISD::VSRL;
11501      break;
11502    case Intrinsic::x86_sse2_psra_w:
11503    case Intrinsic::x86_sse2_psra_d:
11504    case Intrinsic::x86_avx2_psra_w:
11505    case Intrinsic::x86_avx2_psra_d:
11506      Opcode = X86ISD::VSRA;
11507      break;
11508    }
11509    return DAG.getNode(Opcode, dl, Op.getValueType(),
11510                       Op.getOperand(1), Op.getOperand(2));
11511  }
11512
11513  // SSE/AVX immediate shift intrinsics
11514  case Intrinsic::x86_sse2_pslli_w:
11515  case Intrinsic::x86_sse2_pslli_d:
11516  case Intrinsic::x86_sse2_pslli_q:
11517  case Intrinsic::x86_avx2_pslli_w:
11518  case Intrinsic::x86_avx2_pslli_d:
11519  case Intrinsic::x86_avx2_pslli_q:
11520  case Intrinsic::x86_sse2_psrli_w:
11521  case Intrinsic::x86_sse2_psrli_d:
11522  case Intrinsic::x86_sse2_psrli_q:
11523  case Intrinsic::x86_avx2_psrli_w:
11524  case Intrinsic::x86_avx2_psrli_d:
11525  case Intrinsic::x86_avx2_psrli_q:
11526  case Intrinsic::x86_sse2_psrai_w:
11527  case Intrinsic::x86_sse2_psrai_d:
11528  case Intrinsic::x86_avx2_psrai_w:
11529  case Intrinsic::x86_avx2_psrai_d: {
11530    unsigned Opcode;
11531    switch (IntNo) {
11532    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11533    case Intrinsic::x86_sse2_pslli_w:
11534    case Intrinsic::x86_sse2_pslli_d:
11535    case Intrinsic::x86_sse2_pslli_q:
11536    case Intrinsic::x86_avx2_pslli_w:
11537    case Intrinsic::x86_avx2_pslli_d:
11538    case Intrinsic::x86_avx2_pslli_q:
11539      Opcode = X86ISD::VSHLI;
11540      break;
11541    case Intrinsic::x86_sse2_psrli_w:
11542    case Intrinsic::x86_sse2_psrli_d:
11543    case Intrinsic::x86_sse2_psrli_q:
11544    case Intrinsic::x86_avx2_psrli_w:
11545    case Intrinsic::x86_avx2_psrli_d:
11546    case Intrinsic::x86_avx2_psrli_q:
11547      Opcode = X86ISD::VSRLI;
11548      break;
11549    case Intrinsic::x86_sse2_psrai_w:
11550    case Intrinsic::x86_sse2_psrai_d:
11551    case Intrinsic::x86_avx2_psrai_w:
11552    case Intrinsic::x86_avx2_psrai_d:
11553      Opcode = X86ISD::VSRAI;
11554      break;
11555    }
11556    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
11557                               Op.getOperand(1), Op.getOperand(2), DAG);
11558  }
11559
11560  case Intrinsic::x86_sse42_pcmpistria128:
11561  case Intrinsic::x86_sse42_pcmpestria128:
11562  case Intrinsic::x86_sse42_pcmpistric128:
11563  case Intrinsic::x86_sse42_pcmpestric128:
11564  case Intrinsic::x86_sse42_pcmpistrio128:
11565  case Intrinsic::x86_sse42_pcmpestrio128:
11566  case Intrinsic::x86_sse42_pcmpistris128:
11567  case Intrinsic::x86_sse42_pcmpestris128:
11568  case Intrinsic::x86_sse42_pcmpistriz128:
11569  case Intrinsic::x86_sse42_pcmpestriz128: {
11570    unsigned Opcode;
11571    unsigned X86CC;
11572    switch (IntNo) {
11573    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11574    case Intrinsic::x86_sse42_pcmpistria128:
11575      Opcode = X86ISD::PCMPISTRI;
11576      X86CC = X86::COND_A;
11577      break;
11578    case Intrinsic::x86_sse42_pcmpestria128:
11579      Opcode = X86ISD::PCMPESTRI;
11580      X86CC = X86::COND_A;
11581      break;
11582    case Intrinsic::x86_sse42_pcmpistric128:
11583      Opcode = X86ISD::PCMPISTRI;
11584      X86CC = X86::COND_B;
11585      break;
11586    case Intrinsic::x86_sse42_pcmpestric128:
11587      Opcode = X86ISD::PCMPESTRI;
11588      X86CC = X86::COND_B;
11589      break;
11590    case Intrinsic::x86_sse42_pcmpistrio128:
11591      Opcode = X86ISD::PCMPISTRI;
11592      X86CC = X86::COND_O;
11593      break;
11594    case Intrinsic::x86_sse42_pcmpestrio128:
11595      Opcode = X86ISD::PCMPESTRI;
11596      X86CC = X86::COND_O;
11597      break;
11598    case Intrinsic::x86_sse42_pcmpistris128:
11599      Opcode = X86ISD::PCMPISTRI;
11600      X86CC = X86::COND_S;
11601      break;
11602    case Intrinsic::x86_sse42_pcmpestris128:
11603      Opcode = X86ISD::PCMPESTRI;
11604      X86CC = X86::COND_S;
11605      break;
11606    case Intrinsic::x86_sse42_pcmpistriz128:
11607      Opcode = X86ISD::PCMPISTRI;
11608      X86CC = X86::COND_E;
11609      break;
11610    case Intrinsic::x86_sse42_pcmpestriz128:
11611      Opcode = X86ISD::PCMPESTRI;
11612      X86CC = X86::COND_E;
11613      break;
11614    }
11615    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
11616    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
11617    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
11618    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
11619                                DAG.getConstant(X86CC, MVT::i8),
11620                                SDValue(PCMP.getNode(), 1));
11621    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11622  }
11623
11624  case Intrinsic::x86_sse42_pcmpistri128:
11625  case Intrinsic::x86_sse42_pcmpestri128: {
11626    unsigned Opcode;
11627    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
11628      Opcode = X86ISD::PCMPISTRI;
11629    else
11630      Opcode = X86ISD::PCMPESTRI;
11631
11632    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
11633    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
11634    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
11635  }
11636  case Intrinsic::x86_fma_vfmadd_ps:
11637  case Intrinsic::x86_fma_vfmadd_pd:
11638  case Intrinsic::x86_fma_vfmsub_ps:
11639  case Intrinsic::x86_fma_vfmsub_pd:
11640  case Intrinsic::x86_fma_vfnmadd_ps:
11641  case Intrinsic::x86_fma_vfnmadd_pd:
11642  case Intrinsic::x86_fma_vfnmsub_ps:
11643  case Intrinsic::x86_fma_vfnmsub_pd:
11644  case Intrinsic::x86_fma_vfmaddsub_ps:
11645  case Intrinsic::x86_fma_vfmaddsub_pd:
11646  case Intrinsic::x86_fma_vfmsubadd_ps:
11647  case Intrinsic::x86_fma_vfmsubadd_pd:
11648  case Intrinsic::x86_fma_vfmadd_ps_256:
11649  case Intrinsic::x86_fma_vfmadd_pd_256:
11650  case Intrinsic::x86_fma_vfmsub_ps_256:
11651  case Intrinsic::x86_fma_vfmsub_pd_256:
11652  case Intrinsic::x86_fma_vfnmadd_ps_256:
11653  case Intrinsic::x86_fma_vfnmadd_pd_256:
11654  case Intrinsic::x86_fma_vfnmsub_ps_256:
11655  case Intrinsic::x86_fma_vfnmsub_pd_256:
11656  case Intrinsic::x86_fma_vfmaddsub_ps_256:
11657  case Intrinsic::x86_fma_vfmaddsub_pd_256:
11658  case Intrinsic::x86_fma_vfmsubadd_ps_256:
11659  case Intrinsic::x86_fma_vfmsubadd_pd_256:
11660  case Intrinsic::x86_fma_vfmadd_ps_512:
11661  case Intrinsic::x86_fma_vfmadd_pd_512:
11662  case Intrinsic::x86_fma_vfmsub_ps_512:
11663  case Intrinsic::x86_fma_vfmsub_pd_512:
11664  case Intrinsic::x86_fma_vfnmadd_ps_512:
11665  case Intrinsic::x86_fma_vfnmadd_pd_512:
11666  case Intrinsic::x86_fma_vfnmsub_ps_512:
11667  case Intrinsic::x86_fma_vfnmsub_pd_512:
11668  case Intrinsic::x86_fma_vfmaddsub_ps_512:
11669  case Intrinsic::x86_fma_vfmaddsub_pd_512:
11670  case Intrinsic::x86_fma_vfmsubadd_ps_512:
11671  case Intrinsic::x86_fma_vfmsubadd_pd_512: {
11672    unsigned Opc;
11673    switch (IntNo) {
11674    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11675    case Intrinsic::x86_fma_vfmadd_ps:
11676    case Intrinsic::x86_fma_vfmadd_pd:
11677    case Intrinsic::x86_fma_vfmadd_ps_256:
11678    case Intrinsic::x86_fma_vfmadd_pd_256:
11679    case Intrinsic::x86_fma_vfmadd_ps_512:
11680    case Intrinsic::x86_fma_vfmadd_pd_512:
11681      Opc = X86ISD::FMADD;
11682      break;
11683    case Intrinsic::x86_fma_vfmsub_ps:
11684    case Intrinsic::x86_fma_vfmsub_pd:
11685    case Intrinsic::x86_fma_vfmsub_ps_256:
11686    case Intrinsic::x86_fma_vfmsub_pd_256:
11687    case Intrinsic::x86_fma_vfmsub_ps_512:
11688    case Intrinsic::x86_fma_vfmsub_pd_512:
11689      Opc = X86ISD::FMSUB;
11690      break;
11691    case Intrinsic::x86_fma_vfnmadd_ps:
11692    case Intrinsic::x86_fma_vfnmadd_pd:
11693    case Intrinsic::x86_fma_vfnmadd_ps_256:
11694    case Intrinsic::x86_fma_vfnmadd_pd_256:
11695    case Intrinsic::x86_fma_vfnmadd_ps_512:
11696    case Intrinsic::x86_fma_vfnmadd_pd_512:
11697      Opc = X86ISD::FNMADD;
11698      break;
11699    case Intrinsic::x86_fma_vfnmsub_ps:
11700    case Intrinsic::x86_fma_vfnmsub_pd:
11701    case Intrinsic::x86_fma_vfnmsub_ps_256:
11702    case Intrinsic::x86_fma_vfnmsub_pd_256:
11703    case Intrinsic::x86_fma_vfnmsub_ps_512:
11704    case Intrinsic::x86_fma_vfnmsub_pd_512:
11705      Opc = X86ISD::FNMSUB;
11706      break;
11707    case Intrinsic::x86_fma_vfmaddsub_ps:
11708    case Intrinsic::x86_fma_vfmaddsub_pd:
11709    case Intrinsic::x86_fma_vfmaddsub_ps_256:
11710    case Intrinsic::x86_fma_vfmaddsub_pd_256:
11711    case Intrinsic::x86_fma_vfmaddsub_ps_512:
11712    case Intrinsic::x86_fma_vfmaddsub_pd_512:
11713      Opc = X86ISD::FMADDSUB;
11714      break;
11715    case Intrinsic::x86_fma_vfmsubadd_ps:
11716    case Intrinsic::x86_fma_vfmsubadd_pd:
11717    case Intrinsic::x86_fma_vfmsubadd_ps_256:
11718    case Intrinsic::x86_fma_vfmsubadd_pd_256:
11719    case Intrinsic::x86_fma_vfmsubadd_ps_512:
11720    case Intrinsic::x86_fma_vfmsubadd_pd_512:
11721      Opc = X86ISD::FMSUBADD;
11722      break;
11723    }
11724
11725    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
11726                       Op.getOperand(2), Op.getOperand(3));
11727  }
11728  }
11729}
11730
11731static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
11732                             SDValue Base, SDValue Index,
11733                             SDValue ScaleOp, SDValue Chain,
11734                             const X86Subtarget * Subtarget) {
11735  SDLoc dl(Op);
11736  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
11737  assert(C && "Invalid scale type");
11738  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
11739  SDValue Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl);
11740  EVT MaskVT = MVT::getVectorVT(MVT::i1,
11741                                Index.getValueType().getVectorNumElements());
11742  SDValue MaskInReg = DAG.getConstant(~0, MaskVT);
11743  SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
11744  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
11745  SDValue Segment = DAG.getRegister(0, MVT::i32);
11746  SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
11747  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
11748  SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
11749  return DAG.getMergeValues(RetOps, array_lengthof(RetOps), dl);
11750}
11751
11752static SDValue getMGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
11753                              SDValue Src, SDValue Mask, SDValue Base,
11754                              SDValue Index, SDValue ScaleOp, SDValue Chain,
11755                              const X86Subtarget * Subtarget) {
11756  SDLoc dl(Op);
11757  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
11758  assert(C && "Invalid scale type");
11759  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
11760  EVT MaskVT = MVT::getVectorVT(MVT::i1,
11761                                Index.getValueType().getVectorNumElements());
11762  SDValue MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
11763  SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
11764  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
11765  SDValue Segment = DAG.getRegister(0, MVT::i32);
11766  if (Src.getOpcode() == ISD::UNDEF)
11767    Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl);
11768  SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
11769  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
11770  SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
11771  return DAG.getMergeValues(RetOps, array_lengthof(RetOps), dl);
11772}
11773
11774static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
11775                              SDValue Src, SDValue Base, SDValue Index,
11776                              SDValue ScaleOp, SDValue Chain) {
11777  SDLoc dl(Op);
11778  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
11779  assert(C && "Invalid scale type");
11780  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
11781  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
11782  SDValue Segment = DAG.getRegister(0, MVT::i32);
11783  EVT MaskVT = MVT::getVectorVT(MVT::i1,
11784                                Index.getValueType().getVectorNumElements());
11785  SDValue MaskInReg = DAG.getConstant(~0, MaskVT);
11786  SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
11787  SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
11788  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
11789  return SDValue(Res, 1);
11790}
11791
11792static SDValue getMScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
11793                               SDValue Src, SDValue Mask, SDValue Base,
11794                               SDValue Index, SDValue ScaleOp, SDValue Chain) {
11795  SDLoc dl(Op);
11796  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
11797  assert(C && "Invalid scale type");
11798  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
11799  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
11800  SDValue Segment = DAG.getRegister(0, MVT::i32);
11801  EVT MaskVT = MVT::getVectorVT(MVT::i1,
11802                                Index.getValueType().getVectorNumElements());
11803  SDValue MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
11804  SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
11805  SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
11806  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
11807  return SDValue(Res, 1);
11808}
11809
11810static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
11811                                      SelectionDAG &DAG) {
11812  SDLoc dl(Op);
11813  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11814  switch (IntNo) {
11815  default: return SDValue();    // Don't custom lower most intrinsics.
11816
11817  // RDRAND/RDSEED intrinsics.
11818  case Intrinsic::x86_rdrand_16:
11819  case Intrinsic::x86_rdrand_32:
11820  case Intrinsic::x86_rdrand_64:
11821  case Intrinsic::x86_rdseed_16:
11822  case Intrinsic::x86_rdseed_32:
11823  case Intrinsic::x86_rdseed_64: {
11824    unsigned Opcode = (IntNo == Intrinsic::x86_rdseed_16 ||
11825                       IntNo == Intrinsic::x86_rdseed_32 ||
11826                       IntNo == Intrinsic::x86_rdseed_64) ? X86ISD::RDSEED :
11827                                                            X86ISD::RDRAND;
11828    // Emit the node with the right value type.
11829    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
11830    SDValue Result = DAG.getNode(Opcode, dl, VTs, Op.getOperand(0));
11831
11832    // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
11833    // Otherwise return the value from Rand, which is always 0, casted to i32.
11834    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
11835                      DAG.getConstant(1, Op->getValueType(1)),
11836                      DAG.getConstant(X86::COND_B, MVT::i32),
11837                      SDValue(Result.getNode(), 1) };
11838    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
11839                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
11840                                  Ops, array_lengthof(Ops));
11841
11842    // Return { result, isValid, chain }.
11843    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
11844                       SDValue(Result.getNode(), 2));
11845  }
11846  //int_gather(index, base, scale);
11847  case Intrinsic::x86_avx512_gather_qpd_512:
11848  case Intrinsic::x86_avx512_gather_qps_512:
11849  case Intrinsic::x86_avx512_gather_dpd_512:
11850  case Intrinsic::x86_avx512_gather_qpi_512:
11851  case Intrinsic::x86_avx512_gather_qpq_512:
11852  case Intrinsic::x86_avx512_gather_dpq_512:
11853  case Intrinsic::x86_avx512_gather_dps_512:
11854  case Intrinsic::x86_avx512_gather_dpi_512: {
11855    unsigned Opc;
11856    switch (IntNo) {
11857      default: llvm_unreachable("Unexpected intrinsic!");
11858      case Intrinsic::x86_avx512_gather_qps_512: Opc = X86::VGATHERQPSZrm; break;
11859      case Intrinsic::x86_avx512_gather_qpd_512: Opc = X86::VGATHERQPDZrm; break;
11860      case Intrinsic::x86_avx512_gather_dpd_512: Opc = X86::VGATHERDPDZrm; break;
11861      case Intrinsic::x86_avx512_gather_dps_512: Opc = X86::VGATHERDPSZrm; break;
11862      case Intrinsic::x86_avx512_gather_qpi_512: Opc = X86::VPGATHERQDZrm; break;
11863      case Intrinsic::x86_avx512_gather_qpq_512: Opc = X86::VPGATHERQQZrm; break;
11864      case Intrinsic::x86_avx512_gather_dpi_512: Opc = X86::VPGATHERDDZrm; break;
11865      case Intrinsic::x86_avx512_gather_dpq_512: Opc = X86::VPGATHERDQZrm; break;
11866    }
11867    SDValue Chain = Op.getOperand(0);
11868    SDValue Index = Op.getOperand(2);
11869    SDValue Base  = Op.getOperand(3);
11870    SDValue Scale = Op.getOperand(4);
11871    return getGatherNode(Opc, Op, DAG, Base, Index, Scale, Chain, Subtarget);
11872  }
11873  //int_gather_mask(v1, mask, index, base, scale);
11874  case Intrinsic::x86_avx512_gather_qps_mask_512:
11875  case Intrinsic::x86_avx512_gather_qpd_mask_512:
11876  case Intrinsic::x86_avx512_gather_dpd_mask_512:
11877  case Intrinsic::x86_avx512_gather_dps_mask_512:
11878  case Intrinsic::x86_avx512_gather_qpi_mask_512:
11879  case Intrinsic::x86_avx512_gather_qpq_mask_512:
11880  case Intrinsic::x86_avx512_gather_dpi_mask_512:
11881  case Intrinsic::x86_avx512_gather_dpq_mask_512: {
11882    unsigned Opc;
11883    switch (IntNo) {
11884      default: llvm_unreachable("Unexpected intrinsic!");
11885      case Intrinsic::x86_avx512_gather_qps_mask_512:
11886        Opc = X86::VGATHERQPSZrm; break;
11887      case Intrinsic::x86_avx512_gather_qpd_mask_512:
11888        Opc = X86::VGATHERQPDZrm; break;
11889      case Intrinsic::x86_avx512_gather_dpd_mask_512:
11890        Opc = X86::VGATHERDPDZrm; break;
11891      case Intrinsic::x86_avx512_gather_dps_mask_512:
11892        Opc = X86::VGATHERDPSZrm; break;
11893      case Intrinsic::x86_avx512_gather_qpi_mask_512:
11894        Opc = X86::VPGATHERQDZrm; break;
11895      case Intrinsic::x86_avx512_gather_qpq_mask_512:
11896        Opc = X86::VPGATHERQQZrm; break;
11897      case Intrinsic::x86_avx512_gather_dpi_mask_512:
11898        Opc = X86::VPGATHERDDZrm; break;
11899      case Intrinsic::x86_avx512_gather_dpq_mask_512:
11900        Opc = X86::VPGATHERDQZrm; break;
11901    }
11902    SDValue Chain = Op.getOperand(0);
11903    SDValue Src   = Op.getOperand(2);
11904    SDValue Mask  = Op.getOperand(3);
11905    SDValue Index = Op.getOperand(4);
11906    SDValue Base  = Op.getOperand(5);
11907    SDValue Scale = Op.getOperand(6);
11908    return getMGatherNode(Opc, Op, DAG, Src, Mask, Base, Index, Scale, Chain,
11909                          Subtarget);
11910  }
11911  //int_scatter(base, index, v1, scale);
11912  case Intrinsic::x86_avx512_scatter_qpd_512:
11913  case Intrinsic::x86_avx512_scatter_qps_512:
11914  case Intrinsic::x86_avx512_scatter_dpd_512:
11915  case Intrinsic::x86_avx512_scatter_qpi_512:
11916  case Intrinsic::x86_avx512_scatter_qpq_512:
11917  case Intrinsic::x86_avx512_scatter_dpq_512:
11918  case Intrinsic::x86_avx512_scatter_dps_512:
11919  case Intrinsic::x86_avx512_scatter_dpi_512: {
11920    unsigned Opc;
11921    switch (IntNo) {
11922      default: llvm_unreachable("Unexpected intrinsic!");
11923      case Intrinsic::x86_avx512_scatter_qpd_512:
11924        Opc = X86::VSCATTERQPDZmr; break;
11925      case Intrinsic::x86_avx512_scatter_qps_512:
11926        Opc = X86::VSCATTERQPSZmr; break;
11927      case Intrinsic::x86_avx512_scatter_dpd_512:
11928        Opc = X86::VSCATTERDPDZmr; break;
11929      case Intrinsic::x86_avx512_scatter_dps_512:
11930        Opc = X86::VSCATTERDPSZmr; break;
11931      case Intrinsic::x86_avx512_scatter_qpi_512:
11932        Opc = X86::VPSCATTERQDZmr; break;
11933      case Intrinsic::x86_avx512_scatter_qpq_512:
11934        Opc = X86::VPSCATTERQQZmr; break;
11935      case Intrinsic::x86_avx512_scatter_dpq_512:
11936        Opc = X86::VPSCATTERDQZmr; break;
11937      case Intrinsic::x86_avx512_scatter_dpi_512:
11938        Opc = X86::VPSCATTERDDZmr; break;
11939    }
11940    SDValue Chain = Op.getOperand(0);
11941    SDValue Base  = Op.getOperand(2);
11942    SDValue Index = Op.getOperand(3);
11943    SDValue Src   = Op.getOperand(4);
11944    SDValue Scale = Op.getOperand(5);
11945    return getScatterNode(Opc, Op, DAG, Src, Base, Index, Scale, Chain);
11946  }
11947  //int_scatter_mask(base, mask, index, v1, scale);
11948  case Intrinsic::x86_avx512_scatter_qps_mask_512:
11949  case Intrinsic::x86_avx512_scatter_qpd_mask_512:
11950  case Intrinsic::x86_avx512_scatter_dpd_mask_512:
11951  case Intrinsic::x86_avx512_scatter_dps_mask_512:
11952  case Intrinsic::x86_avx512_scatter_qpi_mask_512:
11953  case Intrinsic::x86_avx512_scatter_qpq_mask_512:
11954  case Intrinsic::x86_avx512_scatter_dpi_mask_512:
11955  case Intrinsic::x86_avx512_scatter_dpq_mask_512: {
11956    unsigned Opc;
11957    switch (IntNo) {
11958      default: llvm_unreachable("Unexpected intrinsic!");
11959      case Intrinsic::x86_avx512_scatter_qpd_mask_512:
11960        Opc = X86::VSCATTERQPDZmr; break;
11961      case Intrinsic::x86_avx512_scatter_qps_mask_512:
11962        Opc = X86::VSCATTERQPSZmr; break;
11963      case Intrinsic::x86_avx512_scatter_dpd_mask_512:
11964        Opc = X86::VSCATTERDPDZmr; break;
11965      case Intrinsic::x86_avx512_scatter_dps_mask_512:
11966        Opc = X86::VSCATTERDPSZmr; break;
11967      case Intrinsic::x86_avx512_scatter_qpi_mask_512:
11968        Opc = X86::VPSCATTERQDZmr; break;
11969      case Intrinsic::x86_avx512_scatter_qpq_mask_512:
11970        Opc = X86::VPSCATTERQQZmr; break;
11971      case Intrinsic::x86_avx512_scatter_dpq_mask_512:
11972        Opc = X86::VPSCATTERDQZmr; break;
11973      case Intrinsic::x86_avx512_scatter_dpi_mask_512:
11974        Opc = X86::VPSCATTERDDZmr; break;
11975    }
11976    SDValue Chain = Op.getOperand(0);
11977    SDValue Base  = Op.getOperand(2);
11978    SDValue Mask  = Op.getOperand(3);
11979    SDValue Index = Op.getOperand(4);
11980    SDValue Src   = Op.getOperand(5);
11981    SDValue Scale = Op.getOperand(6);
11982    return getMScatterNode(Opc, Op, DAG, Src, Mask, Base, Index, Scale, Chain);
11983  }
11984  // XTEST intrinsics.
11985  case Intrinsic::x86_xtest: {
11986    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
11987    SDValue InTrans = DAG.getNode(X86ISD::XTEST, dl, VTs, Op.getOperand(0));
11988    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
11989                                DAG.getConstant(X86::COND_NE, MVT::i8),
11990                                InTrans);
11991    SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
11992    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
11993                       Ret, SDValue(InTrans.getNode(), 1));
11994  }
11995  }
11996}
11997
11998SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
11999                                           SelectionDAG &DAG) const {
12000  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
12001  MFI->setReturnAddressIsTaken(true);
12002
12003  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12004  SDLoc dl(Op);
12005  EVT PtrVT = getPointerTy();
12006
12007  if (Depth > 0) {
12008    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
12009    const X86RegisterInfo *RegInfo =
12010      static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
12011    SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
12012    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
12013                       DAG.getNode(ISD::ADD, dl, PtrVT,
12014                                   FrameAddr, Offset),
12015                       MachinePointerInfo(), false, false, false, 0);
12016  }
12017
12018  // Just load the return address.
12019  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
12020  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
12021                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
12022}
12023
12024SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
12025  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
12026  MFI->setFrameAddressIsTaken(true);
12027
12028  EVT VT = Op.getValueType();
12029  SDLoc dl(Op);  // FIXME probably not meaningful
12030  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12031  const X86RegisterInfo *RegInfo =
12032    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
12033  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
12034  assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
12035          (FrameReg == X86::EBP && VT == MVT::i32)) &&
12036         "Invalid Frame Register!");
12037  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
12038  while (Depth--)
12039    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
12040                            MachinePointerInfo(),
12041                            false, false, false, 0);
12042  return FrameAddr;
12043}
12044
12045SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
12046                                                     SelectionDAG &DAG) const {
12047  const X86RegisterInfo *RegInfo =
12048    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
12049  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
12050}
12051
12052SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
12053  SDValue Chain     = Op.getOperand(0);
12054  SDValue Offset    = Op.getOperand(1);
12055  SDValue Handler   = Op.getOperand(2);
12056  SDLoc dl      (Op);
12057
12058  EVT PtrVT = getPointerTy();
12059  const X86RegisterInfo *RegInfo =
12060    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
12061  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
12062  assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
12063          (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
12064         "Invalid Frame Register!");
12065  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
12066  unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
12067
12068  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
12069                                 DAG.getIntPtrConstant(RegInfo->getSlotSize()));
12070  StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
12071  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
12072                       false, false, 0);
12073  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
12074
12075  return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
12076                     DAG.getRegister(StoreAddrReg, PtrVT));
12077}
12078
12079SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
12080                                               SelectionDAG &DAG) const {
12081  SDLoc DL(Op);
12082  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
12083                     DAG.getVTList(MVT::i32, MVT::Other),
12084                     Op.getOperand(0), Op.getOperand(1));
12085}
12086
12087SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
12088                                                SelectionDAG &DAG) const {
12089  SDLoc DL(Op);
12090  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
12091                     Op.getOperand(0), Op.getOperand(1));
12092}
12093
12094static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
12095  return Op.getOperand(0);
12096}
12097
12098SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
12099                                                SelectionDAG &DAG) const {
12100  SDValue Root = Op.getOperand(0);
12101  SDValue Trmp = Op.getOperand(1); // trampoline
12102  SDValue FPtr = Op.getOperand(2); // nested function
12103  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
12104  SDLoc dl (Op);
12105
12106  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
12107  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12108
12109  if (Subtarget->is64Bit()) {
12110    SDValue OutChains[6];
12111
12112    // Large code-model.
12113    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
12114    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
12115
12116    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
12117    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
12118
12119    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
12120
12121    // Load the pointer to the nested function into R11.
12122    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
12123    SDValue Addr = Trmp;
12124    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
12125                                Addr, MachinePointerInfo(TrmpAddr),
12126                                false, false, 0);
12127
12128    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12129                       DAG.getConstant(2, MVT::i64));
12130    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
12131                                MachinePointerInfo(TrmpAddr, 2),
12132                                false, false, 2);
12133
12134    // Load the 'nest' parameter value into R10.
12135    // R10 is specified in X86CallingConv.td
12136    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
12137    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12138                       DAG.getConstant(10, MVT::i64));
12139    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
12140                                Addr, MachinePointerInfo(TrmpAddr, 10),
12141                                false, false, 0);
12142
12143    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12144                       DAG.getConstant(12, MVT::i64));
12145    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
12146                                MachinePointerInfo(TrmpAddr, 12),
12147                                false, false, 2);
12148
12149    // Jump to the nested function.
12150    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
12151    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12152                       DAG.getConstant(20, MVT::i64));
12153    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
12154                                Addr, MachinePointerInfo(TrmpAddr, 20),
12155                                false, false, 0);
12156
12157    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
12158    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12159                       DAG.getConstant(22, MVT::i64));
12160    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
12161                                MachinePointerInfo(TrmpAddr, 22),
12162                                false, false, 0);
12163
12164    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
12165  } else {
12166    const Function *Func =
12167      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
12168    CallingConv::ID CC = Func->getCallingConv();
12169    unsigned NestReg;
12170
12171    switch (CC) {
12172    default:
12173      llvm_unreachable("Unsupported calling convention");
12174    case CallingConv::C:
12175    case CallingConv::X86_StdCall: {
12176      // Pass 'nest' parameter in ECX.
12177      // Must be kept in sync with X86CallingConv.td
12178      NestReg = X86::ECX;
12179
12180      // Check that ECX wasn't needed by an 'inreg' parameter.
12181      FunctionType *FTy = Func->getFunctionType();
12182      const AttributeSet &Attrs = Func->getAttributes();
12183
12184      if (!Attrs.isEmpty() && !Func->isVarArg()) {
12185        unsigned InRegCount = 0;
12186        unsigned Idx = 1;
12187
12188        for (FunctionType::param_iterator I = FTy->param_begin(),
12189             E = FTy->param_end(); I != E; ++I, ++Idx)
12190          if (Attrs.hasAttribute(Idx, Attribute::InReg))
12191            // FIXME: should only count parameters that are lowered to integers.
12192            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
12193
12194        if (InRegCount > 2) {
12195          report_fatal_error("Nest register in use - reduce number of inreg"
12196                             " parameters!");
12197        }
12198      }
12199      break;
12200    }
12201    case CallingConv::X86_FastCall:
12202    case CallingConv::X86_ThisCall:
12203    case CallingConv::Fast:
12204      // Pass 'nest' parameter in EAX.
12205      // Must be kept in sync with X86CallingConv.td
12206      NestReg = X86::EAX;
12207      break;
12208    }
12209
12210    SDValue OutChains[4];
12211    SDValue Addr, Disp;
12212
12213    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
12214                       DAG.getConstant(10, MVT::i32));
12215    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
12216
12217    // This is storing the opcode for MOV32ri.
12218    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
12219    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
12220    OutChains[0] = DAG.getStore(Root, dl,
12221                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
12222                                Trmp, MachinePointerInfo(TrmpAddr),
12223                                false, false, 0);
12224
12225    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
12226                       DAG.getConstant(1, MVT::i32));
12227    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
12228                                MachinePointerInfo(TrmpAddr, 1),
12229                                false, false, 1);
12230
12231    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
12232    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
12233                       DAG.getConstant(5, MVT::i32));
12234    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
12235                                MachinePointerInfo(TrmpAddr, 5),
12236                                false, false, 1);
12237
12238    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
12239                       DAG.getConstant(6, MVT::i32));
12240    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
12241                                MachinePointerInfo(TrmpAddr, 6),
12242                                false, false, 1);
12243
12244    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
12245  }
12246}
12247
12248SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
12249                                            SelectionDAG &DAG) const {
12250  /*
12251   The rounding mode is in bits 11:10 of FPSR, and has the following
12252   settings:
12253     00 Round to nearest
12254     01 Round to -inf
12255     10 Round to +inf
12256     11 Round to 0
12257
12258  FLT_ROUNDS, on the other hand, expects the following:
12259    -1 Undefined
12260     0 Round to 0
12261     1 Round to nearest
12262     2 Round to +inf
12263     3 Round to -inf
12264
12265  To perform the conversion, we do:
12266    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
12267  */
12268
12269  MachineFunction &MF = DAG.getMachineFunction();
12270  const TargetMachine &TM = MF.getTarget();
12271  const TargetFrameLowering &TFI = *TM.getFrameLowering();
12272  unsigned StackAlignment = TFI.getStackAlignment();
12273  EVT VT = Op.getValueType();
12274  SDLoc DL(Op);
12275
12276  // Save FP Control Word to stack slot
12277  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
12278  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
12279
12280  MachineMemOperand *MMO =
12281   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
12282                           MachineMemOperand::MOStore, 2, 2);
12283
12284  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
12285  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
12286                                          DAG.getVTList(MVT::Other),
12287                                          Ops, array_lengthof(Ops), MVT::i16,
12288                                          MMO);
12289
12290  // Load FP Control Word from stack slot
12291  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
12292                            MachinePointerInfo(), false, false, false, 0);
12293
12294  // Transform as necessary
12295  SDValue CWD1 =
12296    DAG.getNode(ISD::SRL, DL, MVT::i16,
12297                DAG.getNode(ISD::AND, DL, MVT::i16,
12298                            CWD, DAG.getConstant(0x800, MVT::i16)),
12299                DAG.getConstant(11, MVT::i8));
12300  SDValue CWD2 =
12301    DAG.getNode(ISD::SRL, DL, MVT::i16,
12302                DAG.getNode(ISD::AND, DL, MVT::i16,
12303                            CWD, DAG.getConstant(0x400, MVT::i16)),
12304                DAG.getConstant(9, MVT::i8));
12305
12306  SDValue RetVal =
12307    DAG.getNode(ISD::AND, DL, MVT::i16,
12308                DAG.getNode(ISD::ADD, DL, MVT::i16,
12309                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
12310                            DAG.getConstant(1, MVT::i16)),
12311                DAG.getConstant(3, MVT::i16));
12312
12313  return DAG.getNode((VT.getSizeInBits() < 16 ?
12314                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
12315}
12316
12317static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
12318  EVT VT = Op.getValueType();
12319  EVT OpVT = VT;
12320  unsigned NumBits = VT.getSizeInBits();
12321  SDLoc dl(Op);
12322
12323  Op = Op.getOperand(0);
12324  if (VT == MVT::i8) {
12325    // Zero extend to i32 since there is not an i8 bsr.
12326    OpVT = MVT::i32;
12327    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
12328  }
12329
12330  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
12331  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
12332  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
12333
12334  // If src is zero (i.e. bsr sets ZF), returns NumBits.
12335  SDValue Ops[] = {
12336    Op,
12337    DAG.getConstant(NumBits+NumBits-1, OpVT),
12338    DAG.getConstant(X86::COND_E, MVT::i8),
12339    Op.getValue(1)
12340  };
12341  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
12342
12343  // Finally xor with NumBits-1.
12344  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
12345
12346  if (VT == MVT::i8)
12347    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
12348  return Op;
12349}
12350
12351static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
12352  EVT VT = Op.getValueType();
12353  EVT OpVT = VT;
12354  unsigned NumBits = VT.getSizeInBits();
12355  SDLoc dl(Op);
12356
12357  Op = Op.getOperand(0);
12358  if (VT == MVT::i8) {
12359    // Zero extend to i32 since there is not an i8 bsr.
12360    OpVT = MVT::i32;
12361    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
12362  }
12363
12364  // Issue a bsr (scan bits in reverse).
12365  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
12366  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
12367
12368  // And xor with NumBits-1.
12369  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
12370
12371  if (VT == MVT::i8)
12372    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
12373  return Op;
12374}
12375
12376static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
12377  EVT VT = Op.getValueType();
12378  unsigned NumBits = VT.getSizeInBits();
12379  SDLoc dl(Op);
12380  Op = Op.getOperand(0);
12381
12382  // Issue a bsf (scan bits forward) which also sets EFLAGS.
12383  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12384  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
12385
12386  // If src is zero (i.e. bsf sets ZF), returns NumBits.
12387  SDValue Ops[] = {
12388    Op,
12389    DAG.getConstant(NumBits, VT),
12390    DAG.getConstant(X86::COND_E, MVT::i8),
12391    Op.getValue(1)
12392  };
12393  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
12394}
12395
12396// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
12397// ones, and then concatenate the result back.
12398static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
12399  EVT VT = Op.getValueType();
12400
12401  assert(VT.is256BitVector() && VT.isInteger() &&
12402         "Unsupported value type for operation");
12403
12404  unsigned NumElems = VT.getVectorNumElements();
12405  SDLoc dl(Op);
12406
12407  // Extract the LHS vectors
12408  SDValue LHS = Op.getOperand(0);
12409  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
12410  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
12411
12412  // Extract the RHS vectors
12413  SDValue RHS = Op.getOperand(1);
12414  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
12415  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
12416
12417  MVT EltVT = VT.getVectorElementType().getSimpleVT();
12418  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12419
12420  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
12421                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
12422                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
12423}
12424
12425static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
12426  assert(Op.getValueType().is256BitVector() &&
12427         Op.getValueType().isInteger() &&
12428         "Only handle AVX 256-bit vector integer operation");
12429  return Lower256IntArith(Op, DAG);
12430}
12431
12432static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
12433  assert(Op.getValueType().is256BitVector() &&
12434         Op.getValueType().isInteger() &&
12435         "Only handle AVX 256-bit vector integer operation");
12436  return Lower256IntArith(Op, DAG);
12437}
12438
12439static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
12440                        SelectionDAG &DAG) {
12441  SDLoc dl(Op);
12442  EVT VT = Op.getValueType();
12443
12444  // Decompose 256-bit ops into smaller 128-bit ops.
12445  if (VT.is256BitVector() && !Subtarget->hasInt256())
12446    return Lower256IntArith(Op, DAG);
12447
12448  SDValue A = Op.getOperand(0);
12449  SDValue B = Op.getOperand(1);
12450
12451  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
12452  if (VT == MVT::v4i32) {
12453    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
12454           "Should not custom lower when pmuldq is available!");
12455
12456    // Extract the odd parts.
12457    static const int UnpackMask[] = { 1, -1, 3, -1 };
12458    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
12459    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
12460
12461    // Multiply the even parts.
12462    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
12463    // Now multiply odd parts.
12464    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
12465
12466    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
12467    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
12468
12469    // Merge the two vectors back together with a shuffle. This expands into 2
12470    // shuffles.
12471    static const int ShufMask[] = { 0, 4, 2, 6 };
12472    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
12473  }
12474
12475  assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
12476         "Only know how to lower V2I64/V4I64/V8I64 multiply");
12477
12478  //  Ahi = psrlqi(a, 32);
12479  //  Bhi = psrlqi(b, 32);
12480  //
12481  //  AloBlo = pmuludq(a, b);
12482  //  AloBhi = pmuludq(a, Bhi);
12483  //  AhiBlo = pmuludq(Ahi, b);
12484
12485  //  AloBhi = psllqi(AloBhi, 32);
12486  //  AhiBlo = psllqi(AhiBlo, 32);
12487  //  return AloBlo + AloBhi + AhiBlo;
12488
12489  SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
12490  SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
12491
12492  // Bit cast to 32-bit vectors for MULUDQ
12493  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 :
12494                                  (VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32;
12495  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
12496  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
12497  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
12498  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
12499
12500  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
12501  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
12502  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
12503
12504  AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG);
12505  AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG);
12506
12507  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
12508  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
12509}
12510
12511static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
12512  EVT VT = Op.getValueType();
12513  EVT EltTy = VT.getVectorElementType();
12514  unsigned NumElts = VT.getVectorNumElements();
12515  SDValue N0 = Op.getOperand(0);
12516  SDLoc dl(Op);
12517
12518  // Lower sdiv X, pow2-const.
12519  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1));
12520  if (!C)
12521    return SDValue();
12522
12523  APInt SplatValue, SplatUndef;
12524  unsigned SplatBitSize;
12525  bool HasAnyUndefs;
12526  if (!C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
12527                          HasAnyUndefs) ||
12528      EltTy.getSizeInBits() < SplatBitSize)
12529    return SDValue();
12530
12531  if ((SplatValue != 0) &&
12532      (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) {
12533    unsigned Lg2 = SplatValue.countTrailingZeros();
12534    // Splat the sign bit.
12535    SmallVector<SDValue, 16> Sz(NumElts,
12536                                DAG.getConstant(EltTy.getSizeInBits() - 1,
12537                                                EltTy));
12538    SDValue SGN = DAG.getNode(ISD::SRA, dl, VT, N0,
12539                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Sz[0],
12540                                          NumElts));
12541    // Add (N0 < 0) ? abs2 - 1 : 0;
12542    SmallVector<SDValue, 16> Amt(NumElts,
12543                                 DAG.getConstant(EltTy.getSizeInBits() - Lg2,
12544                                                 EltTy));
12545    SDValue SRL = DAG.getNode(ISD::SRL, dl, VT, SGN,
12546                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Amt[0],
12547                                          NumElts));
12548    SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL);
12549    SmallVector<SDValue, 16> Lg2Amt(NumElts, DAG.getConstant(Lg2, EltTy));
12550    SDValue SRA = DAG.getNode(ISD::SRA, dl, VT, ADD,
12551                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Lg2Amt[0],
12552                                          NumElts));
12553
12554    // If we're dividing by a positive value, we're done.  Otherwise, we must
12555    // negate the result.
12556    if (SplatValue.isNonNegative())
12557      return SRA;
12558
12559    SmallVector<SDValue, 16> V(NumElts, DAG.getConstant(0, EltTy));
12560    SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts);
12561    return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA);
12562  }
12563  return SDValue();
12564}
12565
12566static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
12567                                         const X86Subtarget *Subtarget) {
12568  EVT VT = Op.getValueType();
12569  SDLoc dl(Op);
12570  SDValue R = Op.getOperand(0);
12571  SDValue Amt = Op.getOperand(1);
12572
12573  // Optimize shl/srl/sra with constant shift amount.
12574  if (isSplatVector(Amt.getNode())) {
12575    SDValue SclrAmt = Amt->getOperand(0);
12576    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
12577      uint64_t ShiftAmt = C->getZExtValue();
12578
12579      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
12580          (Subtarget->hasInt256() &&
12581           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16)) ||
12582          (Subtarget->hasAVX512() &&
12583           (VT == MVT::v8i64 || VT == MVT::v16i32))) {
12584        if (Op.getOpcode() == ISD::SHL)
12585          return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
12586                                            DAG);
12587        if (Op.getOpcode() == ISD::SRL)
12588          return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
12589                                            DAG);
12590        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
12591          return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
12592                                            DAG);
12593      }
12594
12595      if (VT == MVT::v16i8) {
12596        if (Op.getOpcode() == ISD::SHL) {
12597          // Make a large shift.
12598          SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
12599                                                   MVT::v8i16, R, ShiftAmt,
12600                                                   DAG);
12601          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
12602          // Zero out the rightmost bits.
12603          SmallVector<SDValue, 16> V(16,
12604                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
12605                                                     MVT::i8));
12606          return DAG.getNode(ISD::AND, dl, VT, SHL,
12607                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
12608        }
12609        if (Op.getOpcode() == ISD::SRL) {
12610          // Make a large shift.
12611          SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
12612                                                   MVT::v8i16, R, ShiftAmt,
12613                                                   DAG);
12614          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
12615          // Zero out the leftmost bits.
12616          SmallVector<SDValue, 16> V(16,
12617                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
12618                                                     MVT::i8));
12619          return DAG.getNode(ISD::AND, dl, VT, SRL,
12620                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
12621        }
12622        if (Op.getOpcode() == ISD::SRA) {
12623          if (ShiftAmt == 7) {
12624            // R s>> 7  ===  R s< 0
12625            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12626            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
12627          }
12628
12629          // R s>> a === ((R u>> a) ^ m) - m
12630          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
12631          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
12632                                                         MVT::i8));
12633          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
12634          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
12635          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
12636          return Res;
12637        }
12638        llvm_unreachable("Unknown shift opcode.");
12639      }
12640
12641      if (Subtarget->hasInt256() && VT == MVT::v32i8) {
12642        if (Op.getOpcode() == ISD::SHL) {
12643          // Make a large shift.
12644          SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
12645                                                   MVT::v16i16, R, ShiftAmt,
12646                                                   DAG);
12647          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
12648          // Zero out the rightmost bits.
12649          SmallVector<SDValue, 32> V(32,
12650                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
12651                                                     MVT::i8));
12652          return DAG.getNode(ISD::AND, dl, VT, SHL,
12653                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
12654        }
12655        if (Op.getOpcode() == ISD::SRL) {
12656          // Make a large shift.
12657          SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
12658                                                   MVT::v16i16, R, ShiftAmt,
12659                                                   DAG);
12660          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
12661          // Zero out the leftmost bits.
12662          SmallVector<SDValue, 32> V(32,
12663                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
12664                                                     MVT::i8));
12665          return DAG.getNode(ISD::AND, dl, VT, SRL,
12666                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
12667        }
12668        if (Op.getOpcode() == ISD::SRA) {
12669          if (ShiftAmt == 7) {
12670            // R s>> 7  ===  R s< 0
12671            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12672            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
12673          }
12674
12675          // R s>> a === ((R u>> a) ^ m) - m
12676          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
12677          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
12678                                                         MVT::i8));
12679          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
12680          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
12681          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
12682          return Res;
12683        }
12684        llvm_unreachable("Unknown shift opcode.");
12685      }
12686    }
12687  }
12688
12689  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
12690  if (!Subtarget->is64Bit() &&
12691      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
12692      Amt.getOpcode() == ISD::BITCAST &&
12693      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
12694    Amt = Amt.getOperand(0);
12695    unsigned Ratio = Amt.getValueType().getVectorNumElements() /
12696                     VT.getVectorNumElements();
12697    unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
12698    uint64_t ShiftAmt = 0;
12699    for (unsigned i = 0; i != Ratio; ++i) {
12700      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i));
12701      if (C == 0)
12702        return SDValue();
12703      // 6 == Log2(64)
12704      ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
12705    }
12706    // Check remaining shift amounts.
12707    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
12708      uint64_t ShAmt = 0;
12709      for (unsigned j = 0; j != Ratio; ++j) {
12710        ConstantSDNode *C =
12711          dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
12712        if (C == 0)
12713          return SDValue();
12714        // 6 == Log2(64)
12715        ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
12716      }
12717      if (ShAmt != ShiftAmt)
12718        return SDValue();
12719    }
12720    switch (Op.getOpcode()) {
12721    default:
12722      llvm_unreachable("Unknown shift opcode!");
12723    case ISD::SHL:
12724      return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
12725                                        DAG);
12726    case ISD::SRL:
12727      return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
12728                                        DAG);
12729    case ISD::SRA:
12730      return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
12731                                        DAG);
12732    }
12733  }
12734
12735  return SDValue();
12736}
12737
12738static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
12739                                        const X86Subtarget* Subtarget) {
12740  EVT VT = Op.getValueType();
12741  SDLoc dl(Op);
12742  SDValue R = Op.getOperand(0);
12743  SDValue Amt = Op.getOperand(1);
12744
12745  if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) ||
12746      VT == MVT::v4i32 || VT == MVT::v8i16 ||
12747      (Subtarget->hasInt256() &&
12748       ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
12749        VT == MVT::v8i32 || VT == MVT::v16i16)) ||
12750       (Subtarget->hasAVX512() && (VT == MVT::v8i64 || VT == MVT::v16i32))) {
12751    SDValue BaseShAmt;
12752    EVT EltVT = VT.getVectorElementType();
12753
12754    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
12755      unsigned NumElts = VT.getVectorNumElements();
12756      unsigned i, j;
12757      for (i = 0; i != NumElts; ++i) {
12758        if (Amt.getOperand(i).getOpcode() == ISD::UNDEF)
12759          continue;
12760        break;
12761      }
12762      for (j = i; j != NumElts; ++j) {
12763        SDValue Arg = Amt.getOperand(j);
12764        if (Arg.getOpcode() == ISD::UNDEF) continue;
12765        if (Arg != Amt.getOperand(i))
12766          break;
12767      }
12768      if (i != NumElts && j == NumElts)
12769        BaseShAmt = Amt.getOperand(i);
12770    } else {
12771      if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
12772        Amt = Amt.getOperand(0);
12773      if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE &&
12774               cast<ShuffleVectorSDNode>(Amt)->isSplat()) {
12775        SDValue InVec = Amt.getOperand(0);
12776        if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
12777          unsigned NumElts = InVec.getValueType().getVectorNumElements();
12778          unsigned i = 0;
12779          for (; i != NumElts; ++i) {
12780            SDValue Arg = InVec.getOperand(i);
12781            if (Arg.getOpcode() == ISD::UNDEF) continue;
12782            BaseShAmt = Arg;
12783            break;
12784          }
12785        } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
12786           if (ConstantSDNode *C =
12787               dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
12788             unsigned SplatIdx =
12789               cast<ShuffleVectorSDNode>(Amt)->getSplatIndex();
12790             if (C->getZExtValue() == SplatIdx)
12791               BaseShAmt = InVec.getOperand(1);
12792           }
12793        }
12794        if (BaseShAmt.getNode() == 0)
12795          BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt,
12796                                  DAG.getIntPtrConstant(0));
12797      }
12798    }
12799
12800    if (BaseShAmt.getNode()) {
12801      if (EltVT.bitsGT(MVT::i32))
12802        BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt);
12803      else if (EltVT.bitsLT(MVT::i32))
12804        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
12805
12806      switch (Op.getOpcode()) {
12807      default:
12808        llvm_unreachable("Unknown shift opcode!");
12809      case ISD::SHL:
12810        switch (VT.getSimpleVT().SimpleTy) {
12811        default: return SDValue();
12812        case MVT::v2i64:
12813        case MVT::v4i32:
12814        case MVT::v8i16:
12815        case MVT::v4i64:
12816        case MVT::v8i32:
12817        case MVT::v16i16:
12818        case MVT::v16i32:
12819        case MVT::v8i64:
12820          return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
12821        }
12822      case ISD::SRA:
12823        switch (VT.getSimpleVT().SimpleTy) {
12824        default: return SDValue();
12825        case MVT::v4i32:
12826        case MVT::v8i16:
12827        case MVT::v8i32:
12828        case MVT::v16i16:
12829        case MVT::v16i32:
12830        case MVT::v8i64:
12831          return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
12832        }
12833      case ISD::SRL:
12834        switch (VT.getSimpleVT().SimpleTy) {
12835        default: return SDValue();
12836        case MVT::v2i64:
12837        case MVT::v4i32:
12838        case MVT::v8i16:
12839        case MVT::v4i64:
12840        case MVT::v8i32:
12841        case MVT::v16i16:
12842        case MVT::v16i32:
12843        case MVT::v8i64:
12844          return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
12845        }
12846      }
12847    }
12848  }
12849
12850  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
12851  if (!Subtarget->is64Bit() &&
12852      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64) ||
12853      (Subtarget->hasAVX512() && VT == MVT::v8i64)) &&
12854      Amt.getOpcode() == ISD::BITCAST &&
12855      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
12856    Amt = Amt.getOperand(0);
12857    unsigned Ratio = Amt.getValueType().getVectorNumElements() /
12858                     VT.getVectorNumElements();
12859    std::vector<SDValue> Vals(Ratio);
12860    for (unsigned i = 0; i != Ratio; ++i)
12861      Vals[i] = Amt.getOperand(i);
12862    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
12863      for (unsigned j = 0; j != Ratio; ++j)
12864        if (Vals[j] != Amt.getOperand(i + j))
12865          return SDValue();
12866    }
12867    switch (Op.getOpcode()) {
12868    default:
12869      llvm_unreachable("Unknown shift opcode!");
12870    case ISD::SHL:
12871      return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1));
12872    case ISD::SRL:
12873      return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1));
12874    case ISD::SRA:
12875      return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1));
12876    }
12877  }
12878
12879  return SDValue();
12880}
12881
12882static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
12883                          SelectionDAG &DAG) {
12884
12885  EVT VT = Op.getValueType();
12886  SDLoc dl(Op);
12887  SDValue R = Op.getOperand(0);
12888  SDValue Amt = Op.getOperand(1);
12889  SDValue V;
12890
12891  if (!Subtarget->hasSSE2())
12892    return SDValue();
12893
12894  V = LowerScalarImmediateShift(Op, DAG, Subtarget);
12895  if (V.getNode())
12896    return V;
12897
12898  V = LowerScalarVariableShift(Op, DAG, Subtarget);
12899  if (V.getNode())
12900      return V;
12901
12902  if (Subtarget->hasAVX512() && (VT == MVT::v16i32 || VT == MVT::v8i64))
12903    return Op;
12904  // AVX2 has VPSLLV/VPSRAV/VPSRLV.
12905  if (Subtarget->hasInt256()) {
12906    if (Op.getOpcode() == ISD::SRL &&
12907        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
12908         VT == MVT::v4i64 || VT == MVT::v8i32))
12909      return Op;
12910    if (Op.getOpcode() == ISD::SHL &&
12911        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
12912         VT == MVT::v4i64 || VT == MVT::v8i32))
12913      return Op;
12914    if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32))
12915      return Op;
12916  }
12917
12918  // Lower SHL with variable shift amount.
12919  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
12920    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
12921
12922    Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
12923    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
12924    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
12925    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
12926  }
12927  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
12928    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
12929
12930    // a = a << 5;
12931    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
12932    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
12933
12934    // Turn 'a' into a mask suitable for VSELECT
12935    SDValue VSelM = DAG.getConstant(0x80, VT);
12936    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
12937    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
12938
12939    SDValue CM1 = DAG.getConstant(0x0f, VT);
12940    SDValue CM2 = DAG.getConstant(0x3f, VT);
12941
12942    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
12943    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
12944    M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 4, DAG);
12945    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
12946    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
12947
12948    // a += a
12949    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
12950    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
12951    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
12952
12953    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
12954    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
12955    M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 2, DAG);
12956    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
12957    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
12958
12959    // a += a
12960    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
12961    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
12962    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
12963
12964    // return VSELECT(r, r+r, a);
12965    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
12966                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
12967    return R;
12968  }
12969
12970  // Decompose 256-bit shifts into smaller 128-bit shifts.
12971  if (VT.is256BitVector()) {
12972    unsigned NumElems = VT.getVectorNumElements();
12973    MVT EltVT = VT.getVectorElementType().getSimpleVT();
12974    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12975
12976    // Extract the two vectors
12977    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
12978    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
12979
12980    // Recreate the shift amount vectors
12981    SDValue Amt1, Amt2;
12982    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
12983      // Constant shift amount
12984      SmallVector<SDValue, 4> Amt1Csts;
12985      SmallVector<SDValue, 4> Amt2Csts;
12986      for (unsigned i = 0; i != NumElems/2; ++i)
12987        Amt1Csts.push_back(Amt->getOperand(i));
12988      for (unsigned i = NumElems/2; i != NumElems; ++i)
12989        Amt2Csts.push_back(Amt->getOperand(i));
12990
12991      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
12992                                 &Amt1Csts[0], NumElems/2);
12993      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
12994                                 &Amt2Csts[0], NumElems/2);
12995    } else {
12996      // Variable shift amount
12997      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
12998      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
12999    }
13000
13001    // Issue new vector shifts for the smaller types
13002    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
13003    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
13004
13005    // Concatenate the result back
13006    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
13007  }
13008
13009  return SDValue();
13010}
13011
13012static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
13013  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
13014  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
13015  // looks for this combo and may remove the "setcc" instruction if the "setcc"
13016  // has only one use.
13017  SDNode *N = Op.getNode();
13018  SDValue LHS = N->getOperand(0);
13019  SDValue RHS = N->getOperand(1);
13020  unsigned BaseOp = 0;
13021  unsigned Cond = 0;
13022  SDLoc DL(Op);
13023  switch (Op.getOpcode()) {
13024  default: llvm_unreachable("Unknown ovf instruction!");
13025  case ISD::SADDO:
13026    // A subtract of one will be selected as a INC. Note that INC doesn't
13027    // set CF, so we can't do this for UADDO.
13028    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
13029      if (C->isOne()) {
13030        BaseOp = X86ISD::INC;
13031        Cond = X86::COND_O;
13032        break;
13033      }
13034    BaseOp = X86ISD::ADD;
13035    Cond = X86::COND_O;
13036    break;
13037  case ISD::UADDO:
13038    BaseOp = X86ISD::ADD;
13039    Cond = X86::COND_B;
13040    break;
13041  case ISD::SSUBO:
13042    // A subtract of one will be selected as a DEC. Note that DEC doesn't
13043    // set CF, so we can't do this for USUBO.
13044    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
13045      if (C->isOne()) {
13046        BaseOp = X86ISD::DEC;
13047        Cond = X86::COND_O;
13048        break;
13049      }
13050    BaseOp = X86ISD::SUB;
13051    Cond = X86::COND_O;
13052    break;
13053  case ISD::USUBO:
13054    BaseOp = X86ISD::SUB;
13055    Cond = X86::COND_B;
13056    break;
13057  case ISD::SMULO:
13058    BaseOp = X86ISD::SMUL;
13059    Cond = X86::COND_O;
13060    break;
13061  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
13062    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
13063                                 MVT::i32);
13064    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
13065
13066    SDValue SetCC =
13067      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13068                  DAG.getConstant(X86::COND_O, MVT::i32),
13069                  SDValue(Sum.getNode(), 2));
13070
13071    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
13072  }
13073  }
13074
13075  // Also sets EFLAGS.
13076  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
13077  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
13078
13079  SDValue SetCC =
13080    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
13081                DAG.getConstant(Cond, MVT::i32),
13082                SDValue(Sum.getNode(), 1));
13083
13084  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
13085}
13086
13087SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
13088                                                  SelectionDAG &DAG) const {
13089  SDLoc dl(Op);
13090  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
13091  EVT VT = Op.getValueType();
13092
13093  if (!Subtarget->hasSSE2() || !VT.isVector())
13094    return SDValue();
13095
13096  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
13097                      ExtraVT.getScalarType().getSizeInBits();
13098
13099  switch (VT.getSimpleVT().SimpleTy) {
13100    default: return SDValue();
13101    case MVT::v8i32:
13102    case MVT::v16i16:
13103      if (!Subtarget->hasFp256())
13104        return SDValue();
13105      if (!Subtarget->hasInt256()) {
13106        // needs to be split
13107        unsigned NumElems = VT.getVectorNumElements();
13108
13109        // Extract the LHS vectors
13110        SDValue LHS = Op.getOperand(0);
13111        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
13112        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
13113
13114        MVT EltVT = VT.getVectorElementType().getSimpleVT();
13115        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
13116
13117        EVT ExtraEltVT = ExtraVT.getVectorElementType();
13118        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
13119        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
13120                                   ExtraNumElems/2);
13121        SDValue Extra = DAG.getValueType(ExtraVT);
13122
13123        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
13124        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
13125
13126        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
13127      }
13128      // fall through
13129    case MVT::v4i32:
13130    case MVT::v8i16: {
13131      SDValue Op0 = Op.getOperand(0);
13132      SDValue Op00 = Op0.getOperand(0);
13133      SDValue Tmp1;
13134      // Hopefully, this VECTOR_SHUFFLE is just a VZEXT.
13135      if (Op0.getOpcode() == ISD::BITCAST &&
13136          Op00.getOpcode() == ISD::VECTOR_SHUFFLE) {
13137        // (sext (vzext x)) -> (vsext x)
13138        Tmp1 = LowerVectorIntExtend(Op00, Subtarget, DAG);
13139        if (Tmp1.getNode()) {
13140          EVT ExtraEltVT = ExtraVT.getVectorElementType();
13141          // This folding is only valid when the in-reg type is a vector of i8,
13142          // i16, or i32.
13143          if (ExtraEltVT == MVT::i8 || ExtraEltVT == MVT::i16 ||
13144              ExtraEltVT == MVT::i32) {
13145            SDValue Tmp1Op0 = Tmp1.getOperand(0);
13146            assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT &&
13147                   "This optimization is invalid without a VZEXT.");
13148            return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0));
13149          }
13150          Op0 = Tmp1;
13151        }
13152      }
13153
13154      // If the above didn't work, then just use Shift-Left + Shift-Right.
13155      Tmp1 = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Op0, BitsDiff,
13156                                        DAG);
13157      return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, Tmp1, BitsDiff,
13158                                        DAG);
13159    }
13160  }
13161}
13162
13163static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
13164                                 SelectionDAG &DAG) {
13165  SDLoc dl(Op);
13166  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
13167    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
13168  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
13169    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
13170
13171  // The only fence that needs an instruction is a sequentially-consistent
13172  // cross-thread fence.
13173  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
13174    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
13175    // no-sse2). There isn't any reason to disable it if the target processor
13176    // supports it.
13177    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
13178      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
13179
13180    SDValue Chain = Op.getOperand(0);
13181    SDValue Zero = DAG.getConstant(0, MVT::i32);
13182    SDValue Ops[] = {
13183      DAG.getRegister(X86::ESP, MVT::i32), // Base
13184      DAG.getTargetConstant(1, MVT::i8),   // Scale
13185      DAG.getRegister(0, MVT::i32),        // Index
13186      DAG.getTargetConstant(0, MVT::i32),  // Disp
13187      DAG.getRegister(0, MVT::i32),        // Segment.
13188      Zero,
13189      Chain
13190    };
13191    SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
13192    return SDValue(Res, 0);
13193  }
13194
13195  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
13196  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
13197}
13198
13199static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
13200                             SelectionDAG &DAG) {
13201  EVT T = Op.getValueType();
13202  SDLoc DL(Op);
13203  unsigned Reg = 0;
13204  unsigned size = 0;
13205  switch(T.getSimpleVT().SimpleTy) {
13206  default: llvm_unreachable("Invalid value type!");
13207  case MVT::i8:  Reg = X86::AL;  size = 1; break;
13208  case MVT::i16: Reg = X86::AX;  size = 2; break;
13209  case MVT::i32: Reg = X86::EAX; size = 4; break;
13210  case MVT::i64:
13211    assert(Subtarget->is64Bit() && "Node not type legal!");
13212    Reg = X86::RAX; size = 8;
13213    break;
13214  }
13215  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
13216                                    Op.getOperand(2), SDValue());
13217  SDValue Ops[] = { cpIn.getValue(0),
13218                    Op.getOperand(1),
13219                    Op.getOperand(3),
13220                    DAG.getTargetConstant(size, MVT::i8),
13221                    cpIn.getValue(1) };
13222  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
13223  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
13224  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
13225                                           Ops, array_lengthof(Ops), T, MMO);
13226  SDValue cpOut =
13227    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
13228  return cpOut;
13229}
13230
13231static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
13232                                     SelectionDAG &DAG) {
13233  assert(Subtarget->is64Bit() && "Result not type legalized?");
13234  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
13235  SDValue TheChain = Op.getOperand(0);
13236  SDLoc dl(Op);
13237  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
13238  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
13239  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
13240                                   rax.getValue(2));
13241  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
13242                            DAG.getConstant(32, MVT::i8));
13243  SDValue Ops[] = {
13244    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
13245    rdx.getValue(1)
13246  };
13247  return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
13248}
13249
13250static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
13251                            SelectionDAG &DAG) {
13252  MVT SrcVT = Op.getOperand(0).getSimpleValueType();
13253  MVT DstVT = Op.getSimpleValueType();
13254  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
13255         Subtarget->hasMMX() && "Unexpected custom BITCAST");
13256  assert((DstVT == MVT::i64 ||
13257          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
13258         "Unexpected custom BITCAST");
13259  // i64 <=> MMX conversions are Legal.
13260  if (SrcVT==MVT::i64 && DstVT.isVector())
13261    return Op;
13262  if (DstVT==MVT::i64 && SrcVT.isVector())
13263    return Op;
13264  // MMX <=> MMX conversions are Legal.
13265  if (SrcVT.isVector() && DstVT.isVector())
13266    return Op;
13267  // All other conversions need to be expanded.
13268  return SDValue();
13269}
13270
13271static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
13272  SDNode *Node = Op.getNode();
13273  SDLoc dl(Node);
13274  EVT T = Node->getValueType(0);
13275  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
13276                              DAG.getConstant(0, T), Node->getOperand(2));
13277  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
13278                       cast<AtomicSDNode>(Node)->getMemoryVT(),
13279                       Node->getOperand(0),
13280                       Node->getOperand(1), negOp,
13281                       cast<AtomicSDNode>(Node)->getSrcValue(),
13282                       cast<AtomicSDNode>(Node)->getAlignment(),
13283                       cast<AtomicSDNode>(Node)->getOrdering(),
13284                       cast<AtomicSDNode>(Node)->getSynchScope());
13285}
13286
13287static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
13288  SDNode *Node = Op.getNode();
13289  SDLoc dl(Node);
13290  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
13291
13292  // Convert seq_cst store -> xchg
13293  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
13294  // FIXME: On 32-bit, store -> fist or movq would be more efficient
13295  //        (The only way to get a 16-byte store is cmpxchg16b)
13296  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
13297  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
13298      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
13299    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
13300                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
13301                                 Node->getOperand(0),
13302                                 Node->getOperand(1), Node->getOperand(2),
13303                                 cast<AtomicSDNode>(Node)->getMemOperand(),
13304                                 cast<AtomicSDNode>(Node)->getOrdering(),
13305                                 cast<AtomicSDNode>(Node)->getSynchScope());
13306    return Swap.getValue(1);
13307  }
13308  // Other atomic stores have a simple pattern.
13309  return Op;
13310}
13311
13312static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
13313  EVT VT = Op.getNode()->getValueType(0);
13314
13315  // Let legalize expand this if it isn't a legal type yet.
13316  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
13317    return SDValue();
13318
13319  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
13320
13321  unsigned Opc;
13322  bool ExtraOp = false;
13323  switch (Op.getOpcode()) {
13324  default: llvm_unreachable("Invalid code");
13325  case ISD::ADDC: Opc = X86ISD::ADD; break;
13326  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
13327  case ISD::SUBC: Opc = X86ISD::SUB; break;
13328  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
13329  }
13330
13331  if (!ExtraOp)
13332    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
13333                       Op.getOperand(1));
13334  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
13335                     Op.getOperand(1), Op.getOperand(2));
13336}
13337
13338static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget,
13339                            SelectionDAG &DAG) {
13340  assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
13341
13342  // For MacOSX, we want to call an alternative entry point: __sincos_stret,
13343  // which returns the values as { float, float } (in XMM0) or
13344  // { double, double } (which is returned in XMM0, XMM1).
13345  SDLoc dl(Op);
13346  SDValue Arg = Op.getOperand(0);
13347  EVT ArgVT = Arg.getValueType();
13348  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
13349
13350  TargetLowering::ArgListTy Args;
13351  TargetLowering::ArgListEntry Entry;
13352
13353  Entry.Node = Arg;
13354  Entry.Ty = ArgTy;
13355  Entry.isSExt = false;
13356  Entry.isZExt = false;
13357  Args.push_back(Entry);
13358
13359  bool isF64 = ArgVT == MVT::f64;
13360  // Only optimize x86_64 for now. i386 is a bit messy. For f32,
13361  // the small struct {f32, f32} is returned in (eax, edx). For f64,
13362  // the results are returned via SRet in memory.
13363  const char *LibcallName =  isF64 ? "__sincos_stret" : "__sincosf_stret";
13364  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13365  SDValue Callee = DAG.getExternalSymbol(LibcallName, TLI.getPointerTy());
13366
13367  Type *RetTy = isF64
13368    ? (Type*)StructType::get(ArgTy, ArgTy, NULL)
13369    : (Type*)VectorType::get(ArgTy, 4);
13370  TargetLowering::
13371    CallLoweringInfo CLI(DAG.getEntryNode(), RetTy,
13372                         false, false, false, false, 0,
13373                         CallingConv::C, /*isTaillCall=*/false,
13374                         /*doesNotRet=*/false, /*isReturnValueUsed*/true,
13375                         Callee, Args, DAG, dl);
13376  std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
13377
13378  if (isF64)
13379    // Returned in xmm0 and xmm1.
13380    return CallResult.first;
13381
13382  // Returned in bits 0:31 and 32:64 xmm0.
13383  SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
13384                               CallResult.first, DAG.getIntPtrConstant(0));
13385  SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
13386                               CallResult.first, DAG.getIntPtrConstant(1));
13387  SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
13388  return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
13389}
13390
13391/// LowerOperation - Provide custom lowering hooks for some operations.
13392///
13393SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
13394  switch (Op.getOpcode()) {
13395  default: llvm_unreachable("Should not custom lower this!");
13396  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
13397  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
13398  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
13399  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
13400  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
13401  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
13402  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
13403  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
13404  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
13405  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
13406  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
13407  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
13408  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
13409  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
13410  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
13411  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
13412  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
13413  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
13414  case ISD::SHL_PARTS:
13415  case ISD::SRA_PARTS:
13416  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
13417  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
13418  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
13419  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
13420  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, Subtarget, DAG);
13421  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, Subtarget, DAG);
13422  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, Subtarget, DAG);
13423  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
13424  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
13425  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
13426  case ISD::FABS:               return LowerFABS(Op, DAG);
13427  case ISD::FNEG:               return LowerFNEG(Op, DAG);
13428  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
13429  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
13430  case ISD::SETCC:              return LowerSETCC(Op, DAG);
13431  case ISD::SELECT:             return LowerSELECT(Op, DAG);
13432  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
13433  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
13434  case ISD::VASTART:            return LowerVASTART(Op, DAG);
13435  case ISD::VAARG:              return LowerVAARG(Op, DAG);
13436  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
13437  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
13438  case ISD::INTRINSIC_VOID:
13439  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
13440  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
13441  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
13442  case ISD::FRAME_TO_ARGS_OFFSET:
13443                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
13444  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
13445  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
13446  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
13447  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
13448  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
13449  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
13450  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
13451  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
13452  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
13453  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
13454  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
13455  case ISD::SRA:
13456  case ISD::SRL:
13457  case ISD::SHL:                return LowerShift(Op, Subtarget, DAG);
13458  case ISD::SADDO:
13459  case ISD::UADDO:
13460  case ISD::SSUBO:
13461  case ISD::USUBO:
13462  case ISD::SMULO:
13463  case ISD::UMULO:              return LowerXALUO(Op, DAG);
13464  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
13465  case ISD::BITCAST:            return LowerBITCAST(Op, Subtarget, DAG);
13466  case ISD::ADDC:
13467  case ISD::ADDE:
13468  case ISD::SUBC:
13469  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
13470  case ISD::ADD:                return LowerADD(Op, DAG);
13471  case ISD::SUB:                return LowerSUB(Op, DAG);
13472  case ISD::SDIV:               return LowerSDIV(Op, DAG);
13473  case ISD::FSINCOS:            return LowerFSINCOS(Op, Subtarget, DAG);
13474  }
13475}
13476
13477static void ReplaceATOMIC_LOAD(SDNode *Node,
13478                                  SmallVectorImpl<SDValue> &Results,
13479                                  SelectionDAG &DAG) {
13480  SDLoc dl(Node);
13481  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
13482
13483  // Convert wide load -> cmpxchg8b/cmpxchg16b
13484  // FIXME: On 32-bit, load -> fild or movq would be more efficient
13485  //        (The only way to get a 16-byte load is cmpxchg16b)
13486  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
13487  SDValue Zero = DAG.getConstant(0, VT);
13488  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
13489                               Node->getOperand(0),
13490                               Node->getOperand(1), Zero, Zero,
13491                               cast<AtomicSDNode>(Node)->getMemOperand(),
13492                               cast<AtomicSDNode>(Node)->getOrdering(),
13493                               cast<AtomicSDNode>(Node)->getSynchScope());
13494  Results.push_back(Swap.getValue(0));
13495  Results.push_back(Swap.getValue(1));
13496}
13497
13498static void
13499ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
13500                        SelectionDAG &DAG, unsigned NewOp) {
13501  SDLoc dl(Node);
13502  assert (Node->getValueType(0) == MVT::i64 &&
13503          "Only know how to expand i64 atomics");
13504
13505  SDValue Chain = Node->getOperand(0);
13506  SDValue In1 = Node->getOperand(1);
13507  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
13508                             Node->getOperand(2), DAG.getIntPtrConstant(0));
13509  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
13510                             Node->getOperand(2), DAG.getIntPtrConstant(1));
13511  SDValue Ops[] = { Chain, In1, In2L, In2H };
13512  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
13513  SDValue Result =
13514    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, array_lengthof(Ops), MVT::i64,
13515                            cast<MemSDNode>(Node)->getMemOperand());
13516  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
13517  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
13518  Results.push_back(Result.getValue(2));
13519}
13520
13521/// ReplaceNodeResults - Replace a node with an illegal result type
13522/// with a new node built out of custom code.
13523void X86TargetLowering::ReplaceNodeResults(SDNode *N,
13524                                           SmallVectorImpl<SDValue>&Results,
13525                                           SelectionDAG &DAG) const {
13526  SDLoc dl(N);
13527  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13528  switch (N->getOpcode()) {
13529  default:
13530    llvm_unreachable("Do not know how to custom type legalize this operation!");
13531  case ISD::SIGN_EXTEND_INREG:
13532  case ISD::ADDC:
13533  case ISD::ADDE:
13534  case ISD::SUBC:
13535  case ISD::SUBE:
13536    // We don't want to expand or promote these.
13537    return;
13538  case ISD::FP_TO_SINT:
13539  case ISD::FP_TO_UINT: {
13540    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
13541
13542    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
13543      return;
13544
13545    std::pair<SDValue,SDValue> Vals =
13546        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
13547    SDValue FIST = Vals.first, StackSlot = Vals.second;
13548    if (FIST.getNode() != 0) {
13549      EVT VT = N->getValueType(0);
13550      // Return a load from the stack slot.
13551      if (StackSlot.getNode() != 0)
13552        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
13553                                      MachinePointerInfo(),
13554                                      false, false, false, 0));
13555      else
13556        Results.push_back(FIST);
13557    }
13558    return;
13559  }
13560  case ISD::UINT_TO_FP: {
13561    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
13562    if (N->getOperand(0).getValueType() != MVT::v2i32 ||
13563        N->getValueType(0) != MVT::v2f32)
13564      return;
13565    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
13566                                 N->getOperand(0));
13567    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
13568                                     MVT::f64);
13569    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
13570    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
13571                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
13572    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
13573    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
13574    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
13575    return;
13576  }
13577  case ISD::FP_ROUND: {
13578    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
13579        return;
13580    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
13581    Results.push_back(V);
13582    return;
13583  }
13584  case ISD::READCYCLECOUNTER: {
13585    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
13586    SDValue TheChain = N->getOperand(0);
13587    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
13588    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
13589                                     rd.getValue(1));
13590    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
13591                                     eax.getValue(2));
13592    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
13593    SDValue Ops[] = { eax, edx };
13594    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops,
13595                                  array_lengthof(Ops)));
13596    Results.push_back(edx.getValue(1));
13597    return;
13598  }
13599  case ISD::ATOMIC_CMP_SWAP: {
13600    EVT T = N->getValueType(0);
13601    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
13602    bool Regs64bit = T == MVT::i128;
13603    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
13604    SDValue cpInL, cpInH;
13605    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
13606                        DAG.getConstant(0, HalfT));
13607    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
13608                        DAG.getConstant(1, HalfT));
13609    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
13610                             Regs64bit ? X86::RAX : X86::EAX,
13611                             cpInL, SDValue());
13612    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
13613                             Regs64bit ? X86::RDX : X86::EDX,
13614                             cpInH, cpInL.getValue(1));
13615    SDValue swapInL, swapInH;
13616    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
13617                          DAG.getConstant(0, HalfT));
13618    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
13619                          DAG.getConstant(1, HalfT));
13620    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
13621                               Regs64bit ? X86::RBX : X86::EBX,
13622                               swapInL, cpInH.getValue(1));
13623    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
13624                               Regs64bit ? X86::RCX : X86::ECX,
13625                               swapInH, swapInL.getValue(1));
13626    SDValue Ops[] = { swapInH.getValue(0),
13627                      N->getOperand(1),
13628                      swapInH.getValue(1) };
13629    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
13630    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
13631    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
13632                                  X86ISD::LCMPXCHG8_DAG;
13633    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
13634                                             Ops, array_lengthof(Ops), T, MMO);
13635    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
13636                                        Regs64bit ? X86::RAX : X86::EAX,
13637                                        HalfT, Result.getValue(1));
13638    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
13639                                        Regs64bit ? X86::RDX : X86::EDX,
13640                                        HalfT, cpOutL.getValue(2));
13641    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
13642    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
13643    Results.push_back(cpOutH.getValue(1));
13644    return;
13645  }
13646  case ISD::ATOMIC_LOAD_ADD:
13647  case ISD::ATOMIC_LOAD_AND:
13648  case ISD::ATOMIC_LOAD_NAND:
13649  case ISD::ATOMIC_LOAD_OR:
13650  case ISD::ATOMIC_LOAD_SUB:
13651  case ISD::ATOMIC_LOAD_XOR:
13652  case ISD::ATOMIC_LOAD_MAX:
13653  case ISD::ATOMIC_LOAD_MIN:
13654  case ISD::ATOMIC_LOAD_UMAX:
13655  case ISD::ATOMIC_LOAD_UMIN:
13656  case ISD::ATOMIC_SWAP: {
13657    unsigned Opc;
13658    switch (N->getOpcode()) {
13659    default: llvm_unreachable("Unexpected opcode");
13660    case ISD::ATOMIC_LOAD_ADD:
13661      Opc = X86ISD::ATOMADD64_DAG;
13662      break;
13663    case ISD::ATOMIC_LOAD_AND:
13664      Opc = X86ISD::ATOMAND64_DAG;
13665      break;
13666    case ISD::ATOMIC_LOAD_NAND:
13667      Opc = X86ISD::ATOMNAND64_DAG;
13668      break;
13669    case ISD::ATOMIC_LOAD_OR:
13670      Opc = X86ISD::ATOMOR64_DAG;
13671      break;
13672    case ISD::ATOMIC_LOAD_SUB:
13673      Opc = X86ISD::ATOMSUB64_DAG;
13674      break;
13675    case ISD::ATOMIC_LOAD_XOR:
13676      Opc = X86ISD::ATOMXOR64_DAG;
13677      break;
13678    case ISD::ATOMIC_LOAD_MAX:
13679      Opc = X86ISD::ATOMMAX64_DAG;
13680      break;
13681    case ISD::ATOMIC_LOAD_MIN:
13682      Opc = X86ISD::ATOMMIN64_DAG;
13683      break;
13684    case ISD::ATOMIC_LOAD_UMAX:
13685      Opc = X86ISD::ATOMUMAX64_DAG;
13686      break;
13687    case ISD::ATOMIC_LOAD_UMIN:
13688      Opc = X86ISD::ATOMUMIN64_DAG;
13689      break;
13690    case ISD::ATOMIC_SWAP:
13691      Opc = X86ISD::ATOMSWAP64_DAG;
13692      break;
13693    }
13694    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
13695    return;
13696  }
13697  case ISD::ATOMIC_LOAD:
13698    ReplaceATOMIC_LOAD(N, Results, DAG);
13699  }
13700}
13701
13702const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
13703  switch (Opcode) {
13704  default: return NULL;
13705  case X86ISD::BSF:                return "X86ISD::BSF";
13706  case X86ISD::BSR:                return "X86ISD::BSR";
13707  case X86ISD::SHLD:               return "X86ISD::SHLD";
13708  case X86ISD::SHRD:               return "X86ISD::SHRD";
13709  case X86ISD::FAND:               return "X86ISD::FAND";
13710  case X86ISD::FANDN:              return "X86ISD::FANDN";
13711  case X86ISD::FOR:                return "X86ISD::FOR";
13712  case X86ISD::FXOR:               return "X86ISD::FXOR";
13713  case X86ISD::FSRL:               return "X86ISD::FSRL";
13714  case X86ISD::FILD:               return "X86ISD::FILD";
13715  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
13716  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
13717  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
13718  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
13719  case X86ISD::FLD:                return "X86ISD::FLD";
13720  case X86ISD::FST:                return "X86ISD::FST";
13721  case X86ISD::CALL:               return "X86ISD::CALL";
13722  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
13723  case X86ISD::BT:                 return "X86ISD::BT";
13724  case X86ISD::CMP:                return "X86ISD::CMP";
13725  case X86ISD::COMI:               return "X86ISD::COMI";
13726  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
13727  case X86ISD::CMPM:               return "X86ISD::CMPM";
13728  case X86ISD::CMPMU:              return "X86ISD::CMPMU";
13729  case X86ISD::SETCC:              return "X86ISD::SETCC";
13730  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
13731  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
13732  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
13733  case X86ISD::CMOV:               return "X86ISD::CMOV";
13734  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
13735  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
13736  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
13737  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
13738  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
13739  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
13740  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
13741  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
13742  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
13743  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
13744  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
13745  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
13746  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
13747  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
13748  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
13749  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
13750  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
13751  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
13752  case X86ISD::HADD:               return "X86ISD::HADD";
13753  case X86ISD::HSUB:               return "X86ISD::HSUB";
13754  case X86ISD::FHADD:              return "X86ISD::FHADD";
13755  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
13756  case X86ISD::UMAX:               return "X86ISD::UMAX";
13757  case X86ISD::UMIN:               return "X86ISD::UMIN";
13758  case X86ISD::SMAX:               return "X86ISD::SMAX";
13759  case X86ISD::SMIN:               return "X86ISD::SMIN";
13760  case X86ISD::FMAX:               return "X86ISD::FMAX";
13761  case X86ISD::FMIN:               return "X86ISD::FMIN";
13762  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
13763  case X86ISD::FMINC:              return "X86ISD::FMINC";
13764  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
13765  case X86ISD::FRCP:               return "X86ISD::FRCP";
13766  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
13767  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
13768  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
13769  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
13770  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
13771  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
13772  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
13773  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
13774  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
13775  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
13776  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
13777  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
13778  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
13779  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
13780  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
13781  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
13782  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
13783  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
13784  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
13785  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
13786  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
13787  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
13788  case X86ISD::VTRUNC:             return "X86ISD::VTRUNC";
13789  case X86ISD::VTRUNCM:            return "X86ISD::VTRUNCM";
13790  case X86ISD::VINSERT:            return "X86ISD::VINSERT";
13791  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
13792  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
13793  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
13794  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
13795  case X86ISD::VSHL:               return "X86ISD::VSHL";
13796  case X86ISD::VSRL:               return "X86ISD::VSRL";
13797  case X86ISD::VSRA:               return "X86ISD::VSRA";
13798  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
13799  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
13800  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
13801  case X86ISD::CMPP:               return "X86ISD::CMPP";
13802  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
13803  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
13804  case X86ISD::PCMPEQM:            return "X86ISD::PCMPEQM";
13805  case X86ISD::PCMPGTM:            return "X86ISD::PCMPGTM";
13806  case X86ISD::ADD:                return "X86ISD::ADD";
13807  case X86ISD::SUB:                return "X86ISD::SUB";
13808  case X86ISD::ADC:                return "X86ISD::ADC";
13809  case X86ISD::SBB:                return "X86ISD::SBB";
13810  case X86ISD::SMUL:               return "X86ISD::SMUL";
13811  case X86ISD::UMUL:               return "X86ISD::UMUL";
13812  case X86ISD::INC:                return "X86ISD::INC";
13813  case X86ISD::DEC:                return "X86ISD::DEC";
13814  case X86ISD::OR:                 return "X86ISD::OR";
13815  case X86ISD::XOR:                return "X86ISD::XOR";
13816  case X86ISD::AND:                return "X86ISD::AND";
13817  case X86ISD::BLSI:               return "X86ISD::BLSI";
13818  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
13819  case X86ISD::BLSR:               return "X86ISD::BLSR";
13820  case X86ISD::BZHI:               return "X86ISD::BZHI";
13821  case X86ISD::BEXTR:              return "X86ISD::BEXTR";
13822  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
13823  case X86ISD::PTEST:              return "X86ISD::PTEST";
13824  case X86ISD::TESTP:              return "X86ISD::TESTP";
13825  case X86ISD::TESTM:              return "X86ISD::TESTM";
13826  case X86ISD::KORTEST:            return "X86ISD::KORTEST";
13827  case X86ISD::KTEST:              return "X86ISD::KTEST";
13828  case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
13829  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
13830  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
13831  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
13832  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
13833  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
13834  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
13835  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
13836  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
13837  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
13838  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
13839  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
13840  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
13841  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
13842  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
13843  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
13844  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
13845  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
13846  case X86ISD::VBROADCASTM:        return "X86ISD::VBROADCASTM";
13847  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
13848  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
13849  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
13850  case X86ISD::VPERMV3:            return "X86ISD::VPERMV3";
13851  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
13852  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
13853  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
13854  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
13855  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
13856  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
13857  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
13858  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
13859  case X86ISD::SAHF:               return "X86ISD::SAHF";
13860  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
13861  case X86ISD::RDSEED:             return "X86ISD::RDSEED";
13862  case X86ISD::FMADD:              return "X86ISD::FMADD";
13863  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
13864  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
13865  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
13866  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
13867  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
13868  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
13869  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
13870  case X86ISD::XTEST:              return "X86ISD::XTEST";
13871  }
13872}
13873
13874// isLegalAddressingMode - Return true if the addressing mode represented
13875// by AM is legal for this target, for a load/store of the specified type.
13876bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
13877                                              Type *Ty) const {
13878  // X86 supports extremely general addressing modes.
13879  CodeModel::Model M = getTargetMachine().getCodeModel();
13880  Reloc::Model R = getTargetMachine().getRelocationModel();
13881
13882  // X86 allows a sign-extended 32-bit immediate field as a displacement.
13883  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
13884    return false;
13885
13886  if (AM.BaseGV) {
13887    unsigned GVFlags =
13888      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
13889
13890    // If a reference to this global requires an extra load, we can't fold it.
13891    if (isGlobalStubReference(GVFlags))
13892      return false;
13893
13894    // If BaseGV requires a register for the PIC base, we cannot also have a
13895    // BaseReg specified.
13896    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
13897      return false;
13898
13899    // If lower 4G is not available, then we must use rip-relative addressing.
13900    if ((M != CodeModel::Small || R != Reloc::Static) &&
13901        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
13902      return false;
13903  }
13904
13905  switch (AM.Scale) {
13906  case 0:
13907  case 1:
13908  case 2:
13909  case 4:
13910  case 8:
13911    // These scales always work.
13912    break;
13913  case 3:
13914  case 5:
13915  case 9:
13916    // These scales are formed with basereg+scalereg.  Only accept if there is
13917    // no basereg yet.
13918    if (AM.HasBaseReg)
13919      return false;
13920    break;
13921  default:  // Other stuff never works.
13922    return false;
13923  }
13924
13925  return true;
13926}
13927
13928bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
13929  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13930    return false;
13931  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
13932  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
13933  return NumBits1 > NumBits2;
13934}
13935
13936bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
13937  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13938    return false;
13939
13940  if (!isTypeLegal(EVT::getEVT(Ty1)))
13941    return false;
13942
13943  assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
13944
13945  // Assuming the caller doesn't have a zeroext or signext return parameter,
13946  // truncation all the way down to i1 is valid.
13947  return true;
13948}
13949
13950bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13951  return isInt<32>(Imm);
13952}
13953
13954bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
13955  // Can also use sub to handle negated immediates.
13956  return isInt<32>(Imm);
13957}
13958
13959bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
13960  if (!VT1.isInteger() || !VT2.isInteger())
13961    return false;
13962  unsigned NumBits1 = VT1.getSizeInBits();
13963  unsigned NumBits2 = VT2.getSizeInBits();
13964  return NumBits1 > NumBits2;
13965}
13966
13967bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
13968  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
13969  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
13970}
13971
13972bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
13973  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
13974  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
13975}
13976
13977bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
13978  EVT VT1 = Val.getValueType();
13979  if (isZExtFree(VT1, VT2))
13980    return true;
13981
13982  if (Val.getOpcode() != ISD::LOAD)
13983    return false;
13984
13985  if (!VT1.isSimple() || !VT1.isInteger() ||
13986      !VT2.isSimple() || !VT2.isInteger())
13987    return false;
13988
13989  switch (VT1.getSimpleVT().SimpleTy) {
13990  default: break;
13991  case MVT::i8:
13992  case MVT::i16:
13993  case MVT::i32:
13994    // X86 has 8, 16, and 32-bit zero-extending loads.
13995    return true;
13996  }
13997
13998  return false;
13999}
14000
14001bool
14002X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
14003  if (!(Subtarget->hasFMA() || Subtarget->hasFMA4()))
14004    return false;
14005
14006  VT = VT.getScalarType();
14007
14008  if (!VT.isSimple())
14009    return false;
14010
14011  switch (VT.getSimpleVT().SimpleTy) {
14012  case MVT::f32:
14013  case MVT::f64:
14014    return true;
14015  default:
14016    break;
14017  }
14018
14019  return false;
14020}
14021
14022bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
14023  // i16 instructions are longer (0x66 prefix) and potentially slower.
14024  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
14025}
14026
14027/// isShuffleMaskLegal - Targets can use this to indicate that they only
14028/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
14029/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
14030/// are assumed to be legal.
14031bool
14032X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
14033                                      EVT VT) const {
14034  if (!VT.isSimple())
14035    return false;
14036
14037  MVT SVT = VT.getSimpleVT();
14038
14039  // Very little shuffling can be done for 64-bit vectors right now.
14040  if (VT.getSizeInBits() == 64)
14041    return false;
14042
14043  // FIXME: pshufb, blends, shifts.
14044  return (SVT.getVectorNumElements() == 2 ||
14045          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
14046          isMOVLMask(M, SVT) ||
14047          isSHUFPMask(M, SVT) ||
14048          isPSHUFDMask(M, SVT) ||
14049          isPSHUFHWMask(M, SVT, Subtarget->hasInt256()) ||
14050          isPSHUFLWMask(M, SVT, Subtarget->hasInt256()) ||
14051          isPALIGNRMask(M, SVT, Subtarget) ||
14052          isUNPCKLMask(M, SVT, Subtarget->hasInt256()) ||
14053          isUNPCKHMask(M, SVT, Subtarget->hasInt256()) ||
14054          isUNPCKL_v_undef_Mask(M, SVT, Subtarget->hasInt256()) ||
14055          isUNPCKH_v_undef_Mask(M, SVT, Subtarget->hasInt256()));
14056}
14057
14058bool
14059X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
14060                                          EVT VT) const {
14061  if (!VT.isSimple())
14062    return false;
14063
14064  MVT SVT = VT.getSimpleVT();
14065  unsigned NumElts = SVT.getVectorNumElements();
14066  // FIXME: This collection of masks seems suspect.
14067  if (NumElts == 2)
14068    return true;
14069  if (NumElts == 4 && SVT.is128BitVector()) {
14070    return (isMOVLMask(Mask, SVT)  ||
14071            isCommutedMOVLMask(Mask, SVT, true) ||
14072            isSHUFPMask(Mask, SVT) ||
14073            isSHUFPMask(Mask, SVT, /* Commuted */ true));
14074  }
14075  return false;
14076}
14077
14078//===----------------------------------------------------------------------===//
14079//                           X86 Scheduler Hooks
14080//===----------------------------------------------------------------------===//
14081
14082/// Utility function to emit xbegin specifying the start of an RTM region.
14083static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
14084                                     const TargetInstrInfo *TII) {
14085  DebugLoc DL = MI->getDebugLoc();
14086
14087  const BasicBlock *BB = MBB->getBasicBlock();
14088  MachineFunction::iterator I = MBB;
14089  ++I;
14090
14091  // For the v = xbegin(), we generate
14092  //
14093  // thisMBB:
14094  //  xbegin sinkMBB
14095  //
14096  // mainMBB:
14097  //  eax = -1
14098  //
14099  // sinkMBB:
14100  //  v = eax
14101
14102  MachineBasicBlock *thisMBB = MBB;
14103  MachineFunction *MF = MBB->getParent();
14104  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14105  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14106  MF->insert(I, mainMBB);
14107  MF->insert(I, sinkMBB);
14108
14109  // Transfer the remainder of BB and its successor edges to sinkMBB.
14110  sinkMBB->splice(sinkMBB->begin(), MBB,
14111                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14112  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14113
14114  // thisMBB:
14115  //  xbegin sinkMBB
14116  //  # fallthrough to mainMBB
14117  //  # abortion to sinkMBB
14118  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
14119  thisMBB->addSuccessor(mainMBB);
14120  thisMBB->addSuccessor(sinkMBB);
14121
14122  // mainMBB:
14123  //  EAX = -1
14124  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
14125  mainMBB->addSuccessor(sinkMBB);
14126
14127  // sinkMBB:
14128  // EAX is live into the sinkMBB
14129  sinkMBB->addLiveIn(X86::EAX);
14130  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14131          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
14132    .addReg(X86::EAX);
14133
14134  MI->eraseFromParent();
14135  return sinkMBB;
14136}
14137
14138// Get CMPXCHG opcode for the specified data type.
14139static unsigned getCmpXChgOpcode(EVT VT) {
14140  switch (VT.getSimpleVT().SimpleTy) {
14141  case MVT::i8:  return X86::LCMPXCHG8;
14142  case MVT::i16: return X86::LCMPXCHG16;
14143  case MVT::i32: return X86::LCMPXCHG32;
14144  case MVT::i64: return X86::LCMPXCHG64;
14145  default:
14146    break;
14147  }
14148  llvm_unreachable("Invalid operand size!");
14149}
14150
14151// Get LOAD opcode for the specified data type.
14152static unsigned getLoadOpcode(EVT VT) {
14153  switch (VT.getSimpleVT().SimpleTy) {
14154  case MVT::i8:  return X86::MOV8rm;
14155  case MVT::i16: return X86::MOV16rm;
14156  case MVT::i32: return X86::MOV32rm;
14157  case MVT::i64: return X86::MOV64rm;
14158  default:
14159    break;
14160  }
14161  llvm_unreachable("Invalid operand size!");
14162}
14163
14164// Get opcode of the non-atomic one from the specified atomic instruction.
14165static unsigned getNonAtomicOpcode(unsigned Opc) {
14166  switch (Opc) {
14167  case X86::ATOMAND8:  return X86::AND8rr;
14168  case X86::ATOMAND16: return X86::AND16rr;
14169  case X86::ATOMAND32: return X86::AND32rr;
14170  case X86::ATOMAND64: return X86::AND64rr;
14171  case X86::ATOMOR8:   return X86::OR8rr;
14172  case X86::ATOMOR16:  return X86::OR16rr;
14173  case X86::ATOMOR32:  return X86::OR32rr;
14174  case X86::ATOMOR64:  return X86::OR64rr;
14175  case X86::ATOMXOR8:  return X86::XOR8rr;
14176  case X86::ATOMXOR16: return X86::XOR16rr;
14177  case X86::ATOMXOR32: return X86::XOR32rr;
14178  case X86::ATOMXOR64: return X86::XOR64rr;
14179  }
14180  llvm_unreachable("Unhandled atomic-load-op opcode!");
14181}
14182
14183// Get opcode of the non-atomic one from the specified atomic instruction with
14184// extra opcode.
14185static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
14186                                               unsigned &ExtraOpc) {
14187  switch (Opc) {
14188  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
14189  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
14190  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
14191  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
14192  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
14193  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
14194  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
14195  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
14196  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
14197  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
14198  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
14199  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
14200  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
14201  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
14202  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
14203  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
14204  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
14205  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
14206  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
14207  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
14208  }
14209  llvm_unreachable("Unhandled atomic-load-op opcode!");
14210}
14211
14212// Get opcode of the non-atomic one from the specified atomic instruction for
14213// 64-bit data type on 32-bit target.
14214static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
14215  switch (Opc) {
14216  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
14217  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
14218  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
14219  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
14220  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
14221  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
14222  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
14223  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
14224  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
14225  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
14226  }
14227  llvm_unreachable("Unhandled atomic-load-op opcode!");
14228}
14229
14230// Get opcode of the non-atomic one from the specified atomic instruction for
14231// 64-bit data type on 32-bit target with extra opcode.
14232static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
14233                                                   unsigned &HiOpc,
14234                                                   unsigned &ExtraOpc) {
14235  switch (Opc) {
14236  case X86::ATOMNAND6432:
14237    ExtraOpc = X86::NOT32r;
14238    HiOpc = X86::AND32rr;
14239    return X86::AND32rr;
14240  }
14241  llvm_unreachable("Unhandled atomic-load-op opcode!");
14242}
14243
14244// Get pseudo CMOV opcode from the specified data type.
14245static unsigned getPseudoCMOVOpc(EVT VT) {
14246  switch (VT.getSimpleVT().SimpleTy) {
14247  case MVT::i8:  return X86::CMOV_GR8;
14248  case MVT::i16: return X86::CMOV_GR16;
14249  case MVT::i32: return X86::CMOV_GR32;
14250  default:
14251    break;
14252  }
14253  llvm_unreachable("Unknown CMOV opcode!");
14254}
14255
14256// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
14257// They will be translated into a spin-loop or compare-exchange loop from
14258//
14259//    ...
14260//    dst = atomic-fetch-op MI.addr, MI.val
14261//    ...
14262//
14263// to
14264//
14265//    ...
14266//    t1 = LOAD MI.addr
14267// loop:
14268//    t4 = phi(t1, t3 / loop)
14269//    t2 = OP MI.val, t4
14270//    EAX = t4
14271//    LCMPXCHG [MI.addr], t2, [EAX is implicitly used & defined]
14272//    t3 = EAX
14273//    JNE loop
14274// sink:
14275//    dst = t3
14276//    ...
14277MachineBasicBlock *
14278X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
14279                                       MachineBasicBlock *MBB) const {
14280  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14281  DebugLoc DL = MI->getDebugLoc();
14282
14283  MachineFunction *MF = MBB->getParent();
14284  MachineRegisterInfo &MRI = MF->getRegInfo();
14285
14286  const BasicBlock *BB = MBB->getBasicBlock();
14287  MachineFunction::iterator I = MBB;
14288  ++I;
14289
14290  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
14291         "Unexpected number of operands");
14292
14293  assert(MI->hasOneMemOperand() &&
14294         "Expected atomic-load-op to have one memoperand");
14295
14296  // Memory Reference
14297  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14298  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14299
14300  unsigned DstReg, SrcReg;
14301  unsigned MemOpndSlot;
14302
14303  unsigned CurOp = 0;
14304
14305  DstReg = MI->getOperand(CurOp++).getReg();
14306  MemOpndSlot = CurOp;
14307  CurOp += X86::AddrNumOperands;
14308  SrcReg = MI->getOperand(CurOp++).getReg();
14309
14310  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
14311  MVT::SimpleValueType VT = *RC->vt_begin();
14312  unsigned t1 = MRI.createVirtualRegister(RC);
14313  unsigned t2 = MRI.createVirtualRegister(RC);
14314  unsigned t3 = MRI.createVirtualRegister(RC);
14315  unsigned t4 = MRI.createVirtualRegister(RC);
14316  unsigned PhyReg = getX86SubSuperRegister(X86::EAX, VT);
14317
14318  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
14319  unsigned LOADOpc = getLoadOpcode(VT);
14320
14321  // For the atomic load-arith operator, we generate
14322  //
14323  //  thisMBB:
14324  //    t1 = LOAD [MI.addr]
14325  //  mainMBB:
14326  //    t4 = phi(t1 / thisMBB, t3 / mainMBB)
14327  //    t1 = OP MI.val, EAX
14328  //    EAX = t4
14329  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
14330  //    t3 = EAX
14331  //    JNE mainMBB
14332  //  sinkMBB:
14333  //    dst = t3
14334
14335  MachineBasicBlock *thisMBB = MBB;
14336  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14337  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14338  MF->insert(I, mainMBB);
14339  MF->insert(I, sinkMBB);
14340
14341  MachineInstrBuilder MIB;
14342
14343  // Transfer the remainder of BB and its successor edges to sinkMBB.
14344  sinkMBB->splice(sinkMBB->begin(), MBB,
14345                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14346  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14347
14348  // thisMBB:
14349  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1);
14350  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14351    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14352    if (NewMO.isReg())
14353      NewMO.setIsKill(false);
14354    MIB.addOperand(NewMO);
14355  }
14356  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
14357    unsigned flags = (*MMOI)->getFlags();
14358    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
14359    MachineMemOperand *MMO =
14360      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
14361                               (*MMOI)->getSize(),
14362                               (*MMOI)->getBaseAlignment(),
14363                               (*MMOI)->getTBAAInfo(),
14364                               (*MMOI)->getRanges());
14365    MIB.addMemOperand(MMO);
14366  }
14367
14368  thisMBB->addSuccessor(mainMBB);
14369
14370  // mainMBB:
14371  MachineBasicBlock *origMainMBB = mainMBB;
14372
14373  // Add a PHI.
14374  MachineInstr *Phi = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4)
14375                        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
14376
14377  unsigned Opc = MI->getOpcode();
14378  switch (Opc) {
14379  default:
14380    llvm_unreachable("Unhandled atomic-load-op opcode!");
14381  case X86::ATOMAND8:
14382  case X86::ATOMAND16:
14383  case X86::ATOMAND32:
14384  case X86::ATOMAND64:
14385  case X86::ATOMOR8:
14386  case X86::ATOMOR16:
14387  case X86::ATOMOR32:
14388  case X86::ATOMOR64:
14389  case X86::ATOMXOR8:
14390  case X86::ATOMXOR16:
14391  case X86::ATOMXOR32:
14392  case X86::ATOMXOR64: {
14393    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
14394    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t2).addReg(SrcReg)
14395      .addReg(t4);
14396    break;
14397  }
14398  case X86::ATOMNAND8:
14399  case X86::ATOMNAND16:
14400  case X86::ATOMNAND32:
14401  case X86::ATOMNAND64: {
14402    unsigned Tmp = MRI.createVirtualRegister(RC);
14403    unsigned NOTOpc;
14404    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
14405    BuildMI(mainMBB, DL, TII->get(ANDOpc), Tmp).addReg(SrcReg)
14406      .addReg(t4);
14407    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2).addReg(Tmp);
14408    break;
14409  }
14410  case X86::ATOMMAX8:
14411  case X86::ATOMMAX16:
14412  case X86::ATOMMAX32:
14413  case X86::ATOMMAX64:
14414  case X86::ATOMMIN8:
14415  case X86::ATOMMIN16:
14416  case X86::ATOMMIN32:
14417  case X86::ATOMMIN64:
14418  case X86::ATOMUMAX8:
14419  case X86::ATOMUMAX16:
14420  case X86::ATOMUMAX32:
14421  case X86::ATOMUMAX64:
14422  case X86::ATOMUMIN8:
14423  case X86::ATOMUMIN16:
14424  case X86::ATOMUMIN32:
14425  case X86::ATOMUMIN64: {
14426    unsigned CMPOpc;
14427    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
14428
14429    BuildMI(mainMBB, DL, TII->get(CMPOpc))
14430      .addReg(SrcReg)
14431      .addReg(t4);
14432
14433    if (Subtarget->hasCMov()) {
14434      if (VT != MVT::i8) {
14435        // Native support
14436        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
14437          .addReg(SrcReg)
14438          .addReg(t4);
14439      } else {
14440        // Promote i8 to i32 to use CMOV32
14441        const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
14442        const TargetRegisterClass *RC32 =
14443          TRI->getSubClassWithSubReg(getRegClassFor(MVT::i32), X86::sub_8bit);
14444        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
14445        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
14446        unsigned Tmp = MRI.createVirtualRegister(RC32);
14447
14448        unsigned Undef = MRI.createVirtualRegister(RC32);
14449        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
14450
14451        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
14452          .addReg(Undef)
14453          .addReg(SrcReg)
14454          .addImm(X86::sub_8bit);
14455        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
14456          .addReg(Undef)
14457          .addReg(t4)
14458          .addImm(X86::sub_8bit);
14459
14460        BuildMI(mainMBB, DL, TII->get(CMOVOpc), Tmp)
14461          .addReg(SrcReg32)
14462          .addReg(AccReg32);
14463
14464        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t2)
14465          .addReg(Tmp, 0, X86::sub_8bit);
14466      }
14467    } else {
14468      // Use pseudo select and lower them.
14469      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
14470             "Invalid atomic-load-op transformation!");
14471      unsigned SelOpc = getPseudoCMOVOpc(VT);
14472      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
14473      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
14474      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t2)
14475              .addReg(SrcReg).addReg(t4)
14476              .addImm(CC);
14477      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14478      // Replace the original PHI node as mainMBB is changed after CMOV
14479      // lowering.
14480      BuildMI(*origMainMBB, Phi, DL, TII->get(X86::PHI), t4)
14481        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
14482      Phi->eraseFromParent();
14483    }
14484    break;
14485  }
14486  }
14487
14488  // Copy PhyReg back from virtual register.
14489  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), PhyReg)
14490    .addReg(t4);
14491
14492  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
14493  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14494    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14495    if (NewMO.isReg())
14496      NewMO.setIsKill(false);
14497    MIB.addOperand(NewMO);
14498  }
14499  MIB.addReg(t2);
14500  MIB.setMemRefs(MMOBegin, MMOEnd);
14501
14502  // Copy PhyReg back to virtual register.
14503  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3)
14504    .addReg(PhyReg);
14505
14506  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
14507
14508  mainMBB->addSuccessor(origMainMBB);
14509  mainMBB->addSuccessor(sinkMBB);
14510
14511  // sinkMBB:
14512  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14513          TII->get(TargetOpcode::COPY), DstReg)
14514    .addReg(t3);
14515
14516  MI->eraseFromParent();
14517  return sinkMBB;
14518}
14519
14520// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
14521// instructions. They will be translated into a spin-loop or compare-exchange
14522// loop from
14523//
14524//    ...
14525//    dst = atomic-fetch-op MI.addr, MI.val
14526//    ...
14527//
14528// to
14529//
14530//    ...
14531//    t1L = LOAD [MI.addr + 0]
14532//    t1H = LOAD [MI.addr + 4]
14533// loop:
14534//    t4L = phi(t1L, t3L / loop)
14535//    t4H = phi(t1H, t3H / loop)
14536//    t2L = OP MI.val.lo, t4L
14537//    t2H = OP MI.val.hi, t4H
14538//    EAX = t4L
14539//    EDX = t4H
14540//    EBX = t2L
14541//    ECX = t2H
14542//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
14543//    t3L = EAX
14544//    t3H = EDX
14545//    JNE loop
14546// sink:
14547//    dstL = t3L
14548//    dstH = t3H
14549//    ...
14550MachineBasicBlock *
14551X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
14552                                           MachineBasicBlock *MBB) const {
14553  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14554  DebugLoc DL = MI->getDebugLoc();
14555
14556  MachineFunction *MF = MBB->getParent();
14557  MachineRegisterInfo &MRI = MF->getRegInfo();
14558
14559  const BasicBlock *BB = MBB->getBasicBlock();
14560  MachineFunction::iterator I = MBB;
14561  ++I;
14562
14563  assert(MI->getNumOperands() <= X86::AddrNumOperands + 7 &&
14564         "Unexpected number of operands");
14565
14566  assert(MI->hasOneMemOperand() &&
14567         "Expected atomic-load-op32 to have one memoperand");
14568
14569  // Memory Reference
14570  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14571  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14572
14573  unsigned DstLoReg, DstHiReg;
14574  unsigned SrcLoReg, SrcHiReg;
14575  unsigned MemOpndSlot;
14576
14577  unsigned CurOp = 0;
14578
14579  DstLoReg = MI->getOperand(CurOp++).getReg();
14580  DstHiReg = MI->getOperand(CurOp++).getReg();
14581  MemOpndSlot = CurOp;
14582  CurOp += X86::AddrNumOperands;
14583  SrcLoReg = MI->getOperand(CurOp++).getReg();
14584  SrcHiReg = MI->getOperand(CurOp++).getReg();
14585
14586  const TargetRegisterClass *RC = &X86::GR32RegClass;
14587  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
14588
14589  unsigned t1L = MRI.createVirtualRegister(RC);
14590  unsigned t1H = MRI.createVirtualRegister(RC);
14591  unsigned t2L = MRI.createVirtualRegister(RC);
14592  unsigned t2H = MRI.createVirtualRegister(RC);
14593  unsigned t3L = MRI.createVirtualRegister(RC);
14594  unsigned t3H = MRI.createVirtualRegister(RC);
14595  unsigned t4L = MRI.createVirtualRegister(RC);
14596  unsigned t4H = MRI.createVirtualRegister(RC);
14597
14598  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
14599  unsigned LOADOpc = X86::MOV32rm;
14600
14601  // For the atomic load-arith operator, we generate
14602  //
14603  //  thisMBB:
14604  //    t1L = LOAD [MI.addr + 0]
14605  //    t1H = LOAD [MI.addr + 4]
14606  //  mainMBB:
14607  //    t4L = phi(t1L / thisMBB, t3L / mainMBB)
14608  //    t4H = phi(t1H / thisMBB, t3H / mainMBB)
14609  //    t2L = OP MI.val.lo, t4L
14610  //    t2H = OP MI.val.hi, t4H
14611  //    EBX = t2L
14612  //    ECX = t2H
14613  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
14614  //    t3L = EAX
14615  //    t3H = EDX
14616  //    JNE loop
14617  //  sinkMBB:
14618  //    dstL = t3L
14619  //    dstH = t3H
14620
14621  MachineBasicBlock *thisMBB = MBB;
14622  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14623  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14624  MF->insert(I, mainMBB);
14625  MF->insert(I, sinkMBB);
14626
14627  MachineInstrBuilder MIB;
14628
14629  // Transfer the remainder of BB and its successor edges to sinkMBB.
14630  sinkMBB->splice(sinkMBB->begin(), MBB,
14631                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14632  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14633
14634  // thisMBB:
14635  // Lo
14636  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1L);
14637  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14638    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14639    if (NewMO.isReg())
14640      NewMO.setIsKill(false);
14641    MIB.addOperand(NewMO);
14642  }
14643  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
14644    unsigned flags = (*MMOI)->getFlags();
14645    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
14646    MachineMemOperand *MMO =
14647      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
14648                               (*MMOI)->getSize(),
14649                               (*MMOI)->getBaseAlignment(),
14650                               (*MMOI)->getTBAAInfo(),
14651                               (*MMOI)->getRanges());
14652    MIB.addMemOperand(MMO);
14653  };
14654  MachineInstr *LowMI = MIB;
14655
14656  // Hi
14657  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1H);
14658  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14659    if (i == X86::AddrDisp) {
14660      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
14661    } else {
14662      MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14663      if (NewMO.isReg())
14664        NewMO.setIsKill(false);
14665      MIB.addOperand(NewMO);
14666    }
14667  }
14668  MIB.setMemRefs(LowMI->memoperands_begin(), LowMI->memoperands_end());
14669
14670  thisMBB->addSuccessor(mainMBB);
14671
14672  // mainMBB:
14673  MachineBasicBlock *origMainMBB = mainMBB;
14674
14675  // Add PHIs.
14676  MachineInstr *PhiL = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4L)
14677                        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
14678  MachineInstr *PhiH = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4H)
14679                        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
14680
14681  unsigned Opc = MI->getOpcode();
14682  switch (Opc) {
14683  default:
14684    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
14685  case X86::ATOMAND6432:
14686  case X86::ATOMOR6432:
14687  case X86::ATOMXOR6432:
14688  case X86::ATOMADD6432:
14689  case X86::ATOMSUB6432: {
14690    unsigned HiOpc;
14691    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
14692    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(t4L)
14693      .addReg(SrcLoReg);
14694    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(t4H)
14695      .addReg(SrcHiReg);
14696    break;
14697  }
14698  case X86::ATOMNAND6432: {
14699    unsigned HiOpc, NOTOpc;
14700    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
14701    unsigned TmpL = MRI.createVirtualRegister(RC);
14702    unsigned TmpH = MRI.createVirtualRegister(RC);
14703    BuildMI(mainMBB, DL, TII->get(LoOpc), TmpL).addReg(SrcLoReg)
14704      .addReg(t4L);
14705    BuildMI(mainMBB, DL, TII->get(HiOpc), TmpH).addReg(SrcHiReg)
14706      .addReg(t4H);
14707    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2L).addReg(TmpL);
14708    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2H).addReg(TmpH);
14709    break;
14710  }
14711  case X86::ATOMMAX6432:
14712  case X86::ATOMMIN6432:
14713  case X86::ATOMUMAX6432:
14714  case X86::ATOMUMIN6432: {
14715    unsigned HiOpc;
14716    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
14717    unsigned cL = MRI.createVirtualRegister(RC8);
14718    unsigned cH = MRI.createVirtualRegister(RC8);
14719    unsigned cL32 = MRI.createVirtualRegister(RC);
14720    unsigned cH32 = MRI.createVirtualRegister(RC);
14721    unsigned cc = MRI.createVirtualRegister(RC);
14722    // cl := cmp src_lo, lo
14723    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
14724      .addReg(SrcLoReg).addReg(t4L);
14725    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
14726    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
14727    // ch := cmp src_hi, hi
14728    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
14729      .addReg(SrcHiReg).addReg(t4H);
14730    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
14731    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
14732    // cc := if (src_hi == hi) ? cl : ch;
14733    if (Subtarget->hasCMov()) {
14734      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
14735        .addReg(cH32).addReg(cL32);
14736    } else {
14737      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
14738              .addReg(cH32).addReg(cL32)
14739              .addImm(X86::COND_E);
14740      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14741    }
14742    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
14743    if (Subtarget->hasCMov()) {
14744      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2L)
14745        .addReg(SrcLoReg).addReg(t4L);
14746      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2H)
14747        .addReg(SrcHiReg).addReg(t4H);
14748    } else {
14749      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2L)
14750              .addReg(SrcLoReg).addReg(t4L)
14751              .addImm(X86::COND_NE);
14752      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14753      // As the lowered CMOV won't clobber EFLAGS, we could reuse it for the
14754      // 2nd CMOV lowering.
14755      mainMBB->addLiveIn(X86::EFLAGS);
14756      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2H)
14757              .addReg(SrcHiReg).addReg(t4H)
14758              .addImm(X86::COND_NE);
14759      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14760      // Replace the original PHI node as mainMBB is changed after CMOV
14761      // lowering.
14762      BuildMI(*origMainMBB, PhiL, DL, TII->get(X86::PHI), t4L)
14763        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
14764      BuildMI(*origMainMBB, PhiH, DL, TII->get(X86::PHI), t4H)
14765        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
14766      PhiL->eraseFromParent();
14767      PhiH->eraseFromParent();
14768    }
14769    break;
14770  }
14771  case X86::ATOMSWAP6432: {
14772    unsigned HiOpc;
14773    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
14774    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg);
14775    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg);
14776    break;
14777  }
14778  }
14779
14780  // Copy EDX:EAX back from HiReg:LoReg
14781  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(t4L);
14782  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(t4H);
14783  // Copy ECX:EBX from t1H:t1L
14784  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t2L);
14785  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t2H);
14786
14787  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
14788  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14789    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14790    if (NewMO.isReg())
14791      NewMO.setIsKill(false);
14792    MIB.addOperand(NewMO);
14793  }
14794  MIB.setMemRefs(MMOBegin, MMOEnd);
14795
14796  // Copy EDX:EAX back to t3H:t3L
14797  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3L).addReg(X86::EAX);
14798  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3H).addReg(X86::EDX);
14799
14800  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
14801
14802  mainMBB->addSuccessor(origMainMBB);
14803  mainMBB->addSuccessor(sinkMBB);
14804
14805  // sinkMBB:
14806  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14807          TII->get(TargetOpcode::COPY), DstLoReg)
14808    .addReg(t3L);
14809  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14810          TII->get(TargetOpcode::COPY), DstHiReg)
14811    .addReg(t3H);
14812
14813  MI->eraseFromParent();
14814  return sinkMBB;
14815}
14816
14817// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
14818// or XMM0_V32I8 in AVX all of this code can be replaced with that
14819// in the .td file.
14820static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
14821                                       const TargetInstrInfo *TII) {
14822  unsigned Opc;
14823  switch (MI->getOpcode()) {
14824  default: llvm_unreachable("illegal opcode!");
14825  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
14826  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
14827  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
14828  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
14829  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
14830  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
14831  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
14832  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
14833  }
14834
14835  DebugLoc dl = MI->getDebugLoc();
14836  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
14837
14838  unsigned NumArgs = MI->getNumOperands();
14839  for (unsigned i = 1; i < NumArgs; ++i) {
14840    MachineOperand &Op = MI->getOperand(i);
14841    if (!(Op.isReg() && Op.isImplicit()))
14842      MIB.addOperand(Op);
14843  }
14844  if (MI->hasOneMemOperand())
14845    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
14846
14847  BuildMI(*BB, MI, dl,
14848    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
14849    .addReg(X86::XMM0);
14850
14851  MI->eraseFromParent();
14852  return BB;
14853}
14854
14855// FIXME: Custom handling because TableGen doesn't support multiple implicit
14856// defs in an instruction pattern
14857static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
14858                                       const TargetInstrInfo *TII) {
14859  unsigned Opc;
14860  switch (MI->getOpcode()) {
14861  default: llvm_unreachable("illegal opcode!");
14862  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
14863  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
14864  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
14865  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
14866  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
14867  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
14868  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
14869  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
14870  }
14871
14872  DebugLoc dl = MI->getDebugLoc();
14873  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
14874
14875  unsigned NumArgs = MI->getNumOperands(); // remove the results
14876  for (unsigned i = 1; i < NumArgs; ++i) {
14877    MachineOperand &Op = MI->getOperand(i);
14878    if (!(Op.isReg() && Op.isImplicit()))
14879      MIB.addOperand(Op);
14880  }
14881  if (MI->hasOneMemOperand())
14882    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
14883
14884  BuildMI(*BB, MI, dl,
14885    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
14886    .addReg(X86::ECX);
14887
14888  MI->eraseFromParent();
14889  return BB;
14890}
14891
14892static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
14893                                       const TargetInstrInfo *TII,
14894                                       const X86Subtarget* Subtarget) {
14895  DebugLoc dl = MI->getDebugLoc();
14896
14897  // Address into RAX/EAX, other two args into ECX, EDX.
14898  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
14899  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
14900  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
14901  for (int i = 0; i < X86::AddrNumOperands; ++i)
14902    MIB.addOperand(MI->getOperand(i));
14903
14904  unsigned ValOps = X86::AddrNumOperands;
14905  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
14906    .addReg(MI->getOperand(ValOps).getReg());
14907  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
14908    .addReg(MI->getOperand(ValOps+1).getReg());
14909
14910  // The instruction doesn't actually take any operands though.
14911  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
14912
14913  MI->eraseFromParent(); // The pseudo is gone now.
14914  return BB;
14915}
14916
14917MachineBasicBlock *
14918X86TargetLowering::EmitVAARG64WithCustomInserter(
14919                   MachineInstr *MI,
14920                   MachineBasicBlock *MBB) const {
14921  // Emit va_arg instruction on X86-64.
14922
14923  // Operands to this pseudo-instruction:
14924  // 0  ) Output        : destination address (reg)
14925  // 1-5) Input         : va_list address (addr, i64mem)
14926  // 6  ) ArgSize       : Size (in bytes) of vararg type
14927  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
14928  // 8  ) Align         : Alignment of type
14929  // 9  ) EFLAGS (implicit-def)
14930
14931  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
14932  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
14933
14934  unsigned DestReg = MI->getOperand(0).getReg();
14935  MachineOperand &Base = MI->getOperand(1);
14936  MachineOperand &Scale = MI->getOperand(2);
14937  MachineOperand &Index = MI->getOperand(3);
14938  MachineOperand &Disp = MI->getOperand(4);
14939  MachineOperand &Segment = MI->getOperand(5);
14940  unsigned ArgSize = MI->getOperand(6).getImm();
14941  unsigned ArgMode = MI->getOperand(7).getImm();
14942  unsigned Align = MI->getOperand(8).getImm();
14943
14944  // Memory Reference
14945  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
14946  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14947  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14948
14949  // Machine Information
14950  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14951  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
14952  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
14953  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
14954  DebugLoc DL = MI->getDebugLoc();
14955
14956  // struct va_list {
14957  //   i32   gp_offset
14958  //   i32   fp_offset
14959  //   i64   overflow_area (address)
14960  //   i64   reg_save_area (address)
14961  // }
14962  // sizeof(va_list) = 24
14963  // alignment(va_list) = 8
14964
14965  unsigned TotalNumIntRegs = 6;
14966  unsigned TotalNumXMMRegs = 8;
14967  bool UseGPOffset = (ArgMode == 1);
14968  bool UseFPOffset = (ArgMode == 2);
14969  unsigned MaxOffset = TotalNumIntRegs * 8 +
14970                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
14971
14972  /* Align ArgSize to a multiple of 8 */
14973  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
14974  bool NeedsAlign = (Align > 8);
14975
14976  MachineBasicBlock *thisMBB = MBB;
14977  MachineBasicBlock *overflowMBB;
14978  MachineBasicBlock *offsetMBB;
14979  MachineBasicBlock *endMBB;
14980
14981  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
14982  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
14983  unsigned OffsetReg = 0;
14984
14985  if (!UseGPOffset && !UseFPOffset) {
14986    // If we only pull from the overflow region, we don't create a branch.
14987    // We don't need to alter control flow.
14988    OffsetDestReg = 0; // unused
14989    OverflowDestReg = DestReg;
14990
14991    offsetMBB = NULL;
14992    overflowMBB = thisMBB;
14993    endMBB = thisMBB;
14994  } else {
14995    // First emit code to check if gp_offset (or fp_offset) is below the bound.
14996    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
14997    // If not, pull from overflow_area. (branch to overflowMBB)
14998    //
14999    //       thisMBB
15000    //         |     .
15001    //         |        .
15002    //     offsetMBB   overflowMBB
15003    //         |        .
15004    //         |     .
15005    //        endMBB
15006
15007    // Registers for the PHI in endMBB
15008    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
15009    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
15010
15011    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
15012    MachineFunction *MF = MBB->getParent();
15013    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15014    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15015    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15016
15017    MachineFunction::iterator MBBIter = MBB;
15018    ++MBBIter;
15019
15020    // Insert the new basic blocks
15021    MF->insert(MBBIter, offsetMBB);
15022    MF->insert(MBBIter, overflowMBB);
15023    MF->insert(MBBIter, endMBB);
15024
15025    // Transfer the remainder of MBB and its successor edges to endMBB.
15026    endMBB->splice(endMBB->begin(), thisMBB,
15027                    llvm::next(MachineBasicBlock::iterator(MI)),
15028                    thisMBB->end());
15029    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
15030
15031    // Make offsetMBB and overflowMBB successors of thisMBB
15032    thisMBB->addSuccessor(offsetMBB);
15033    thisMBB->addSuccessor(overflowMBB);
15034
15035    // endMBB is a successor of both offsetMBB and overflowMBB
15036    offsetMBB->addSuccessor(endMBB);
15037    overflowMBB->addSuccessor(endMBB);
15038
15039    // Load the offset value into a register
15040    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
15041    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
15042      .addOperand(Base)
15043      .addOperand(Scale)
15044      .addOperand(Index)
15045      .addDisp(Disp, UseFPOffset ? 4 : 0)
15046      .addOperand(Segment)
15047      .setMemRefs(MMOBegin, MMOEnd);
15048
15049    // Check if there is enough room left to pull this argument.
15050    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
15051      .addReg(OffsetReg)
15052      .addImm(MaxOffset + 8 - ArgSizeA8);
15053
15054    // Branch to "overflowMBB" if offset >= max
15055    // Fall through to "offsetMBB" otherwise
15056    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
15057      .addMBB(overflowMBB);
15058  }
15059
15060  // In offsetMBB, emit code to use the reg_save_area.
15061  if (offsetMBB) {
15062    assert(OffsetReg != 0);
15063
15064    // Read the reg_save_area address.
15065    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
15066    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
15067      .addOperand(Base)
15068      .addOperand(Scale)
15069      .addOperand(Index)
15070      .addDisp(Disp, 16)
15071      .addOperand(Segment)
15072      .setMemRefs(MMOBegin, MMOEnd);
15073
15074    // Zero-extend the offset
15075    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
15076      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
15077        .addImm(0)
15078        .addReg(OffsetReg)
15079        .addImm(X86::sub_32bit);
15080
15081    // Add the offset to the reg_save_area to get the final address.
15082    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
15083      .addReg(OffsetReg64)
15084      .addReg(RegSaveReg);
15085
15086    // Compute the offset for the next argument
15087    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
15088    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
15089      .addReg(OffsetReg)
15090      .addImm(UseFPOffset ? 16 : 8);
15091
15092    // Store it back into the va_list.
15093    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
15094      .addOperand(Base)
15095      .addOperand(Scale)
15096      .addOperand(Index)
15097      .addDisp(Disp, UseFPOffset ? 4 : 0)
15098      .addOperand(Segment)
15099      .addReg(NextOffsetReg)
15100      .setMemRefs(MMOBegin, MMOEnd);
15101
15102    // Jump to endMBB
15103    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
15104      .addMBB(endMBB);
15105  }
15106
15107  //
15108  // Emit code to use overflow area
15109  //
15110
15111  // Load the overflow_area address into a register.
15112  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
15113  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
15114    .addOperand(Base)
15115    .addOperand(Scale)
15116    .addOperand(Index)
15117    .addDisp(Disp, 8)
15118    .addOperand(Segment)
15119    .setMemRefs(MMOBegin, MMOEnd);
15120
15121  // If we need to align it, do so. Otherwise, just copy the address
15122  // to OverflowDestReg.
15123  if (NeedsAlign) {
15124    // Align the overflow address
15125    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
15126    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
15127
15128    // aligned_addr = (addr + (align-1)) & ~(align-1)
15129    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
15130      .addReg(OverflowAddrReg)
15131      .addImm(Align-1);
15132
15133    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
15134      .addReg(TmpReg)
15135      .addImm(~(uint64_t)(Align-1));
15136  } else {
15137    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
15138      .addReg(OverflowAddrReg);
15139  }
15140
15141  // Compute the next overflow address after this argument.
15142  // (the overflow address should be kept 8-byte aligned)
15143  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
15144  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
15145    .addReg(OverflowDestReg)
15146    .addImm(ArgSizeA8);
15147
15148  // Store the new overflow address.
15149  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
15150    .addOperand(Base)
15151    .addOperand(Scale)
15152    .addOperand(Index)
15153    .addDisp(Disp, 8)
15154    .addOperand(Segment)
15155    .addReg(NextAddrReg)
15156    .setMemRefs(MMOBegin, MMOEnd);
15157
15158  // If we branched, emit the PHI to the front of endMBB.
15159  if (offsetMBB) {
15160    BuildMI(*endMBB, endMBB->begin(), DL,
15161            TII->get(X86::PHI), DestReg)
15162      .addReg(OffsetDestReg).addMBB(offsetMBB)
15163      .addReg(OverflowDestReg).addMBB(overflowMBB);
15164  }
15165
15166  // Erase the pseudo instruction
15167  MI->eraseFromParent();
15168
15169  return endMBB;
15170}
15171
15172MachineBasicBlock *
15173X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
15174                                                 MachineInstr *MI,
15175                                                 MachineBasicBlock *MBB) const {
15176  // Emit code to save XMM registers to the stack. The ABI says that the
15177  // number of registers to save is given in %al, so it's theoretically
15178  // possible to do an indirect jump trick to avoid saving all of them,
15179  // however this code takes a simpler approach and just executes all
15180  // of the stores if %al is non-zero. It's less code, and it's probably
15181  // easier on the hardware branch predictor, and stores aren't all that
15182  // expensive anyway.
15183
15184  // Create the new basic blocks. One block contains all the XMM stores,
15185  // and one block is the final destination regardless of whether any
15186  // stores were performed.
15187  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
15188  MachineFunction *F = MBB->getParent();
15189  MachineFunction::iterator MBBIter = MBB;
15190  ++MBBIter;
15191  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
15192  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
15193  F->insert(MBBIter, XMMSaveMBB);
15194  F->insert(MBBIter, EndMBB);
15195
15196  // Transfer the remainder of MBB and its successor edges to EndMBB.
15197  EndMBB->splice(EndMBB->begin(), MBB,
15198                 llvm::next(MachineBasicBlock::iterator(MI)),
15199                 MBB->end());
15200  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
15201
15202  // The original block will now fall through to the XMM save block.
15203  MBB->addSuccessor(XMMSaveMBB);
15204  // The XMMSaveMBB will fall through to the end block.
15205  XMMSaveMBB->addSuccessor(EndMBB);
15206
15207  // Now add the instructions.
15208  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15209  DebugLoc DL = MI->getDebugLoc();
15210
15211  unsigned CountReg = MI->getOperand(0).getReg();
15212  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
15213  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
15214
15215  if (!Subtarget->isTargetWin64()) {
15216    // If %al is 0, branch around the XMM save block.
15217    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
15218    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
15219    MBB->addSuccessor(EndMBB);
15220  }
15221
15222  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
15223  // In the XMM save block, save all the XMM argument registers.
15224  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
15225    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
15226    MachineMemOperand *MMO =
15227      F->getMachineMemOperand(
15228          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
15229        MachineMemOperand::MOStore,
15230        /*Size=*/16, /*Align=*/16);
15231    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
15232      .addFrameIndex(RegSaveFrameIndex)
15233      .addImm(/*Scale=*/1)
15234      .addReg(/*IndexReg=*/0)
15235      .addImm(/*Disp=*/Offset)
15236      .addReg(/*Segment=*/0)
15237      .addReg(MI->getOperand(i).getReg())
15238      .addMemOperand(MMO);
15239  }
15240
15241  MI->eraseFromParent();   // The pseudo instruction is gone now.
15242
15243  return EndMBB;
15244}
15245
15246// The EFLAGS operand of SelectItr might be missing a kill marker
15247// because there were multiple uses of EFLAGS, and ISel didn't know
15248// which to mark. Figure out whether SelectItr should have had a
15249// kill marker, and set it if it should. Returns the correct kill
15250// marker value.
15251static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
15252                                     MachineBasicBlock* BB,
15253                                     const TargetRegisterInfo* TRI) {
15254  // Scan forward through BB for a use/def of EFLAGS.
15255  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
15256  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
15257    const MachineInstr& mi = *miI;
15258    if (mi.readsRegister(X86::EFLAGS))
15259      return false;
15260    if (mi.definesRegister(X86::EFLAGS))
15261      break; // Should have kill-flag - update below.
15262  }
15263
15264  // If we hit the end of the block, check whether EFLAGS is live into a
15265  // successor.
15266  if (miI == BB->end()) {
15267    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
15268                                          sEnd = BB->succ_end();
15269         sItr != sEnd; ++sItr) {
15270      MachineBasicBlock* succ = *sItr;
15271      if (succ->isLiveIn(X86::EFLAGS))
15272        return false;
15273    }
15274  }
15275
15276  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
15277  // out. SelectMI should have a kill flag on EFLAGS.
15278  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
15279  return true;
15280}
15281
15282MachineBasicBlock *
15283X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
15284                                     MachineBasicBlock *BB) const {
15285  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15286  DebugLoc DL = MI->getDebugLoc();
15287
15288  // To "insert" a SELECT_CC instruction, we actually have to insert the
15289  // diamond control-flow pattern.  The incoming instruction knows the
15290  // destination vreg to set, the condition code register to branch on, the
15291  // true/false values to select between, and a branch opcode to use.
15292  const BasicBlock *LLVM_BB = BB->getBasicBlock();
15293  MachineFunction::iterator It = BB;
15294  ++It;
15295
15296  //  thisMBB:
15297  //  ...
15298  //   TrueVal = ...
15299  //   cmpTY ccX, r1, r2
15300  //   bCC copy1MBB
15301  //   fallthrough --> copy0MBB
15302  MachineBasicBlock *thisMBB = BB;
15303  MachineFunction *F = BB->getParent();
15304  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
15305  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
15306  F->insert(It, copy0MBB);
15307  F->insert(It, sinkMBB);
15308
15309  // If the EFLAGS register isn't dead in the terminator, then claim that it's
15310  // live into the sink and copy blocks.
15311  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
15312  if (!MI->killsRegister(X86::EFLAGS) &&
15313      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
15314    copy0MBB->addLiveIn(X86::EFLAGS);
15315    sinkMBB->addLiveIn(X86::EFLAGS);
15316  }
15317
15318  // Transfer the remainder of BB and its successor edges to sinkMBB.
15319  sinkMBB->splice(sinkMBB->begin(), BB,
15320                  llvm::next(MachineBasicBlock::iterator(MI)),
15321                  BB->end());
15322  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
15323
15324  // Add the true and fallthrough blocks as its successors.
15325  BB->addSuccessor(copy0MBB);
15326  BB->addSuccessor(sinkMBB);
15327
15328  // Create the conditional branch instruction.
15329  unsigned Opc =
15330    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
15331  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
15332
15333  //  copy0MBB:
15334  //   %FalseValue = ...
15335  //   # fallthrough to sinkMBB
15336  copy0MBB->addSuccessor(sinkMBB);
15337
15338  //  sinkMBB:
15339  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
15340  //  ...
15341  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
15342          TII->get(X86::PHI), MI->getOperand(0).getReg())
15343    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
15344    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
15345
15346  MI->eraseFromParent();   // The pseudo instruction is gone now.
15347  return sinkMBB;
15348}
15349
15350MachineBasicBlock *
15351X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
15352                                        bool Is64Bit) const {
15353  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15354  DebugLoc DL = MI->getDebugLoc();
15355  MachineFunction *MF = BB->getParent();
15356  const BasicBlock *LLVM_BB = BB->getBasicBlock();
15357
15358  assert(getTargetMachine().Options.EnableSegmentedStacks);
15359
15360  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
15361  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
15362
15363  // BB:
15364  //  ... [Till the alloca]
15365  // If stacklet is not large enough, jump to mallocMBB
15366  //
15367  // bumpMBB:
15368  //  Allocate by subtracting from RSP
15369  //  Jump to continueMBB
15370  //
15371  // mallocMBB:
15372  //  Allocate by call to runtime
15373  //
15374  // continueMBB:
15375  //  ...
15376  //  [rest of original BB]
15377  //
15378
15379  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15380  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15381  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15382
15383  MachineRegisterInfo &MRI = MF->getRegInfo();
15384  const TargetRegisterClass *AddrRegClass =
15385    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
15386
15387  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
15388    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
15389    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
15390    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
15391    sizeVReg = MI->getOperand(1).getReg(),
15392    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
15393
15394  MachineFunction::iterator MBBIter = BB;
15395  ++MBBIter;
15396
15397  MF->insert(MBBIter, bumpMBB);
15398  MF->insert(MBBIter, mallocMBB);
15399  MF->insert(MBBIter, continueMBB);
15400
15401  continueMBB->splice(continueMBB->begin(), BB, llvm::next
15402                      (MachineBasicBlock::iterator(MI)), BB->end());
15403  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
15404
15405  // Add code to the main basic block to check if the stack limit has been hit,
15406  // and if so, jump to mallocMBB otherwise to bumpMBB.
15407  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
15408  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
15409    .addReg(tmpSPVReg).addReg(sizeVReg);
15410  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
15411    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
15412    .addReg(SPLimitVReg);
15413  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
15414
15415  // bumpMBB simply decreases the stack pointer, since we know the current
15416  // stacklet has enough space.
15417  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
15418    .addReg(SPLimitVReg);
15419  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
15420    .addReg(SPLimitVReg);
15421  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
15422
15423  // Calls into a routine in libgcc to allocate more space from the heap.
15424  const uint32_t *RegMask =
15425    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
15426  if (Is64Bit) {
15427    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
15428      .addReg(sizeVReg);
15429    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
15430      .addExternalSymbol("__morestack_allocate_stack_space")
15431      .addRegMask(RegMask)
15432      .addReg(X86::RDI, RegState::Implicit)
15433      .addReg(X86::RAX, RegState::ImplicitDefine);
15434  } else {
15435    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
15436      .addImm(12);
15437    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
15438    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
15439      .addExternalSymbol("__morestack_allocate_stack_space")
15440      .addRegMask(RegMask)
15441      .addReg(X86::EAX, RegState::ImplicitDefine);
15442  }
15443
15444  if (!Is64Bit)
15445    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
15446      .addImm(16);
15447
15448  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
15449    .addReg(Is64Bit ? X86::RAX : X86::EAX);
15450  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
15451
15452  // Set up the CFG correctly.
15453  BB->addSuccessor(bumpMBB);
15454  BB->addSuccessor(mallocMBB);
15455  mallocMBB->addSuccessor(continueMBB);
15456  bumpMBB->addSuccessor(continueMBB);
15457
15458  // Take care of the PHI nodes.
15459  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
15460          MI->getOperand(0).getReg())
15461    .addReg(mallocPtrVReg).addMBB(mallocMBB)
15462    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
15463
15464  // Delete the original pseudo instruction.
15465  MI->eraseFromParent();
15466
15467  // And we're done.
15468  return continueMBB;
15469}
15470
15471MachineBasicBlock *
15472X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
15473                                          MachineBasicBlock *BB) const {
15474  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15475  DebugLoc DL = MI->getDebugLoc();
15476
15477  assert(!Subtarget->isTargetEnvMacho());
15478
15479  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
15480  // non-trivial part is impdef of ESP.
15481
15482  if (Subtarget->isTargetWin64()) {
15483    if (Subtarget->isTargetCygMing()) {
15484      // ___chkstk(Mingw64):
15485      // Clobbers R10, R11, RAX and EFLAGS.
15486      // Updates RSP.
15487      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
15488        .addExternalSymbol("___chkstk")
15489        .addReg(X86::RAX, RegState::Implicit)
15490        .addReg(X86::RSP, RegState::Implicit)
15491        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
15492        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
15493        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
15494    } else {
15495      // __chkstk(MSVCRT): does not update stack pointer.
15496      // Clobbers R10, R11 and EFLAGS.
15497      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
15498        .addExternalSymbol("__chkstk")
15499        .addReg(X86::RAX, RegState::Implicit)
15500        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
15501      // RAX has the offset to be subtracted from RSP.
15502      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
15503        .addReg(X86::RSP)
15504        .addReg(X86::RAX);
15505    }
15506  } else {
15507    const char *StackProbeSymbol =
15508      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
15509
15510    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
15511      .addExternalSymbol(StackProbeSymbol)
15512      .addReg(X86::EAX, RegState::Implicit)
15513      .addReg(X86::ESP, RegState::Implicit)
15514      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
15515      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
15516      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
15517  }
15518
15519  MI->eraseFromParent();   // The pseudo instruction is gone now.
15520  return BB;
15521}
15522
15523MachineBasicBlock *
15524X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
15525                                      MachineBasicBlock *BB) const {
15526  // This is pretty easy.  We're taking the value that we received from
15527  // our load from the relocation, sticking it in either RDI (x86-64)
15528  // or EAX and doing an indirect call.  The return value will then
15529  // be in the normal return register.
15530  const X86InstrInfo *TII
15531    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
15532  DebugLoc DL = MI->getDebugLoc();
15533  MachineFunction *F = BB->getParent();
15534
15535  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
15536  assert(MI->getOperand(3).isGlobal() && "This should be a global");
15537
15538  // Get a register mask for the lowered call.
15539  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
15540  // proper register mask.
15541  const uint32_t *RegMask =
15542    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
15543  if (Subtarget->is64Bit()) {
15544    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
15545                                      TII->get(X86::MOV64rm), X86::RDI)
15546    .addReg(X86::RIP)
15547    .addImm(0).addReg(0)
15548    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
15549                      MI->getOperand(3).getTargetFlags())
15550    .addReg(0);
15551    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
15552    addDirectMem(MIB, X86::RDI);
15553    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
15554  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
15555    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
15556                                      TII->get(X86::MOV32rm), X86::EAX)
15557    .addReg(0)
15558    .addImm(0).addReg(0)
15559    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
15560                      MI->getOperand(3).getTargetFlags())
15561    .addReg(0);
15562    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
15563    addDirectMem(MIB, X86::EAX);
15564    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
15565  } else {
15566    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
15567                                      TII->get(X86::MOV32rm), X86::EAX)
15568    .addReg(TII->getGlobalBaseReg(F))
15569    .addImm(0).addReg(0)
15570    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
15571                      MI->getOperand(3).getTargetFlags())
15572    .addReg(0);
15573    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
15574    addDirectMem(MIB, X86::EAX);
15575    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
15576  }
15577
15578  MI->eraseFromParent(); // The pseudo instruction is gone now.
15579  return BB;
15580}
15581
15582MachineBasicBlock *
15583X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
15584                                    MachineBasicBlock *MBB) const {
15585  DebugLoc DL = MI->getDebugLoc();
15586  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15587
15588  MachineFunction *MF = MBB->getParent();
15589  MachineRegisterInfo &MRI = MF->getRegInfo();
15590
15591  const BasicBlock *BB = MBB->getBasicBlock();
15592  MachineFunction::iterator I = MBB;
15593  ++I;
15594
15595  // Memory Reference
15596  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
15597  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
15598
15599  unsigned DstReg;
15600  unsigned MemOpndSlot = 0;
15601
15602  unsigned CurOp = 0;
15603
15604  DstReg = MI->getOperand(CurOp++).getReg();
15605  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
15606  assert(RC->hasType(MVT::i32) && "Invalid destination!");
15607  unsigned mainDstReg = MRI.createVirtualRegister(RC);
15608  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
15609
15610  MemOpndSlot = CurOp;
15611
15612  MVT PVT = getPointerTy();
15613  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
15614         "Invalid Pointer Size!");
15615
15616  // For v = setjmp(buf), we generate
15617  //
15618  // thisMBB:
15619  //  buf[LabelOffset] = restoreMBB
15620  //  SjLjSetup restoreMBB
15621  //
15622  // mainMBB:
15623  //  v_main = 0
15624  //
15625  // sinkMBB:
15626  //  v = phi(main, restore)
15627  //
15628  // restoreMBB:
15629  //  v_restore = 1
15630
15631  MachineBasicBlock *thisMBB = MBB;
15632  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
15633  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
15634  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
15635  MF->insert(I, mainMBB);
15636  MF->insert(I, sinkMBB);
15637  MF->push_back(restoreMBB);
15638
15639  MachineInstrBuilder MIB;
15640
15641  // Transfer the remainder of BB and its successor edges to sinkMBB.
15642  sinkMBB->splice(sinkMBB->begin(), MBB,
15643                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
15644  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
15645
15646  // thisMBB:
15647  unsigned PtrStoreOpc = 0;
15648  unsigned LabelReg = 0;
15649  const int64_t LabelOffset = 1 * PVT.getStoreSize();
15650  Reloc::Model RM = getTargetMachine().getRelocationModel();
15651  bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
15652                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
15653
15654  // Prepare IP either in reg or imm.
15655  if (!UseImmLabel) {
15656    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
15657    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
15658    LabelReg = MRI.createVirtualRegister(PtrRC);
15659    if (Subtarget->is64Bit()) {
15660      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
15661              .addReg(X86::RIP)
15662              .addImm(0)
15663              .addReg(0)
15664              .addMBB(restoreMBB)
15665              .addReg(0);
15666    } else {
15667      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
15668      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
15669              .addReg(XII->getGlobalBaseReg(MF))
15670              .addImm(0)
15671              .addReg(0)
15672              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
15673              .addReg(0);
15674    }
15675  } else
15676    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
15677  // Store IP
15678  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
15679  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15680    if (i == X86::AddrDisp)
15681      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
15682    else
15683      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
15684  }
15685  if (!UseImmLabel)
15686    MIB.addReg(LabelReg);
15687  else
15688    MIB.addMBB(restoreMBB);
15689  MIB.setMemRefs(MMOBegin, MMOEnd);
15690  // Setup
15691  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
15692          .addMBB(restoreMBB);
15693
15694  const X86RegisterInfo *RegInfo =
15695    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
15696  MIB.addRegMask(RegInfo->getNoPreservedMask());
15697  thisMBB->addSuccessor(mainMBB);
15698  thisMBB->addSuccessor(restoreMBB);
15699
15700  // mainMBB:
15701  //  EAX = 0
15702  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
15703  mainMBB->addSuccessor(sinkMBB);
15704
15705  // sinkMBB:
15706  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
15707          TII->get(X86::PHI), DstReg)
15708    .addReg(mainDstReg).addMBB(mainMBB)
15709    .addReg(restoreDstReg).addMBB(restoreMBB);
15710
15711  // restoreMBB:
15712  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
15713  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
15714  restoreMBB->addSuccessor(sinkMBB);
15715
15716  MI->eraseFromParent();
15717  return sinkMBB;
15718}
15719
15720MachineBasicBlock *
15721X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
15722                                     MachineBasicBlock *MBB) const {
15723  DebugLoc DL = MI->getDebugLoc();
15724  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15725
15726  MachineFunction *MF = MBB->getParent();
15727  MachineRegisterInfo &MRI = MF->getRegInfo();
15728
15729  // Memory Reference
15730  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
15731  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
15732
15733  MVT PVT = getPointerTy();
15734  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
15735         "Invalid Pointer Size!");
15736
15737  const TargetRegisterClass *RC =
15738    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
15739  unsigned Tmp = MRI.createVirtualRegister(RC);
15740  // Since FP is only updated here but NOT referenced, it's treated as GPR.
15741  const X86RegisterInfo *RegInfo =
15742    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
15743  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
15744  unsigned SP = RegInfo->getStackRegister();
15745
15746  MachineInstrBuilder MIB;
15747
15748  const int64_t LabelOffset = 1 * PVT.getStoreSize();
15749  const int64_t SPOffset = 2 * PVT.getStoreSize();
15750
15751  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
15752  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
15753
15754  // Reload FP
15755  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
15756  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
15757    MIB.addOperand(MI->getOperand(i));
15758  MIB.setMemRefs(MMOBegin, MMOEnd);
15759  // Reload IP
15760  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
15761  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15762    if (i == X86::AddrDisp)
15763      MIB.addDisp(MI->getOperand(i), LabelOffset);
15764    else
15765      MIB.addOperand(MI->getOperand(i));
15766  }
15767  MIB.setMemRefs(MMOBegin, MMOEnd);
15768  // Reload SP
15769  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
15770  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15771    if (i == X86::AddrDisp)
15772      MIB.addDisp(MI->getOperand(i), SPOffset);
15773    else
15774      MIB.addOperand(MI->getOperand(i));
15775  }
15776  MIB.setMemRefs(MMOBegin, MMOEnd);
15777  // Jump
15778  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
15779
15780  MI->eraseFromParent();
15781  return MBB;
15782}
15783
15784MachineBasicBlock *
15785X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
15786                                               MachineBasicBlock *BB) const {
15787  switch (MI->getOpcode()) {
15788  default: llvm_unreachable("Unexpected instr type to insert");
15789  case X86::TAILJMPd64:
15790  case X86::TAILJMPr64:
15791  case X86::TAILJMPm64:
15792    llvm_unreachable("TAILJMP64 would not be touched here.");
15793  case X86::TCRETURNdi64:
15794  case X86::TCRETURNri64:
15795  case X86::TCRETURNmi64:
15796    return BB;
15797  case X86::WIN_ALLOCA:
15798    return EmitLoweredWinAlloca(MI, BB);
15799  case X86::SEG_ALLOCA_32:
15800    return EmitLoweredSegAlloca(MI, BB, false);
15801  case X86::SEG_ALLOCA_64:
15802    return EmitLoweredSegAlloca(MI, BB, true);
15803  case X86::TLSCall_32:
15804  case X86::TLSCall_64:
15805    return EmitLoweredTLSCall(MI, BB);
15806  case X86::CMOV_GR8:
15807  case X86::CMOV_FR32:
15808  case X86::CMOV_FR64:
15809  case X86::CMOV_V4F32:
15810  case X86::CMOV_V2F64:
15811  case X86::CMOV_V2I64:
15812  case X86::CMOV_V8F32:
15813  case X86::CMOV_V4F64:
15814  case X86::CMOV_V4I64:
15815  case X86::CMOV_V16F32:
15816  case X86::CMOV_V8F64:
15817  case X86::CMOV_V8I64:
15818  case X86::CMOV_GR16:
15819  case X86::CMOV_GR32:
15820  case X86::CMOV_RFP32:
15821  case X86::CMOV_RFP64:
15822  case X86::CMOV_RFP80:
15823    return EmitLoweredSelect(MI, BB);
15824
15825  case X86::FP32_TO_INT16_IN_MEM:
15826  case X86::FP32_TO_INT32_IN_MEM:
15827  case X86::FP32_TO_INT64_IN_MEM:
15828  case X86::FP64_TO_INT16_IN_MEM:
15829  case X86::FP64_TO_INT32_IN_MEM:
15830  case X86::FP64_TO_INT64_IN_MEM:
15831  case X86::FP80_TO_INT16_IN_MEM:
15832  case X86::FP80_TO_INT32_IN_MEM:
15833  case X86::FP80_TO_INT64_IN_MEM: {
15834    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15835    DebugLoc DL = MI->getDebugLoc();
15836
15837    // Change the floating point control register to use "round towards zero"
15838    // mode when truncating to an integer value.
15839    MachineFunction *F = BB->getParent();
15840    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
15841    addFrameReference(BuildMI(*BB, MI, DL,
15842                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
15843
15844    // Load the old value of the high byte of the control word...
15845    unsigned OldCW =
15846      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
15847    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
15848                      CWFrameIdx);
15849
15850    // Set the high part to be round to zero...
15851    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
15852      .addImm(0xC7F);
15853
15854    // Reload the modified control word now...
15855    addFrameReference(BuildMI(*BB, MI, DL,
15856                              TII->get(X86::FLDCW16m)), CWFrameIdx);
15857
15858    // Restore the memory image of control word to original value
15859    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
15860      .addReg(OldCW);
15861
15862    // Get the X86 opcode to use.
15863    unsigned Opc;
15864    switch (MI->getOpcode()) {
15865    default: llvm_unreachable("illegal opcode!");
15866    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
15867    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
15868    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
15869    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
15870    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
15871    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
15872    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
15873    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
15874    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
15875    }
15876
15877    X86AddressMode AM;
15878    MachineOperand &Op = MI->getOperand(0);
15879    if (Op.isReg()) {
15880      AM.BaseType = X86AddressMode::RegBase;
15881      AM.Base.Reg = Op.getReg();
15882    } else {
15883      AM.BaseType = X86AddressMode::FrameIndexBase;
15884      AM.Base.FrameIndex = Op.getIndex();
15885    }
15886    Op = MI->getOperand(1);
15887    if (Op.isImm())
15888      AM.Scale = Op.getImm();
15889    Op = MI->getOperand(2);
15890    if (Op.isImm())
15891      AM.IndexReg = Op.getImm();
15892    Op = MI->getOperand(3);
15893    if (Op.isGlobal()) {
15894      AM.GV = Op.getGlobal();
15895    } else {
15896      AM.Disp = Op.getImm();
15897    }
15898    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
15899                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
15900
15901    // Reload the original control word now.
15902    addFrameReference(BuildMI(*BB, MI, DL,
15903                              TII->get(X86::FLDCW16m)), CWFrameIdx);
15904
15905    MI->eraseFromParent();   // The pseudo instruction is gone now.
15906    return BB;
15907  }
15908    // String/text processing lowering.
15909  case X86::PCMPISTRM128REG:
15910  case X86::VPCMPISTRM128REG:
15911  case X86::PCMPISTRM128MEM:
15912  case X86::VPCMPISTRM128MEM:
15913  case X86::PCMPESTRM128REG:
15914  case X86::VPCMPESTRM128REG:
15915  case X86::PCMPESTRM128MEM:
15916  case X86::VPCMPESTRM128MEM:
15917    assert(Subtarget->hasSSE42() &&
15918           "Target must have SSE4.2 or AVX features enabled");
15919    return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo());
15920
15921  // String/text processing lowering.
15922  case X86::PCMPISTRIREG:
15923  case X86::VPCMPISTRIREG:
15924  case X86::PCMPISTRIMEM:
15925  case X86::VPCMPISTRIMEM:
15926  case X86::PCMPESTRIREG:
15927  case X86::VPCMPESTRIREG:
15928  case X86::PCMPESTRIMEM:
15929  case X86::VPCMPESTRIMEM:
15930    assert(Subtarget->hasSSE42() &&
15931           "Target must have SSE4.2 or AVX features enabled");
15932    return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo());
15933
15934  // Thread synchronization.
15935  case X86::MONITOR:
15936    return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget);
15937
15938  // xbegin
15939  case X86::XBEGIN:
15940    return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo());
15941
15942  // Atomic Lowering.
15943  case X86::ATOMAND8:
15944  case X86::ATOMAND16:
15945  case X86::ATOMAND32:
15946  case X86::ATOMAND64:
15947    // Fall through
15948  case X86::ATOMOR8:
15949  case X86::ATOMOR16:
15950  case X86::ATOMOR32:
15951  case X86::ATOMOR64:
15952    // Fall through
15953  case X86::ATOMXOR16:
15954  case X86::ATOMXOR8:
15955  case X86::ATOMXOR32:
15956  case X86::ATOMXOR64:
15957    // Fall through
15958  case X86::ATOMNAND8:
15959  case X86::ATOMNAND16:
15960  case X86::ATOMNAND32:
15961  case X86::ATOMNAND64:
15962    // Fall through
15963  case X86::ATOMMAX8:
15964  case X86::ATOMMAX16:
15965  case X86::ATOMMAX32:
15966  case X86::ATOMMAX64:
15967    // Fall through
15968  case X86::ATOMMIN8:
15969  case X86::ATOMMIN16:
15970  case X86::ATOMMIN32:
15971  case X86::ATOMMIN64:
15972    // Fall through
15973  case X86::ATOMUMAX8:
15974  case X86::ATOMUMAX16:
15975  case X86::ATOMUMAX32:
15976  case X86::ATOMUMAX64:
15977    // Fall through
15978  case X86::ATOMUMIN8:
15979  case X86::ATOMUMIN16:
15980  case X86::ATOMUMIN32:
15981  case X86::ATOMUMIN64:
15982    return EmitAtomicLoadArith(MI, BB);
15983
15984  // This group does 64-bit operations on a 32-bit host.
15985  case X86::ATOMAND6432:
15986  case X86::ATOMOR6432:
15987  case X86::ATOMXOR6432:
15988  case X86::ATOMNAND6432:
15989  case X86::ATOMADD6432:
15990  case X86::ATOMSUB6432:
15991  case X86::ATOMMAX6432:
15992  case X86::ATOMMIN6432:
15993  case X86::ATOMUMAX6432:
15994  case X86::ATOMUMIN6432:
15995  case X86::ATOMSWAP6432:
15996    return EmitAtomicLoadArith6432(MI, BB);
15997
15998  case X86::VASTART_SAVE_XMM_REGS:
15999    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
16000
16001  case X86::VAARG_64:
16002    return EmitVAARG64WithCustomInserter(MI, BB);
16003
16004  case X86::EH_SjLj_SetJmp32:
16005  case X86::EH_SjLj_SetJmp64:
16006    return emitEHSjLjSetJmp(MI, BB);
16007
16008  case X86::EH_SjLj_LongJmp32:
16009  case X86::EH_SjLj_LongJmp64:
16010    return emitEHSjLjLongJmp(MI, BB);
16011  }
16012}
16013
16014//===----------------------------------------------------------------------===//
16015//                           X86 Optimization Hooks
16016//===----------------------------------------------------------------------===//
16017
16018void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
16019                                                       APInt &KnownZero,
16020                                                       APInt &KnownOne,
16021                                                       const SelectionDAG &DAG,
16022                                                       unsigned Depth) const {
16023  unsigned BitWidth = KnownZero.getBitWidth();
16024  unsigned Opc = Op.getOpcode();
16025  assert((Opc >= ISD::BUILTIN_OP_END ||
16026          Opc == ISD::INTRINSIC_WO_CHAIN ||
16027          Opc == ISD::INTRINSIC_W_CHAIN ||
16028          Opc == ISD::INTRINSIC_VOID) &&
16029         "Should use MaskedValueIsZero if you don't know whether Op"
16030         " is a target node!");
16031
16032  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
16033  switch (Opc) {
16034  default: break;
16035  case X86ISD::ADD:
16036  case X86ISD::SUB:
16037  case X86ISD::ADC:
16038  case X86ISD::SBB:
16039  case X86ISD::SMUL:
16040  case X86ISD::UMUL:
16041  case X86ISD::INC:
16042  case X86ISD::DEC:
16043  case X86ISD::OR:
16044  case X86ISD::XOR:
16045  case X86ISD::AND:
16046    // These nodes' second result is a boolean.
16047    if (Op.getResNo() == 0)
16048      break;
16049    // Fallthrough
16050  case X86ISD::SETCC:
16051    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
16052    break;
16053  case ISD::INTRINSIC_WO_CHAIN: {
16054    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16055    unsigned NumLoBits = 0;
16056    switch (IntId) {
16057    default: break;
16058    case Intrinsic::x86_sse_movmsk_ps:
16059    case Intrinsic::x86_avx_movmsk_ps_256:
16060    case Intrinsic::x86_sse2_movmsk_pd:
16061    case Intrinsic::x86_avx_movmsk_pd_256:
16062    case Intrinsic::x86_mmx_pmovmskb:
16063    case Intrinsic::x86_sse2_pmovmskb_128:
16064    case Intrinsic::x86_avx2_pmovmskb: {
16065      // High bits of movmskp{s|d}, pmovmskb are known zero.
16066      switch (IntId) {
16067        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
16068        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
16069        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
16070        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
16071        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
16072        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
16073        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
16074        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
16075      }
16076      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
16077      break;
16078    }
16079    }
16080    break;
16081  }
16082  }
16083}
16084
16085unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
16086                                                         unsigned Depth) const {
16087  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
16088  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
16089    return Op.getValueType().getScalarType().getSizeInBits();
16090
16091  // Fallback case.
16092  return 1;
16093}
16094
16095/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
16096/// node is a GlobalAddress + offset.
16097bool X86TargetLowering::isGAPlusOffset(SDNode *N,
16098                                       const GlobalValue* &GA,
16099                                       int64_t &Offset) const {
16100  if (N->getOpcode() == X86ISD::Wrapper) {
16101    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
16102      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
16103      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
16104      return true;
16105    }
16106  }
16107  return TargetLowering::isGAPlusOffset(N, GA, Offset);
16108}
16109
16110/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
16111/// same as extracting the high 128-bit part of 256-bit vector and then
16112/// inserting the result into the low part of a new 256-bit vector
16113static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
16114  EVT VT = SVOp->getValueType(0);
16115  unsigned NumElems = VT.getVectorNumElements();
16116
16117  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
16118  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
16119    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
16120        SVOp->getMaskElt(j) >= 0)
16121      return false;
16122
16123  return true;
16124}
16125
16126/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
16127/// same as extracting the low 128-bit part of 256-bit vector and then
16128/// inserting the result into the high part of a new 256-bit vector
16129static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
16130  EVT VT = SVOp->getValueType(0);
16131  unsigned NumElems = VT.getVectorNumElements();
16132
16133  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
16134  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
16135    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
16136        SVOp->getMaskElt(j) >= 0)
16137      return false;
16138
16139  return true;
16140}
16141
16142/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
16143static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
16144                                        TargetLowering::DAGCombinerInfo &DCI,
16145                                        const X86Subtarget* Subtarget) {
16146  SDLoc dl(N);
16147  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
16148  SDValue V1 = SVOp->getOperand(0);
16149  SDValue V2 = SVOp->getOperand(1);
16150  EVT VT = SVOp->getValueType(0);
16151  unsigned NumElems = VT.getVectorNumElements();
16152
16153  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
16154      V2.getOpcode() == ISD::CONCAT_VECTORS) {
16155    //
16156    //                   0,0,0,...
16157    //                      |
16158    //    V      UNDEF    BUILD_VECTOR    UNDEF
16159    //     \      /           \           /
16160    //  CONCAT_VECTOR         CONCAT_VECTOR
16161    //         \                  /
16162    //          \                /
16163    //          RESULT: V + zero extended
16164    //
16165    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
16166        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
16167        V1.getOperand(1).getOpcode() != ISD::UNDEF)
16168      return SDValue();
16169
16170    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
16171      return SDValue();
16172
16173    // To match the shuffle mask, the first half of the mask should
16174    // be exactly the first vector, and all the rest a splat with the
16175    // first element of the second one.
16176    for (unsigned i = 0; i != NumElems/2; ++i)
16177      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
16178          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
16179        return SDValue();
16180
16181    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
16182    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
16183      if (Ld->hasNUsesOfValue(1, 0)) {
16184        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
16185        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
16186        SDValue ResNode =
16187          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
16188                                  array_lengthof(Ops),
16189                                  Ld->getMemoryVT(),
16190                                  Ld->getPointerInfo(),
16191                                  Ld->getAlignment(),
16192                                  false/*isVolatile*/, true/*ReadMem*/,
16193                                  false/*WriteMem*/);
16194
16195        // Make sure the newly-created LOAD is in the same position as Ld in
16196        // terms of dependency. We create a TokenFactor for Ld and ResNode,
16197        // and update uses of Ld's output chain to use the TokenFactor.
16198        if (Ld->hasAnyUseOfValue(1)) {
16199          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
16200                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
16201          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
16202          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
16203                                 SDValue(ResNode.getNode(), 1));
16204        }
16205
16206        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
16207      }
16208    }
16209
16210    // Emit a zeroed vector and insert the desired subvector on its
16211    // first half.
16212    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
16213    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
16214    return DCI.CombineTo(N, InsV);
16215  }
16216
16217  //===--------------------------------------------------------------------===//
16218  // Combine some shuffles into subvector extracts and inserts:
16219  //
16220
16221  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
16222  if (isShuffleHigh128VectorInsertLow(SVOp)) {
16223    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
16224    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
16225    return DCI.CombineTo(N, InsV);
16226  }
16227
16228  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
16229  if (isShuffleLow128VectorInsertHigh(SVOp)) {
16230    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
16231    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
16232    return DCI.CombineTo(N, InsV);
16233  }
16234
16235  return SDValue();
16236}
16237
16238/// PerformShuffleCombine - Performs several different shuffle combines.
16239static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
16240                                     TargetLowering::DAGCombinerInfo &DCI,
16241                                     const X86Subtarget *Subtarget) {
16242  SDLoc dl(N);
16243  EVT VT = N->getValueType(0);
16244
16245  // Don't create instructions with illegal types after legalize types has run.
16246  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16247  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
16248    return SDValue();
16249
16250  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
16251  if (Subtarget->hasFp256() && VT.is256BitVector() &&
16252      N->getOpcode() == ISD::VECTOR_SHUFFLE)
16253    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
16254
16255  // Only handle 128 wide vector from here on.
16256  if (!VT.is128BitVector())
16257    return SDValue();
16258
16259  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
16260  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
16261  // consecutive, non-overlapping, and in the right order.
16262  SmallVector<SDValue, 16> Elts;
16263  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
16264    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
16265
16266  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
16267}
16268
16269/// PerformTruncateCombine - Converts truncate operation to
16270/// a sequence of vector shuffle operations.
16271/// It is possible when we truncate 256-bit vector to 128-bit vector
16272static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
16273                                      TargetLowering::DAGCombinerInfo &DCI,
16274                                      const X86Subtarget *Subtarget)  {
16275  return SDValue();
16276}
16277
16278/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
16279/// specific shuffle of a load can be folded into a single element load.
16280/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
16281/// shuffles have been customed lowered so we need to handle those here.
16282static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
16283                                         TargetLowering::DAGCombinerInfo &DCI) {
16284  if (DCI.isBeforeLegalizeOps())
16285    return SDValue();
16286
16287  SDValue InVec = N->getOperand(0);
16288  SDValue EltNo = N->getOperand(1);
16289
16290  if (!isa<ConstantSDNode>(EltNo))
16291    return SDValue();
16292
16293  EVT VT = InVec.getValueType();
16294
16295  bool HasShuffleIntoBitcast = false;
16296  if (InVec.getOpcode() == ISD::BITCAST) {
16297    // Don't duplicate a load with other uses.
16298    if (!InVec.hasOneUse())
16299      return SDValue();
16300    EVT BCVT = InVec.getOperand(0).getValueType();
16301    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
16302      return SDValue();
16303    InVec = InVec.getOperand(0);
16304    HasShuffleIntoBitcast = true;
16305  }
16306
16307  if (!isTargetShuffle(InVec.getOpcode()))
16308    return SDValue();
16309
16310  // Don't duplicate a load with other uses.
16311  if (!InVec.hasOneUse())
16312    return SDValue();
16313
16314  SmallVector<int, 16> ShuffleMask;
16315  bool UnaryShuffle;
16316  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
16317                            UnaryShuffle))
16318    return SDValue();
16319
16320  // Select the input vector, guarding against out of range extract vector.
16321  unsigned NumElems = VT.getVectorNumElements();
16322  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
16323  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
16324  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
16325                                         : InVec.getOperand(1);
16326
16327  // If inputs to shuffle are the same for both ops, then allow 2 uses
16328  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
16329
16330  if (LdNode.getOpcode() == ISD::BITCAST) {
16331    // Don't duplicate a load with other uses.
16332    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
16333      return SDValue();
16334
16335    AllowedUses = 1; // only allow 1 load use if we have a bitcast
16336    LdNode = LdNode.getOperand(0);
16337  }
16338
16339  if (!ISD::isNormalLoad(LdNode.getNode()))
16340    return SDValue();
16341
16342  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
16343
16344  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
16345    return SDValue();
16346
16347  if (HasShuffleIntoBitcast) {
16348    // If there's a bitcast before the shuffle, check if the load type and
16349    // alignment is valid.
16350    unsigned Align = LN0->getAlignment();
16351    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16352    unsigned NewAlign = TLI.getDataLayout()->
16353      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
16354
16355    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
16356      return SDValue();
16357  }
16358
16359  // All checks match so transform back to vector_shuffle so that DAG combiner
16360  // can finish the job
16361  SDLoc dl(N);
16362
16363  // Create shuffle node taking into account the case that its a unary shuffle
16364  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
16365  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
16366                                 InVec.getOperand(0), Shuffle,
16367                                 &ShuffleMask[0]);
16368  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
16369  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
16370                     EltNo);
16371}
16372
16373/// Extract one bit from mask vector, like v16i1 or v8i1.
16374/// AVX-512 feature.
16375static SDValue ExtractBitFromMaskVector(SDNode *N, SelectionDAG &DAG) {
16376  SDValue Vec = N->getOperand(0);
16377  SDLoc dl(Vec);
16378  MVT VecVT = Vec.getSimpleValueType();
16379  SDValue Idx = N->getOperand(1);
16380  MVT EltVT = N->getSimpleValueType(0);
16381
16382  assert((VecVT.getVectorElementType() == MVT::i1 && EltVT == MVT::i8) ||
16383         "Unexpected operands in ExtractBitFromMaskVector");
16384
16385  // variable index
16386  if (!isa<ConstantSDNode>(Idx)) {
16387    MVT ExtVT = (VecVT == MVT::v8i1 ?  MVT::v8i64 : MVT::v16i32);
16388    SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec);
16389    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
16390                              ExtVT.getVectorElementType(), Ext);
16391    return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
16392  }
16393
16394  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
16395
16396  MVT ScalarVT = MVT::getIntegerVT(VecVT.getSizeInBits());
16397  unsigned MaxShift = VecVT.getSizeInBits() - 1;
16398  Vec = DAG.getNode(ISD::BITCAST, dl, ScalarVT, Vec);
16399  Vec = DAG.getNode(ISD::SHL, dl, ScalarVT, Vec,
16400              DAG.getConstant(MaxShift - IdxVal, ScalarVT));
16401  Vec = DAG.getNode(ISD::SRL, dl, ScalarVT, Vec,
16402    DAG.getConstant(MaxShift, ScalarVT));
16403
16404  if (VecVT == MVT::v16i1) {
16405    Vec = DAG.getNode(ISD::BITCAST, dl, MVT::i16, Vec);
16406    return DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Vec);
16407  }
16408  return DAG.getNode(ISD::BITCAST, dl, MVT::i8, Vec);
16409}
16410
16411/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
16412/// generation and convert it from being a bunch of shuffles and extracts
16413/// to a simple store and scalar loads to extract the elements.
16414static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
16415                                         TargetLowering::DAGCombinerInfo &DCI) {
16416  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
16417  if (NewOp.getNode())
16418    return NewOp;
16419
16420  SDValue InputVector = N->getOperand(0);
16421
16422  if (InputVector.getValueType().getVectorElementType() == MVT::i1 &&
16423      !DCI.isBeforeLegalize())
16424    return ExtractBitFromMaskVector(N, DAG);
16425
16426  // Detect whether we are trying to convert from mmx to i32 and the bitcast
16427  // from mmx to v2i32 has a single usage.
16428  if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
16429      InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
16430      InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
16431    return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
16432                       N->getValueType(0),
16433                       InputVector.getNode()->getOperand(0));
16434
16435  // Only operate on vectors of 4 elements, where the alternative shuffling
16436  // gets to be more expensive.
16437  if (InputVector.getValueType() != MVT::v4i32)
16438    return SDValue();
16439
16440  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
16441  // single use which is a sign-extend or zero-extend, and all elements are
16442  // used.
16443  SmallVector<SDNode *, 4> Uses;
16444  unsigned ExtractedElements = 0;
16445  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
16446       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
16447    if (UI.getUse().getResNo() != InputVector.getResNo())
16448      return SDValue();
16449
16450    SDNode *Extract = *UI;
16451    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
16452      return SDValue();
16453
16454    if (Extract->getValueType(0) != MVT::i32)
16455      return SDValue();
16456    if (!Extract->hasOneUse())
16457      return SDValue();
16458    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
16459        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
16460      return SDValue();
16461    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
16462      return SDValue();
16463
16464    // Record which element was extracted.
16465    ExtractedElements |=
16466      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
16467
16468    Uses.push_back(Extract);
16469  }
16470
16471  // If not all the elements were used, this may not be worthwhile.
16472  if (ExtractedElements != 15)
16473    return SDValue();
16474
16475  // Ok, we've now decided to do the transformation.
16476  SDLoc dl(InputVector);
16477
16478  // Store the value to a temporary stack slot.
16479  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
16480  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
16481                            MachinePointerInfo(), false, false, 0);
16482
16483  // Replace each use (extract) with a load of the appropriate element.
16484  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
16485       UE = Uses.end(); UI != UE; ++UI) {
16486    SDNode *Extract = *UI;
16487
16488    // cOMpute the element's address.
16489    SDValue Idx = Extract->getOperand(1);
16490    unsigned EltSize =
16491        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
16492    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
16493    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16494    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
16495
16496    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
16497                                     StackPtr, OffsetVal);
16498
16499    // Load the scalar.
16500    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
16501                                     ScalarAddr, MachinePointerInfo(),
16502                                     false, false, false, 0);
16503
16504    // Replace the exact with the load.
16505    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
16506  }
16507
16508  // The replacement was made in place; don't return anything.
16509  return SDValue();
16510}
16511
16512/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
16513static std::pair<unsigned, bool>
16514matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS,
16515                   SelectionDAG &DAG, const X86Subtarget *Subtarget) {
16516  if (!VT.isVector())
16517    return std::make_pair(0, false);
16518
16519  bool NeedSplit = false;
16520  switch (VT.getSimpleVT().SimpleTy) {
16521  default: return std::make_pair(0, false);
16522  case MVT::v32i8:
16523  case MVT::v16i16:
16524  case MVT::v8i32:
16525    if (!Subtarget->hasAVX2())
16526      NeedSplit = true;
16527    if (!Subtarget->hasAVX())
16528      return std::make_pair(0, false);
16529    break;
16530  case MVT::v16i8:
16531  case MVT::v8i16:
16532  case MVT::v4i32:
16533    if (!Subtarget->hasSSE2())
16534      return std::make_pair(0, false);
16535  }
16536
16537  // SSE2 has only a small subset of the operations.
16538  bool hasUnsigned = Subtarget->hasSSE41() ||
16539                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
16540  bool hasSigned = Subtarget->hasSSE41() ||
16541                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
16542
16543  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16544
16545  unsigned Opc = 0;
16546  // Check for x CC y ? x : y.
16547  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
16548      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
16549    switch (CC) {
16550    default: break;
16551    case ISD::SETULT:
16552    case ISD::SETULE:
16553      Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
16554    case ISD::SETUGT:
16555    case ISD::SETUGE:
16556      Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
16557    case ISD::SETLT:
16558    case ISD::SETLE:
16559      Opc = hasSigned ? X86ISD::SMIN : 0; break;
16560    case ISD::SETGT:
16561    case ISD::SETGE:
16562      Opc = hasSigned ? X86ISD::SMAX : 0; break;
16563    }
16564  // Check for x CC y ? y : x -- a min/max with reversed arms.
16565  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
16566             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
16567    switch (CC) {
16568    default: break;
16569    case ISD::SETULT:
16570    case ISD::SETULE:
16571      Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
16572    case ISD::SETUGT:
16573    case ISD::SETUGE:
16574      Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
16575    case ISD::SETLT:
16576    case ISD::SETLE:
16577      Opc = hasSigned ? X86ISD::SMAX : 0; break;
16578    case ISD::SETGT:
16579    case ISD::SETGE:
16580      Opc = hasSigned ? X86ISD::SMIN : 0; break;
16581    }
16582  }
16583
16584  return std::make_pair(Opc, NeedSplit);
16585}
16586
16587/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
16588/// nodes.
16589static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
16590                                    TargetLowering::DAGCombinerInfo &DCI,
16591                                    const X86Subtarget *Subtarget) {
16592  SDLoc DL(N);
16593  SDValue Cond = N->getOperand(0);
16594  // Get the LHS/RHS of the select.
16595  SDValue LHS = N->getOperand(1);
16596  SDValue RHS = N->getOperand(2);
16597  EVT VT = LHS.getValueType();
16598  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16599
16600  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
16601  // instructions match the semantics of the common C idiom x<y?x:y but not
16602  // x<=y?x:y, because of how they handle negative zero (which can be
16603  // ignored in unsafe-math mode).
16604  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
16605      VT != MVT::f80 && TLI.isTypeLegal(VT) &&
16606      (Subtarget->hasSSE2() ||
16607       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
16608    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16609
16610    unsigned Opcode = 0;
16611    // Check for x CC y ? x : y.
16612    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
16613        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
16614      switch (CC) {
16615      default: break;
16616      case ISD::SETULT:
16617        // Converting this to a min would handle NaNs incorrectly, and swapping
16618        // the operands would cause it to handle comparisons between positive
16619        // and negative zero incorrectly.
16620        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
16621          if (!DAG.getTarget().Options.UnsafeFPMath &&
16622              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
16623            break;
16624          std::swap(LHS, RHS);
16625        }
16626        Opcode = X86ISD::FMIN;
16627        break;
16628      case ISD::SETOLE:
16629        // Converting this to a min would handle comparisons between positive
16630        // and negative zero incorrectly.
16631        if (!DAG.getTarget().Options.UnsafeFPMath &&
16632            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
16633          break;
16634        Opcode = X86ISD::FMIN;
16635        break;
16636      case ISD::SETULE:
16637        // Converting this to a min would handle both negative zeros and NaNs
16638        // incorrectly, but we can swap the operands to fix both.
16639        std::swap(LHS, RHS);
16640      case ISD::SETOLT:
16641      case ISD::SETLT:
16642      case ISD::SETLE:
16643        Opcode = X86ISD::FMIN;
16644        break;
16645
16646      case ISD::SETOGE:
16647        // Converting this to a max would handle comparisons between positive
16648        // and negative zero incorrectly.
16649        if (!DAG.getTarget().Options.UnsafeFPMath &&
16650            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
16651          break;
16652        Opcode = X86ISD::FMAX;
16653        break;
16654      case ISD::SETUGT:
16655        // Converting this to a max would handle NaNs incorrectly, and swapping
16656        // the operands would cause it to handle comparisons between positive
16657        // and negative zero incorrectly.
16658        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
16659          if (!DAG.getTarget().Options.UnsafeFPMath &&
16660              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
16661            break;
16662          std::swap(LHS, RHS);
16663        }
16664        Opcode = X86ISD::FMAX;
16665        break;
16666      case ISD::SETUGE:
16667        // Converting this to a max would handle both negative zeros and NaNs
16668        // incorrectly, but we can swap the operands to fix both.
16669        std::swap(LHS, RHS);
16670      case ISD::SETOGT:
16671      case ISD::SETGT:
16672      case ISD::SETGE:
16673        Opcode = X86ISD::FMAX;
16674        break;
16675      }
16676    // Check for x CC y ? y : x -- a min/max with reversed arms.
16677    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
16678               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
16679      switch (CC) {
16680      default: break;
16681      case ISD::SETOGE:
16682        // Converting this to a min would handle comparisons between positive
16683        // and negative zero incorrectly, and swapping the operands would
16684        // cause it to handle NaNs incorrectly.
16685        if (!DAG.getTarget().Options.UnsafeFPMath &&
16686            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
16687          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
16688            break;
16689          std::swap(LHS, RHS);
16690        }
16691        Opcode = X86ISD::FMIN;
16692        break;
16693      case ISD::SETUGT:
16694        // Converting this to a min would handle NaNs incorrectly.
16695        if (!DAG.getTarget().Options.UnsafeFPMath &&
16696            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
16697          break;
16698        Opcode = X86ISD::FMIN;
16699        break;
16700      case ISD::SETUGE:
16701        // Converting this to a min would handle both negative zeros and NaNs
16702        // incorrectly, but we can swap the operands to fix both.
16703        std::swap(LHS, RHS);
16704      case ISD::SETOGT:
16705      case ISD::SETGT:
16706      case ISD::SETGE:
16707        Opcode = X86ISD::FMIN;
16708        break;
16709
16710      case ISD::SETULT:
16711        // Converting this to a max would handle NaNs incorrectly.
16712        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
16713          break;
16714        Opcode = X86ISD::FMAX;
16715        break;
16716      case ISD::SETOLE:
16717        // Converting this to a max would handle comparisons between positive
16718        // and negative zero incorrectly, and swapping the operands would
16719        // cause it to handle NaNs incorrectly.
16720        if (!DAG.getTarget().Options.UnsafeFPMath &&
16721            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
16722          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
16723            break;
16724          std::swap(LHS, RHS);
16725        }
16726        Opcode = X86ISD::FMAX;
16727        break;
16728      case ISD::SETULE:
16729        // Converting this to a max would handle both negative zeros and NaNs
16730        // incorrectly, but we can swap the operands to fix both.
16731        std::swap(LHS, RHS);
16732      case ISD::SETOLT:
16733      case ISD::SETLT:
16734      case ISD::SETLE:
16735        Opcode = X86ISD::FMAX;
16736        break;
16737      }
16738    }
16739
16740    if (Opcode)
16741      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
16742  }
16743
16744  EVT CondVT = Cond.getValueType();
16745  if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() &&
16746      CondVT.getVectorElementType() == MVT::i1) {
16747    // v16i8 (select v16i1, v16i8, v16i8) does not have a proper
16748    // lowering on AVX-512. In this case we convert it to
16749    // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
16750    // The same situation for all 128 and 256-bit vectors of i8 and i16
16751    EVT OpVT = LHS.getValueType();
16752    if ((OpVT.is128BitVector() || OpVT.is256BitVector()) &&
16753        (OpVT.getVectorElementType() == MVT::i8 ||
16754         OpVT.getVectorElementType() == MVT::i16)) {
16755      Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond);
16756      DCI.AddToWorklist(Cond.getNode());
16757      return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS);
16758    }
16759  }
16760  // If this is a select between two integer constants, try to do some
16761  // optimizations.
16762  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
16763    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
16764      // Don't do this for crazy integer types.
16765      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
16766        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
16767        // so that TrueC (the true value) is larger than FalseC.
16768        bool NeedsCondInvert = false;
16769
16770        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
16771            // Efficiently invertible.
16772            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
16773             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
16774              isa<ConstantSDNode>(Cond.getOperand(1))))) {
16775          NeedsCondInvert = true;
16776          std::swap(TrueC, FalseC);
16777        }
16778
16779        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
16780        if (FalseC->getAPIntValue() == 0 &&
16781            TrueC->getAPIntValue().isPowerOf2()) {
16782          if (NeedsCondInvert) // Invert the condition if needed.
16783            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
16784                               DAG.getConstant(1, Cond.getValueType()));
16785
16786          // Zero extend the condition if needed.
16787          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
16788
16789          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
16790          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
16791                             DAG.getConstant(ShAmt, MVT::i8));
16792        }
16793
16794        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
16795        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
16796          if (NeedsCondInvert) // Invert the condition if needed.
16797            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
16798                               DAG.getConstant(1, Cond.getValueType()));
16799
16800          // Zero extend the condition if needed.
16801          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
16802                             FalseC->getValueType(0), Cond);
16803          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
16804                             SDValue(FalseC, 0));
16805        }
16806
16807        // Optimize cases that will turn into an LEA instruction.  This requires
16808        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
16809        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
16810          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
16811          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
16812
16813          bool isFastMultiplier = false;
16814          if (Diff < 10) {
16815            switch ((unsigned char)Diff) {
16816              default: break;
16817              case 1:  // result = add base, cond
16818              case 2:  // result = lea base(    , cond*2)
16819              case 3:  // result = lea base(cond, cond*2)
16820              case 4:  // result = lea base(    , cond*4)
16821              case 5:  // result = lea base(cond, cond*4)
16822              case 8:  // result = lea base(    , cond*8)
16823              case 9:  // result = lea base(cond, cond*8)
16824                isFastMultiplier = true;
16825                break;
16826            }
16827          }
16828
16829          if (isFastMultiplier) {
16830            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
16831            if (NeedsCondInvert) // Invert the condition if needed.
16832              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
16833                                 DAG.getConstant(1, Cond.getValueType()));
16834
16835            // Zero extend the condition if needed.
16836            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
16837                               Cond);
16838            // Scale the condition by the difference.
16839            if (Diff != 1)
16840              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
16841                                 DAG.getConstant(Diff, Cond.getValueType()));
16842
16843            // Add the base if non-zero.
16844            if (FalseC->getAPIntValue() != 0)
16845              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
16846                                 SDValue(FalseC, 0));
16847            return Cond;
16848          }
16849        }
16850      }
16851  }
16852
16853  // Canonicalize max and min:
16854  // (x > y) ? x : y -> (x >= y) ? x : y
16855  // (x < y) ? x : y -> (x <= y) ? x : y
16856  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
16857  // the need for an extra compare
16858  // against zero. e.g.
16859  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
16860  // subl   %esi, %edi
16861  // testl  %edi, %edi
16862  // movl   $0, %eax
16863  // cmovgl %edi, %eax
16864  // =>
16865  // xorl   %eax, %eax
16866  // subl   %esi, $edi
16867  // cmovsl %eax, %edi
16868  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
16869      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
16870      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
16871    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16872    switch (CC) {
16873    default: break;
16874    case ISD::SETLT:
16875    case ISD::SETGT: {
16876      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
16877      Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
16878                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
16879      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
16880    }
16881    }
16882  }
16883
16884  // Early exit check
16885  if (!TLI.isTypeLegal(VT))
16886    return SDValue();
16887
16888  // Match VSELECTs into subs with unsigned saturation.
16889  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
16890      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
16891      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
16892       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
16893    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16894
16895    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
16896    // left side invert the predicate to simplify logic below.
16897    SDValue Other;
16898    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
16899      Other = RHS;
16900      CC = ISD::getSetCCInverse(CC, true);
16901    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
16902      Other = LHS;
16903    }
16904
16905    if (Other.getNode() && Other->getNumOperands() == 2 &&
16906        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
16907      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
16908      SDValue CondRHS = Cond->getOperand(1);
16909
16910      // Look for a general sub with unsigned saturation first.
16911      // x >= y ? x-y : 0 --> subus x, y
16912      // x >  y ? x-y : 0 --> subus x, y
16913      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
16914          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
16915        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
16916
16917      // If the RHS is a constant we have to reverse the const canonicalization.
16918      // x > C-1 ? x+-C : 0 --> subus x, C
16919      if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
16920          isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) {
16921        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
16922        if (CondRHS.getConstantOperandVal(0) == -A-1)
16923          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS,
16924                             DAG.getConstant(-A, VT));
16925      }
16926
16927      // Another special case: If C was a sign bit, the sub has been
16928      // canonicalized into a xor.
16929      // FIXME: Would it be better to use ComputeMaskedBits to determine whether
16930      //        it's safe to decanonicalize the xor?
16931      // x s< 0 ? x^C : 0 --> subus x, C
16932      if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
16933          ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
16934          isSplatVector(OpRHS.getNode())) {
16935        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
16936        if (A.isSignBit())
16937          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
16938      }
16939    }
16940  }
16941
16942  // Try to match a min/max vector operation.
16943  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) {
16944    std::pair<unsigned, bool> ret = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget);
16945    unsigned Opc = ret.first;
16946    bool NeedSplit = ret.second;
16947
16948    if (Opc && NeedSplit) {
16949      unsigned NumElems = VT.getVectorNumElements();
16950      // Extract the LHS vectors
16951      SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, DL);
16952      SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, DL);
16953
16954      // Extract the RHS vectors
16955      SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, DL);
16956      SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, DL);
16957
16958      // Create min/max for each subvector
16959      LHS = DAG.getNode(Opc, DL, LHS1.getValueType(), LHS1, RHS1);
16960      RHS = DAG.getNode(Opc, DL, LHS2.getValueType(), LHS2, RHS2);
16961
16962      // Merge the result
16963      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LHS, RHS);
16964    } else if (Opc)
16965      return DAG.getNode(Opc, DL, VT, LHS, RHS);
16966  }
16967
16968  // Simplify vector selection if the selector will be produced by CMPP*/PCMP*.
16969  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
16970      // Check if SETCC has already been promoted
16971      TLI.getSetCCResultType(*DAG.getContext(), VT) == Cond.getValueType()) {
16972
16973    assert(Cond.getValueType().isVector() &&
16974           "vector select expects a vector selector!");
16975
16976    EVT IntVT = Cond.getValueType();
16977    bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
16978    bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
16979
16980    if (!TValIsAllOnes && !FValIsAllZeros) {
16981      // Try invert the condition if true value is not all 1s and false value
16982      // is not all 0s.
16983      bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
16984      bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
16985
16986      if (TValIsAllZeros || FValIsAllOnes) {
16987        SDValue CC = Cond.getOperand(2);
16988        ISD::CondCode NewCC =
16989          ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
16990                               Cond.getOperand(0).getValueType().isInteger());
16991        Cond = DAG.getSetCC(DL, IntVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
16992        std::swap(LHS, RHS);
16993        TValIsAllOnes = FValIsAllOnes;
16994        FValIsAllZeros = TValIsAllZeros;
16995      }
16996    }
16997
16998    if (TValIsAllOnes || FValIsAllZeros) {
16999      SDValue Ret;
17000
17001      if (TValIsAllOnes && FValIsAllZeros)
17002        Ret = Cond;
17003      else if (TValIsAllOnes)
17004        Ret = DAG.getNode(ISD::OR, DL, IntVT, Cond,
17005                          DAG.getNode(ISD::BITCAST, DL, IntVT, RHS));
17006      else if (FValIsAllZeros)
17007        Ret = DAG.getNode(ISD::AND, DL, IntVT, Cond,
17008                          DAG.getNode(ISD::BITCAST, DL, IntVT, LHS));
17009
17010      return DAG.getNode(ISD::BITCAST, DL, VT, Ret);
17011    }
17012  }
17013
17014  // If we know that this node is legal then we know that it is going to be
17015  // matched by one of the SSE/AVX BLEND instructions. These instructions only
17016  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
17017  // to simplify previous instructions.
17018  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
17019      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
17020    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
17021
17022    // Don't optimize vector selects that map to mask-registers.
17023    if (BitWidth == 1)
17024      return SDValue();
17025
17026    // Check all uses of that condition operand to check whether it will be
17027    // consumed by non-BLEND instructions, which may depend on all bits are set
17028    // properly.
17029    for (SDNode::use_iterator I = Cond->use_begin(),
17030                              E = Cond->use_end(); I != E; ++I)
17031      if (I->getOpcode() != ISD::VSELECT)
17032        // TODO: Add other opcodes eventually lowered into BLEND.
17033        return SDValue();
17034
17035    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
17036    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
17037
17038    APInt KnownZero, KnownOne;
17039    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
17040                                          DCI.isBeforeLegalizeOps());
17041    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
17042        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
17043      DCI.CommitTargetLoweringOpt(TLO);
17044  }
17045
17046  return SDValue();
17047}
17048
17049// Check whether a boolean test is testing a boolean value generated by
17050// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
17051// code.
17052//
17053// Simplify the following patterns:
17054// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
17055// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
17056// to (Op EFLAGS Cond)
17057//
17058// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
17059// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
17060// to (Op EFLAGS !Cond)
17061//
17062// where Op could be BRCOND or CMOV.
17063//
17064static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
17065  // Quit if not CMP and SUB with its value result used.
17066  if (Cmp.getOpcode() != X86ISD::CMP &&
17067      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
17068      return SDValue();
17069
17070  // Quit if not used as a boolean value.
17071  if (CC != X86::COND_E && CC != X86::COND_NE)
17072    return SDValue();
17073
17074  // Check CMP operands. One of them should be 0 or 1 and the other should be
17075  // an SetCC or extended from it.
17076  SDValue Op1 = Cmp.getOperand(0);
17077  SDValue Op2 = Cmp.getOperand(1);
17078
17079  SDValue SetCC;
17080  const ConstantSDNode* C = 0;
17081  bool needOppositeCond = (CC == X86::COND_E);
17082  bool checkAgainstTrue = false; // Is it a comparison against 1?
17083
17084  if ((C = dyn_cast<ConstantSDNode>(Op1)))
17085    SetCC = Op2;
17086  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
17087    SetCC = Op1;
17088  else // Quit if all operands are not constants.
17089    return SDValue();
17090
17091  if (C->getZExtValue() == 1) {
17092    needOppositeCond = !needOppositeCond;
17093    checkAgainstTrue = true;
17094  } else if (C->getZExtValue() != 0)
17095    // Quit if the constant is neither 0 or 1.
17096    return SDValue();
17097
17098  bool truncatedToBoolWithAnd = false;
17099  // Skip (zext $x), (trunc $x), or (and $x, 1) node.
17100  while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
17101         SetCC.getOpcode() == ISD::TRUNCATE ||
17102         SetCC.getOpcode() == ISD::AND) {
17103    if (SetCC.getOpcode() == ISD::AND) {
17104      int OpIdx = -1;
17105      ConstantSDNode *CS;
17106      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(0))) &&
17107          CS->getZExtValue() == 1)
17108        OpIdx = 1;
17109      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(1))) &&
17110          CS->getZExtValue() == 1)
17111        OpIdx = 0;
17112      if (OpIdx == -1)
17113        break;
17114      SetCC = SetCC.getOperand(OpIdx);
17115      truncatedToBoolWithAnd = true;
17116    } else
17117      SetCC = SetCC.getOperand(0);
17118  }
17119
17120  switch (SetCC.getOpcode()) {
17121  case X86ISD::SETCC_CARRY:
17122    // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
17123    // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
17124    // i.e. it's a comparison against true but the result of SETCC_CARRY is not
17125    // truncated to i1 using 'and'.
17126    if (checkAgainstTrue && !truncatedToBoolWithAnd)
17127      break;
17128    assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
17129           "Invalid use of SETCC_CARRY!");
17130    // FALL THROUGH
17131  case X86ISD::SETCC:
17132    // Set the condition code or opposite one if necessary.
17133    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
17134    if (needOppositeCond)
17135      CC = X86::GetOppositeBranchCondition(CC);
17136    return SetCC.getOperand(1);
17137  case X86ISD::CMOV: {
17138    // Check whether false/true value has canonical one, i.e. 0 or 1.
17139    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
17140    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
17141    // Quit if true value is not a constant.
17142    if (!TVal)
17143      return SDValue();
17144    // Quit if false value is not a constant.
17145    if (!FVal) {
17146      SDValue Op = SetCC.getOperand(0);
17147      // Skip 'zext' or 'trunc' node.
17148      if (Op.getOpcode() == ISD::ZERO_EXTEND ||
17149          Op.getOpcode() == ISD::TRUNCATE)
17150        Op = Op.getOperand(0);
17151      // A special case for rdrand/rdseed, where 0 is set if false cond is
17152      // found.
17153      if ((Op.getOpcode() != X86ISD::RDRAND &&
17154           Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
17155        return SDValue();
17156    }
17157    // Quit if false value is not the constant 0 or 1.
17158    bool FValIsFalse = true;
17159    if (FVal && FVal->getZExtValue() != 0) {
17160      if (FVal->getZExtValue() != 1)
17161        return SDValue();
17162      // If FVal is 1, opposite cond is needed.
17163      needOppositeCond = !needOppositeCond;
17164      FValIsFalse = false;
17165    }
17166    // Quit if TVal is not the constant opposite of FVal.
17167    if (FValIsFalse && TVal->getZExtValue() != 1)
17168      return SDValue();
17169    if (!FValIsFalse && TVal->getZExtValue() != 0)
17170      return SDValue();
17171    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
17172    if (needOppositeCond)
17173      CC = X86::GetOppositeBranchCondition(CC);
17174    return SetCC.getOperand(3);
17175  }
17176  }
17177
17178  return SDValue();
17179}
17180
17181/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
17182static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
17183                                  TargetLowering::DAGCombinerInfo &DCI,
17184                                  const X86Subtarget *Subtarget) {
17185  SDLoc DL(N);
17186
17187  // If the flag operand isn't dead, don't touch this CMOV.
17188  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
17189    return SDValue();
17190
17191  SDValue FalseOp = N->getOperand(0);
17192  SDValue TrueOp = N->getOperand(1);
17193  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
17194  SDValue Cond = N->getOperand(3);
17195
17196  if (CC == X86::COND_E || CC == X86::COND_NE) {
17197    switch (Cond.getOpcode()) {
17198    default: break;
17199    case X86ISD::BSR:
17200    case X86ISD::BSF:
17201      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
17202      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
17203        return (CC == X86::COND_E) ? FalseOp : TrueOp;
17204    }
17205  }
17206
17207  SDValue Flags;
17208
17209  Flags = checkBoolTestSetCCCombine(Cond, CC);
17210  if (Flags.getNode() &&
17211      // Extra check as FCMOV only supports a subset of X86 cond.
17212      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
17213    SDValue Ops[] = { FalseOp, TrueOp,
17214                      DAG.getConstant(CC, MVT::i8), Flags };
17215    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
17216                       Ops, array_lengthof(Ops));
17217  }
17218
17219  // If this is a select between two integer constants, try to do some
17220  // optimizations.  Note that the operands are ordered the opposite of SELECT
17221  // operands.
17222  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
17223    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
17224      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
17225      // larger than FalseC (the false value).
17226      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
17227        CC = X86::GetOppositeBranchCondition(CC);
17228        std::swap(TrueC, FalseC);
17229        std::swap(TrueOp, FalseOp);
17230      }
17231
17232      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
17233      // This is efficient for any integer data type (including i8/i16) and
17234      // shift amount.
17235      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
17236        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
17237                           DAG.getConstant(CC, MVT::i8), Cond);
17238
17239        // Zero extend the condition if needed.
17240        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
17241
17242        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
17243        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
17244                           DAG.getConstant(ShAmt, MVT::i8));
17245        if (N->getNumValues() == 2)  // Dead flag value?
17246          return DCI.CombineTo(N, Cond, SDValue());
17247        return Cond;
17248      }
17249
17250      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
17251      // for any integer data type, including i8/i16.
17252      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
17253        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
17254                           DAG.getConstant(CC, MVT::i8), Cond);
17255
17256        // Zero extend the condition if needed.
17257        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
17258                           FalseC->getValueType(0), Cond);
17259        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
17260                           SDValue(FalseC, 0));
17261
17262        if (N->getNumValues() == 2)  // Dead flag value?
17263          return DCI.CombineTo(N, Cond, SDValue());
17264        return Cond;
17265      }
17266
17267      // Optimize cases that will turn into an LEA instruction.  This requires
17268      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
17269      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
17270        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
17271        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
17272
17273        bool isFastMultiplier = false;
17274        if (Diff < 10) {
17275          switch ((unsigned char)Diff) {
17276          default: break;
17277          case 1:  // result = add base, cond
17278          case 2:  // result = lea base(    , cond*2)
17279          case 3:  // result = lea base(cond, cond*2)
17280          case 4:  // result = lea base(    , cond*4)
17281          case 5:  // result = lea base(cond, cond*4)
17282          case 8:  // result = lea base(    , cond*8)
17283          case 9:  // result = lea base(cond, cond*8)
17284            isFastMultiplier = true;
17285            break;
17286          }
17287        }
17288
17289        if (isFastMultiplier) {
17290          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
17291          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
17292                             DAG.getConstant(CC, MVT::i8), Cond);
17293          // Zero extend the condition if needed.
17294          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
17295                             Cond);
17296          // Scale the condition by the difference.
17297          if (Diff != 1)
17298            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
17299                               DAG.getConstant(Diff, Cond.getValueType()));
17300
17301          // Add the base if non-zero.
17302          if (FalseC->getAPIntValue() != 0)
17303            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
17304                               SDValue(FalseC, 0));
17305          if (N->getNumValues() == 2)  // Dead flag value?
17306            return DCI.CombineTo(N, Cond, SDValue());
17307          return Cond;
17308        }
17309      }
17310    }
17311  }
17312
17313  // Handle these cases:
17314  //   (select (x != c), e, c) -> select (x != c), e, x),
17315  //   (select (x == c), c, e) -> select (x == c), x, e)
17316  // where the c is an integer constant, and the "select" is the combination
17317  // of CMOV and CMP.
17318  //
17319  // The rationale for this change is that the conditional-move from a constant
17320  // needs two instructions, however, conditional-move from a register needs
17321  // only one instruction.
17322  //
17323  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
17324  //  some instruction-combining opportunities. This opt needs to be
17325  //  postponed as late as possible.
17326  //
17327  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
17328    // the DCI.xxxx conditions are provided to postpone the optimization as
17329    // late as possible.
17330
17331    ConstantSDNode *CmpAgainst = 0;
17332    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
17333        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
17334        !isa<ConstantSDNode>(Cond.getOperand(0))) {
17335
17336      if (CC == X86::COND_NE &&
17337          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
17338        CC = X86::GetOppositeBranchCondition(CC);
17339        std::swap(TrueOp, FalseOp);
17340      }
17341
17342      if (CC == X86::COND_E &&
17343          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
17344        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
17345                          DAG.getConstant(CC, MVT::i8), Cond };
17346        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
17347                           array_lengthof(Ops));
17348      }
17349    }
17350  }
17351
17352  return SDValue();
17353}
17354
17355/// PerformMulCombine - Optimize a single multiply with constant into two
17356/// in order to implement it with two cheaper instructions, e.g.
17357/// LEA + SHL, LEA + LEA.
17358static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
17359                                 TargetLowering::DAGCombinerInfo &DCI) {
17360  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
17361    return SDValue();
17362
17363  EVT VT = N->getValueType(0);
17364  if (VT != MVT::i64)
17365    return SDValue();
17366
17367  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
17368  if (!C)
17369    return SDValue();
17370  uint64_t MulAmt = C->getZExtValue();
17371  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
17372    return SDValue();
17373
17374  uint64_t MulAmt1 = 0;
17375  uint64_t MulAmt2 = 0;
17376  if ((MulAmt % 9) == 0) {
17377    MulAmt1 = 9;
17378    MulAmt2 = MulAmt / 9;
17379  } else if ((MulAmt % 5) == 0) {
17380    MulAmt1 = 5;
17381    MulAmt2 = MulAmt / 5;
17382  } else if ((MulAmt % 3) == 0) {
17383    MulAmt1 = 3;
17384    MulAmt2 = MulAmt / 3;
17385  }
17386  if (MulAmt2 &&
17387      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
17388    SDLoc DL(N);
17389
17390    if (isPowerOf2_64(MulAmt2) &&
17391        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
17392      // If second multiplifer is pow2, issue it first. We want the multiply by
17393      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
17394      // is an add.
17395      std::swap(MulAmt1, MulAmt2);
17396
17397    SDValue NewMul;
17398    if (isPowerOf2_64(MulAmt1))
17399      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17400                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
17401    else
17402      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
17403                           DAG.getConstant(MulAmt1, VT));
17404
17405    if (isPowerOf2_64(MulAmt2))
17406      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
17407                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
17408    else
17409      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
17410                           DAG.getConstant(MulAmt2, VT));
17411
17412    // Do not add new nodes to DAG combiner worklist.
17413    DCI.CombineTo(N, NewMul, false);
17414  }
17415  return SDValue();
17416}
17417
17418static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
17419  SDValue N0 = N->getOperand(0);
17420  SDValue N1 = N->getOperand(1);
17421  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
17422  EVT VT = N0.getValueType();
17423
17424  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
17425  // since the result of setcc_c is all zero's or all ones.
17426  if (VT.isInteger() && !VT.isVector() &&
17427      N1C && N0.getOpcode() == ISD::AND &&
17428      N0.getOperand(1).getOpcode() == ISD::Constant) {
17429    SDValue N00 = N0.getOperand(0);
17430    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
17431        ((N00.getOpcode() == ISD::ANY_EXTEND ||
17432          N00.getOpcode() == ISD::ZERO_EXTEND) &&
17433         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
17434      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
17435      APInt ShAmt = N1C->getAPIntValue();
17436      Mask = Mask.shl(ShAmt);
17437      if (Mask != 0)
17438        return DAG.getNode(ISD::AND, SDLoc(N), VT,
17439                           N00, DAG.getConstant(Mask, VT));
17440    }
17441  }
17442
17443  // Hardware support for vector shifts is sparse which makes us scalarize the
17444  // vector operations in many cases. Also, on sandybridge ADD is faster than
17445  // shl.
17446  // (shl V, 1) -> add V,V
17447  if (isSplatVector(N1.getNode())) {
17448    assert(N0.getValueType().isVector() && "Invalid vector shift type");
17449    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
17450    // We shift all of the values by one. In many cases we do not have
17451    // hardware support for this operation. This is better expressed as an ADD
17452    // of two values.
17453    if (N1C && (1 == N1C->getZExtValue())) {
17454      return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
17455    }
17456  }
17457
17458  return SDValue();
17459}
17460
17461/// \brief Returns a vector of 0s if the node in input is a vector logical
17462/// shift by a constant amount which is known to be bigger than or equal
17463/// to the vector element size in bits.
17464static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
17465                                      const X86Subtarget *Subtarget) {
17466  EVT VT = N->getValueType(0);
17467
17468  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
17469      (!Subtarget->hasInt256() ||
17470       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
17471    return SDValue();
17472
17473  SDValue Amt = N->getOperand(1);
17474  SDLoc DL(N);
17475  if (isSplatVector(Amt.getNode())) {
17476    SDValue SclrAmt = Amt->getOperand(0);
17477    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
17478      APInt ShiftAmt = C->getAPIntValue();
17479      unsigned MaxAmount = VT.getVectorElementType().getSizeInBits();
17480
17481      // SSE2/AVX2 logical shifts always return a vector of 0s
17482      // if the shift amount is bigger than or equal to
17483      // the element size. The constant shift amount will be
17484      // encoded as a 8-bit immediate.
17485      if (ShiftAmt.trunc(8).uge(MaxAmount))
17486        return getZeroVector(VT, Subtarget, DAG, DL);
17487    }
17488  }
17489
17490  return SDValue();
17491}
17492
17493/// PerformShiftCombine - Combine shifts.
17494static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
17495                                   TargetLowering::DAGCombinerInfo &DCI,
17496                                   const X86Subtarget *Subtarget) {
17497  if (N->getOpcode() == ISD::SHL) {
17498    SDValue V = PerformSHLCombine(N, DAG);
17499    if (V.getNode()) return V;
17500  }
17501
17502  if (N->getOpcode() != ISD::SRA) {
17503    // Try to fold this logical shift into a zero vector.
17504    SDValue V = performShiftToAllZeros(N, DAG, Subtarget);
17505    if (V.getNode()) return V;
17506  }
17507
17508  return SDValue();
17509}
17510
17511// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
17512// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
17513// and friends.  Likewise for OR -> CMPNEQSS.
17514static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
17515                            TargetLowering::DAGCombinerInfo &DCI,
17516                            const X86Subtarget *Subtarget) {
17517  unsigned opcode;
17518
17519  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
17520  // we're requiring SSE2 for both.
17521  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
17522    SDValue N0 = N->getOperand(0);
17523    SDValue N1 = N->getOperand(1);
17524    SDValue CMP0 = N0->getOperand(1);
17525    SDValue CMP1 = N1->getOperand(1);
17526    SDLoc DL(N);
17527
17528    // The SETCCs should both refer to the same CMP.
17529    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
17530      return SDValue();
17531
17532    SDValue CMP00 = CMP0->getOperand(0);
17533    SDValue CMP01 = CMP0->getOperand(1);
17534    EVT     VT    = CMP00.getValueType();
17535
17536    if (VT == MVT::f32 || VT == MVT::f64) {
17537      bool ExpectingFlags = false;
17538      // Check for any users that want flags:
17539      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
17540           !ExpectingFlags && UI != UE; ++UI)
17541        switch (UI->getOpcode()) {
17542        default:
17543        case ISD::BR_CC:
17544        case ISD::BRCOND:
17545        case ISD::SELECT:
17546          ExpectingFlags = true;
17547          break;
17548        case ISD::CopyToReg:
17549        case ISD::SIGN_EXTEND:
17550        case ISD::ZERO_EXTEND:
17551        case ISD::ANY_EXTEND:
17552          break;
17553        }
17554
17555      if (!ExpectingFlags) {
17556        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
17557        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
17558
17559        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
17560          X86::CondCode tmp = cc0;
17561          cc0 = cc1;
17562          cc1 = tmp;
17563        }
17564
17565        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
17566            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
17567          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
17568          X86ISD::NodeType NTOperator = is64BitFP ?
17569            X86ISD::FSETCCsd : X86ISD::FSETCCss;
17570          // FIXME: need symbolic constants for these magic numbers.
17571          // See X86ATTInstPrinter.cpp:printSSECC().
17572          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
17573          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
17574                                              DAG.getConstant(x86cc, MVT::i8));
17575          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
17576                                              OnesOrZeroesF);
17577          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
17578                                      DAG.getConstant(1, MVT::i32));
17579          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
17580          return OneBitOfTruth;
17581        }
17582      }
17583    }
17584  }
17585  return SDValue();
17586}
17587
17588/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
17589/// so it can be folded inside ANDNP.
17590static bool CanFoldXORWithAllOnes(const SDNode *N) {
17591  EVT VT = N->getValueType(0);
17592
17593  // Match direct AllOnes for 128 and 256-bit vectors
17594  if (ISD::isBuildVectorAllOnes(N))
17595    return true;
17596
17597  // Look through a bit convert.
17598  if (N->getOpcode() == ISD::BITCAST)
17599    N = N->getOperand(0).getNode();
17600
17601  // Sometimes the operand may come from a insert_subvector building a 256-bit
17602  // allones vector
17603  if (VT.is256BitVector() &&
17604      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
17605    SDValue V1 = N->getOperand(0);
17606    SDValue V2 = N->getOperand(1);
17607
17608    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
17609        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
17610        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
17611        ISD::isBuildVectorAllOnes(V2.getNode()))
17612      return true;
17613  }
17614
17615  return false;
17616}
17617
17618// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
17619// register. In most cases we actually compare or select YMM-sized registers
17620// and mixing the two types creates horrible code. This method optimizes
17621// some of the transition sequences.
17622static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
17623                                 TargetLowering::DAGCombinerInfo &DCI,
17624                                 const X86Subtarget *Subtarget) {
17625  EVT VT = N->getValueType(0);
17626  if (!VT.is256BitVector())
17627    return SDValue();
17628
17629  assert((N->getOpcode() == ISD::ANY_EXTEND ||
17630          N->getOpcode() == ISD::ZERO_EXTEND ||
17631          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
17632
17633  SDValue Narrow = N->getOperand(0);
17634  EVT NarrowVT = Narrow->getValueType(0);
17635  if (!NarrowVT.is128BitVector())
17636    return SDValue();
17637
17638  if (Narrow->getOpcode() != ISD::XOR &&
17639      Narrow->getOpcode() != ISD::AND &&
17640      Narrow->getOpcode() != ISD::OR)
17641    return SDValue();
17642
17643  SDValue N0  = Narrow->getOperand(0);
17644  SDValue N1  = Narrow->getOperand(1);
17645  SDLoc DL(Narrow);
17646
17647  // The Left side has to be a trunc.
17648  if (N0.getOpcode() != ISD::TRUNCATE)
17649    return SDValue();
17650
17651  // The type of the truncated inputs.
17652  EVT WideVT = N0->getOperand(0)->getValueType(0);
17653  if (WideVT != VT)
17654    return SDValue();
17655
17656  // The right side has to be a 'trunc' or a constant vector.
17657  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
17658  bool RHSConst = (isSplatVector(N1.getNode()) &&
17659                   isa<ConstantSDNode>(N1->getOperand(0)));
17660  if (!RHSTrunc && !RHSConst)
17661    return SDValue();
17662
17663  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17664
17665  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
17666    return SDValue();
17667
17668  // Set N0 and N1 to hold the inputs to the new wide operation.
17669  N0 = N0->getOperand(0);
17670  if (RHSConst) {
17671    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
17672                     N1->getOperand(0));
17673    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
17674    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size());
17675  } else if (RHSTrunc) {
17676    N1 = N1->getOperand(0);
17677  }
17678
17679  // Generate the wide operation.
17680  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
17681  unsigned Opcode = N->getOpcode();
17682  switch (Opcode) {
17683  case ISD::ANY_EXTEND:
17684    return Op;
17685  case ISD::ZERO_EXTEND: {
17686    unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
17687    APInt Mask = APInt::getAllOnesValue(InBits);
17688    Mask = Mask.zext(VT.getScalarType().getSizeInBits());
17689    return DAG.getNode(ISD::AND, DL, VT,
17690                       Op, DAG.getConstant(Mask, VT));
17691  }
17692  case ISD::SIGN_EXTEND:
17693    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
17694                       Op, DAG.getValueType(NarrowVT));
17695  default:
17696    llvm_unreachable("Unexpected opcode");
17697  }
17698}
17699
17700static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
17701                                 TargetLowering::DAGCombinerInfo &DCI,
17702                                 const X86Subtarget *Subtarget) {
17703  EVT VT = N->getValueType(0);
17704  if (DCI.isBeforeLegalizeOps())
17705    return SDValue();
17706
17707  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
17708  if (R.getNode())
17709    return R;
17710
17711  // Create BLSI, BLSR, and BZHI instructions
17712  // BLSI is X & (-X)
17713  // BLSR is X & (X-1)
17714  // BZHI is X & ((1 << Y) - 1)
17715  // BEXTR is ((X >> imm) & (2**size-1))
17716  if (VT == MVT::i32 || VT == MVT::i64) {
17717    SDValue N0 = N->getOperand(0);
17718    SDValue N1 = N->getOperand(1);
17719    SDLoc DL(N);
17720
17721    if (Subtarget->hasBMI()) {
17722      // Check LHS for neg
17723      if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
17724          isZero(N0.getOperand(0)))
17725        return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
17726
17727      // Check RHS for neg
17728      if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
17729          isZero(N1.getOperand(0)))
17730        return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
17731
17732      // Check LHS for X-1
17733      if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
17734          isAllOnes(N0.getOperand(1)))
17735        return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
17736
17737      // Check RHS for X-1
17738      if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
17739          isAllOnes(N1.getOperand(1)))
17740        return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
17741    }
17742
17743    if (Subtarget->hasBMI2()) {
17744      // Check for (and (add (shl 1, Y), -1), X)
17745      if (N0.getOpcode() == ISD::ADD && isAllOnes(N0.getOperand(1))) {
17746        SDValue N00 = N0.getOperand(0);
17747        if (N00.getOpcode() == ISD::SHL) {
17748          SDValue N001 = N00.getOperand(1);
17749          assert(N001.getValueType() == MVT::i8 && "unexpected type");
17750          ConstantSDNode *C = dyn_cast<ConstantSDNode>(N00.getOperand(0));
17751          if (C && C->getZExtValue() == 1)
17752            return DAG.getNode(X86ISD::BZHI, DL, VT, N1, N001);
17753        }
17754      }
17755
17756      // Check for (and X, (add (shl 1, Y), -1))
17757      if (N1.getOpcode() == ISD::ADD && isAllOnes(N1.getOperand(1))) {
17758        SDValue N10 = N1.getOperand(0);
17759        if (N10.getOpcode() == ISD::SHL) {
17760          SDValue N101 = N10.getOperand(1);
17761          assert(N101.getValueType() == MVT::i8 && "unexpected type");
17762          ConstantSDNode *C = dyn_cast<ConstantSDNode>(N10.getOperand(0));
17763          if (C && C->getZExtValue() == 1)
17764            return DAG.getNode(X86ISD::BZHI, DL, VT, N0, N101);
17765        }
17766      }
17767    }
17768
17769    // Check for BEXTR.
17770    if ((Subtarget->hasBMI() || Subtarget->hasTBM()) &&
17771        (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) {
17772      ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1);
17773      ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1));
17774      if (MaskNode && ShiftNode) {
17775        uint64_t Mask = MaskNode->getZExtValue();
17776        uint64_t Shift = ShiftNode->getZExtValue();
17777        if (isMask_64(Mask)) {
17778          uint64_t MaskSize = CountPopulation_64(Mask);
17779          if (Shift + MaskSize <= VT.getSizeInBits())
17780            return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0),
17781                               DAG.getConstant(Shift | (MaskSize << 8), VT));
17782        }
17783      }
17784    } // BEXTR
17785
17786    return SDValue();
17787  }
17788
17789  // Want to form ANDNP nodes:
17790  // 1) In the hopes of then easily combining them with OR and AND nodes
17791  //    to form PBLEND/PSIGN.
17792  // 2) To match ANDN packed intrinsics
17793  if (VT != MVT::v2i64 && VT != MVT::v4i64)
17794    return SDValue();
17795
17796  SDValue N0 = N->getOperand(0);
17797  SDValue N1 = N->getOperand(1);
17798  SDLoc DL(N);
17799
17800  // Check LHS for vnot
17801  if (N0.getOpcode() == ISD::XOR &&
17802      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
17803      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
17804    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
17805
17806  // Check RHS for vnot
17807  if (N1.getOpcode() == ISD::XOR &&
17808      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
17809      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
17810    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
17811
17812  return SDValue();
17813}
17814
17815static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
17816                                TargetLowering::DAGCombinerInfo &DCI,
17817                                const X86Subtarget *Subtarget) {
17818  EVT VT = N->getValueType(0);
17819  if (DCI.isBeforeLegalizeOps())
17820    return SDValue();
17821
17822  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
17823  if (R.getNode())
17824    return R;
17825
17826  SDValue N0 = N->getOperand(0);
17827  SDValue N1 = N->getOperand(1);
17828
17829  // look for psign/blend
17830  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
17831    if (!Subtarget->hasSSSE3() ||
17832        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
17833      return SDValue();
17834
17835    // Canonicalize pandn to RHS
17836    if (N0.getOpcode() == X86ISD::ANDNP)
17837      std::swap(N0, N1);
17838    // or (and (m, y), (pandn m, x))
17839    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
17840      SDValue Mask = N1.getOperand(0);
17841      SDValue X    = N1.getOperand(1);
17842      SDValue Y;
17843      if (N0.getOperand(0) == Mask)
17844        Y = N0.getOperand(1);
17845      if (N0.getOperand(1) == Mask)
17846        Y = N0.getOperand(0);
17847
17848      // Check to see if the mask appeared in both the AND and ANDNP and
17849      if (!Y.getNode())
17850        return SDValue();
17851
17852      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
17853      // Look through mask bitcast.
17854      if (Mask.getOpcode() == ISD::BITCAST)
17855        Mask = Mask.getOperand(0);
17856      if (X.getOpcode() == ISD::BITCAST)
17857        X = X.getOperand(0);
17858      if (Y.getOpcode() == ISD::BITCAST)
17859        Y = Y.getOperand(0);
17860
17861      EVT MaskVT = Mask.getValueType();
17862
17863      // Validate that the Mask operand is a vector sra node.
17864      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
17865      // there is no psrai.b
17866      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
17867      unsigned SraAmt = ~0;
17868      if (Mask.getOpcode() == ISD::SRA) {
17869        SDValue Amt = Mask.getOperand(1);
17870        if (isSplatVector(Amt.getNode())) {
17871          SDValue SclrAmt = Amt->getOperand(0);
17872          if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt))
17873            SraAmt = C->getZExtValue();
17874        }
17875      } else if (Mask.getOpcode() == X86ISD::VSRAI) {
17876        SDValue SraC = Mask.getOperand(1);
17877        SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
17878      }
17879      if ((SraAmt + 1) != EltBits)
17880        return SDValue();
17881
17882      SDLoc DL(N);
17883
17884      // Now we know we at least have a plendvb with the mask val.  See if
17885      // we can form a psignb/w/d.
17886      // psign = x.type == y.type == mask.type && y = sub(0, x);
17887      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
17888          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
17889          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
17890        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
17891               "Unsupported VT for PSIGN");
17892        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
17893        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
17894      }
17895      // PBLENDVB only available on SSE 4.1
17896      if (!Subtarget->hasSSE41())
17897        return SDValue();
17898
17899      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
17900
17901      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
17902      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
17903      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
17904      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
17905      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
17906    }
17907  }
17908
17909  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
17910    return SDValue();
17911
17912  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
17913  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
17914    std::swap(N0, N1);
17915  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
17916    return SDValue();
17917  if (!N0.hasOneUse() || !N1.hasOneUse())
17918    return SDValue();
17919
17920  SDValue ShAmt0 = N0.getOperand(1);
17921  if (ShAmt0.getValueType() != MVT::i8)
17922    return SDValue();
17923  SDValue ShAmt1 = N1.getOperand(1);
17924  if (ShAmt1.getValueType() != MVT::i8)
17925    return SDValue();
17926  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
17927    ShAmt0 = ShAmt0.getOperand(0);
17928  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
17929    ShAmt1 = ShAmt1.getOperand(0);
17930
17931  SDLoc DL(N);
17932  unsigned Opc = X86ISD::SHLD;
17933  SDValue Op0 = N0.getOperand(0);
17934  SDValue Op1 = N1.getOperand(0);
17935  if (ShAmt0.getOpcode() == ISD::SUB) {
17936    Opc = X86ISD::SHRD;
17937    std::swap(Op0, Op1);
17938    std::swap(ShAmt0, ShAmt1);
17939  }
17940
17941  unsigned Bits = VT.getSizeInBits();
17942  if (ShAmt1.getOpcode() == ISD::SUB) {
17943    SDValue Sum = ShAmt1.getOperand(0);
17944    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
17945      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
17946      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
17947        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
17948      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
17949        return DAG.getNode(Opc, DL, VT,
17950                           Op0, Op1,
17951                           DAG.getNode(ISD::TRUNCATE, DL,
17952                                       MVT::i8, ShAmt0));
17953    }
17954  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
17955    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
17956    if (ShAmt0C &&
17957        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
17958      return DAG.getNode(Opc, DL, VT,
17959                         N0.getOperand(0), N1.getOperand(0),
17960                         DAG.getNode(ISD::TRUNCATE, DL,
17961                                       MVT::i8, ShAmt0));
17962  }
17963
17964  return SDValue();
17965}
17966
17967// Generate NEG and CMOV for integer abs.
17968static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
17969  EVT VT = N->getValueType(0);
17970
17971  // Since X86 does not have CMOV for 8-bit integer, we don't convert
17972  // 8-bit integer abs to NEG and CMOV.
17973  if (VT.isInteger() && VT.getSizeInBits() == 8)
17974    return SDValue();
17975
17976  SDValue N0 = N->getOperand(0);
17977  SDValue N1 = N->getOperand(1);
17978  SDLoc DL(N);
17979
17980  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
17981  // and change it to SUB and CMOV.
17982  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
17983      N0.getOpcode() == ISD::ADD &&
17984      N0.getOperand(1) == N1 &&
17985      N1.getOpcode() == ISD::SRA &&
17986      N1.getOperand(0) == N0.getOperand(0))
17987    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
17988      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
17989        // Generate SUB & CMOV.
17990        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
17991                                  DAG.getConstant(0, VT), N0.getOperand(0));
17992
17993        SDValue Ops[] = { N0.getOperand(0), Neg,
17994                          DAG.getConstant(X86::COND_GE, MVT::i8),
17995                          SDValue(Neg.getNode(), 1) };
17996        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
17997                           Ops, array_lengthof(Ops));
17998      }
17999  return SDValue();
18000}
18001
18002// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
18003static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
18004                                 TargetLowering::DAGCombinerInfo &DCI,
18005                                 const X86Subtarget *Subtarget) {
18006  EVT VT = N->getValueType(0);
18007  if (DCI.isBeforeLegalizeOps())
18008    return SDValue();
18009
18010  if (Subtarget->hasCMov()) {
18011    SDValue RV = performIntegerAbsCombine(N, DAG);
18012    if (RV.getNode())
18013      return RV;
18014  }
18015
18016  // Try forming BMI if it is available.
18017  if (!Subtarget->hasBMI())
18018    return SDValue();
18019
18020  if (VT != MVT::i32 && VT != MVT::i64)
18021    return SDValue();
18022
18023  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
18024
18025  // Create BLSMSK instructions by finding X ^ (X-1)
18026  SDValue N0 = N->getOperand(0);
18027  SDValue N1 = N->getOperand(1);
18028  SDLoc DL(N);
18029
18030  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
18031      isAllOnes(N0.getOperand(1)))
18032    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
18033
18034  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
18035      isAllOnes(N1.getOperand(1)))
18036    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
18037
18038  return SDValue();
18039}
18040
18041/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
18042static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
18043                                  TargetLowering::DAGCombinerInfo &DCI,
18044                                  const X86Subtarget *Subtarget) {
18045  LoadSDNode *Ld = cast<LoadSDNode>(N);
18046  EVT RegVT = Ld->getValueType(0);
18047  EVT MemVT = Ld->getMemoryVT();
18048  SDLoc dl(Ld);
18049  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18050  unsigned RegSz = RegVT.getSizeInBits();
18051
18052  // On Sandybridge unaligned 256bit loads are inefficient.
18053  ISD::LoadExtType Ext = Ld->getExtensionType();
18054  unsigned Alignment = Ld->getAlignment();
18055  bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
18056  if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
18057      !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
18058    unsigned NumElems = RegVT.getVectorNumElements();
18059    if (NumElems < 2)
18060      return SDValue();
18061
18062    SDValue Ptr = Ld->getBasePtr();
18063    SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
18064
18065    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
18066                                  NumElems/2);
18067    SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
18068                                Ld->getPointerInfo(), Ld->isVolatile(),
18069                                Ld->isNonTemporal(), Ld->isInvariant(),
18070                                Alignment);
18071    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
18072    SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
18073                                Ld->getPointerInfo(), Ld->isVolatile(),
18074                                Ld->isNonTemporal(), Ld->isInvariant(),
18075                                std::min(16U, Alignment));
18076    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
18077                             Load1.getValue(1),
18078                             Load2.getValue(1));
18079
18080    SDValue NewVec = DAG.getUNDEF(RegVT);
18081    NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
18082    NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
18083    return DCI.CombineTo(N, NewVec, TF, true);
18084  }
18085
18086  // If this is a vector EXT Load then attempt to optimize it using a
18087  // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
18088  // expansion is still better than scalar code.
18089  // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
18090  // emit a shuffle and a arithmetic shift.
18091  // TODO: It is possible to support ZExt by zeroing the undef values
18092  // during the shuffle phase or after the shuffle.
18093  if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
18094      (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
18095    assert(MemVT != RegVT && "Cannot extend to the same type");
18096    assert(MemVT.isVector() && "Must load a vector from memory");
18097
18098    unsigned NumElems = RegVT.getVectorNumElements();
18099    unsigned MemSz = MemVT.getSizeInBits();
18100    assert(RegSz > MemSz && "Register size must be greater than the mem size");
18101
18102    if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
18103      return SDValue();
18104
18105    // All sizes must be a power of two.
18106    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
18107      return SDValue();
18108
18109    // Attempt to load the original value using scalar loads.
18110    // Find the largest scalar type that divides the total loaded size.
18111    MVT SclrLoadTy = MVT::i8;
18112    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
18113         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
18114      MVT Tp = (MVT::SimpleValueType)tp;
18115      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
18116        SclrLoadTy = Tp;
18117      }
18118    }
18119
18120    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
18121    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
18122        (64 <= MemSz))
18123      SclrLoadTy = MVT::f64;
18124
18125    // Calculate the number of scalar loads that we need to perform
18126    // in order to load our vector from memory.
18127    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
18128    if (Ext == ISD::SEXTLOAD && NumLoads > 1)
18129      return SDValue();
18130
18131    unsigned loadRegZize = RegSz;
18132    if (Ext == ISD::SEXTLOAD && RegSz == 256)
18133      loadRegZize /= 2;
18134
18135    // Represent our vector as a sequence of elements which are the
18136    // largest scalar that we can load.
18137    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
18138      loadRegZize/SclrLoadTy.getSizeInBits());
18139
18140    // Represent the data using the same element type that is stored in
18141    // memory. In practice, we ''widen'' MemVT.
18142    EVT WideVecVT =
18143          EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
18144                       loadRegZize/MemVT.getScalarType().getSizeInBits());
18145
18146    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
18147      "Invalid vector type");
18148
18149    // We can't shuffle using an illegal type.
18150    if (!TLI.isTypeLegal(WideVecVT))
18151      return SDValue();
18152
18153    SmallVector<SDValue, 8> Chains;
18154    SDValue Ptr = Ld->getBasePtr();
18155    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
18156                                        TLI.getPointerTy());
18157    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
18158
18159    for (unsigned i = 0; i < NumLoads; ++i) {
18160      // Perform a single load.
18161      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
18162                                       Ptr, Ld->getPointerInfo(),
18163                                       Ld->isVolatile(), Ld->isNonTemporal(),
18164                                       Ld->isInvariant(), Ld->getAlignment());
18165      Chains.push_back(ScalarLoad.getValue(1));
18166      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
18167      // another round of DAGCombining.
18168      if (i == 0)
18169        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
18170      else
18171        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
18172                          ScalarLoad, DAG.getIntPtrConstant(i));
18173
18174      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
18175    }
18176
18177    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
18178                               Chains.size());
18179
18180    // Bitcast the loaded value to a vector of the original element type, in
18181    // the size of the target vector type.
18182    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
18183    unsigned SizeRatio = RegSz/MemSz;
18184
18185    if (Ext == ISD::SEXTLOAD) {
18186      // If we have SSE4.1 we can directly emit a VSEXT node.
18187      if (Subtarget->hasSSE41()) {
18188        SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
18189        return DCI.CombineTo(N, Sext, TF, true);
18190      }
18191
18192      // Otherwise we'll shuffle the small elements in the high bits of the
18193      // larger type and perform an arithmetic shift. If the shift is not legal
18194      // it's better to scalarize.
18195      if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
18196        return SDValue();
18197
18198      // Redistribute the loaded elements into the different locations.
18199      SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
18200      for (unsigned i = 0; i != NumElems; ++i)
18201        ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
18202
18203      SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
18204                                           DAG.getUNDEF(WideVecVT),
18205                                           &ShuffleVec[0]);
18206
18207      Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
18208
18209      // Build the arithmetic shift.
18210      unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
18211                     MemVT.getVectorElementType().getSizeInBits();
18212      Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff,
18213                          DAG.getConstant(Amt, RegVT));
18214
18215      return DCI.CombineTo(N, Shuff, TF, true);
18216    }
18217
18218    // Redistribute the loaded elements into the different locations.
18219    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
18220    for (unsigned i = 0; i != NumElems; ++i)
18221      ShuffleVec[i*SizeRatio] = i;
18222
18223    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
18224                                         DAG.getUNDEF(WideVecVT),
18225                                         &ShuffleVec[0]);
18226
18227    // Bitcast to the requested type.
18228    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
18229    // Replace the original load with the new sequence
18230    // and return the new chain.
18231    return DCI.CombineTo(N, Shuff, TF, true);
18232  }
18233
18234  return SDValue();
18235}
18236
18237/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
18238static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
18239                                   const X86Subtarget *Subtarget) {
18240  StoreSDNode *St = cast<StoreSDNode>(N);
18241  EVT VT = St->getValue().getValueType();
18242  EVT StVT = St->getMemoryVT();
18243  SDLoc dl(St);
18244  SDValue StoredVal = St->getOperand(1);
18245  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18246
18247  // If we are saving a concatenation of two XMM registers, perform two stores.
18248  // On Sandy Bridge, 256-bit memory operations are executed by two
18249  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
18250  // memory  operation.
18251  unsigned Alignment = St->getAlignment();
18252  bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
18253  if (VT.is256BitVector() && !Subtarget->hasInt256() &&
18254      StVT == VT && !IsAligned) {
18255    unsigned NumElems = VT.getVectorNumElements();
18256    if (NumElems < 2)
18257      return SDValue();
18258
18259    SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
18260    SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
18261
18262    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
18263    SDValue Ptr0 = St->getBasePtr();
18264    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
18265
18266    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
18267                                St->getPointerInfo(), St->isVolatile(),
18268                                St->isNonTemporal(), Alignment);
18269    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
18270                                St->getPointerInfo(), St->isVolatile(),
18271                                St->isNonTemporal(),
18272                                std::min(16U, Alignment));
18273    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
18274  }
18275
18276  // Optimize trunc store (of multiple scalars) to shuffle and store.
18277  // First, pack all of the elements in one place. Next, store to memory
18278  // in fewer chunks.
18279  if (St->isTruncatingStore() && VT.isVector()) {
18280    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18281    unsigned NumElems = VT.getVectorNumElements();
18282    assert(StVT != VT && "Cannot truncate to the same type");
18283    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
18284    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
18285
18286    // From, To sizes and ElemCount must be pow of two
18287    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
18288    // We are going to use the original vector elt for storing.
18289    // Accumulated smaller vector elements must be a multiple of the store size.
18290    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
18291
18292    unsigned SizeRatio  = FromSz / ToSz;
18293
18294    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
18295
18296    // Create a type on which we perform the shuffle
18297    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
18298            StVT.getScalarType(), NumElems*SizeRatio);
18299
18300    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
18301
18302    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
18303    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
18304    for (unsigned i = 0; i != NumElems; ++i)
18305      ShuffleVec[i] = i * SizeRatio;
18306
18307    // Can't shuffle using an illegal type.
18308    if (!TLI.isTypeLegal(WideVecVT))
18309      return SDValue();
18310
18311    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
18312                                         DAG.getUNDEF(WideVecVT),
18313                                         &ShuffleVec[0]);
18314    // At this point all of the data is stored at the bottom of the
18315    // register. We now need to save it to mem.
18316
18317    // Find the largest store unit
18318    MVT StoreType = MVT::i8;
18319    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
18320         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
18321      MVT Tp = (MVT::SimpleValueType)tp;
18322      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
18323        StoreType = Tp;
18324    }
18325
18326    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
18327    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
18328        (64 <= NumElems * ToSz))
18329      StoreType = MVT::f64;
18330
18331    // Bitcast the original vector into a vector of store-size units
18332    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
18333            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
18334    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
18335    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
18336    SmallVector<SDValue, 8> Chains;
18337    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
18338                                        TLI.getPointerTy());
18339    SDValue Ptr = St->getBasePtr();
18340
18341    // Perform one or more big stores into memory.
18342    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
18343      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
18344                                   StoreType, ShuffWide,
18345                                   DAG.getIntPtrConstant(i));
18346      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
18347                                St->getPointerInfo(), St->isVolatile(),
18348                                St->isNonTemporal(), St->getAlignment());
18349      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
18350      Chains.push_back(Ch);
18351    }
18352
18353    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
18354                               Chains.size());
18355  }
18356
18357  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
18358  // the FP state in cases where an emms may be missing.
18359  // A preferable solution to the general problem is to figure out the right
18360  // places to insert EMMS.  This qualifies as a quick hack.
18361
18362  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
18363  if (VT.getSizeInBits() != 64)
18364    return SDValue();
18365
18366  const Function *F = DAG.getMachineFunction().getFunction();
18367  bool NoImplicitFloatOps = F->getAttributes().
18368    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
18369  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
18370                     && Subtarget->hasSSE2();
18371  if ((VT.isVector() ||
18372       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
18373      isa<LoadSDNode>(St->getValue()) &&
18374      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
18375      St->getChain().hasOneUse() && !St->isVolatile()) {
18376    SDNode* LdVal = St->getValue().getNode();
18377    LoadSDNode *Ld = 0;
18378    int TokenFactorIndex = -1;
18379    SmallVector<SDValue, 8> Ops;
18380    SDNode* ChainVal = St->getChain().getNode();
18381    // Must be a store of a load.  We currently handle two cases:  the load
18382    // is a direct child, and it's under an intervening TokenFactor.  It is
18383    // possible to dig deeper under nested TokenFactors.
18384    if (ChainVal == LdVal)
18385      Ld = cast<LoadSDNode>(St->getChain());
18386    else if (St->getValue().hasOneUse() &&
18387             ChainVal->getOpcode() == ISD::TokenFactor) {
18388      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
18389        if (ChainVal->getOperand(i).getNode() == LdVal) {
18390          TokenFactorIndex = i;
18391          Ld = cast<LoadSDNode>(St->getValue());
18392        } else
18393          Ops.push_back(ChainVal->getOperand(i));
18394      }
18395    }
18396
18397    if (!Ld || !ISD::isNormalLoad(Ld))
18398      return SDValue();
18399
18400    // If this is not the MMX case, i.e. we are just turning i64 load/store
18401    // into f64 load/store, avoid the transformation if there are multiple
18402    // uses of the loaded value.
18403    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
18404      return SDValue();
18405
18406    SDLoc LdDL(Ld);
18407    SDLoc StDL(N);
18408    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
18409    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
18410    // pair instead.
18411    if (Subtarget->is64Bit() || F64IsLegal) {
18412      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
18413      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
18414                                  Ld->getPointerInfo(), Ld->isVolatile(),
18415                                  Ld->isNonTemporal(), Ld->isInvariant(),
18416                                  Ld->getAlignment());
18417      SDValue NewChain = NewLd.getValue(1);
18418      if (TokenFactorIndex != -1) {
18419        Ops.push_back(NewChain);
18420        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
18421                               Ops.size());
18422      }
18423      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
18424                          St->getPointerInfo(),
18425                          St->isVolatile(), St->isNonTemporal(),
18426                          St->getAlignment());
18427    }
18428
18429    // Otherwise, lower to two pairs of 32-bit loads / stores.
18430    SDValue LoAddr = Ld->getBasePtr();
18431    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
18432                                 DAG.getConstant(4, MVT::i32));
18433
18434    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
18435                               Ld->getPointerInfo(),
18436                               Ld->isVolatile(), Ld->isNonTemporal(),
18437                               Ld->isInvariant(), Ld->getAlignment());
18438    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
18439                               Ld->getPointerInfo().getWithOffset(4),
18440                               Ld->isVolatile(), Ld->isNonTemporal(),
18441                               Ld->isInvariant(),
18442                               MinAlign(Ld->getAlignment(), 4));
18443
18444    SDValue NewChain = LoLd.getValue(1);
18445    if (TokenFactorIndex != -1) {
18446      Ops.push_back(LoLd);
18447      Ops.push_back(HiLd);
18448      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
18449                             Ops.size());
18450    }
18451
18452    LoAddr = St->getBasePtr();
18453    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
18454                         DAG.getConstant(4, MVT::i32));
18455
18456    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
18457                                St->getPointerInfo(),
18458                                St->isVolatile(), St->isNonTemporal(),
18459                                St->getAlignment());
18460    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
18461                                St->getPointerInfo().getWithOffset(4),
18462                                St->isVolatile(),
18463                                St->isNonTemporal(),
18464                                MinAlign(St->getAlignment(), 4));
18465    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
18466  }
18467  return SDValue();
18468}
18469
18470/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
18471/// and return the operands for the horizontal operation in LHS and RHS.  A
18472/// horizontal operation performs the binary operation on successive elements
18473/// of its first operand, then on successive elements of its second operand,
18474/// returning the resulting values in a vector.  For example, if
18475///   A = < float a0, float a1, float a2, float a3 >
18476/// and
18477///   B = < float b0, float b1, float b2, float b3 >
18478/// then the result of doing a horizontal operation on A and B is
18479///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
18480/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
18481/// A horizontal-op B, for some already available A and B, and if so then LHS is
18482/// set to A, RHS to B, and the routine returns 'true'.
18483/// Note that the binary operation should have the property that if one of the
18484/// operands is UNDEF then the result is UNDEF.
18485static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
18486  // Look for the following pattern: if
18487  //   A = < float a0, float a1, float a2, float a3 >
18488  //   B = < float b0, float b1, float b2, float b3 >
18489  // and
18490  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
18491  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
18492  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
18493  // which is A horizontal-op B.
18494
18495  // At least one of the operands should be a vector shuffle.
18496  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
18497      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
18498    return false;
18499
18500  MVT VT = LHS.getSimpleValueType();
18501
18502  assert((VT.is128BitVector() || VT.is256BitVector()) &&
18503         "Unsupported vector type for horizontal add/sub");
18504
18505  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
18506  // operate independently on 128-bit lanes.
18507  unsigned NumElts = VT.getVectorNumElements();
18508  unsigned NumLanes = VT.getSizeInBits()/128;
18509  unsigned NumLaneElts = NumElts / NumLanes;
18510  assert((NumLaneElts % 2 == 0) &&
18511         "Vector type should have an even number of elements in each lane");
18512  unsigned HalfLaneElts = NumLaneElts/2;
18513
18514  // View LHS in the form
18515  //   LHS = VECTOR_SHUFFLE A, B, LMask
18516  // If LHS is not a shuffle then pretend it is the shuffle
18517  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
18518  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
18519  // type VT.
18520  SDValue A, B;
18521  SmallVector<int, 16> LMask(NumElts);
18522  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
18523    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
18524      A = LHS.getOperand(0);
18525    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
18526      B = LHS.getOperand(1);
18527    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
18528    std::copy(Mask.begin(), Mask.end(), LMask.begin());
18529  } else {
18530    if (LHS.getOpcode() != ISD::UNDEF)
18531      A = LHS;
18532    for (unsigned i = 0; i != NumElts; ++i)
18533      LMask[i] = i;
18534  }
18535
18536  // Likewise, view RHS in the form
18537  //   RHS = VECTOR_SHUFFLE C, D, RMask
18538  SDValue C, D;
18539  SmallVector<int, 16> RMask(NumElts);
18540  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
18541    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
18542      C = RHS.getOperand(0);
18543    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
18544      D = RHS.getOperand(1);
18545    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
18546    std::copy(Mask.begin(), Mask.end(), RMask.begin());
18547  } else {
18548    if (RHS.getOpcode() != ISD::UNDEF)
18549      C = RHS;
18550    for (unsigned i = 0; i != NumElts; ++i)
18551      RMask[i] = i;
18552  }
18553
18554  // Check that the shuffles are both shuffling the same vectors.
18555  if (!(A == C && B == D) && !(A == D && B == C))
18556    return false;
18557
18558  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
18559  if (!A.getNode() && !B.getNode())
18560    return false;
18561
18562  // If A and B occur in reverse order in RHS, then "swap" them (which means
18563  // rewriting the mask).
18564  if (A != C)
18565    CommuteVectorShuffleMask(RMask, NumElts);
18566
18567  // At this point LHS and RHS are equivalent to
18568  //   LHS = VECTOR_SHUFFLE A, B, LMask
18569  //   RHS = VECTOR_SHUFFLE A, B, RMask
18570  // Check that the masks correspond to performing a horizontal operation.
18571  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
18572    for (unsigned i = 0; i != NumLaneElts; ++i) {
18573      int LIdx = LMask[i+l], RIdx = RMask[i+l];
18574
18575      // Ignore any UNDEF components.
18576      if (LIdx < 0 || RIdx < 0 ||
18577          (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
18578          (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
18579        continue;
18580
18581      // Check that successive elements are being operated on.  If not, this is
18582      // not a horizontal operation.
18583      unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
18584      int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
18585      if (!(LIdx == Index && RIdx == Index + 1) &&
18586          !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
18587        return false;
18588    }
18589  }
18590
18591  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
18592  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
18593  return true;
18594}
18595
18596/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
18597static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
18598                                  const X86Subtarget *Subtarget) {
18599  EVT VT = N->getValueType(0);
18600  SDValue LHS = N->getOperand(0);
18601  SDValue RHS = N->getOperand(1);
18602
18603  // Try to synthesize horizontal adds from adds of shuffles.
18604  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
18605       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
18606      isHorizontalBinOp(LHS, RHS, true))
18607    return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS);
18608  return SDValue();
18609}
18610
18611/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
18612static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
18613                                  const X86Subtarget *Subtarget) {
18614  EVT VT = N->getValueType(0);
18615  SDValue LHS = N->getOperand(0);
18616  SDValue RHS = N->getOperand(1);
18617
18618  // Try to synthesize horizontal subs from subs of shuffles.
18619  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
18620       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
18621      isHorizontalBinOp(LHS, RHS, false))
18622    return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS);
18623  return SDValue();
18624}
18625
18626/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
18627/// X86ISD::FXOR nodes.
18628static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
18629  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
18630  // F[X]OR(0.0, x) -> x
18631  // F[X]OR(x, 0.0) -> x
18632  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
18633    if (C->getValueAPF().isPosZero())
18634      return N->getOperand(1);
18635  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
18636    if (C->getValueAPF().isPosZero())
18637      return N->getOperand(0);
18638  return SDValue();
18639}
18640
18641/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
18642/// X86ISD::FMAX nodes.
18643static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
18644  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
18645
18646  // Only perform optimizations if UnsafeMath is used.
18647  if (!DAG.getTarget().Options.UnsafeFPMath)
18648    return SDValue();
18649
18650  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
18651  // into FMINC and FMAXC, which are Commutative operations.
18652  unsigned NewOp = 0;
18653  switch (N->getOpcode()) {
18654    default: llvm_unreachable("unknown opcode");
18655    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
18656    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
18657  }
18658
18659  return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
18660                     N->getOperand(0), N->getOperand(1));
18661}
18662
18663/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
18664static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
18665  // FAND(0.0, x) -> 0.0
18666  // FAND(x, 0.0) -> 0.0
18667  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
18668    if (C->getValueAPF().isPosZero())
18669      return N->getOperand(0);
18670  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
18671    if (C->getValueAPF().isPosZero())
18672      return N->getOperand(1);
18673  return SDValue();
18674}
18675
18676/// PerformFANDNCombine - Do target-specific dag combines on X86ISD::FANDN nodes
18677static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG) {
18678  // FANDN(x, 0.0) -> 0.0
18679  // FANDN(0.0, x) -> x
18680  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
18681    if (C->getValueAPF().isPosZero())
18682      return N->getOperand(1);
18683  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
18684    if (C->getValueAPF().isPosZero())
18685      return N->getOperand(1);
18686  return SDValue();
18687}
18688
18689static SDValue PerformBTCombine(SDNode *N,
18690                                SelectionDAG &DAG,
18691                                TargetLowering::DAGCombinerInfo &DCI) {
18692  // BT ignores high bits in the bit index operand.
18693  SDValue Op1 = N->getOperand(1);
18694  if (Op1.hasOneUse()) {
18695    unsigned BitWidth = Op1.getValueSizeInBits();
18696    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
18697    APInt KnownZero, KnownOne;
18698    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
18699                                          !DCI.isBeforeLegalizeOps());
18700    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18701    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
18702        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
18703      DCI.CommitTargetLoweringOpt(TLO);
18704  }
18705  return SDValue();
18706}
18707
18708static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
18709  SDValue Op = N->getOperand(0);
18710  if (Op.getOpcode() == ISD::BITCAST)
18711    Op = Op.getOperand(0);
18712  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
18713  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
18714      VT.getVectorElementType().getSizeInBits() ==
18715      OpVT.getVectorElementType().getSizeInBits()) {
18716    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
18717  }
18718  return SDValue();
18719}
18720
18721static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
18722                                               const X86Subtarget *Subtarget) {
18723  EVT VT = N->getValueType(0);
18724  if (!VT.isVector())
18725    return SDValue();
18726
18727  SDValue N0 = N->getOperand(0);
18728  SDValue N1 = N->getOperand(1);
18729  EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
18730  SDLoc dl(N);
18731
18732  // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
18733  // both SSE and AVX2 since there is no sign-extended shift right
18734  // operation on a vector with 64-bit elements.
18735  //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
18736  // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
18737  if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
18738      N0.getOpcode() == ISD::SIGN_EXTEND)) {
18739    SDValue N00 = N0.getOperand(0);
18740
18741    // EXTLOAD has a better solution on AVX2,
18742    // it may be replaced with X86ISD::VSEXT node.
18743    if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
18744      if (!ISD::isNormalLoad(N00.getNode()))
18745        return SDValue();
18746
18747    if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
18748        SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
18749                                  N00, N1);
18750      return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
18751    }
18752  }
18753  return SDValue();
18754}
18755
18756static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
18757                                  TargetLowering::DAGCombinerInfo &DCI,
18758                                  const X86Subtarget *Subtarget) {
18759  if (!DCI.isBeforeLegalizeOps())
18760    return SDValue();
18761
18762  if (!Subtarget->hasFp256())
18763    return SDValue();
18764
18765  EVT VT = N->getValueType(0);
18766  if (VT.isVector() && VT.getSizeInBits() == 256) {
18767    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
18768    if (R.getNode())
18769      return R;
18770  }
18771
18772  return SDValue();
18773}
18774
18775static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
18776                                 const X86Subtarget* Subtarget) {
18777  SDLoc dl(N);
18778  EVT VT = N->getValueType(0);
18779
18780  // Let legalize expand this if it isn't a legal type yet.
18781  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
18782    return SDValue();
18783
18784  EVT ScalarVT = VT.getScalarType();
18785  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
18786      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
18787    return SDValue();
18788
18789  SDValue A = N->getOperand(0);
18790  SDValue B = N->getOperand(1);
18791  SDValue C = N->getOperand(2);
18792
18793  bool NegA = (A.getOpcode() == ISD::FNEG);
18794  bool NegB = (B.getOpcode() == ISD::FNEG);
18795  bool NegC = (C.getOpcode() == ISD::FNEG);
18796
18797  // Negative multiplication when NegA xor NegB
18798  bool NegMul = (NegA != NegB);
18799  if (NegA)
18800    A = A.getOperand(0);
18801  if (NegB)
18802    B = B.getOperand(0);
18803  if (NegC)
18804    C = C.getOperand(0);
18805
18806  unsigned Opcode;
18807  if (!NegMul)
18808    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
18809  else
18810    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
18811
18812  return DAG.getNode(Opcode, dl, VT, A, B, C);
18813}
18814
18815static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
18816                                  TargetLowering::DAGCombinerInfo &DCI,
18817                                  const X86Subtarget *Subtarget) {
18818  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
18819  //           (and (i32 x86isd::setcc_carry), 1)
18820  // This eliminates the zext. This transformation is necessary because
18821  // ISD::SETCC is always legalized to i8.
18822  SDLoc dl(N);
18823  SDValue N0 = N->getOperand(0);
18824  EVT VT = N->getValueType(0);
18825
18826  if (N0.getOpcode() == ISD::AND &&
18827      N0.hasOneUse() &&
18828      N0.getOperand(0).hasOneUse()) {
18829    SDValue N00 = N0.getOperand(0);
18830    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
18831      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
18832      if (!C || C->getZExtValue() != 1)
18833        return SDValue();
18834      return DAG.getNode(ISD::AND, dl, VT,
18835                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
18836                                     N00.getOperand(0), N00.getOperand(1)),
18837                         DAG.getConstant(1, VT));
18838    }
18839  }
18840
18841  if (VT.is256BitVector()) {
18842    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
18843    if (R.getNode())
18844      return R;
18845  }
18846
18847  return SDValue();
18848}
18849
18850// Optimize x == -y --> x+y == 0
18851//          x != -y --> x+y != 0
18852static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
18853  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
18854  SDValue LHS = N->getOperand(0);
18855  SDValue RHS = N->getOperand(1);
18856
18857  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
18858    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
18859      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
18860        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
18861                                   LHS.getValueType(), RHS, LHS.getOperand(1));
18862        return DAG.getSetCC(SDLoc(N), N->getValueType(0),
18863                            addV, DAG.getConstant(0, addV.getValueType()), CC);
18864      }
18865  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
18866    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
18867      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
18868        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
18869                                   RHS.getValueType(), LHS, RHS.getOperand(1));
18870        return DAG.getSetCC(SDLoc(N), N->getValueType(0),
18871                            addV, DAG.getConstant(0, addV.getValueType()), CC);
18872      }
18873  return SDValue();
18874}
18875
18876// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
18877// as "sbb reg,reg", since it can be extended without zext and produces
18878// an all-ones bit which is more useful than 0/1 in some cases.
18879static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
18880  return DAG.getNode(ISD::AND, DL, MVT::i8,
18881                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
18882                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
18883                     DAG.getConstant(1, MVT::i8));
18884}
18885
18886// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
18887static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
18888                                   TargetLowering::DAGCombinerInfo &DCI,
18889                                   const X86Subtarget *Subtarget) {
18890  SDLoc DL(N);
18891  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
18892  SDValue EFLAGS = N->getOperand(1);
18893
18894  if (CC == X86::COND_A) {
18895    // Try to convert COND_A into COND_B in an attempt to facilitate
18896    // materializing "setb reg".
18897    //
18898    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
18899    // cannot take an immediate as its first operand.
18900    //
18901    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
18902        EFLAGS.getValueType().isInteger() &&
18903        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
18904      SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
18905                                   EFLAGS.getNode()->getVTList(),
18906                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
18907      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
18908      return MaterializeSETB(DL, NewEFLAGS, DAG);
18909    }
18910  }
18911
18912  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
18913  // a zext and produces an all-ones bit which is more useful than 0/1 in some
18914  // cases.
18915  if (CC == X86::COND_B)
18916    return MaterializeSETB(DL, EFLAGS, DAG);
18917
18918  SDValue Flags;
18919
18920  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
18921  if (Flags.getNode()) {
18922    SDValue Cond = DAG.getConstant(CC, MVT::i8);
18923    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
18924  }
18925
18926  return SDValue();
18927}
18928
18929// Optimize branch condition evaluation.
18930//
18931static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
18932                                    TargetLowering::DAGCombinerInfo &DCI,
18933                                    const X86Subtarget *Subtarget) {
18934  SDLoc DL(N);
18935  SDValue Chain = N->getOperand(0);
18936  SDValue Dest = N->getOperand(1);
18937  SDValue EFLAGS = N->getOperand(3);
18938  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
18939
18940  SDValue Flags;
18941
18942  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
18943  if (Flags.getNode()) {
18944    SDValue Cond = DAG.getConstant(CC, MVT::i8);
18945    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
18946                       Flags);
18947  }
18948
18949  return SDValue();
18950}
18951
18952static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
18953                                        const X86TargetLowering *XTLI) {
18954  SDValue Op0 = N->getOperand(0);
18955  EVT InVT = Op0->getValueType(0);
18956
18957  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
18958  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
18959    SDLoc dl(N);
18960    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
18961    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
18962    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
18963  }
18964
18965  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
18966  // a 32-bit target where SSE doesn't support i64->FP operations.
18967  if (Op0.getOpcode() == ISD::LOAD) {
18968    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
18969    EVT VT = Ld->getValueType(0);
18970    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
18971        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
18972        !XTLI->getSubtarget()->is64Bit() &&
18973        VT == MVT::i64) {
18974      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
18975                                          Ld->getChain(), Op0, DAG);
18976      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
18977      return FILDChain;
18978    }
18979  }
18980  return SDValue();
18981}
18982
18983// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
18984static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
18985                                 X86TargetLowering::DAGCombinerInfo &DCI) {
18986  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
18987  // the result is either zero or one (depending on the input carry bit).
18988  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
18989  if (X86::isZeroNode(N->getOperand(0)) &&
18990      X86::isZeroNode(N->getOperand(1)) &&
18991      // We don't have a good way to replace an EFLAGS use, so only do this when
18992      // dead right now.
18993      SDValue(N, 1).use_empty()) {
18994    SDLoc DL(N);
18995    EVT VT = N->getValueType(0);
18996    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
18997    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
18998                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
18999                                           DAG.getConstant(X86::COND_B,MVT::i8),
19000                                           N->getOperand(2)),
19001                               DAG.getConstant(1, VT));
19002    return DCI.CombineTo(N, Res1, CarryOut);
19003  }
19004
19005  return SDValue();
19006}
19007
19008// fold (add Y, (sete  X, 0)) -> adc  0, Y
19009//      (add Y, (setne X, 0)) -> sbb -1, Y
19010//      (sub (sete  X, 0), Y) -> sbb  0, Y
19011//      (sub (setne X, 0), Y) -> adc -1, Y
19012static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
19013  SDLoc DL(N);
19014
19015  // Look through ZExts.
19016  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
19017  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
19018    return SDValue();
19019
19020  SDValue SetCC = Ext.getOperand(0);
19021  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
19022    return SDValue();
19023
19024  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
19025  if (CC != X86::COND_E && CC != X86::COND_NE)
19026    return SDValue();
19027
19028  SDValue Cmp = SetCC.getOperand(1);
19029  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
19030      !X86::isZeroNode(Cmp.getOperand(1)) ||
19031      !Cmp.getOperand(0).getValueType().isInteger())
19032    return SDValue();
19033
19034  SDValue CmpOp0 = Cmp.getOperand(0);
19035  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
19036                               DAG.getConstant(1, CmpOp0.getValueType()));
19037
19038  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
19039  if (CC == X86::COND_NE)
19040    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
19041                       DL, OtherVal.getValueType(), OtherVal,
19042                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
19043  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
19044                     DL, OtherVal.getValueType(), OtherVal,
19045                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
19046}
19047
19048/// PerformADDCombine - Do target-specific dag combines on integer adds.
19049static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
19050                                 const X86Subtarget *Subtarget) {
19051  EVT VT = N->getValueType(0);
19052  SDValue Op0 = N->getOperand(0);
19053  SDValue Op1 = N->getOperand(1);
19054
19055  // Try to synthesize horizontal adds from adds of shuffles.
19056  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
19057       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
19058      isHorizontalBinOp(Op0, Op1, true))
19059    return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
19060
19061  return OptimizeConditionalInDecrement(N, DAG);
19062}
19063
19064static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
19065                                 const X86Subtarget *Subtarget) {
19066  SDValue Op0 = N->getOperand(0);
19067  SDValue Op1 = N->getOperand(1);
19068
19069  // X86 can't encode an immediate LHS of a sub. See if we can push the
19070  // negation into a preceding instruction.
19071  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
19072    // If the RHS of the sub is a XOR with one use and a constant, invert the
19073    // immediate. Then add one to the LHS of the sub so we can turn
19074    // X-Y -> X+~Y+1, saving one register.
19075    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
19076        isa<ConstantSDNode>(Op1.getOperand(1))) {
19077      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
19078      EVT VT = Op0.getValueType();
19079      SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
19080                                   Op1.getOperand(0),
19081                                   DAG.getConstant(~XorC, VT));
19082      return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
19083                         DAG.getConstant(C->getAPIntValue()+1, VT));
19084    }
19085  }
19086
19087  // Try to synthesize horizontal adds from adds of shuffles.
19088  EVT VT = N->getValueType(0);
19089  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
19090       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
19091      isHorizontalBinOp(Op0, Op1, true))
19092    return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
19093
19094  return OptimizeConditionalInDecrement(N, DAG);
19095}
19096
19097/// performVZEXTCombine - Performs build vector combines
19098static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
19099                                        TargetLowering::DAGCombinerInfo &DCI,
19100                                        const X86Subtarget *Subtarget) {
19101  // (vzext (bitcast (vzext (x)) -> (vzext x)
19102  SDValue In = N->getOperand(0);
19103  while (In.getOpcode() == ISD::BITCAST)
19104    In = In.getOperand(0);
19105
19106  if (In.getOpcode() != X86ISD::VZEXT)
19107    return SDValue();
19108
19109  return DAG.getNode(X86ISD::VZEXT, SDLoc(N), N->getValueType(0),
19110                     In.getOperand(0));
19111}
19112
19113SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
19114                                             DAGCombinerInfo &DCI) const {
19115  SelectionDAG &DAG = DCI.DAG;
19116  switch (N->getOpcode()) {
19117  default: break;
19118  case ISD::EXTRACT_VECTOR_ELT:
19119    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
19120  case ISD::VSELECT:
19121  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
19122  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
19123  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
19124  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
19125  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
19126  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
19127  case ISD::SHL:
19128  case ISD::SRA:
19129  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
19130  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
19131  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
19132  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
19133  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
19134  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
19135  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
19136  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
19137  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
19138  case X86ISD::FXOR:
19139  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
19140  case X86ISD::FMIN:
19141  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
19142  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
19143  case X86ISD::FANDN:       return PerformFANDNCombine(N, DAG);
19144  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
19145  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
19146  case ISD::ANY_EXTEND:
19147  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
19148  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
19149  case ISD::SIGN_EXTEND_INREG: return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
19150  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
19151  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
19152  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
19153  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
19154  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
19155  case X86ISD::SHUFP:       // Handle all target specific shuffles
19156  case X86ISD::PALIGNR:
19157  case X86ISD::UNPCKH:
19158  case X86ISD::UNPCKL:
19159  case X86ISD::MOVHLPS:
19160  case X86ISD::MOVLHPS:
19161  case X86ISD::PSHUFD:
19162  case X86ISD::PSHUFHW:
19163  case X86ISD::PSHUFLW:
19164  case X86ISD::MOVSS:
19165  case X86ISD::MOVSD:
19166  case X86ISD::VPERMILP:
19167  case X86ISD::VPERM2X128:
19168  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
19169  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
19170  }
19171
19172  return SDValue();
19173}
19174
19175/// isTypeDesirableForOp - Return true if the target has native support for
19176/// the specified value type and it is 'desirable' to use the type for the
19177/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
19178/// instruction encodings are longer and some i16 instructions are slow.
19179bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
19180  if (!isTypeLegal(VT))
19181    return false;
19182  if (VT != MVT::i16)
19183    return true;
19184
19185  switch (Opc) {
19186  default:
19187    return true;
19188  case ISD::LOAD:
19189  case ISD::SIGN_EXTEND:
19190  case ISD::ZERO_EXTEND:
19191  case ISD::ANY_EXTEND:
19192  case ISD::SHL:
19193  case ISD::SRL:
19194  case ISD::SUB:
19195  case ISD::ADD:
19196  case ISD::MUL:
19197  case ISD::AND:
19198  case ISD::OR:
19199  case ISD::XOR:
19200    return false;
19201  }
19202}
19203
19204/// IsDesirableToPromoteOp - This method query the target whether it is
19205/// beneficial for dag combiner to promote the specified node. If true, it
19206/// should return the desired promotion type by reference.
19207bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
19208  EVT VT = Op.getValueType();
19209  if (VT != MVT::i16)
19210    return false;
19211
19212  bool Promote = false;
19213  bool Commute = false;
19214  switch (Op.getOpcode()) {
19215  default: break;
19216  case ISD::LOAD: {
19217    LoadSDNode *LD = cast<LoadSDNode>(Op);
19218    // If the non-extending load has a single use and it's not live out, then it
19219    // might be folded.
19220    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
19221                                                     Op.hasOneUse()*/) {
19222      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
19223             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
19224        // The only case where we'd want to promote LOAD (rather then it being
19225        // promoted as an operand is when it's only use is liveout.
19226        if (UI->getOpcode() != ISD::CopyToReg)
19227          return false;
19228      }
19229    }
19230    Promote = true;
19231    break;
19232  }
19233  case ISD::SIGN_EXTEND:
19234  case ISD::ZERO_EXTEND:
19235  case ISD::ANY_EXTEND:
19236    Promote = true;
19237    break;
19238  case ISD::SHL:
19239  case ISD::SRL: {
19240    SDValue N0 = Op.getOperand(0);
19241    // Look out for (store (shl (load), x)).
19242    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
19243      return false;
19244    Promote = true;
19245    break;
19246  }
19247  case ISD::ADD:
19248  case ISD::MUL:
19249  case ISD::AND:
19250  case ISD::OR:
19251  case ISD::XOR:
19252    Commute = true;
19253    // fallthrough
19254  case ISD::SUB: {
19255    SDValue N0 = Op.getOperand(0);
19256    SDValue N1 = Op.getOperand(1);
19257    if (!Commute && MayFoldLoad(N1))
19258      return false;
19259    // Avoid disabling potential load folding opportunities.
19260    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
19261      return false;
19262    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
19263      return false;
19264    Promote = true;
19265  }
19266  }
19267
19268  PVT = MVT::i32;
19269  return Promote;
19270}
19271
19272//===----------------------------------------------------------------------===//
19273//                           X86 Inline Assembly Support
19274//===----------------------------------------------------------------------===//
19275
19276namespace {
19277  // Helper to match a string separated by whitespace.
19278  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
19279    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
19280
19281    for (unsigned i = 0, e = args.size(); i != e; ++i) {
19282      StringRef piece(*args[i]);
19283      if (!s.startswith(piece)) // Check if the piece matches.
19284        return false;
19285
19286      s = s.substr(piece.size());
19287      StringRef::size_type pos = s.find_first_not_of(" \t");
19288      if (pos == 0) // We matched a prefix.
19289        return false;
19290
19291      s = s.substr(pos);
19292    }
19293
19294    return s.empty();
19295  }
19296  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
19297}
19298
19299static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
19300
19301  if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
19302    if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
19303        std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
19304        std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
19305
19306      if (AsmPieces.size() == 3)
19307        return true;
19308      else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
19309        return true;
19310    }
19311  }
19312  return false;
19313}
19314
19315bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
19316  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
19317
19318  std::string AsmStr = IA->getAsmString();
19319
19320  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
19321  if (!Ty || Ty->getBitWidth() % 16 != 0)
19322    return false;
19323
19324  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
19325  SmallVector<StringRef, 4> AsmPieces;
19326  SplitString(AsmStr, AsmPieces, ";\n");
19327
19328  switch (AsmPieces.size()) {
19329  default: return false;
19330  case 1:
19331    // FIXME: this should verify that we are targeting a 486 or better.  If not,
19332    // we will turn this bswap into something that will be lowered to logical
19333    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
19334    // lower so don't worry about this.
19335    // bswap $0
19336    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
19337        matchAsm(AsmPieces[0], "bswapl", "$0") ||
19338        matchAsm(AsmPieces[0], "bswapq", "$0") ||
19339        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
19340        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
19341        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
19342      // No need to check constraints, nothing other than the equivalent of
19343      // "=r,0" would be valid here.
19344      return IntrinsicLowering::LowerToByteSwap(CI);
19345    }
19346
19347    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
19348    if (CI->getType()->isIntegerTy(16) &&
19349        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
19350        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
19351         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
19352      AsmPieces.clear();
19353      const std::string &ConstraintsStr = IA->getConstraintString();
19354      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
19355      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
19356      if (clobbersFlagRegisters(AsmPieces))
19357        return IntrinsicLowering::LowerToByteSwap(CI);
19358    }
19359    break;
19360  case 3:
19361    if (CI->getType()->isIntegerTy(32) &&
19362        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
19363        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
19364        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
19365        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
19366      AsmPieces.clear();
19367      const std::string &ConstraintsStr = IA->getConstraintString();
19368      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
19369      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
19370      if (clobbersFlagRegisters(AsmPieces))
19371        return IntrinsicLowering::LowerToByteSwap(CI);
19372    }
19373
19374    if (CI->getType()->isIntegerTy(64)) {
19375      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
19376      if (Constraints.size() >= 2 &&
19377          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
19378          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
19379        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
19380        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
19381            matchAsm(AsmPieces[1], "bswap", "%edx") &&
19382            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
19383          return IntrinsicLowering::LowerToByteSwap(CI);
19384      }
19385    }
19386    break;
19387  }
19388  return false;
19389}
19390
19391/// getConstraintType - Given a constraint letter, return the type of
19392/// constraint it is for this target.
19393X86TargetLowering::ConstraintType
19394X86TargetLowering::getConstraintType(const std::string &Constraint) const {
19395  if (Constraint.size() == 1) {
19396    switch (Constraint[0]) {
19397    case 'R':
19398    case 'q':
19399    case 'Q':
19400    case 'f':
19401    case 't':
19402    case 'u':
19403    case 'y':
19404    case 'x':
19405    case 'Y':
19406    case 'l':
19407      return C_RegisterClass;
19408    case 'a':
19409    case 'b':
19410    case 'c':
19411    case 'd':
19412    case 'S':
19413    case 'D':
19414    case 'A':
19415      return C_Register;
19416    case 'I':
19417    case 'J':
19418    case 'K':
19419    case 'L':
19420    case 'M':
19421    case 'N':
19422    case 'G':
19423    case 'C':
19424    case 'e':
19425    case 'Z':
19426      return C_Other;
19427    default:
19428      break;
19429    }
19430  }
19431  return TargetLowering::getConstraintType(Constraint);
19432}
19433
19434/// Examine constraint type and operand type and determine a weight value.
19435/// This object must already have been set up with the operand type
19436/// and the current alternative constraint selected.
19437TargetLowering::ConstraintWeight
19438  X86TargetLowering::getSingleConstraintMatchWeight(
19439    AsmOperandInfo &info, const char *constraint) const {
19440  ConstraintWeight weight = CW_Invalid;
19441  Value *CallOperandVal = info.CallOperandVal;
19442    // If we don't have a value, we can't do a match,
19443    // but allow it at the lowest weight.
19444  if (CallOperandVal == NULL)
19445    return CW_Default;
19446  Type *type = CallOperandVal->getType();
19447  // Look at the constraint type.
19448  switch (*constraint) {
19449  default:
19450    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
19451  case 'R':
19452  case 'q':
19453  case 'Q':
19454  case 'a':
19455  case 'b':
19456  case 'c':
19457  case 'd':
19458  case 'S':
19459  case 'D':
19460  case 'A':
19461    if (CallOperandVal->getType()->isIntegerTy())
19462      weight = CW_SpecificReg;
19463    break;
19464  case 'f':
19465  case 't':
19466  case 'u':
19467    if (type->isFloatingPointTy())
19468      weight = CW_SpecificReg;
19469    break;
19470  case 'y':
19471    if (type->isX86_MMXTy() && Subtarget->hasMMX())
19472      weight = CW_SpecificReg;
19473    break;
19474  case 'x':
19475  case 'Y':
19476    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
19477        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
19478      weight = CW_Register;
19479    break;
19480  case 'I':
19481    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
19482      if (C->getZExtValue() <= 31)
19483        weight = CW_Constant;
19484    }
19485    break;
19486  case 'J':
19487    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19488      if (C->getZExtValue() <= 63)
19489        weight = CW_Constant;
19490    }
19491    break;
19492  case 'K':
19493    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19494      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
19495        weight = CW_Constant;
19496    }
19497    break;
19498  case 'L':
19499    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19500      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
19501        weight = CW_Constant;
19502    }
19503    break;
19504  case 'M':
19505    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19506      if (C->getZExtValue() <= 3)
19507        weight = CW_Constant;
19508    }
19509    break;
19510  case 'N':
19511    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19512      if (C->getZExtValue() <= 0xff)
19513        weight = CW_Constant;
19514    }
19515    break;
19516  case 'G':
19517  case 'C':
19518    if (dyn_cast<ConstantFP>(CallOperandVal)) {
19519      weight = CW_Constant;
19520    }
19521    break;
19522  case 'e':
19523    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19524      if ((C->getSExtValue() >= -0x80000000LL) &&
19525          (C->getSExtValue() <= 0x7fffffffLL))
19526        weight = CW_Constant;
19527    }
19528    break;
19529  case 'Z':
19530    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19531      if (C->getZExtValue() <= 0xffffffff)
19532        weight = CW_Constant;
19533    }
19534    break;
19535  }
19536  return weight;
19537}
19538
19539/// LowerXConstraint - try to replace an X constraint, which matches anything,
19540/// with another that has more specific requirements based on the type of the
19541/// corresponding operand.
19542const char *X86TargetLowering::
19543LowerXConstraint(EVT ConstraintVT) const {
19544  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
19545  // 'f' like normal targets.
19546  if (ConstraintVT.isFloatingPoint()) {
19547    if (Subtarget->hasSSE2())
19548      return "Y";
19549    if (Subtarget->hasSSE1())
19550      return "x";
19551  }
19552
19553  return TargetLowering::LowerXConstraint(ConstraintVT);
19554}
19555
19556/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
19557/// vector.  If it is invalid, don't add anything to Ops.
19558void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
19559                                                     std::string &Constraint,
19560                                                     std::vector<SDValue>&Ops,
19561                                                     SelectionDAG &DAG) const {
19562  SDValue Result(0, 0);
19563
19564  // Only support length 1 constraints for now.
19565  if (Constraint.length() > 1) return;
19566
19567  char ConstraintLetter = Constraint[0];
19568  switch (ConstraintLetter) {
19569  default: break;
19570  case 'I':
19571    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19572      if (C->getZExtValue() <= 31) {
19573        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19574        break;
19575      }
19576    }
19577    return;
19578  case 'J':
19579    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19580      if (C->getZExtValue() <= 63) {
19581        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19582        break;
19583      }
19584    }
19585    return;
19586  case 'K':
19587    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19588      if (isInt<8>(C->getSExtValue())) {
19589        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19590        break;
19591      }
19592    }
19593    return;
19594  case 'N':
19595    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19596      if (C->getZExtValue() <= 255) {
19597        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19598        break;
19599      }
19600    }
19601    return;
19602  case 'e': {
19603    // 32-bit signed value
19604    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19605      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
19606                                           C->getSExtValue())) {
19607        // Widen to 64 bits here to get it sign extended.
19608        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
19609        break;
19610      }
19611    // FIXME gcc accepts some relocatable values here too, but only in certain
19612    // memory models; it's complicated.
19613    }
19614    return;
19615  }
19616  case 'Z': {
19617    // 32-bit unsigned value
19618    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19619      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
19620                                           C->getZExtValue())) {
19621        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19622        break;
19623      }
19624    }
19625    // FIXME gcc accepts some relocatable values here too, but only in certain
19626    // memory models; it's complicated.
19627    return;
19628  }
19629  case 'i': {
19630    // Literal immediates are always ok.
19631    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
19632      // Widen to 64 bits here to get it sign extended.
19633      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
19634      break;
19635    }
19636
19637    // In any sort of PIC mode addresses need to be computed at runtime by
19638    // adding in a register or some sort of table lookup.  These can't
19639    // be used as immediates.
19640    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
19641      return;
19642
19643    // If we are in non-pic codegen mode, we allow the address of a global (with
19644    // an optional displacement) to be used with 'i'.
19645    GlobalAddressSDNode *GA = 0;
19646    int64_t Offset = 0;
19647
19648    // Match either (GA), (GA+C), (GA+C1+C2), etc.
19649    while (1) {
19650      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
19651        Offset += GA->getOffset();
19652        break;
19653      } else if (Op.getOpcode() == ISD::ADD) {
19654        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
19655          Offset += C->getZExtValue();
19656          Op = Op.getOperand(0);
19657          continue;
19658        }
19659      } else if (Op.getOpcode() == ISD::SUB) {
19660        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
19661          Offset += -C->getZExtValue();
19662          Op = Op.getOperand(0);
19663          continue;
19664        }
19665      }
19666
19667      // Otherwise, this isn't something we can handle, reject it.
19668      return;
19669    }
19670
19671    const GlobalValue *GV = GA->getGlobal();
19672    // If we require an extra load to get this address, as in PIC mode, we
19673    // can't accept it.
19674    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
19675                                                        getTargetMachine())))
19676      return;
19677
19678    Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
19679                                        GA->getValueType(0), Offset);
19680    break;
19681  }
19682  }
19683
19684  if (Result.getNode()) {
19685    Ops.push_back(Result);
19686    return;
19687  }
19688  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
19689}
19690
19691std::pair<unsigned, const TargetRegisterClass*>
19692X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
19693                                                MVT VT) const {
19694  // First, see if this is a constraint that directly corresponds to an LLVM
19695  // register class.
19696  if (Constraint.size() == 1) {
19697    // GCC Constraint Letters
19698    switch (Constraint[0]) {
19699    default: break;
19700      // TODO: Slight differences here in allocation order and leaving
19701      // RIP in the class. Do they matter any more here than they do
19702      // in the normal allocation?
19703    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
19704      if (Subtarget->is64Bit()) {
19705        if (VT == MVT::i32 || VT == MVT::f32)
19706          return std::make_pair(0U, &X86::GR32RegClass);
19707        if (VT == MVT::i16)
19708          return std::make_pair(0U, &X86::GR16RegClass);
19709        if (VT == MVT::i8 || VT == MVT::i1)
19710          return std::make_pair(0U, &X86::GR8RegClass);
19711        if (VT == MVT::i64 || VT == MVT::f64)
19712          return std::make_pair(0U, &X86::GR64RegClass);
19713        break;
19714      }
19715      // 32-bit fallthrough
19716    case 'Q':   // Q_REGS
19717      if (VT == MVT::i32 || VT == MVT::f32)
19718        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
19719      if (VT == MVT::i16)
19720        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
19721      if (VT == MVT::i8 || VT == MVT::i1)
19722        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
19723      if (VT == MVT::i64)
19724        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
19725      break;
19726    case 'r':   // GENERAL_REGS
19727    case 'l':   // INDEX_REGS
19728      if (VT == MVT::i8 || VT == MVT::i1)
19729        return std::make_pair(0U, &X86::GR8RegClass);
19730      if (VT == MVT::i16)
19731        return std::make_pair(0U, &X86::GR16RegClass);
19732      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
19733        return std::make_pair(0U, &X86::GR32RegClass);
19734      return std::make_pair(0U, &X86::GR64RegClass);
19735    case 'R':   // LEGACY_REGS
19736      if (VT == MVT::i8 || VT == MVT::i1)
19737        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
19738      if (VT == MVT::i16)
19739        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
19740      if (VT == MVT::i32 || !Subtarget->is64Bit())
19741        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
19742      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
19743    case 'f':  // FP Stack registers.
19744      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
19745      // value to the correct fpstack register class.
19746      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
19747        return std::make_pair(0U, &X86::RFP32RegClass);
19748      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
19749        return std::make_pair(0U, &X86::RFP64RegClass);
19750      return std::make_pair(0U, &X86::RFP80RegClass);
19751    case 'y':   // MMX_REGS if MMX allowed.
19752      if (!Subtarget->hasMMX()) break;
19753      return std::make_pair(0U, &X86::VR64RegClass);
19754    case 'Y':   // SSE_REGS if SSE2 allowed
19755      if (!Subtarget->hasSSE2()) break;
19756      // FALL THROUGH.
19757    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
19758      if (!Subtarget->hasSSE1()) break;
19759
19760      switch (VT.SimpleTy) {
19761      default: break;
19762      // Scalar SSE types.
19763      case MVT::f32:
19764      case MVT::i32:
19765        return std::make_pair(0U, &X86::FR32RegClass);
19766      case MVT::f64:
19767      case MVT::i64:
19768        return std::make_pair(0U, &X86::FR64RegClass);
19769      // Vector types.
19770      case MVT::v16i8:
19771      case MVT::v8i16:
19772      case MVT::v4i32:
19773      case MVT::v2i64:
19774      case MVT::v4f32:
19775      case MVT::v2f64:
19776        return std::make_pair(0U, &X86::VR128RegClass);
19777      // AVX types.
19778      case MVT::v32i8:
19779      case MVT::v16i16:
19780      case MVT::v8i32:
19781      case MVT::v4i64:
19782      case MVT::v8f32:
19783      case MVT::v4f64:
19784        return std::make_pair(0U, &X86::VR256RegClass);
19785      case MVT::v8f64:
19786      case MVT::v16f32:
19787      case MVT::v16i32:
19788      case MVT::v8i64:
19789        return std::make_pair(0U, &X86::VR512RegClass);
19790      }
19791      break;
19792    }
19793  }
19794
19795  // Use the default implementation in TargetLowering to convert the register
19796  // constraint into a member of a register class.
19797  std::pair<unsigned, const TargetRegisterClass*> Res;
19798  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
19799
19800  // Not found as a standard register?
19801  if (Res.second == 0) {
19802    // Map st(0) -> st(7) -> ST0
19803    if (Constraint.size() == 7 && Constraint[0] == '{' &&
19804        tolower(Constraint[1]) == 's' &&
19805        tolower(Constraint[2]) == 't' &&
19806        Constraint[3] == '(' &&
19807        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
19808        Constraint[5] == ')' &&
19809        Constraint[6] == '}') {
19810
19811      Res.first = X86::ST0+Constraint[4]-'0';
19812      Res.second = &X86::RFP80RegClass;
19813      return Res;
19814    }
19815
19816    // GCC allows "st(0)" to be called just plain "st".
19817    if (StringRef("{st}").equals_lower(Constraint)) {
19818      Res.first = X86::ST0;
19819      Res.second = &X86::RFP80RegClass;
19820      return Res;
19821    }
19822
19823    // flags -> EFLAGS
19824    if (StringRef("{flags}").equals_lower(Constraint)) {
19825      Res.first = X86::EFLAGS;
19826      Res.second = &X86::CCRRegClass;
19827      return Res;
19828    }
19829
19830    // 'A' means EAX + EDX.
19831    if (Constraint == "A") {
19832      Res.first = X86::EAX;
19833      Res.second = &X86::GR32_ADRegClass;
19834      return Res;
19835    }
19836    return Res;
19837  }
19838
19839  // Otherwise, check to see if this is a register class of the wrong value
19840  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
19841  // turn into {ax},{dx}.
19842  if (Res.second->hasType(VT))
19843    return Res;   // Correct type already, nothing to do.
19844
19845  // All of the single-register GCC register classes map their values onto
19846  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
19847  // really want an 8-bit or 32-bit register, map to the appropriate register
19848  // class and return the appropriate register.
19849  if (Res.second == &X86::GR16RegClass) {
19850    if (VT == MVT::i8 || VT == MVT::i1) {
19851      unsigned DestReg = 0;
19852      switch (Res.first) {
19853      default: break;
19854      case X86::AX: DestReg = X86::AL; break;
19855      case X86::DX: DestReg = X86::DL; break;
19856      case X86::CX: DestReg = X86::CL; break;
19857      case X86::BX: DestReg = X86::BL; break;
19858      }
19859      if (DestReg) {
19860        Res.first = DestReg;
19861        Res.second = &X86::GR8RegClass;
19862      }
19863    } else if (VT == MVT::i32 || VT == MVT::f32) {
19864      unsigned DestReg = 0;
19865      switch (Res.first) {
19866      default: break;
19867      case X86::AX: DestReg = X86::EAX; break;
19868      case X86::DX: DestReg = X86::EDX; break;
19869      case X86::CX: DestReg = X86::ECX; break;
19870      case X86::BX: DestReg = X86::EBX; break;
19871      case X86::SI: DestReg = X86::ESI; break;
19872      case X86::DI: DestReg = X86::EDI; break;
19873      case X86::BP: DestReg = X86::EBP; break;
19874      case X86::SP: DestReg = X86::ESP; break;
19875      }
19876      if (DestReg) {
19877        Res.first = DestReg;
19878        Res.second = &X86::GR32RegClass;
19879      }
19880    } else if (VT == MVT::i64 || VT == MVT::f64) {
19881      unsigned DestReg = 0;
19882      switch (Res.first) {
19883      default: break;
19884      case X86::AX: DestReg = X86::RAX; break;
19885      case X86::DX: DestReg = X86::RDX; break;
19886      case X86::CX: DestReg = X86::RCX; break;
19887      case X86::BX: DestReg = X86::RBX; break;
19888      case X86::SI: DestReg = X86::RSI; break;
19889      case X86::DI: DestReg = X86::RDI; break;
19890      case X86::BP: DestReg = X86::RBP; break;
19891      case X86::SP: DestReg = X86::RSP; break;
19892      }
19893      if (DestReg) {
19894        Res.first = DestReg;
19895        Res.second = &X86::GR64RegClass;
19896      }
19897    }
19898  } else if (Res.second == &X86::FR32RegClass ||
19899             Res.second == &X86::FR64RegClass ||
19900             Res.second == &X86::VR128RegClass ||
19901             Res.second == &X86::VR256RegClass ||
19902             Res.second == &X86::FR32XRegClass ||
19903             Res.second == &X86::FR64XRegClass ||
19904             Res.second == &X86::VR128XRegClass ||
19905             Res.second == &X86::VR256XRegClass ||
19906             Res.second == &X86::VR512RegClass) {
19907    // Handle references to XMM physical registers that got mapped into the
19908    // wrong class.  This can happen with constraints like {xmm0} where the
19909    // target independent register mapper will just pick the first match it can
19910    // find, ignoring the required type.
19911
19912    if (VT == MVT::f32 || VT == MVT::i32)
19913      Res.second = &X86::FR32RegClass;
19914    else if (VT == MVT::f64 || VT == MVT::i64)
19915      Res.second = &X86::FR64RegClass;
19916    else if (X86::VR128RegClass.hasType(VT))
19917      Res.second = &X86::VR128RegClass;
19918    else if (X86::VR256RegClass.hasType(VT))
19919      Res.second = &X86::VR256RegClass;
19920    else if (X86::VR512RegClass.hasType(VT))
19921      Res.second = &X86::VR512RegClass;
19922  }
19923
19924  return Res;
19925}
19926