X86ISelLowering.h revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
18#include "X86Subtarget.h"
19#include "llvm/CodeGen/CallingConvLower.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetOptions.h"
23
24namespace llvm {
25  class X86TargetMachine;
26
27  namespace X86ISD {
28    // X86 Specific DAG Nodes
29    enum NodeType {
30      // Start the numbering where the builtin ops leave off.
31      FIRST_NUMBER = ISD::BUILTIN_OP_END,
32
33      /// BSF - Bit scan forward.
34      /// BSR - Bit scan reverse.
35      BSF,
36      BSR,
37
38      /// SHLD, SHRD - Double shift instructions. These correspond to
39      /// X86::SHLDxx and X86::SHRDxx instructions.
40      SHLD,
41      SHRD,
42
43      /// FAND - Bitwise logical AND of floating point values. This corresponds
44      /// to X86::ANDPS or X86::ANDPD.
45      FAND,
46
47      /// FOR - Bitwise logical OR of floating point values. This corresponds
48      /// to X86::ORPS or X86::ORPD.
49      FOR,
50
51      /// FXOR - Bitwise logical XOR of floating point values. This corresponds
52      /// to X86::XORPS or X86::XORPD.
53      FXOR,
54
55      /// FANDN - Bitwise logical ANDNOT of floating point values. This
56      /// corresponds to X86::ANDNPS or X86::ANDNPD.
57      FANDN,
58
59      /// FSRL - Bitwise logical right shift of floating point values. These
60      /// corresponds to X86::PSRLDQ.
61      FSRL,
62
63      /// CALL - These operations represent an abstract X86 call
64      /// instruction, which includes a bunch of information.  In particular the
65      /// operands of these node are:
66      ///
67      ///     #0 - The incoming token chain
68      ///     #1 - The callee
69      ///     #2 - The number of arg bytes the caller pushes on the stack.
70      ///     #3 - The number of arg bytes the callee pops off the stack.
71      ///     #4 - The value to pass in AL/AX/EAX (optional)
72      ///     #5 - The value to pass in DL/DX/EDX (optional)
73      ///
74      /// The result values of these nodes are:
75      ///
76      ///     #0 - The outgoing token chain
77      ///     #1 - The first register result value (optional)
78      ///     #2 - The second register result value (optional)
79      ///
80      CALL,
81
82      /// RDTSC_DAG - This operation implements the lowering for
83      /// readcyclecounter
84      RDTSC_DAG,
85
86      /// X86 compare and logical compare instructions.
87      CMP, COMI, UCOMI,
88
89      /// X86 bit-test instructions.
90      BT,
91
92      /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
93      /// operand, usually produced by a CMP instruction.
94      SETCC,
95
96      /// X86 Select
97      SELECT,
98
99      // Same as SETCC except it's materialized with a sbb and the value is all
100      // one's or all zero's.
101      SETCC_CARRY,  // R = carry_bit ? ~0 : 0
102
103      /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
104      /// Operands are two FP values to compare; result is a mask of
105      /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
106      FSETCC,
107
108      /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
109      /// result in an integer GPR.  Needs masking for scalar result.
110      FGETSIGNx86,
111
112      /// X86 conditional moves. Operand 0 and operand 1 are the two values
113      /// to select from. Operand 2 is the condition code, and operand 3 is the
114      /// flag operand produced by a CMP or TEST instruction. It also writes a
115      /// flag result.
116      CMOV,
117
118      /// X86 conditional branches. Operand 0 is the chain operand, operand 1
119      /// is the block to branch if condition is true, operand 2 is the
120      /// condition code, and operand 3 is the flag operand produced by a CMP
121      /// or TEST instruction.
122      BRCOND,
123
124      /// Return with a flag operand. Operand 0 is the chain operand, operand
125      /// 1 is the number of bytes of stack to pop.
126      RET_FLAG,
127
128      /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
129      REP_STOS,
130
131      /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
132      REP_MOVS,
133
134      /// GlobalBaseReg - On Darwin, this node represents the result of the popl
135      /// at function entry, used for PIC code.
136      GlobalBaseReg,
137
138      /// Wrapper - A wrapper node for TargetConstantPool,
139      /// TargetExternalSymbol, and TargetGlobalAddress.
140      Wrapper,
141
142      /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
143      /// relative displacements.
144      WrapperRIP,
145
146      /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
147      /// to an MMX vector.  If you think this is too close to the previous
148      /// mnemonic, so do I; blame Intel.
149      MOVDQ2Q,
150
151      /// MMX_MOVD2W - Copies a 32-bit value from the low word of a MMX
152      /// vector to a GPR.
153      MMX_MOVD2W,
154
155      /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
156      /// i32, corresponds to X86::PEXTRB.
157      PEXTRB,
158
159      /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
160      /// i32, corresponds to X86::PEXTRW.
161      PEXTRW,
162
163      /// INSERTPS - Insert any element of a 4 x float vector into any element
164      /// of a destination 4 x floatvector.
165      INSERTPS,
166
167      /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
168      /// corresponds to X86::PINSRB.
169      PINSRB,
170
171      /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
172      /// corresponds to X86::PINSRW.
173      PINSRW, MMX_PINSRW,
174
175      /// PSHUFB - Shuffle 16 8-bit values within a vector.
176      PSHUFB,
177
178      /// ANDNP - Bitwise Logical AND NOT of Packed FP values.
179      ANDNP,
180
181      /// PSIGN - Copy integer sign.
182      PSIGN,
183
184      /// BLENDV - Blend where the selector is a register.
185      BLENDV,
186
187      /// BLENDI - Blend where the selector is an immediate.
188      BLENDI,
189
190      // SUBUS - Integer sub with unsigned saturation.
191      SUBUS,
192
193      /// HADD - Integer horizontal add.
194      HADD,
195
196      /// HSUB - Integer horizontal sub.
197      HSUB,
198
199      /// FHADD - Floating point horizontal add.
200      FHADD,
201
202      /// FHSUB - Floating point horizontal sub.
203      FHSUB,
204
205      /// UMAX, UMIN - Unsigned integer max and min.
206      UMAX, UMIN,
207
208      /// SMAX, SMIN - Signed integer max and min.
209      SMAX, SMIN,
210
211      /// FMAX, FMIN - Floating point max and min.
212      ///
213      FMAX, FMIN,
214
215      /// FMAXC, FMINC - Commutative FMIN and FMAX.
216      FMAXC, FMINC,
217
218      /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
219      /// approximation.  Note that these typically require refinement
220      /// in order to obtain suitable precision.
221      FRSQRT, FRCP,
222
223      // TLSADDR - Thread Local Storage.
224      TLSADDR,
225
226      // TLSBASEADDR - Thread Local Storage. A call to get the start address
227      // of the TLS block for the current module.
228      TLSBASEADDR,
229
230      // TLSCALL - Thread Local Storage.  When calling to an OS provided
231      // thunk at the address from an earlier relocation.
232      TLSCALL,
233
234      // EH_RETURN - Exception Handling helpers.
235      EH_RETURN,
236
237      // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
238      EH_SJLJ_SETJMP,
239
240      // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
241      EH_SJLJ_LONGJMP,
242
243      /// TC_RETURN - Tail call return. See X86TargetLowering::LowerCall for
244      /// the list of operands.
245      TC_RETURN,
246
247      // VZEXT_MOVL - Vector move to low scalar and zero higher vector elements.
248      VZEXT_MOVL,
249
250      // VZEXT - Vector integer zero-extend.
251      VZEXT,
252
253      // VSEXT - Vector integer signed-extend.
254      VSEXT,
255
256      // VTRUNC - Vector integer truncate.
257      VTRUNC,
258
259      // VTRUNC - Vector integer truncate with mask.
260      VTRUNCM,
261
262      // VFPEXT - Vector FP extend.
263      VFPEXT,
264
265      // VFPROUND - Vector FP round.
266      VFPROUND,
267
268      // VSHL, VSRL - 128-bit vector logical left / right shift
269      VSHLDQ, VSRLDQ,
270
271      // VSHL, VSRL, VSRA - Vector shift elements
272      VSHL, VSRL, VSRA,
273
274      // VSHLI, VSRLI, VSRAI - Vector shift elements by immediate
275      VSHLI, VSRLI, VSRAI,
276
277      // CMPP - Vector packed double/float comparison.
278      CMPP,
279
280      // PCMP* - Vector integer comparisons.
281      PCMPEQ, PCMPGT,
282      // PCMP*M - Vector integer comparisons, the result is in a mask vector.
283      PCMPEQM, PCMPGTM,
284
285      /// CMPM, CMPMU - Vector comparison generating mask bits for fp and
286      /// integer signed and unsigned data types.
287      CMPM,
288      CMPMU,
289
290      // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
291      ADD, SUB, ADC, SBB, SMUL,
292      INC, DEC, OR, XOR, AND,
293
294      BZHI,   // BZHI - Zero high bits
295      BEXTR,  // BEXTR - Bit field extract
296
297      UMUL, // LOW, HI, FLAGS = umul LHS, RHS
298
299      // MUL_IMM - X86 specific multiply by immediate.
300      MUL_IMM,
301
302      // PTEST - Vector bitwise comparisons.
303      PTEST,
304
305      // TESTP - Vector packed fp sign bitwise comparisons.
306      TESTP,
307
308      // TESTM, TESTNM - Vector "test" in AVX-512, the result is in a mask vector.
309      TESTM,
310      TESTNM,
311
312      // OR/AND test for masks
313      KORTEST,
314
315      // Several flavors of instructions with vector shuffle behaviors.
316      PALIGNR,
317      PSHUFD,
318      PSHUFHW,
319      PSHUFLW,
320      SHUFP,
321      MOVDDUP,
322      MOVSHDUP,
323      MOVSLDUP,
324      MOVLHPS,
325      MOVLHPD,
326      MOVHLPS,
327      MOVLPS,
328      MOVLPD,
329      MOVSD,
330      MOVSS,
331      UNPCKL,
332      UNPCKH,
333      VPERMILP,
334      VPERMV,
335      VPERMV3,
336      VPERMIV3,
337      VPERMI,
338      VPERM2X128,
339      VBROADCAST,
340      // masked broadcast
341      VBROADCASTM,
342      // Insert/Extract vector element
343      VINSERT,
344      VEXTRACT,
345
346      // PMULUDQ - Vector multiply packed unsigned doubleword integers
347      PMULUDQ,
348
349      // FMA nodes
350      FMADD,
351      FNMADD,
352      FMSUB,
353      FNMSUB,
354      FMADDSUB,
355      FMSUBADD,
356
357      // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
358      // according to %al. An operator is needed so that this can be expanded
359      // with control flow.
360      VASTART_SAVE_XMM_REGS,
361
362      // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
363      WIN_ALLOCA,
364
365      // SEG_ALLOCA - For allocating variable amounts of stack space when using
366      // segmented stacks. Check if the current stacklet has enough space, and
367      // falls back to heap allocation if not.
368      SEG_ALLOCA,
369
370      // WIN_FTOL - Windows's _ftol2 runtime routine to do fptoui.
371      WIN_FTOL,
372
373      // Memory barrier
374      MEMBARRIER,
375      MFENCE,
376      SFENCE,
377      LFENCE,
378
379      // FNSTSW16r - Store FP status word into i16 register.
380      FNSTSW16r,
381
382      // SAHF - Store contents of %ah into %eflags.
383      SAHF,
384
385      // RDRAND - Get a random integer and indicate whether it is valid in CF.
386      RDRAND,
387
388      // RDSEED - Get a NIST SP800-90B & C compliant random integer and
389      // indicate whether it is valid in CF.
390      RDSEED,
391
392      // PCMP*STRI
393      PCMPISTRI,
394      PCMPESTRI,
395
396      // XTEST - Test if in transactional execution.
397      XTEST,
398
399      // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
400      // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
401      // Atomic 64-bit binary operations.
402      ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
403      ATOMSUB64_DAG,
404      ATOMOR64_DAG,
405      ATOMXOR64_DAG,
406      ATOMAND64_DAG,
407      ATOMNAND64_DAG,
408      ATOMMAX64_DAG,
409      ATOMMIN64_DAG,
410      ATOMUMAX64_DAG,
411      ATOMUMIN64_DAG,
412      ATOMSWAP64_DAG,
413
414      // LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG - Compare and swap.
415      LCMPXCHG_DAG,
416      LCMPXCHG8_DAG,
417      LCMPXCHG16_DAG,
418
419      // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
420      VZEXT_LOAD,
421
422      // FNSTCW16m - Store FP control world into i16 memory.
423      FNSTCW16m,
424
425      /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
426      /// integer destination in memory and a FP reg source.  This corresponds
427      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
428      /// has two inputs (token chain and address) and two outputs (int value
429      /// and token chain).
430      FP_TO_INT16_IN_MEM,
431      FP_TO_INT32_IN_MEM,
432      FP_TO_INT64_IN_MEM,
433
434      /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
435      /// integer source in memory and FP reg result.  This corresponds to the
436      /// X86::FILD*m instructions. It has three inputs (token chain, address,
437      /// and source type) and two outputs (FP value and token chain). FILD_FLAG
438      /// also produces a flag).
439      FILD,
440      FILD_FLAG,
441
442      /// FLD - This instruction implements an extending load to FP stack slots.
443      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
444      /// operand, ptr to load from, and a ValueType node indicating the type
445      /// to load to.
446      FLD,
447
448      /// FST - This instruction implements a truncating store to FP stack
449      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
450      /// chain operand, value to store, address, and a ValueType to store it
451      /// as.
452      FST,
453
454      /// VAARG_64 - This instruction grabs the address of the next argument
455      /// from a va_list. (reads and modifies the va_list in memory)
456      VAARG_64
457
458      // WARNING: Do not add anything in the end unless you want the node to
459      // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
460      // thought as target memory ops!
461    };
462  }
463
464  /// Define some predicates that are used for node matching.
465  namespace X86 {
466    /// isVEXTRACT128Index - Return true if the specified
467    /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
468    /// suitable for input to VEXTRACTF128, VEXTRACTI128 instructions.
469    bool isVEXTRACT128Index(SDNode *N);
470
471    /// isVINSERT128Index - Return true if the specified
472    /// INSERT_SUBVECTOR operand specifies a subvector insert that is
473    /// suitable for input to VINSERTF128, VINSERTI128 instructions.
474    bool isVINSERT128Index(SDNode *N);
475
476    /// isVEXTRACT256Index - Return true if the specified
477    /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
478    /// suitable for input to VEXTRACTF64X4, VEXTRACTI64X4 instructions.
479    bool isVEXTRACT256Index(SDNode *N);
480
481    /// isVINSERT256Index - Return true if the specified
482    /// INSERT_SUBVECTOR operand specifies a subvector insert that is
483    /// suitable for input to VINSERTF64X4, VINSERTI64X4 instructions.
484    bool isVINSERT256Index(SDNode *N);
485
486    /// getExtractVEXTRACT128Immediate - Return the appropriate
487    /// immediate to extract the specified EXTRACT_SUBVECTOR index
488    /// with VEXTRACTF128, VEXTRACTI128 instructions.
489    unsigned getExtractVEXTRACT128Immediate(SDNode *N);
490
491    /// getInsertVINSERT128Immediate - Return the appropriate
492    /// immediate to insert at the specified INSERT_SUBVECTOR index
493    /// with VINSERTF128, VINSERT128 instructions.
494    unsigned getInsertVINSERT128Immediate(SDNode *N);
495
496    /// getExtractVEXTRACT256Immediate - Return the appropriate
497    /// immediate to extract the specified EXTRACT_SUBVECTOR index
498    /// with VEXTRACTF64X4, VEXTRACTI64x4 instructions.
499    unsigned getExtractVEXTRACT256Immediate(SDNode *N);
500
501    /// getInsertVINSERT256Immediate - Return the appropriate
502    /// immediate to insert at the specified INSERT_SUBVECTOR index
503    /// with VINSERTF64x4, VINSERTI64x4 instructions.
504    unsigned getInsertVINSERT256Immediate(SDNode *N);
505
506    /// isZeroNode - Returns true if Elt is a constant zero or a floating point
507    /// constant +0.0.
508    bool isZeroNode(SDValue Elt);
509
510    /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
511    /// fit into displacement field of the instruction.
512    bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
513                                      bool hasSymbolicDisplacement = true);
514
515
516    /// isCalleePop - Determines whether the callee is required to pop its
517    /// own arguments. Callee pop is necessary to support tail calls.
518    bool isCalleePop(CallingConv::ID CallingConv,
519                     bool is64Bit, bool IsVarArg, bool TailCallOpt);
520  }
521
522  //===--------------------------------------------------------------------===//
523  //  X86TargetLowering - X86 Implementation of the TargetLowering interface
524  class X86TargetLowering final : public TargetLowering {
525  public:
526    explicit X86TargetLowering(X86TargetMachine &TM);
527
528    unsigned getJumpTableEncoding() const override;
529
530    MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i8; }
531
532    const MCExpr *
533    LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
534                              const MachineBasicBlock *MBB, unsigned uid,
535                              MCContext &Ctx) const override;
536
537    /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
538    /// jumptable.
539    SDValue getPICJumpTableRelocBase(SDValue Table,
540                                     SelectionDAG &DAG) const override;
541    const MCExpr *
542    getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
543                                 unsigned JTI, MCContext &Ctx) const override;
544
545    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
546    /// function arguments in the caller parameter area. For X86, aggregates
547    /// that contains are placed at 16-byte boundaries while the rest are at
548    /// 4-byte boundaries.
549    unsigned getByValTypeAlignment(Type *Ty) const override;
550
551    /// getOptimalMemOpType - Returns the target specific optimal type for load
552    /// and store operations as a result of memset, memcpy, and memmove
553    /// lowering. If DstAlign is zero that means it's safe to destination
554    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
555    /// means there isn't a need to check it against alignment requirement,
556    /// probably because the source does not need to be loaded. If 'IsMemset' is
557    /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
558    /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
559    /// source is constant so it does not need to be loaded.
560    /// It returns EVT::Other if the type should be determined using generic
561    /// target-independent logic.
562    EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
563                            bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
564                            MachineFunction &MF) const override;
565
566    /// isSafeMemOpType - Returns true if it's safe to use load / store of the
567    /// specified type to expand memcpy / memset inline. This is mostly true
568    /// for all types except for some special cases. For example, on X86
569    /// targets without SSE2 f64 load / store are done with fldl / fstpl which
570    /// also does type conversion. Note the specified type doesn't have to be
571    /// legal as the hook is used before type legalization.
572    bool isSafeMemOpType(MVT VT) const override;
573
574    /// allowsUnalignedMemoryAccesses - Returns true if the target allows
575    /// unaligned memory accesses. of the specified type. Returns whether it
576    /// is "fast" by reference in the second argument.
577    bool allowsUnalignedMemoryAccesses(EVT VT, unsigned AS,
578                                       bool *Fast) const override;
579
580    /// LowerOperation - Provide custom lowering hooks for some operations.
581    ///
582    SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
583
584    /// ReplaceNodeResults - Replace the results of node with an illegal result
585    /// type with new values built out of custom code.
586    ///
587    void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
588                            SelectionDAG &DAG) const override;
589
590
591    SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
592
593    /// isTypeDesirableForOp - Return true if the target has native support for
594    /// the specified value type and it is 'desirable' to use the type for the
595    /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
596    /// instruction encodings are longer and some i16 instructions are slow.
597    bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
598
599    /// isTypeDesirable - Return true if the target has native support for the
600    /// specified value type and it is 'desirable' to use the type. e.g. On x86
601    /// i16 is legal, but undesirable since i16 instruction encodings are longer
602    /// and some i16 instructions are slow.
603    bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;
604
605    MachineBasicBlock *
606      EmitInstrWithCustomInserter(MachineInstr *MI,
607                                  MachineBasicBlock *MBB) const override;
608
609
610    /// getTargetNodeName - This method returns the name of a target specific
611    /// DAG node.
612    const char *getTargetNodeName(unsigned Opcode) const override;
613
614    /// getSetCCResultType - Return the value type to use for ISD::SETCC.
615    EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
616
617    /// computeMaskedBitsForTargetNode - Determine which of the bits specified
618    /// in Mask are known to be either zero or one and return them in the
619    /// KnownZero/KnownOne bitsets.
620    void computeMaskedBitsForTargetNode(const SDValue Op,
621                                        APInt &KnownZero,
622                                        APInt &KnownOne,
623                                        const SelectionDAG &DAG,
624                                        unsigned Depth = 0) const override;
625
626    // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
627    // operation that are sign bits.
628    unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
629                                             unsigned Depth) const override;
630
631    bool isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
632                        int64_t &Offset) const override;
633
634    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
635
636    bool ExpandInlineAsm(CallInst *CI) const override;
637
638    ConstraintType
639      getConstraintType(const std::string &Constraint) const override;
640
641    /// Examine constraint string and operand type and determine a weight value.
642    /// The operand object must already have been set up with the operand type.
643    ConstraintWeight
644      getSingleConstraintMatchWeight(AsmOperandInfo &info,
645                                     const char *constraint) const override;
646
647    const char *LowerXConstraint(EVT ConstraintVT) const override;
648
649    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
650    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
651    /// true it means one of the asm constraint of the inline asm instruction
652    /// being processed is 'm'.
653    void LowerAsmOperandForConstraint(SDValue Op,
654                                      std::string &Constraint,
655                                      std::vector<SDValue> &Ops,
656                                      SelectionDAG &DAG) const override;
657
658    /// getRegForInlineAsmConstraint - Given a physical register constraint
659    /// (e.g. {edx}), return the register number and the register class for the
660    /// register.  This should only be used for C_Register constraints.  On
661    /// error, this returns a register number of 0.
662    std::pair<unsigned, const TargetRegisterClass*>
663      getRegForInlineAsmConstraint(const std::string &Constraint,
664                                   MVT VT) const override;
665
666    /// isLegalAddressingMode - Return true if the addressing mode represented
667    /// by AM is legal for this target, for a load/store of the specified type.
668    bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
669
670    /// isLegalICmpImmediate - Return true if the specified immediate is legal
671    /// icmp immediate, that is the target has icmp instructions which can
672    /// compare a register against the immediate without having to materialize
673    /// the immediate into a register.
674    bool isLegalICmpImmediate(int64_t Imm) const override;
675
676    /// isLegalAddImmediate - Return true if the specified immediate is legal
677    /// add immediate, that is the target has add instructions which can
678    /// add a register and the immediate without having to materialize
679    /// the immediate into a register.
680    bool isLegalAddImmediate(int64_t Imm) const override;
681
682
683    bool isVectorShiftByScalarCheap(Type *Ty) const override;
684
685    /// isTruncateFree - Return true if it's free to truncate a value of
686    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
687    /// register EAX to i16 by referencing its sub-register AX.
688    bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
689    bool isTruncateFree(EVT VT1, EVT VT2) const override;
690
691    bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
692
693    /// isZExtFree - Return true if any actual instruction that defines a
694    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
695    /// register. This does not necessarily include registers defined in
696    /// unknown ways, such as incoming arguments, or copies from unknown
697    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
698    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
699    /// all instructions that define 32-bit values implicit zero-extend the
700    /// result out to 64 bits.
701    bool isZExtFree(Type *Ty1, Type *Ty2) const override;
702    bool isZExtFree(EVT VT1, EVT VT2) const override;
703    bool isZExtFree(SDValue Val, EVT VT2) const override;
704
705    /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
706    /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
707    /// expanded to FMAs when this method returns true, otherwise fmuladd is
708    /// expanded to fmul + fadd.
709    bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
710
711    /// isNarrowingProfitable - Return true if it's profitable to narrow
712    /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
713    /// from i32 to i8 but not from i32 to i16.
714    bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;
715
716    /// isFPImmLegal - Returns true if the target can instruction select the
717    /// specified FP immediate natively. If false, the legalizer will
718    /// materialize the FP immediate as a load from a constant pool.
719    bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
720
721    /// isShuffleMaskLegal - Targets can use this to indicate that they only
722    /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
723    /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
724    /// values are assumed to be legal.
725    bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
726                            EVT VT) const override;
727
728    /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
729    /// used by Targets can use this to indicate if there is a suitable
730    /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
731    /// pool entry.
732    bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
733                                EVT VT) const override;
734
735    /// ShouldShrinkFPConstant - If true, then instruction selection should
736    /// seek to shrink the FP constant of the specified type to a smaller type
737    /// in order to save space and / or reduce runtime.
738    bool ShouldShrinkFPConstant(EVT VT) const override {
739      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
740      // expensive than a straight movsd. On the other hand, it's important to
741      // shrink long double fp constant since fldt is very slow.
742      return !X86ScalarSSEf64 || VT == MVT::f80;
743    }
744
745    const X86Subtarget* getSubtarget() const {
746      return Subtarget;
747    }
748
749    /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
750    /// computed in an SSE register, not on the X87 floating point stack.
751    bool isScalarFPTypeInSSEReg(EVT VT) const {
752      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
753      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
754    }
755
756    /// isTargetFTOL - Return true if the target uses the MSVC _ftol2 routine
757    /// for fptoui.
758    bool isTargetFTOL() const {
759      return Subtarget->isTargetKnownWindowsMSVC() && !Subtarget->is64Bit();
760    }
761
762    /// isIntegerTypeFTOL - Return true if the MSVC _ftol2 routine should be
763    /// used for fptoui to the given type.
764    bool isIntegerTypeFTOL(EVT VT) const {
765      return isTargetFTOL() && VT == MVT::i64;
766    }
767
768    /// \brief Returns true if it is beneficial to convert a load of a constant
769    /// to just the constant itself.
770    bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
771                                           Type *Ty) const override;
772
773    /// Intel processors have a unified instruction and data cache
774    const char * getClearCacheBuiltinName() const {
775      return 0; // nothing to do, move along.
776    }
777
778    /// createFastISel - This method returns a target specific FastISel object,
779    /// or null if the target does not support "fast" ISel.
780    FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
781                             const TargetLibraryInfo *libInfo) const override;
782
783    /// getStackCookieLocation - Return true if the target stores stack
784    /// protector cookies at a fixed offset in some non-standard address
785    /// space, and populates the address space and offset as
786    /// appropriate.
787    bool getStackCookieLocation(unsigned &AddressSpace,
788                                unsigned &Offset) const override;
789
790    SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
791                      SelectionDAG &DAG) const;
792
793    bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;
794
795    /// \brief Reset the operation actions based on target options.
796    void resetOperationActions() override;
797
798  protected:
799    std::pair<const TargetRegisterClass*, uint8_t>
800    findRepresentativeClass(MVT VT) const override;
801
802  private:
803    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
804    /// make the right decision when generating code for different targets.
805    const X86Subtarget *Subtarget;
806    const DataLayout *TD;
807
808    /// Used to store the TargetOptions so that we don't waste time resetting
809    /// the operation actions unless we have to.
810    TargetOptions TO;
811
812    /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
813    /// floating point ops.
814    /// When SSE is available, use it for f32 operations.
815    /// When SSE2 is available, use it for f64 operations.
816    bool X86ScalarSSEf32;
817    bool X86ScalarSSEf64;
818
819    /// LegalFPImmediates - A list of legal fp immediates.
820    std::vector<APFloat> LegalFPImmediates;
821
822    /// addLegalFPImmediate - Indicate that this x86 target can instruction
823    /// select the specified FP immediate natively.
824    void addLegalFPImmediate(const APFloat& Imm) {
825      LegalFPImmediates.push_back(Imm);
826    }
827
828    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
829                            CallingConv::ID CallConv, bool isVarArg,
830                            const SmallVectorImpl<ISD::InputArg> &Ins,
831                            SDLoc dl, SelectionDAG &DAG,
832                            SmallVectorImpl<SDValue> &InVals) const;
833    SDValue LowerMemArgument(SDValue Chain,
834                             CallingConv::ID CallConv,
835                             const SmallVectorImpl<ISD::InputArg> &ArgInfo,
836                             SDLoc dl, SelectionDAG &DAG,
837                             const CCValAssign &VA,  MachineFrameInfo *MFI,
838                              unsigned i) const;
839    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
840                             SDLoc dl, SelectionDAG &DAG,
841                             const CCValAssign &VA,
842                             ISD::ArgFlagsTy Flags) const;
843
844    // Call lowering helpers.
845
846    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
847    /// for tail call optimization. Targets which want to do tail call
848    /// optimization should implement this function.
849    bool IsEligibleForTailCallOptimization(SDValue Callee,
850                                           CallingConv::ID CalleeCC,
851                                           bool isVarArg,
852                                           bool isCalleeStructRet,
853                                           bool isCallerStructRet,
854                                           Type *RetTy,
855                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
856                                    const SmallVectorImpl<SDValue> &OutVals,
857                                    const SmallVectorImpl<ISD::InputArg> &Ins,
858                                           SelectionDAG& DAG) const;
859    bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
860    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
861                                SDValue Chain, bool IsTailCall, bool Is64Bit,
862                                int FPDiff, SDLoc dl) const;
863
864    unsigned GetAlignedArgumentStackSize(unsigned StackSize,
865                                         SelectionDAG &DAG) const;
866
867    std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
868                                               bool isSigned,
869                                               bool isReplace) const;
870
871    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
872    SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const;
873    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
874    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
875    SDValue ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const;
876    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
877    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
878    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
879    SDValue LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
880                               int64_t Offset, SelectionDAG &DAG) const;
881    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
882    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
883    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
884    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
885    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
886    SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
887    SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
888    SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const;
889    SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
890    SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
891    SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
892    SDValue LowerToBT(SDValue And, ISD::CondCode CC,
893                      SDLoc dl, SelectionDAG &DAG) const;
894    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
895    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
896    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
897    SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
898    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
899    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
900    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
901    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
902    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
903    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
904    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
905    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
906    SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
907    SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
908    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
909    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
910    SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
911
912    SDValue
913      LowerFormalArguments(SDValue Chain,
914                           CallingConv::ID CallConv, bool isVarArg,
915                           const SmallVectorImpl<ISD::InputArg> &Ins,
916                           SDLoc dl, SelectionDAG &DAG,
917                           SmallVectorImpl<SDValue> &InVals) const override;
918    SDValue LowerCall(CallLoweringInfo &CLI,
919                      SmallVectorImpl<SDValue> &InVals) const override;
920
921    SDValue LowerReturn(SDValue Chain,
922                        CallingConv::ID CallConv, bool isVarArg,
923                        const SmallVectorImpl<ISD::OutputArg> &Outs,
924                        const SmallVectorImpl<SDValue> &OutVals,
925                        SDLoc dl, SelectionDAG &DAG) const override;
926
927    bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
928
929    bool mayBeEmittedAsTailCall(CallInst *CI) const override;
930
931    MVT getTypeForExtArgOrReturn(MVT VT,
932                                 ISD::NodeType ExtendKind) const override;
933
934    bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
935                        bool isVarArg,
936                        const SmallVectorImpl<ISD::OutputArg> &Outs,
937                        LLVMContext &Context) const override;
938
939    const uint16_t *getScratchRegisters(CallingConv::ID CC) const override;
940
941    /// Utility function to emit atomic-load-arith operations (and, or, xor,
942    /// nand, max, min, umax, umin). It takes the corresponding instruction to
943    /// expand, the associated machine basic block, and the associated X86
944    /// opcodes for reg/reg.
945    MachineBasicBlock *EmitAtomicLoadArith(MachineInstr *MI,
946                                           MachineBasicBlock *MBB) const;
947
948    /// Utility function to emit atomic-load-arith operations (and, or, xor,
949    /// nand, add, sub, swap) for 64-bit operands on 32-bit target.
950    MachineBasicBlock *EmitAtomicLoadArith6432(MachineInstr *MI,
951                                               MachineBasicBlock *MBB) const;
952
953    // Utility function to emit the low-level va_arg code for X86-64.
954    MachineBasicBlock *EmitVAARG64WithCustomInserter(
955                       MachineInstr *MI,
956                       MachineBasicBlock *MBB) const;
957
958    /// Utility function to emit the xmm reg save portion of va_start.
959    MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
960                                                   MachineInstr *BInstr,
961                                                   MachineBasicBlock *BB) const;
962
963    MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
964                                         MachineBasicBlock *BB) const;
965
966    MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
967                                              MachineBasicBlock *BB) const;
968
969    MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
970                                            MachineBasicBlock *BB,
971                                            bool Is64Bit) const;
972
973    MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
974                                          MachineBasicBlock *BB) const;
975
976    MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
977                                          MachineBasicBlock *BB) const;
978
979    MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
980                                        MachineBasicBlock *MBB) const;
981
982    MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
983                                         MachineBasicBlock *MBB) const;
984
985    MachineBasicBlock *emitFMA3Instr(MachineInstr *MI,
986                                     MachineBasicBlock *MBB) const;
987
988    /// Emit nodes that will be selected as "test Op0,Op0", or something
989    /// equivalent, for use with the given x86 condition code.
990    SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;
991
992    /// Emit nodes that will be selected as "cmp Op0,Op1", or something
993    /// equivalent, for use with the given x86 condition code.
994    SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
995                    SelectionDAG &DAG) const;
996
997    /// Convert a comparison if required by the subtarget.
998    SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
999  };
1000
1001  namespace X86 {
1002    FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
1003                             const TargetLibraryInfo *libInfo);
1004  }
1005}
1006
1007#endif    // X86ISELLOWERING_H
1008