X86InstrCompiler.td revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19  // Transformation function: get the low 32 bits.
20  return getI32Imm((unsigned)N->getZExtValue());
21}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24  // Transformation function: get the low 8 bits.
25  return getI8Imm((uint8_t)N->getZExtValue());
26}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction.  This expands to code that looks like this:
33//     call  $next_inst
34//     popl %destreg"
35let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
36  def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37                      "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
46def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
47                           "#ADJCALLSTACKDOWN",
48                           [(X86callseq_start timm:$amt)]>,
49                          Requires<[Not64BitMode]>;
50def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51                           "#ADJCALLSTACKUP",
52                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53                          Requires<[Not64BitMode]>;
54}
55
56// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
57// a stack adjustment and the codegen must know that they may modify the stack
58// pointer before prolog-epilog rewriting occurs.
59// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
60// sub / add which can clobber EFLAGS.
61let Defs = [RSP, EFLAGS], Uses = [RSP] in {
62def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
63                           "#ADJCALLSTACKDOWN",
64                           [(X86callseq_start timm:$amt)]>,
65                          Requires<[In64BitMode]>;
66def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
67                           "#ADJCALLSTACKUP",
68                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
69                          Requires<[In64BitMode]>;
70}
71
72
73
74// x86-64 va_start lowering magic.
75let usesCustomInserter = 1, Defs = [EFLAGS] in {
76def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
77                              (outs),
78                              (ins GR8:$al,
79                                   i64imm:$regsavefi, i64imm:$offset,
80                                   variable_ops),
81                              "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
82                              [(X86vastart_save_xmm_regs GR8:$al,
83                                                         imm:$regsavefi,
84                                                         imm:$offset),
85                               (implicit EFLAGS)]>;
86
87// The VAARG_64 pseudo-instruction takes the address of the va_list,
88// and places the address of the next argument into a register.
89let Defs = [EFLAGS] in
90def VAARG_64 : I<0, Pseudo,
91                 (outs GR64:$dst),
92                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
93                 "#VAARG_64 $dst, $ap, $size, $mode, $align",
94                 [(set GR64:$dst,
95                    (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
96                  (implicit EFLAGS)]>;
97
98// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
99// targets.  These calls are needed to probe the stack when allocating more than
100// 4k bytes in one go. Touching the stack at 4K increments is necessary to
101// ensure that the guard pages used by the OS virtual memory manager are
102// allocated in correct sequence.
103// The main point of having separate instruction are extra unmodelled effects
104// (compared to ordinary calls) like stack pointer change.
105
106let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
107  def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
108                     "# dynamic stack allocation",
109                     [(X86WinAlloca)]>;
110
111// When using segmented stacks these are lowered into instructions which first
112// check if the current stacklet has enough free memory. If it does, memory is
113// allocated by bumping the stack pointer. Otherwise memory is allocated from
114// the heap.
115
116let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
117def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
118                      "# variable sized alloca for segmented stacks",
119                      [(set GR32:$dst,
120                         (X86SegAlloca GR32:$size))]>,
121                    Requires<[Not64BitMode]>;
122
123let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
124def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
125                      "# variable sized alloca for segmented stacks",
126                      [(set GR64:$dst,
127                         (X86SegAlloca GR64:$size))]>,
128                    Requires<[In64BitMode]>;
129}
130
131// The MSVC runtime contains an _ftol2 routine for converting floating-point
132// to integer values. It has a strange calling convention: the input is
133// popped from the x87 stack, and the return value is given in EDX:EAX. ECX is
134// used as a temporary register. No other registers (aside from flags) are
135// touched.
136// Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
137// variant is unnecessary.
138
139let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in {
140  def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
141                      "# win32 fptoui",
142                      [(X86WinFTOL RFP32:$src)]>,
143                    Requires<[Not64BitMode]>;
144
145  def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
146                      "# win32 fptoui",
147                      [(X86WinFTOL RFP64:$src)]>,
148                    Requires<[Not64BitMode]>;
149}
150
151//===----------------------------------------------------------------------===//
152// EH Pseudo Instructions
153//
154let SchedRW = [WriteSystem] in {
155let isTerminator = 1, isReturn = 1, isBarrier = 1,
156    hasCtrlDep = 1, isCodeGenOnly = 1 in {
157def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
158                    "ret\t#eh_return, addr: $addr",
159                    [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
160
161}
162
163let isTerminator = 1, isReturn = 1, isBarrier = 1,
164    hasCtrlDep = 1, isCodeGenOnly = 1 in {
165def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
166                     "ret\t#eh_return, addr: $addr",
167                     [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
168
169}
170
171let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
172    usesCustomInserter = 1 in {
173  def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
174                            "#EH_SJLJ_SETJMP32",
175                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
176                          Requires<[Not64BitMode]>;
177  def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
178                            "#EH_SJLJ_SETJMP64",
179                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
180                          Requires<[In64BitMode]>;
181  let isTerminator = 1 in {
182  def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
183                            "#EH_SJLJ_LONGJMP32",
184                            [(X86eh_sjlj_longjmp addr:$buf)]>,
185                          Requires<[Not64BitMode]>;
186  def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
187                            "#EH_SJLJ_LONGJMP64",
188                            [(X86eh_sjlj_longjmp addr:$buf)]>,
189                          Requires<[In64BitMode]>;
190  }
191}
192} // SchedRW
193
194let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
195  def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
196                        "#EH_SjLj_Setup\t$dst", []>;
197}
198
199//===----------------------------------------------------------------------===//
200// Pseudo instructions used by unwind info.
201//
202let isPseudo = 1 in {
203  def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
204                            "#SEH_PushReg $reg", []>;
205  def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
206                            "#SEH_SaveReg $reg, $dst", []>;
207  def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
208                            "#SEH_SaveXMM $reg, $dst", []>;
209  def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
210                            "#SEH_StackAlloc $size", []>;
211  def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
212                            "#SEH_SetFrame $reg, $offset", []>;
213  def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
214                            "#SEH_PushFrame $mode", []>;
215  def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
216                            "#SEH_EndPrologue", []>;
217}
218
219//===----------------------------------------------------------------------===//
220// Pseudo instructions used by segmented stacks.
221//
222
223// This is lowered into a RET instruction by MCInstLower.  We need
224// this so that we don't have to have a MachineBasicBlock which ends
225// with a RET and also has successors.
226let isPseudo = 1 in {
227def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
228                          "", []>;
229
230// This instruction is lowered to a RET followed by a MOV.  The two
231// instructions are not generated on a higher level since then the
232// verifier sees a MachineBasicBlock ending with a non-terminator.
233def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
234                                  "", []>;
235}
236
237//===----------------------------------------------------------------------===//
238// Alias Instructions
239//===----------------------------------------------------------------------===//
240
241// Alias instruction mapping movr0 to xor.
242// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
243let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
244    isPseudo = 1 in
245def MOV32r0  : I<0, Pseudo, (outs GR32:$dst), (ins), "",
246                 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
247
248// Other widths can also make use of the 32-bit xor, which may have a smaller
249// encoding and avoid partial register updates.
250def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
251def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
252def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
253  let AddedComplexity = 20;
254}
255
256// Materialize i64 constant where top 32-bits are zero. This could theoretically
257// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
258// that would make it more difficult to rematerialize.
259let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
260    isCodeGenOnly = 1, neverHasSideEffects = 1 in
261def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
262                     "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
263
264// This 64-bit pseudo-move can be used for both a 64-bit constant that is
265// actually the zero-extension of a 32-bit constant, and for labels in the
266// x86-64 small code model.
267def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>;
268
269let AddedComplexity = 1 in
270def : Pat<(i64 mov64imm32:$src),
271          (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
272
273// Use sbb to materialize carry bit.
274let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
275// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
276// However, Pat<> can't replicate the destination reg into the inputs of the
277// result.
278def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
279                 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
280def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
281                 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
282def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
283                 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
284def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
285                 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
286} // isCodeGenOnly
287
288
289def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
290          (SETB_C16r)>;
291def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
292          (SETB_C32r)>;
293def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
294          (SETB_C64r)>;
295
296def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
297          (SETB_C16r)>;
298def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
299          (SETB_C32r)>;
300def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
301          (SETB_C64r)>;
302
303// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
304// will be eliminated and that the sbb can be extended up to a wider type.  When
305// this happens, it is great.  However, if we are left with an 8-bit sbb and an
306// and, we might as well just match it as a setb.
307def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
308          (SETBr)>;
309
310// (add OP, SETB) -> (adc OP, 0)
311def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
312          (ADC8ri GR8:$op, 0)>;
313def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
314          (ADC32ri8 GR32:$op, 0)>;
315def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
316          (ADC64ri8 GR64:$op, 0)>;
317
318// (sub OP, SETB) -> (sbb OP, 0)
319def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
320          (SBB8ri GR8:$op, 0)>;
321def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
322          (SBB32ri8 GR32:$op, 0)>;
323def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
324          (SBB64ri8 GR64:$op, 0)>;
325
326// (sub OP, SETCC_CARRY) -> (adc OP, 0)
327def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
328          (ADC8ri GR8:$op, 0)>;
329def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
330          (ADC32ri8 GR32:$op, 0)>;
331def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
332          (ADC64ri8 GR64:$op, 0)>;
333
334//===----------------------------------------------------------------------===//
335// String Pseudo Instructions
336//
337let SchedRW = [WriteMicrocoded] in {
338let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
339def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
340                    [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
341                   Requires<[Not64BitMode]>;
342def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
343                    [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
344                   Requires<[Not64BitMode]>;
345def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
346                    [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
347                   Requires<[Not64BitMode]>;
348}
349
350let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
351def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
352                    [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
353                   Requires<[In64BitMode]>;
354def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
355                    [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
356                   Requires<[In64BitMode]>;
357def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
358                    [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
359                   Requires<[In64BitMode]>;
360def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
361                    [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
362                   Requires<[In64BitMode]>;
363}
364
365// FIXME: Should use "(X86rep_stos AL)" as the pattern.
366let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
367  let Uses = [AL,ECX,EDI] in
368  def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
369                      [(X86rep_stos i8)], IIC_REP_STOS>, REP,
370                     Requires<[Not64BitMode]>;
371  let Uses = [AX,ECX,EDI] in
372  def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
373                      [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
374                     Requires<[Not64BitMode]>;
375  let Uses = [EAX,ECX,EDI] in
376  def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
377                      [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
378                     Requires<[Not64BitMode]>;
379}
380
381let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
382  let Uses = [AL,RCX,RDI] in
383  def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
384                      [(X86rep_stos i8)], IIC_REP_STOS>, REP,
385                     Requires<[In64BitMode]>;
386  let Uses = [AX,RCX,RDI] in
387  def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
388                      [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
389                     Requires<[In64BitMode]>;
390  let Uses = [RAX,RCX,RDI] in
391  def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
392                      [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
393                     Requires<[In64BitMode]>;
394
395  let Uses = [RAX,RCX,RDI] in
396  def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
397                      [(X86rep_stos i64)], IIC_REP_STOS>, REP,
398                     Requires<[In64BitMode]>;
399}
400} // SchedRW
401
402//===----------------------------------------------------------------------===//
403// Thread Local Storage Instructions
404//
405
406// ELF TLS Support
407// All calls clobber the non-callee saved registers. ESP is marked as
408// a use to prevent stack-pointer assignments that appear immediately
409// before calls from potentially appearing dead.
410let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
411            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
412            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
413            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
414    Uses = [ESP] in {
415def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
416                  "# TLS_addr32",
417                  [(X86tlsaddr tls32addr:$sym)]>,
418                  Requires<[Not64BitMode]>;
419def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
420                  "# TLS_base_addr32",
421                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
422                  Requires<[Not64BitMode]>;
423}
424
425// All calls clobber the non-callee saved registers. RSP is marked as
426// a use to prevent stack-pointer assignments that appear immediately
427// before calls from potentially appearing dead.
428let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
429            FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
430            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
431            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
432            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
433    Uses = [RSP] in {
434def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
435                   "# TLS_addr64",
436                  [(X86tlsaddr tls64addr:$sym)]>,
437                  Requires<[In64BitMode]>;
438def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
439                   "# TLS_base_addr64",
440                  [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
441                  Requires<[In64BitMode]>;
442}
443
444// Darwin TLS Support
445// For i386, the address of the thunk is passed on the stack, on return the
446// address of the variable is in %eax.  %ecx is trashed during the function
447// call.  All other registers are preserved.
448let Defs = [EAX, ECX, EFLAGS],
449    Uses = [ESP],
450    usesCustomInserter = 1 in
451def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
452                "# TLSCall_32",
453                [(X86TLSCall addr:$sym)]>,
454                Requires<[Not64BitMode]>;
455
456// For x86_64, the address of the thunk is passed in %rdi, on return
457// the address of the variable is in %rax.  All other registers are preserved.
458let Defs = [RAX, EFLAGS],
459    Uses = [RSP, RDI],
460    usesCustomInserter = 1 in
461def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
462                  "# TLSCall_64",
463                  [(X86TLSCall addr:$sym)]>,
464                  Requires<[In64BitMode]>;
465
466
467//===----------------------------------------------------------------------===//
468// Conditional Move Pseudo Instructions
469
470// X86 doesn't have 8-bit conditional moves. Use a customInserter to
471// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
472// however that requires promoting the operands, and can induce additional
473// i8 register pressure.
474let usesCustomInserter = 1, Uses = [EFLAGS] in {
475def CMOV_GR8 : I<0, Pseudo,
476                 (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
477                 "#CMOV_GR8 PSEUDO!",
478                 [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
479                                          imm:$cond, EFLAGS))]>;
480
481let Predicates = [NoCMov] in {
482def CMOV_GR32 : I<0, Pseudo,
483                    (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
484                    "#CMOV_GR32* PSEUDO!",
485                    [(set GR32:$dst,
486                      (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
487def CMOV_GR16 : I<0, Pseudo,
488                    (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
489                    "#CMOV_GR16* PSEUDO!",
490                    [(set GR16:$dst,
491                      (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
492} // Predicates = [NoCMov]
493
494// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
495// SSE1.
496let Predicates = [FPStackf32] in
497def CMOV_RFP32 : I<0, Pseudo,
498                    (outs RFP32:$dst),
499                    (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
500                    "#CMOV_RFP32 PSEUDO!",
501                    [(set RFP32:$dst,
502                      (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
503                                                  EFLAGS))]>;
504// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
505// SSE2.
506let Predicates = [FPStackf64] in
507def CMOV_RFP64 : I<0, Pseudo,
508                    (outs RFP64:$dst),
509                    (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
510                    "#CMOV_RFP64 PSEUDO!",
511                    [(set RFP64:$dst,
512                      (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
513                                                  EFLAGS))]>;
514def CMOV_RFP80 : I<0, Pseudo,
515                    (outs RFP80:$dst),
516                    (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
517                    "#CMOV_RFP80 PSEUDO!",
518                    [(set RFP80:$dst,
519                      (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
520                                                  EFLAGS))]>;
521} // UsesCustomInserter = 1, Uses = [EFLAGS]
522
523
524//===----------------------------------------------------------------------===//
525// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
526//===----------------------------------------------------------------------===//
527
528// FIXME: Use normal instructions and add lock prefix dynamically.
529
530// Memory barriers
531
532// TODO: Get this to fold the constant into the instruction.
533let isCodeGenOnly = 1, Defs = [EFLAGS] in
534def OR32mrLocked  : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
535                      "or{l}\t{$zero, $dst|$dst, $zero}",
536                      [], IIC_ALU_MEM>, Requires<[Not64BitMode]>, LOCK,
537                    Sched<[WriteALULd, WriteRMW]>;
538
539let hasSideEffects = 1 in
540def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
541                     "#MEMBARRIER",
542                     [(X86MemBarrier)]>, Sched<[WriteLoad]>;
543
544// RegOpc corresponds to the mr version of the instruction
545// ImmOpc corresponds to the mi version of the instruction
546// ImmOpc8 corresponds to the mi8 version of the instruction
547// ImmMod corresponds to the instruction format of the mi and mi8 versions
548multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
549                           Format ImmMod, string mnemonic> {
550let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
551    SchedRW = [WriteALULd, WriteRMW] in {
552
553def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
554                  RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
555                  MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
556                  !strconcat(mnemonic, "{b}\t",
557                             "{$src2, $dst|$dst, $src2}"),
558                  [], IIC_ALU_NONMEM>, LOCK;
559def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
560                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
561                   MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
562                   !strconcat(mnemonic, "{w}\t",
563                              "{$src2, $dst|$dst, $src2}"),
564                   [], IIC_ALU_NONMEM>, OpSize16, LOCK;
565def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
566                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
567                   MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
568                   !strconcat(mnemonic, "{l}\t",
569                              "{$src2, $dst|$dst, $src2}"),
570                   [], IIC_ALU_NONMEM>, OpSize32, LOCK;
571def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
572                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
573                    MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
574                    !strconcat(mnemonic, "{q}\t",
575                               "{$src2, $dst|$dst, $src2}"),
576                    [], IIC_ALU_NONMEM>, LOCK;
577
578def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
579                    ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
580                    ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
581                    !strconcat(mnemonic, "{b}\t",
582                               "{$src2, $dst|$dst, $src2}"),
583                    [], IIC_ALU_MEM>, LOCK;
584
585def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
586                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
587                      ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
588                      !strconcat(mnemonic, "{w}\t",
589                                 "{$src2, $dst|$dst, $src2}"),
590                      [], IIC_ALU_MEM>, OpSize16, LOCK;
591
592def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
593                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
594                      ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
595                      !strconcat(mnemonic, "{l}\t",
596                                 "{$src2, $dst|$dst, $src2}"),
597                      [], IIC_ALU_MEM>, OpSize32, LOCK;
598
599def NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
600                         ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
601                         ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
602                         !strconcat(mnemonic, "{q}\t",
603                                    "{$src2, $dst|$dst, $src2}"),
604                         [], IIC_ALU_MEM>, LOCK;
605
606def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
607                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
608                      ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
609                      !strconcat(mnemonic, "{w}\t",
610                                 "{$src2, $dst|$dst, $src2}"),
611                      [], IIC_ALU_MEM>, OpSize16, LOCK;
612def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
613                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
614                      ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
615                      !strconcat(mnemonic, "{l}\t",
616                                 "{$src2, $dst|$dst, $src2}"),
617                      [], IIC_ALU_MEM>, OpSize32, LOCK;
618def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
619                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
620                       ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
621                       !strconcat(mnemonic, "{q}\t",
622                                  "{$src2, $dst|$dst, $src2}"),
623                       [], IIC_ALU_MEM>, LOCK;
624
625}
626
627}
628
629defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
630defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
631defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
632defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
633defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
634
635// Optimized codegen when the non-memory output is not used.
636multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
637                          string mnemonic> {
638let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
639    SchedRW = [WriteALULd, WriteRMW] in {
640
641def NAME#8m  : I<Opc8, Form, (outs), (ins i8mem :$dst),
642                 !strconcat(mnemonic, "{b}\t$dst"),
643                 [], IIC_UNARY_MEM>, LOCK;
644def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
645                 !strconcat(mnemonic, "{w}\t$dst"),
646                 [], IIC_UNARY_MEM>, OpSize16, LOCK;
647def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
648                 !strconcat(mnemonic, "{l}\t$dst"),
649                 [], IIC_UNARY_MEM>, OpSize32, LOCK;
650def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
651                  !strconcat(mnemonic, "{q}\t$dst"),
652                  [], IIC_UNARY_MEM>, LOCK;
653}
654}
655
656defm LOCK_INC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
657defm LOCK_DEC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
658
659// Atomic compare and swap.
660multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
661                         SDPatternOperator frag, X86MemOperand x86memop,
662                         InstrItinClass itin> {
663let isCodeGenOnly = 1 in {
664  def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
665               !strconcat(mnemonic, "\t$ptr"),
666               [(frag addr:$ptr)], itin>, TB, LOCK;
667}
668}
669
670multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
671                          string mnemonic, SDPatternOperator frag,
672                          InstrItinClass itin8, InstrItinClass itin> {
673let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
674  let Defs = [AL, EFLAGS], Uses = [AL] in
675  def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
676                  !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
677                  [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
678  let Defs = [AX, EFLAGS], Uses = [AX] in
679  def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
680                  !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
681                  [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
682  let Defs = [EAX, EFLAGS], Uses = [EAX] in
683  def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
684                  !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
685                  [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
686  let Defs = [RAX, EFLAGS], Uses = [RAX] in
687  def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
688                   !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
689                   [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
690}
691}
692
693let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
694    SchedRW = [WriteALULd, WriteRMW] in {
695defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
696                                X86cas8, i64mem,
697                                IIC_CMPX_LOCK_8B>;
698}
699
700let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
701    Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
702defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
703                                 X86cas16, i128mem,
704                                 IIC_CMPX_LOCK_16B>, REX_W;
705}
706
707defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
708                               X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
709
710// Atomic exchange and add
711multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
712                             string frag,
713                             InstrItinClass itin8, InstrItinClass itin> {
714  let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
715      SchedRW = [WriteALULd, WriteRMW] in {
716    def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
717                    (ins GR8:$val, i8mem:$ptr),
718                    !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
719                    [(set GR8:$dst,
720                          (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
721                    itin8>;
722    def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
723                    (ins GR16:$val, i16mem:$ptr),
724                    !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
725                    [(set
726                       GR16:$dst,
727                       (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
728                    itin>, OpSize16;
729    def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
730                    (ins GR32:$val, i32mem:$ptr),
731                    !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
732                    [(set
733                       GR32:$dst,
734                       (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
735                    itin>, OpSize32;
736    def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
737                     (ins GR64:$val, i64mem:$ptr),
738                     !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
739                     [(set
740                        GR64:$dst,
741                        (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
742                     itin>;
743  }
744}
745
746defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
747                               IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
748             TB, LOCK;
749
750def ACQUIRE_MOV8rm  : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
751                      "#ACQUIRE_MOV PSEUDO!",
752                      [(set GR8:$dst,  (atomic_load_8  addr:$src))]>;
753def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
754                      "#ACQUIRE_MOV PSEUDO!",
755                      [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
756def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
757                      "#ACQUIRE_MOV PSEUDO!",
758                      [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
759def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
760                      "#ACQUIRE_MOV PSEUDO!",
761                      [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
762
763def RELEASE_MOV8mr  : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
764                        "#RELEASE_MOV PSEUDO!",
765                        [(atomic_store_8  addr:$dst, GR8 :$src)]>;
766def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
767                        "#RELEASE_MOV PSEUDO!",
768                        [(atomic_store_16 addr:$dst, GR16:$src)]>;
769def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
770                        "#RELEASE_MOV PSEUDO!",
771                        [(atomic_store_32 addr:$dst, GR32:$src)]>;
772def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
773                        "#RELEASE_MOV PSEUDO!",
774                        [(atomic_store_64 addr:$dst, GR64:$src)]>;
775
776//===----------------------------------------------------------------------===//
777// Conditional Move Pseudo Instructions.
778//===----------------------------------------------------------------------===//
779
780
781// CMOV* - Used to implement the SSE SELECT DAG operation.  Expanded after
782// instruction selection into a branch sequence.
783let Uses = [EFLAGS], usesCustomInserter = 1 in {
784  def CMOV_FR32 : I<0, Pseudo,
785                    (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
786                    "#CMOV_FR32 PSEUDO!",
787                    [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
788                                                  EFLAGS))]>;
789  def CMOV_FR64 : I<0, Pseudo,
790                    (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
791                    "#CMOV_FR64 PSEUDO!",
792                    [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
793                                                  EFLAGS))]>;
794  def CMOV_V4F32 : I<0, Pseudo,
795                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
796                    "#CMOV_V4F32 PSEUDO!",
797                    [(set VR128:$dst,
798                      (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
799                                          EFLAGS)))]>;
800  def CMOV_V2F64 : I<0, Pseudo,
801                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
802                    "#CMOV_V2F64 PSEUDO!",
803                    [(set VR128:$dst,
804                      (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
805                                          EFLAGS)))]>;
806  def CMOV_V2I64 : I<0, Pseudo,
807                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
808                    "#CMOV_V2I64 PSEUDO!",
809                    [(set VR128:$dst,
810                      (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
811                                          EFLAGS)))]>;
812  def CMOV_V8F32 : I<0, Pseudo,
813                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
814                    "#CMOV_V8F32 PSEUDO!",
815                    [(set VR256:$dst,
816                      (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond,
817                                          EFLAGS)))]>;
818  def CMOV_V4F64 : I<0, Pseudo,
819                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
820                    "#CMOV_V4F64 PSEUDO!",
821                    [(set VR256:$dst,
822                      (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
823                                          EFLAGS)))]>;
824  def CMOV_V4I64 : I<0, Pseudo,
825                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
826                    "#CMOV_V4I64 PSEUDO!",
827                    [(set VR256:$dst,
828                      (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
829                                          EFLAGS)))]>;
830  def CMOV_V8I64 : I<0, Pseudo,
831                    (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
832                    "#CMOV_V8I64 PSEUDO!",
833                    [(set VR512:$dst,
834                      (v8i64 (X86cmov VR512:$t, VR512:$f, imm:$cond,
835                                          EFLAGS)))]>;
836  def CMOV_V8F64 : I<0, Pseudo,
837                    (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
838                    "#CMOV_V8F64 PSEUDO!",
839                    [(set VR512:$dst,
840                      (v8f64 (X86cmov VR512:$t, VR512:$f, imm:$cond,
841                                          EFLAGS)))]>;
842  def CMOV_V16F32 : I<0, Pseudo,
843                    (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
844                    "#CMOV_V16F32 PSEUDO!",
845                    [(set VR512:$dst,
846                      (v16f32 (X86cmov VR512:$t, VR512:$f, imm:$cond,
847                                          EFLAGS)))]>;
848}
849
850
851//===----------------------------------------------------------------------===//
852// DAG Pattern Matching Rules
853//===----------------------------------------------------------------------===//
854
855// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
856def : Pat<(i32 (X86Wrapper tconstpool  :$dst)), (MOV32ri tconstpool  :$dst)>;
857def : Pat<(i32 (X86Wrapper tjumptable  :$dst)), (MOV32ri tjumptable  :$dst)>;
858def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
859def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
860def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
861def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
862
863def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
864          (ADD32ri GR32:$src1, tconstpool:$src2)>;
865def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
866          (ADD32ri GR32:$src1, tjumptable:$src2)>;
867def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
868          (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
869def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
870          (ADD32ri GR32:$src1, texternalsym:$src2)>;
871def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
872          (ADD32ri GR32:$src1, tblockaddress:$src2)>;
873
874def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
875          (MOV32mi addr:$dst, tglobaladdr:$src)>;
876def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
877          (MOV32mi addr:$dst, texternalsym:$src)>;
878def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
879          (MOV32mi addr:$dst, tblockaddress:$src)>;
880
881// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
882// code model mode, should use 'movabs'.  FIXME: This is really a hack, the
883//  'movabs' predicate should handle this sort of thing.
884def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
885          (MOV64ri tconstpool  :$dst)>, Requires<[FarData]>;
886def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
887          (MOV64ri tjumptable  :$dst)>, Requires<[FarData]>;
888def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
889          (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
890def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
891          (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
892def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
893          (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
894
895// In kernel code model, we can get the address of a label
896// into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
897// the MOV64ri32 should accept these.
898def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
899          (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
900def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
901          (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
902def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
903          (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
904def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
905          (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
906def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
907          (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
908
909// If we have small model and -static mode, it is safe to store global addresses
910// directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
911// for MOV64mi32 should handle this sort of thing.
912def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
913          (MOV64mi32 addr:$dst, tconstpool:$src)>,
914          Requires<[NearData, IsStatic]>;
915def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
916          (MOV64mi32 addr:$dst, tjumptable:$src)>,
917          Requires<[NearData, IsStatic]>;
918def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
919          (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
920          Requires<[NearData, IsStatic]>;
921def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
922          (MOV64mi32 addr:$dst, texternalsym:$src)>,
923          Requires<[NearData, IsStatic]>;
924def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
925          (MOV64mi32 addr:$dst, tblockaddress:$src)>,
926          Requires<[NearData, IsStatic]>;
927
928// Calls
929
930// tls has some funny stuff here...
931// This corresponds to movabs $foo@tpoff, %rax
932def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
933          (MOV64ri32 tglobaltlsaddr :$dst)>;
934// This corresponds to add $foo@tpoff, %rax
935def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
936          (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
937
938
939// Direct PC relative function call for small code model. 32-bit displacement
940// sign extended to 64-bit.
941def : Pat<(X86call (i64 tglobaladdr:$dst)),
942          (CALL64pcrel32 tglobaladdr:$dst)>;
943def : Pat<(X86call (i64 texternalsym:$dst)),
944          (CALL64pcrel32 texternalsym:$dst)>;
945
946// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
947// can never use callee-saved registers. That is the purpose of the GR64_TC
948// register classes.
949//
950// The only volatile register that is never used by the calling convention is
951// %r11. This happens when calling a vararg function with 6 arguments.
952//
953// Match an X86tcret that uses less than 7 volatile registers.
954def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
955                             (X86tcret node:$ptr, node:$off), [{
956  // X86tcret args: (*chain, ptr, imm, regs..., glue)
957  unsigned NumRegs = 0;
958  for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
959    if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
960      return false;
961  return true;
962}]>;
963
964def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
965          (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
966          Requires<[Not64BitMode]>;
967
968// FIXME: This is disabled for 32-bit PIC mode because the global base
969// register which is part of the address mode may be assigned a
970// callee-saved register.
971def : Pat<(X86tcret (load addr:$dst), imm:$off),
972          (TCRETURNmi addr:$dst, imm:$off)>,
973          Requires<[Not64BitMode, IsNotPIC]>;
974
975def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
976          (TCRETURNdi texternalsym:$dst, imm:$off)>,
977          Requires<[Not64BitMode]>;
978
979def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
980          (TCRETURNdi texternalsym:$dst, imm:$off)>,
981          Requires<[Not64BitMode]>;
982
983def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
984          (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
985          Requires<[In64BitMode]>;
986
987// Don't fold loads into X86tcret requiring more than 6 regs.
988// There wouldn't be enough scratch registers for base+index.
989def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
990          (TCRETURNmi64 addr:$dst, imm:$off)>,
991          Requires<[In64BitMode]>;
992
993def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
994          (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
995          Requires<[In64BitMode]>;
996
997def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
998          (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
999          Requires<[In64BitMode]>;
1000
1001// Normal calls, with various flavors of addresses.
1002def : Pat<(X86call (i32 tglobaladdr:$dst)),
1003          (CALLpcrel32 tglobaladdr:$dst)>;
1004def : Pat<(X86call (i32 texternalsym:$dst)),
1005          (CALLpcrel32 texternalsym:$dst)>;
1006def : Pat<(X86call (i32 imm:$dst)),
1007          (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1008
1009// Comparisons.
1010
1011// TEST R,R is smaller than CMP R,0
1012def : Pat<(X86cmp GR8:$src1, 0),
1013          (TEST8rr GR8:$src1, GR8:$src1)>;
1014def : Pat<(X86cmp GR16:$src1, 0),
1015          (TEST16rr GR16:$src1, GR16:$src1)>;
1016def : Pat<(X86cmp GR32:$src1, 0),
1017          (TEST32rr GR32:$src1, GR32:$src1)>;
1018def : Pat<(X86cmp GR64:$src1, 0),
1019          (TEST64rr GR64:$src1, GR64:$src1)>;
1020
1021// Conditional moves with folded loads with operands swapped and conditions
1022// inverted.
1023multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1024                  Instruction Inst64> {
1025  let Predicates = [HasCMov] in {
1026    def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1027              (Inst16 GR16:$src2, addr:$src1)>;
1028    def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1029              (Inst32 GR32:$src2, addr:$src1)>;
1030    def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1031              (Inst64 GR64:$src2, addr:$src1)>;
1032  }
1033}
1034
1035defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1036defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1037defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1038defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1039defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1040defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1041defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1042defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1043defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1044defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1045defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1046defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1047defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1048defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1049defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1050defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1051
1052// zextload bool -> zextload byte
1053def : Pat<(zextloadi8i1  addr:$src), (MOV8rm     addr:$src)>;
1054def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1055def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1056def : Pat<(zextloadi64i1 addr:$src),
1057          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1058
1059// extload bool -> extload byte
1060// When extloading from 16-bit and smaller memory locations into 64-bit
1061// registers, use zero-extending loads so that the entire 64-bit register is
1062// defined, avoiding partial-register updates.
1063
1064def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
1065def : Pat<(extloadi16i1 addr:$src),  (MOVZX16rm8  addr:$src)>;
1066def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
1067def : Pat<(extloadi16i8 addr:$src),  (MOVZX16rm8  addr:$src)>;
1068def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
1069def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1070
1071// For other extloads, use subregs, since the high contents of the register are
1072// defined after an extload.
1073def : Pat<(extloadi64i1 addr:$src),
1074          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1075def : Pat<(extloadi64i8 addr:$src),
1076          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1077def : Pat<(extloadi64i16 addr:$src),
1078          (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1079def : Pat<(extloadi64i32 addr:$src),
1080          (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1081
1082// anyext. Define these to do an explicit zero-extend to
1083// avoid partial-register updates.
1084def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1085                                     (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1086def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
1087
1088// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1089def : Pat<(i32 (anyext GR16:$src)),
1090          (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1091
1092def : Pat<(i64 (anyext GR8 :$src)),
1093          (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
1094def : Pat<(i64 (anyext GR16:$src)),
1095          (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1096def : Pat<(i64 (anyext GR32:$src)),
1097          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1098
1099
1100// Any instruction that defines a 32-bit result leaves the high half of the
1101// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1102// be copying from a truncate. And x86's cmov doesn't do anything if the
1103// condition is false. But any other 32-bit operation will zero-extend
1104// up to 64 bits.
1105def def32 : PatLeaf<(i32 GR32:$src), [{
1106  return N->getOpcode() != ISD::TRUNCATE &&
1107         N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1108         N->getOpcode() != ISD::CopyFromReg &&
1109         N->getOpcode() != X86ISD::CMOV;
1110}]>;
1111
1112// In the case of a 32-bit def that is known to implicitly zero-extend,
1113// we can use a SUBREG_TO_REG.
1114def : Pat<(i64 (zext def32:$src)),
1115          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1116
1117//===----------------------------------------------------------------------===//
1118// Pattern match OR as ADD
1119//===----------------------------------------------------------------------===//
1120
1121// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1122// 3-addressified into an LEA instruction to avoid copies.  However, we also
1123// want to finally emit these instructions as an or at the end of the code
1124// generator to make the generated code easier to read.  To do this, we select
1125// into "disjoint bits" pseudo ops.
1126
1127// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1128def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1129  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1130    return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1131
1132  APInt KnownZero0, KnownOne0;
1133  CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1134  APInt KnownZero1, KnownOne1;
1135  CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1136  return (~KnownZero0 & ~KnownZero1) == 0;
1137}]>;
1138
1139
1140// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1141// Try this before the selecting to OR.
1142let AddedComplexity = 5, SchedRW = [WriteALU] in {
1143
1144let isConvertibleToThreeAddress = 1,
1145    Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1146let isCommutable = 1 in {
1147def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1148                    "", // orw/addw REG, REG
1149                    [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1150def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1151                    "", // orl/addl REG, REG
1152                    [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1153def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1154                    "", // orq/addq REG, REG
1155                    [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1156} // isCommutable
1157
1158// NOTE: These are order specific, we want the ri8 forms to be listed
1159// first so that they are slightly preferred to the ri forms.
1160
1161def ADD16ri8_DB : I<0, Pseudo,
1162                    (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1163                    "", // orw/addw REG, imm8
1164                    [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1165def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1166                    "", // orw/addw REG, imm
1167                    [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1168
1169def ADD32ri8_DB : I<0, Pseudo,
1170                    (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1171                    "", // orl/addl REG, imm8
1172                    [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1173def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1174                    "", // orl/addl REG, imm
1175                    [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1176
1177
1178def ADD64ri8_DB : I<0, Pseudo,
1179                    (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1180                    "", // orq/addq REG, imm8
1181                    [(set GR64:$dst, (or_is_add GR64:$src1,
1182                                                i64immSExt8:$src2))]>;
1183def ADD64ri32_DB : I<0, Pseudo,
1184                     (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1185                      "", // orq/addq REG, imm
1186                      [(set GR64:$dst, (or_is_add GR64:$src1,
1187                                                  i64immSExt32:$src2))]>;
1188}
1189} // AddedComplexity, SchedRW
1190
1191
1192//===----------------------------------------------------------------------===//
1193// Some peepholes
1194//===----------------------------------------------------------------------===//
1195
1196// Odd encoding trick: -128 fits into an 8-bit immediate field while
1197// +128 doesn't, so in this special case use a sub instead of an add.
1198def : Pat<(add GR16:$src1, 128),
1199          (SUB16ri8 GR16:$src1, -128)>;
1200def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1201          (SUB16mi8 addr:$dst, -128)>;
1202
1203def : Pat<(add GR32:$src1, 128),
1204          (SUB32ri8 GR32:$src1, -128)>;
1205def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1206          (SUB32mi8 addr:$dst, -128)>;
1207
1208def : Pat<(add GR64:$src1, 128),
1209          (SUB64ri8 GR64:$src1, -128)>;
1210def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1211          (SUB64mi8 addr:$dst, -128)>;
1212
1213// The same trick applies for 32-bit immediate fields in 64-bit
1214// instructions.
1215def : Pat<(add GR64:$src1, 0x0000000080000000),
1216          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1217def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1218          (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1219
1220// To avoid needing to materialize an immediate in a register, use a 32-bit and
1221// with implicit zero-extension instead of a 64-bit and if the immediate has at
1222// least 32 bits of leading zeros. If in addition the last 32 bits can be
1223// represented with a sign extension of a 8 bit constant, use that.
1224
1225def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1226          (SUBREG_TO_REG
1227            (i64 0),
1228            (AND32ri8
1229              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1230              (i32 (GetLo8XForm imm:$imm))),
1231            sub_32bit)>;
1232
1233def : Pat<(and GR64:$src, i64immZExt32:$imm),
1234          (SUBREG_TO_REG
1235            (i64 0),
1236            (AND32ri
1237              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1238              (i32 (GetLo32XForm imm:$imm))),
1239            sub_32bit)>;
1240
1241
1242// r & (2^16-1) ==> movz
1243def : Pat<(and GR32:$src1, 0xffff),
1244          (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1245// r & (2^8-1) ==> movz
1246def : Pat<(and GR32:$src1, 0xff),
1247          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1248                                                             GR32_ABCD)),
1249                                      sub_8bit))>,
1250      Requires<[Not64BitMode]>;
1251// r & (2^8-1) ==> movz
1252def : Pat<(and GR16:$src1, 0xff),
1253           (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1254            (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1255             sub_16bit)>,
1256      Requires<[Not64BitMode]>;
1257
1258// r & (2^32-1) ==> movz
1259def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1260          (SUBREG_TO_REG (i64 0),
1261                         (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1262                         sub_32bit)>;
1263// r & (2^16-1) ==> movz
1264def : Pat<(and GR64:$src, 0xffff),
1265          (SUBREG_TO_REG (i64 0),
1266                      (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1267                      sub_32bit)>;
1268// r & (2^8-1) ==> movz
1269def : Pat<(and GR64:$src, 0xff),
1270          (SUBREG_TO_REG (i64 0),
1271                         (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1272                         sub_32bit)>;
1273// r & (2^8-1) ==> movz
1274def : Pat<(and GR32:$src1, 0xff),
1275           (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1276      Requires<[In64BitMode]>;
1277// r & (2^8-1) ==> movz
1278def : Pat<(and GR16:$src1, 0xff),
1279           (EXTRACT_SUBREG (MOVZX32rr8 (i8
1280            (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1281      Requires<[In64BitMode]>;
1282
1283
1284// sext_inreg patterns
1285def : Pat<(sext_inreg GR32:$src, i16),
1286          (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1287def : Pat<(sext_inreg GR32:$src, i8),
1288          (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1289                                                             GR32_ABCD)),
1290                                      sub_8bit))>,
1291      Requires<[Not64BitMode]>;
1292
1293def : Pat<(sext_inreg GR16:$src, i8),
1294           (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1295            (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1296             sub_16bit)>,
1297      Requires<[Not64BitMode]>;
1298
1299def : Pat<(sext_inreg GR64:$src, i32),
1300          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1301def : Pat<(sext_inreg GR64:$src, i16),
1302          (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1303def : Pat<(sext_inreg GR64:$src, i8),
1304          (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1305def : Pat<(sext_inreg GR32:$src, i8),
1306          (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1307      Requires<[In64BitMode]>;
1308def : Pat<(sext_inreg GR16:$src, i8),
1309           (EXTRACT_SUBREG (MOVSX32rr8
1310            (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1311      Requires<[In64BitMode]>;
1312
1313// sext, sext_load, zext, zext_load
1314def: Pat<(i16 (sext GR8:$src)),
1315          (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1316def: Pat<(sextloadi16i8 addr:$src),
1317          (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1318def: Pat<(i16 (zext GR8:$src)),
1319          (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1320def: Pat<(zextloadi16i8 addr:$src),
1321          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1322
1323// trunc patterns
1324def : Pat<(i16 (trunc GR32:$src)),
1325          (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1326def : Pat<(i8 (trunc GR32:$src)),
1327          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1328                          sub_8bit)>,
1329      Requires<[Not64BitMode]>;
1330def : Pat<(i8 (trunc GR16:$src)),
1331          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1332                          sub_8bit)>,
1333      Requires<[Not64BitMode]>;
1334def : Pat<(i32 (trunc GR64:$src)),
1335          (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1336def : Pat<(i16 (trunc GR64:$src)),
1337          (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1338def : Pat<(i8 (trunc GR64:$src)),
1339          (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1340def : Pat<(i8 (trunc GR32:$src)),
1341          (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1342      Requires<[In64BitMode]>;
1343def : Pat<(i8 (trunc GR16:$src)),
1344          (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1345      Requires<[In64BitMode]>;
1346
1347// h-register tricks
1348def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1349          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1350                          sub_8bit_hi)>,
1351      Requires<[Not64BitMode]>;
1352def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1353          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1354                          sub_8bit_hi)>,
1355      Requires<[Not64BitMode]>;
1356def : Pat<(srl GR16:$src, (i8 8)),
1357          (EXTRACT_SUBREG
1358            (MOVZX32rr8
1359              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1360                              sub_8bit_hi)),
1361            sub_16bit)>,
1362      Requires<[Not64BitMode]>;
1363def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1364          (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1365                                                             GR16_ABCD)),
1366                                      sub_8bit_hi))>,
1367      Requires<[Not64BitMode]>;
1368def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1369          (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1370                                                             GR16_ABCD)),
1371                                      sub_8bit_hi))>,
1372      Requires<[Not64BitMode]>;
1373def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1374          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1375                                                             GR32_ABCD)),
1376                                      sub_8bit_hi))>,
1377      Requires<[Not64BitMode]>;
1378def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1379          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1380                                                             GR32_ABCD)),
1381                                      sub_8bit_hi))>,
1382      Requires<[Not64BitMode]>;
1383
1384// h-register tricks.
1385// For now, be conservative on x86-64 and use an h-register extract only if the
1386// value is immediately zero-extended or stored, which are somewhat common
1387// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1388// from being allocated in the same instruction as the h register, as there's
1389// currently no way to describe this requirement to the register allocator.
1390
1391// h-register extract and zero-extend.
1392def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1393          (SUBREG_TO_REG
1394            (i64 0),
1395            (MOVZX32_NOREXrr8
1396              (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1397                              sub_8bit_hi)),
1398            sub_32bit)>;
1399def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1400          (MOVZX32_NOREXrr8
1401            (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1402                            sub_8bit_hi))>,
1403      Requires<[In64BitMode]>;
1404def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1405          (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1406                                                                   GR32_ABCD)),
1407                                             sub_8bit_hi))>,
1408      Requires<[In64BitMode]>;
1409def : Pat<(srl GR16:$src, (i8 8)),
1410          (EXTRACT_SUBREG
1411            (MOVZX32_NOREXrr8
1412              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1413                              sub_8bit_hi)),
1414            sub_16bit)>,
1415      Requires<[In64BitMode]>;
1416def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1417          (MOVZX32_NOREXrr8
1418            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1419                            sub_8bit_hi))>,
1420      Requires<[In64BitMode]>;
1421def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1422          (MOVZX32_NOREXrr8
1423            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1424                            sub_8bit_hi))>,
1425      Requires<[In64BitMode]>;
1426def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1427          (SUBREG_TO_REG
1428            (i64 0),
1429            (MOVZX32_NOREXrr8
1430              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1431                              sub_8bit_hi)),
1432            sub_32bit)>;
1433def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1434          (SUBREG_TO_REG
1435            (i64 0),
1436            (MOVZX32_NOREXrr8
1437              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1438                              sub_8bit_hi)),
1439            sub_32bit)>;
1440
1441// h-register extract and store.
1442def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1443          (MOV8mr_NOREX
1444            addr:$dst,
1445            (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1446                            sub_8bit_hi))>;
1447def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1448          (MOV8mr_NOREX
1449            addr:$dst,
1450            (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1451                            sub_8bit_hi))>,
1452      Requires<[In64BitMode]>;
1453def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1454          (MOV8mr_NOREX
1455            addr:$dst,
1456            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1457                            sub_8bit_hi))>,
1458      Requires<[In64BitMode]>;
1459
1460
1461// (shl x, 1) ==> (add x, x)
1462// Note that if x is undef (immediate or otherwise), we could theoretically
1463// end up with the two uses of x getting different values, producing a result
1464// where the least significant bit is not 0. However, the probability of this
1465// happening is considered low enough that this is officially not a
1466// "real problem".
1467def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
1468def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1469def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1470def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1471
1472// Helper imms that check if a mask doesn't change significant shift bits.
1473def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>;
1474def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>;
1475
1476// Shift amount is implicitly masked.
1477multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1478  // (shift x (and y, 31)) ==> (shift x, y)
1479  def : Pat<(frag GR8:$src1, (and CL, immShift32)),
1480            (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1481  def : Pat<(frag GR16:$src1, (and CL, immShift32)),
1482            (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1483  def : Pat<(frag GR32:$src1, (and CL, immShift32)),
1484            (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1485  def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1486            (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1487  def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1488            (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1489  def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1490            (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1491
1492  // (shift x (and y, 63)) ==> (shift x, y)
1493  def : Pat<(frag GR64:$src1, (and CL, immShift64)),
1494            (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1495  def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1496            (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1497}
1498
1499defm : MaskedShiftAmountPats<shl, "SHL">;
1500defm : MaskedShiftAmountPats<srl, "SHR">;
1501defm : MaskedShiftAmountPats<sra, "SAR">;
1502defm : MaskedShiftAmountPats<rotl, "ROL">;
1503defm : MaskedShiftAmountPats<rotr, "ROR">;
1504
1505// (anyext (setcc_carry)) -> (setcc_carry)
1506def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1507          (SETB_C16r)>;
1508def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1509          (SETB_C32r)>;
1510def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1511          (SETB_C32r)>;
1512
1513
1514
1515
1516//===----------------------------------------------------------------------===//
1517// EFLAGS-defining Patterns
1518//===----------------------------------------------------------------------===//
1519
1520// add reg, reg
1521def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
1522def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1523def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1524
1525// add reg, mem
1526def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1527          (ADD8rm GR8:$src1, addr:$src2)>;
1528def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1529          (ADD16rm GR16:$src1, addr:$src2)>;
1530def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1531          (ADD32rm GR32:$src1, addr:$src2)>;
1532
1533// add reg, imm
1534def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
1535def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1536def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1537def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1538          (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1539def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1540          (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1541
1542// sub reg, reg
1543def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
1544def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1545def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1546
1547// sub reg, mem
1548def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1549          (SUB8rm GR8:$src1, addr:$src2)>;
1550def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1551          (SUB16rm GR16:$src1, addr:$src2)>;
1552def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1553          (SUB32rm GR32:$src1, addr:$src2)>;
1554
1555// sub reg, imm
1556def : Pat<(sub GR8:$src1, imm:$src2),
1557          (SUB8ri GR8:$src1, imm:$src2)>;
1558def : Pat<(sub GR16:$src1, imm:$src2),
1559          (SUB16ri GR16:$src1, imm:$src2)>;
1560def : Pat<(sub GR32:$src1, imm:$src2),
1561          (SUB32ri GR32:$src1, imm:$src2)>;
1562def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1563          (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1564def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1565          (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1566
1567// sub 0, reg
1568def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
1569def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1570def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1571def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1572
1573// mul reg, reg
1574def : Pat<(mul GR16:$src1, GR16:$src2),
1575          (IMUL16rr GR16:$src1, GR16:$src2)>;
1576def : Pat<(mul GR32:$src1, GR32:$src2),
1577          (IMUL32rr GR32:$src1, GR32:$src2)>;
1578
1579// mul reg, mem
1580def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1581          (IMUL16rm GR16:$src1, addr:$src2)>;
1582def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1583          (IMUL32rm GR32:$src1, addr:$src2)>;
1584
1585// mul reg, imm
1586def : Pat<(mul GR16:$src1, imm:$src2),
1587          (IMUL16rri GR16:$src1, imm:$src2)>;
1588def : Pat<(mul GR32:$src1, imm:$src2),
1589          (IMUL32rri GR32:$src1, imm:$src2)>;
1590def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1591          (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1592def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1593          (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1594
1595// reg = mul mem, imm
1596def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1597          (IMUL16rmi addr:$src1, imm:$src2)>;
1598def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1599          (IMUL32rmi addr:$src1, imm:$src2)>;
1600def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1601          (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1602def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1603          (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1604
1605// Patterns for nodes that do not produce flags, for instructions that do.
1606
1607// addition
1608def : Pat<(add GR64:$src1, GR64:$src2),
1609          (ADD64rr GR64:$src1, GR64:$src2)>;
1610def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1611          (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1612def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1613          (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1614def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1615          (ADD64rm GR64:$src1, addr:$src2)>;
1616
1617// subtraction
1618def : Pat<(sub GR64:$src1, GR64:$src2),
1619          (SUB64rr GR64:$src1, GR64:$src2)>;
1620def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1621          (SUB64rm GR64:$src1, addr:$src2)>;
1622def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1623          (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1624def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1625          (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1626
1627// Multiply
1628def : Pat<(mul GR64:$src1, GR64:$src2),
1629          (IMUL64rr GR64:$src1, GR64:$src2)>;
1630def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1631          (IMUL64rm GR64:$src1, addr:$src2)>;
1632def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1633          (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1634def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1635          (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1636def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1637          (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1638def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1639          (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1640
1641// Increment reg.
1642// Do not make INC if it is slow
1643def : Pat<(add GR8:$src, 1),
1644          (INC8r GR8:$src)>, Requires<[NotSlowIncDec]>;
1645def : Pat<(add GR16:$src, 1),
1646          (INC16r GR16:$src)>, Requires<[NotSlowIncDec, Not64BitMode]>;
1647def : Pat<(add GR16:$src, 1),
1648          (INC64_16r GR16:$src)>, Requires<[NotSlowIncDec, In64BitMode]>;
1649def : Pat<(add GR32:$src, 1),
1650          (INC32r GR32:$src)>, Requires<[NotSlowIncDec, Not64BitMode]>;
1651def : Pat<(add GR32:$src, 1),
1652          (INC64_32r GR32:$src)>, Requires<[NotSlowIncDec, In64BitMode]>;
1653def : Pat<(add GR64:$src, 1),
1654          (INC64r GR64:$src)>, Requires<[NotSlowIncDec]>;
1655
1656// Decrement reg.
1657// Do not make DEC if it is slow
1658def : Pat<(add GR8:$src, -1),
1659          (DEC8r GR8:$src)>, Requires<[NotSlowIncDec]>;
1660def : Pat<(add GR16:$src, -1),
1661          (DEC16r GR16:$src)>, Requires<[NotSlowIncDec, Not64BitMode]>;
1662def : Pat<(add GR16:$src, -1),
1663          (DEC64_16r GR16:$src)>, Requires<[NotSlowIncDec, In64BitMode]>;
1664def : Pat<(add GR32:$src, -1),
1665          (DEC32r GR32:$src)>, Requires<[NotSlowIncDec, Not64BitMode]>;
1666def : Pat<(add GR32:$src, -1),
1667          (DEC64_32r GR32:$src)>, Requires<[NotSlowIncDec, In64BitMode]>;
1668def : Pat<(add GR64:$src, -1),
1669          (DEC64r GR64:$src)>, Requires<[NotSlowIncDec]>;
1670
1671// or reg/reg.
1672def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
1673def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1674def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1675def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1676
1677// or reg/mem
1678def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1679          (OR8rm GR8:$src1, addr:$src2)>;
1680def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1681          (OR16rm GR16:$src1, addr:$src2)>;
1682def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1683          (OR32rm GR32:$src1, addr:$src2)>;
1684def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1685          (OR64rm GR64:$src1, addr:$src2)>;
1686
1687// or reg/imm
1688def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
1689def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1690def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1691def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1692          (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1693def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1694          (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1695def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1696          (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1697def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1698          (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1699
1700// xor reg/reg
1701def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
1702def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1703def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1704def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1705
1706// xor reg/mem
1707def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1708          (XOR8rm GR8:$src1, addr:$src2)>;
1709def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1710          (XOR16rm GR16:$src1, addr:$src2)>;
1711def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1712          (XOR32rm GR32:$src1, addr:$src2)>;
1713def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1714          (XOR64rm GR64:$src1, addr:$src2)>;
1715
1716// xor reg/imm
1717def : Pat<(xor GR8:$src1, imm:$src2),
1718          (XOR8ri GR8:$src1, imm:$src2)>;
1719def : Pat<(xor GR16:$src1, imm:$src2),
1720          (XOR16ri GR16:$src1, imm:$src2)>;
1721def : Pat<(xor GR32:$src1, imm:$src2),
1722          (XOR32ri GR32:$src1, imm:$src2)>;
1723def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1724          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1725def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1726          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1727def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1728          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1729def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1730          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1731
1732// and reg/reg
1733def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
1734def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1735def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1736def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1737
1738// and reg/mem
1739def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1740          (AND8rm GR8:$src1, addr:$src2)>;
1741def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1742          (AND16rm GR16:$src1, addr:$src2)>;
1743def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1744          (AND32rm GR32:$src1, addr:$src2)>;
1745def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1746          (AND64rm GR64:$src1, addr:$src2)>;
1747
1748// and reg/imm
1749def : Pat<(and GR8:$src1, imm:$src2),
1750          (AND8ri GR8:$src1, imm:$src2)>;
1751def : Pat<(and GR16:$src1, imm:$src2),
1752          (AND16ri GR16:$src1, imm:$src2)>;
1753def : Pat<(and GR32:$src1, imm:$src2),
1754          (AND32ri GR32:$src1, imm:$src2)>;
1755def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1756          (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1757def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1758          (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1759def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1760          (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1761def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1762          (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1763
1764// Bit scan instruction patterns to match explicit zero-undef behavior.
1765def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1766def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1767def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1768def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1769def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1770def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1771
1772// When HasMOVBE is enabled it is possible to get a non-legalized
1773// register-register 16 bit bswap. This maps it to a ROL instruction.
1774let Predicates = [HasMOVBE] in {
1775 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
1776}
1777