X86InstrFPStack.td revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the X86 x87 FPU instruction set, defining the
11// instructions, and properties of the instructions which are needed for code
12// generation, machine code emission, and analysis.
13//
14//===----------------------------------------------------------------------===//
15
16//===----------------------------------------------------------------------===//
17// FPStack specific DAG Nodes.
18//===----------------------------------------------------------------------===//
19
20def SDTX86FpGet2    : SDTypeProfile<2, 0, [SDTCisVT<0, f80>, 
21                                           SDTCisVT<1, f80>]>;
22def SDTX86Fld       : SDTypeProfile<1, 2, [SDTCisFP<0>,
23                                           SDTCisPtrTy<1>, 
24                                           SDTCisVT<2, OtherVT>]>;
25def SDTX86Fst       : SDTypeProfile<0, 3, [SDTCisFP<0>,
26                                           SDTCisPtrTy<1>, 
27                                           SDTCisVT<2, OtherVT>]>;
28def SDTX86Fild      : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>,
29                                           SDTCisVT<2, OtherVT>]>;
30def SDTX86Fnstsw    : SDTypeProfile<1, 1, [SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;
31def SDTX86FpToIMem  : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
32
33def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
34
35def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld,
36                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
37def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst,
38                             [SDNPHasChain, SDNPInGlue, SDNPMayStore,
39                              SDNPMemOperand]>;
40def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild,
41                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
42def X86fildflag     : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild,
43                             [SDNPHasChain, SDNPOutGlue, SDNPMayLoad,
44                              SDNPMemOperand]>;
45def X86fp_stsw      : SDNode<"X86ISD::FNSTSW16r", SDTX86Fnstsw>;
46def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem,
47                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
48def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem,
49                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
50def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem,
51                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
52def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore,
53                             [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
54                              SDNPMemOperand]>;
55
56//===----------------------------------------------------------------------===//
57// FPStack pattern fragments
58//===----------------------------------------------------------------------===//
59
60def fpimm0 : PatLeaf<(fpimm), [{
61  return N->isExactlyValue(+0.0);
62}]>;
63
64def fpimmneg0 : PatLeaf<(fpimm), [{
65  return N->isExactlyValue(-0.0);
66}]>;
67
68def fpimm1 : PatLeaf<(fpimm), [{
69  return N->isExactlyValue(+1.0);
70}]>;
71
72def fpimmneg1 : PatLeaf<(fpimm), [{
73  return N->isExactlyValue(-1.0);
74}]>;
75
76// Some 'special' instructions
77let usesCustomInserter = 1 in {  // Expanded after instruction selection.
78  def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
79                              [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
80  def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
81                              [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
82  def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
83                              [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
84  def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
85                              [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
86  def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
87                              [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
88  def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
89                              [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
90  def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
91                              [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
92  def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
93                              [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
94  def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
95                              [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
96}
97
98// All FP Stack operations are represented with four instructions here.  The
99// first three instructions, generated by the instruction selector, use "RFP32"
100// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
101// 64-bit or 80-bit floating point values.  These sizes apply to the values, 
102// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
103// copied to each other without losing information.  These instructions are all
104// pseudo instructions and use the "_Fp" suffix.
105// In some cases there are additional variants with a mixture of different
106// register sizes.
107// The second instruction is defined with FPI, which is the actual instruction
108// emitted by the assembler.  These use "RST" registers, although frequently
109// the actual register(s) used are implicit.  These are always 80 bits.
110// The FP stackifier pass converts one to the other after register allocation 
111// occurs.
112//
113// Note that the FpI instruction should have instruction selection info (e.g.
114// a pattern) and the FPI instruction should have emission info (e.g. opcode
115// encoding and asm printing info).
116
117// Pseudo Instruction for FP stack return values.
118def FpPOP_RETVAL : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>;
119
120// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
121// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
122// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
123// f80 instructions cannot use SSE and use neither of these.
124class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
125  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
126class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
127  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
128
129// Factoring for arithmetic.
130multiclass FPBinary_rr<SDNode OpNode> {
131// Register op register -> register
132// These are separated out because they have no reversed form.
133def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
134                [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
135def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
136                [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
137def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
138                [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
139}
140// The FopST0 series are not included here because of the irregularities
141// in where the 'r' goes in assembly output.
142// These instructions cannot address 80-bit memory.
143multiclass FPBinary<SDNode OpNode, Format fp, string asmstring> {
144// ST(0) = ST(0) + [mem]
145def _Fp32m  : FpIf32<(outs RFP32:$dst), 
146                     (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
147                  [(set RFP32:$dst, 
148                    (OpNode RFP32:$src1, (loadf32 addr:$src2)))]>;
149def _Fp64m  : FpIf64<(outs RFP64:$dst), 
150                     (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
151                  [(set RFP64:$dst, 
152                    (OpNode RFP64:$src1, (loadf64 addr:$src2)))]>;
153def _Fp64m32: FpIf64<(outs RFP64:$dst), 
154                     (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
155                  [(set RFP64:$dst, 
156                    (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2))))]>;
157def _Fp80m32: FpI_<(outs RFP80:$dst), 
158                   (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
159                  [(set RFP80:$dst, 
160                    (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2))))]>;
161def _Fp80m64: FpI_<(outs RFP80:$dst), 
162                   (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
163                  [(set RFP80:$dst, 
164                    (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2))))]>;
165def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src), 
166                 !strconcat("f", asmstring, "{s}\t$src")> { 
167  let mayLoad = 1; 
168}
169def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src), 
170                 !strconcat("f", asmstring, "{l}\t$src")> { 
171  let mayLoad = 1; 
172}
173// ST(0) = ST(0) + [memint]
174def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2), 
175                       OneArgFPRW,
176                    [(set RFP32:$dst, (OpNode RFP32:$src1,
177                                       (X86fild addr:$src2, i16)))]>;
178def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2), 
179                       OneArgFPRW,
180                    [(set RFP32:$dst, (OpNode RFP32:$src1,
181                                       (X86fild addr:$src2, i32)))]>;
182def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2), 
183                       OneArgFPRW,
184                    [(set RFP64:$dst, (OpNode RFP64:$src1,
185                                       (X86fild addr:$src2, i16)))]>;
186def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2), 
187                       OneArgFPRW,
188                    [(set RFP64:$dst, (OpNode RFP64:$src1,
189                                       (X86fild addr:$src2, i32)))]>;
190def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2), 
191                       OneArgFPRW,
192                    [(set RFP80:$dst, (OpNode RFP80:$src1,
193                                       (X86fild addr:$src2, i16)))]>;
194def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2), 
195                       OneArgFPRW,
196                    [(set RFP80:$dst, (OpNode RFP80:$src1,
197                                       (X86fild addr:$src2, i32)))]>;
198def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src), 
199                  !strconcat("fi", asmstring, "{s}\t$src")> { 
200  let mayLoad = 1; 
201}
202def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src), 
203                  !strconcat("fi", asmstring, "{l}\t$src")> { 
204  let mayLoad = 1; 
205}
206}
207
208let Defs = [FPSW] in {
209// FPBinary_rr just defines pseudo-instructions, no need to set a scheduling
210// resources.
211defm ADD : FPBinary_rr<fadd>;
212defm SUB : FPBinary_rr<fsub>;
213defm MUL : FPBinary_rr<fmul>;
214defm DIV : FPBinary_rr<fdiv>;
215// Sets the scheduling resources for the actual NAME#_F<size>m defintions.
216let SchedRW = [WriteFAddLd] in {
217defm ADD : FPBinary<fadd, MRM0m, "add">;
218defm SUB : FPBinary<fsub, MRM4m, "sub">;
219defm SUBR: FPBinary<fsub ,MRM5m, "subr">;
220}
221let SchedRW = [WriteFMulLd] in {
222defm MUL : FPBinary<fmul, MRM1m, "mul">;
223}
224let SchedRW = [WriteFDivLd] in {
225defm DIV : FPBinary<fdiv, MRM6m, "div">;
226defm DIVR: FPBinary<fdiv, MRM7m, "divr">;
227}
228}
229
230class FPST0rInst<Format fp, string asm>
231  : FPI<0xD8, fp, (outs), (ins RST:$op), asm>;
232class FPrST0Inst<Format fp, string asm>
233  : FPI<0xDC, fp, (outs), (ins RST:$op), asm>;
234class FPrST0PInst<Format fp, string asm>
235  : FPI<0xDE, fp, (outs), (ins RST:$op), asm>;
236
237// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
238// of some of the 'reverse' forms of the fsub and fdiv instructions.  As such,
239// we have to put some 'r's in and take them out of weird places.
240let SchedRW = [WriteFAdd] in {
241def ADD_FST0r   : FPST0rInst <MRM0r, "fadd\t$op">;
242def ADD_FrST0   : FPrST0Inst <MRM0r, "fadd\t{%st(0), $op|$op, st(0)}">;
243def ADD_FPrST0  : FPrST0PInst<MRM0r, "faddp\t$op">;
244def SUBR_FST0r  : FPST0rInst <MRM5r, "fsubr\t$op">;
245def SUB_FrST0   : FPrST0Inst <MRM5r, "fsub{r}\t{%st(0), $op|$op, st(0)}">;
246def SUB_FPrST0  : FPrST0PInst<MRM5r, "fsub{r}p\t$op">;
247def SUB_FST0r   : FPST0rInst <MRM4r, "fsub\t$op">;
248def SUBR_FrST0  : FPrST0Inst <MRM4r, "fsub{|r}\t{%st(0), $op|$op, st(0)}">;
249def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t$op">;
250} // SchedRW
251let SchedRW = [WriteFMul] in {
252def MUL_FST0r   : FPST0rInst <MRM1r, "fmul\t$op">;
253def MUL_FrST0   : FPrST0Inst <MRM1r, "fmul\t{%st(0), $op|$op, st(0)}">;
254def MUL_FPrST0  : FPrST0PInst<MRM1r, "fmulp\t$op">;
255} // SchedRW
256let SchedRW = [WriteFDiv] in {
257def DIVR_FST0r  : FPST0rInst <MRM7r, "fdivr\t$op">;
258def DIV_FrST0   : FPrST0Inst <MRM7r, "fdiv{r}\t{%st(0), $op|$op, st(0)}">;
259def DIV_FPrST0  : FPrST0PInst<MRM7r, "fdiv{r}p\t$op">;
260def DIV_FST0r   : FPST0rInst <MRM6r, "fdiv\t$op">;
261def DIVR_FrST0  : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st(0), $op|$op, st(0)}">;
262def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t$op">;
263} // SchedRW
264
265def COM_FST0r   : FPST0rInst <MRM2r, "fcom\t$op">;
266def COMP_FST0r  : FPST0rInst <MRM3r, "fcomp\t$op">;
267
268// Unary operations.
269multiclass FPUnary<SDNode OpNode, Format fp, string asmstring> {
270def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
271                 [(set RFP32:$dst, (OpNode RFP32:$src))]>;
272def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
273                 [(set RFP64:$dst, (OpNode RFP64:$src))]>;
274def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
275                 [(set RFP80:$dst, (OpNode RFP80:$src))]>;
276def _F     : FPI<0xD9, fp, (outs), (ins), asmstring>;
277}
278
279let Defs = [FPSW] in {
280defm CHS : FPUnary<fneg, MRM_E0, "fchs">;
281defm ABS : FPUnary<fabs, MRM_E1, "fabs">;
282let SchedRW = [WriteFSqrt] in {
283defm SQRT: FPUnary<fsqrt,MRM_FA, "fsqrt">;
284}
285defm SIN : FPUnary<fsin, MRM_FE, "fsin">;
286defm COS : FPUnary<fcos, MRM_FF, "fcos">;
287
288let neverHasSideEffects = 1 in {
289def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
290def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
291def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
292}
293def TST_F  : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">;
294} // Defs = [FPSW]
295
296// Versions of FP instructions that take a single memory operand.  Added for the
297//   disassembler; remove as they are included with patterns elsewhere.
298def FCOM32m  : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
299def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
300
301def FLDENVm  : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">;
302def FSTENVm  : FPI<0xD9, MRM6m, (outs f32mem:$dst), (ins), "fnstenv\t$dst">;
303
304def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
305def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
306
307def FCOM64m  : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
308def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
309
310def FRSTORm  : FPI<0xDD, MRM4m, (outs f32mem:$dst), (ins), "frstor\t$dst">;
311def FSAVEm   : FPI<0xDD, MRM6m, (outs f32mem:$dst), (ins), "fnsave\t$dst">;
312def FNSTSWm  : FPI<0xDD, MRM7m, (outs f32mem:$dst), (ins), "fnstsw\t$dst">;
313
314def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
315def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
316
317def FBLDm    : FPI<0xDF, MRM4m, (outs), (ins f32mem:$src), "fbld\t$src">;
318def FBSTPm   : FPI<0xDF, MRM6m, (outs f32mem:$dst), (ins), "fbstp\t$dst">;
319
320// Floating point cmovs.
321class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
322  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>;
323class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
324  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>;
325
326multiclass FPCMov<PatLeaf cc> {
327  def _Fp32  : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
328                       CondMovFP,
329                     [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
330                                        cc, EFLAGS))]>;
331  def _Fp64  : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
332                       CondMovFP,
333                     [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
334                                        cc, EFLAGS))]>;
335  def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
336                     CondMovFP,
337                     [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
338                                        cc, EFLAGS))]>,
339                                        Requires<[HasCMov]>;
340}
341
342let Defs = [FPSW] in {
343let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
344defm CMOVB  : FPCMov<X86_COND_B>;
345defm CMOVBE : FPCMov<X86_COND_BE>;
346defm CMOVE  : FPCMov<X86_COND_E>;
347defm CMOVP  : FPCMov<X86_COND_P>;
348defm CMOVNB : FPCMov<X86_COND_AE>;
349defm CMOVNBE: FPCMov<X86_COND_A>;
350defm CMOVNE : FPCMov<X86_COND_NE>;
351defm CMOVNP : FPCMov<X86_COND_NP>;
352} // Uses = [EFLAGS], Constraints = "$src1 = $dst"
353
354let Predicates = [HasCMov] in {
355// These are not factored because there's no clean way to pass DA/DB.
356def CMOVB_F  : FPI<0xDA, MRM0r, (outs RST:$op), (ins),
357                  "fcmovb\t{$op, %st(0)|st(0), $op}">;
358def CMOVBE_F : FPI<0xDA, MRM2r, (outs RST:$op), (ins),
359                  "fcmovbe\t{$op, %st(0)|st(0), $op}">;
360def CMOVE_F  : FPI<0xDA, MRM1r, (outs RST:$op), (ins),
361                  "fcmove\t{$op, %st(0)|st(0), $op}">;
362def CMOVP_F  : FPI<0xDA, MRM3r, (outs RST:$op), (ins),
363                  "fcmovu\t{$op, %st(0)|st(0), $op}">;
364def CMOVNB_F : FPI<0xDB, MRM0r, (outs RST:$op), (ins),
365                  "fcmovnb\t{$op, %st(0)|st(0), $op}">;
366def CMOVNBE_F: FPI<0xDB, MRM2r, (outs RST:$op), (ins),
367                  "fcmovnbe\t{$op, %st(0)|st(0), $op}">;
368def CMOVNE_F : FPI<0xDB, MRM1r, (outs RST:$op), (ins),
369                  "fcmovne\t{$op, %st(0)|st(0), $op}">;
370def CMOVNP_F : FPI<0xDB, MRM3r, (outs RST:$op), (ins),
371                  "fcmovnu\t{$op, %st(0)|st(0), $op}">;
372} // Predicates = [HasCMov]
373
374// Floating point loads & stores.
375let canFoldAsLoad = 1 in {
376def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
377                  [(set RFP32:$dst, (loadf32 addr:$src))]>;
378let isReMaterializable = 1 in
379  def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
380                  [(set RFP64:$dst, (loadf64 addr:$src))]>;
381def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
382                  [(set RFP80:$dst, (loadf80 addr:$src))]>;
383}
384def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
385                  [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
386def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
387                  [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
388def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
389                  [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
390def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
391                  [(set RFP32:$dst, (X86fild addr:$src, i16))]>;
392def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
393                  [(set RFP32:$dst, (X86fild addr:$src, i32))]>;
394def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
395                  [(set RFP32:$dst, (X86fild addr:$src, i64))]>;
396def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
397                  [(set RFP64:$dst, (X86fild addr:$src, i16))]>;
398def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
399                  [(set RFP64:$dst, (X86fild addr:$src, i32))]>;
400def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
401                  [(set RFP64:$dst, (X86fild addr:$src, i64))]>;
402def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
403                  [(set RFP80:$dst, (X86fild addr:$src, i16))]>;
404def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
405                  [(set RFP80:$dst, (X86fild addr:$src, i32))]>;
406def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
407                  [(set RFP80:$dst, (X86fild addr:$src, i64))]>;
408
409def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
410                  [(store RFP32:$src, addr:$op)]>;
411def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
412                  [(truncstoref32 RFP64:$src, addr:$op)]>;
413def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
414                  [(store RFP64:$src, addr:$op)]>;
415def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
416                  [(truncstoref32 RFP80:$src, addr:$op)]>;
417def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
418                  [(truncstoref64 RFP80:$src, addr:$op)]>;
419// FST does not support 80-bit memory target; FSTP must be used.
420
421let mayStore = 1, neverHasSideEffects = 1 in {
422def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
423def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
424def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
425def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
426def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
427}
428def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
429                    [(store RFP80:$src, addr:$op)]>;
430let mayStore = 1, neverHasSideEffects = 1 in {
431def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
432def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
433def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
434def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
435def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
436def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
437def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
438def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
439def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
440}
441
442let mayLoad = 1, SchedRW = [WriteLoad] in {
443def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src",
444                    IIC_FLD>;
445def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src",
446                    IIC_FLD>;
447def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src",
448                    IIC_FLD80>;
449def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src",
450                    IIC_FILD>;
451def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src",
452                    IIC_FILD>;
453def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src",
454                    IIC_FILD>;
455}
456let mayStore = 1, SchedRW = [WriteStore] in {
457def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst",
458                    IIC_FST>;
459def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst",
460                    IIC_FST>;
461def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst",
462                    IIC_FST>;
463def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst",
464                    IIC_FST>;
465def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst",
466                    IIC_FST80>;
467def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst",
468                    IIC_FIST>;
469def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst",
470                    IIC_FIST>;
471def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst",
472                    IIC_FIST>;
473def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst",
474                    IIC_FIST>;
475def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst",
476                    IIC_FIST>;
477}
478
479// FISTTP requires SSE3 even though it's a FPStack op.
480let Predicates = [HasSSE3] in {
481def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
482                    [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
483def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
484                    [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
485def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
486                    [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
487def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
488                    [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
489def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
490                    [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
491def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
492                    [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
493def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
494                    [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
495def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
496                    [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
497def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
498                    [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
499} // Predicates = [HasSSE3]
500
501let mayStore = 1, SchedRW = [WriteStore] in {
502def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst",
503  IIC_FST>;
504def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst",
505  IIC_FST>;
506def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), 
507  "fisttp{ll}\t$dst", IIC_FST>;
508}
509
510// FP Stack manipulation instructions.
511let SchedRW = [WriteMove] in {
512def LD_Frr   : FPI<0xD9, MRM0r, (outs), (ins RST:$op), "fld\t$op", IIC_FLD>;
513def ST_Frr   : FPI<0xDD, MRM2r, (outs), (ins RST:$op), "fst\t$op", IIC_FST>;
514def ST_FPrr  : FPI<0xDD, MRM3r, (outs), (ins RST:$op), "fstp\t$op", IIC_FST>;
515def XCH_F    : FPI<0xD9, MRM1r, (outs), (ins RST:$op), "fxch\t$op", IIC_FXCH>;
516}
517
518// Floating point constant loads.
519let isReMaterializable = 1 in {
520def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
521                [(set RFP32:$dst, fpimm0)]>;
522def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
523                [(set RFP32:$dst, fpimm1)]>;
524def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
525                [(set RFP64:$dst, fpimm0)]>;
526def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
527                [(set RFP64:$dst, fpimm1)]>;
528def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
529                [(set RFP80:$dst, fpimm0)]>;
530def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
531                [(set RFP80:$dst, fpimm1)]>;
532}
533
534let SchedRW = [WriteZero] in {
535def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz", IIC_FLDZ>;
536def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1", IIC_FIST>;
537}
538
539// Floating point compares.
540let SchedRW = [WriteFAdd] in {
541def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
542                        [(set FPSW, (trunc (X86cmp RFP32:$lhs, RFP32:$rhs)))]>;
543def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
544                        [(set FPSW, (trunc (X86cmp RFP64:$lhs, RFP64:$rhs)))]>;
545def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
546                        [(set FPSW, (trunc (X86cmp RFP80:$lhs, RFP80:$rhs)))]>;
547} // SchedRW
548} // Defs = [FPSW]
549
550let SchedRW = [WriteFAdd] in {
551// CC = ST(0) cmp ST(i)
552let Defs = [EFLAGS, FPSW] in {
553def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
554                  [(set EFLAGS, (X86cmp RFP32:$lhs, RFP32:$rhs))]>;
555def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
556                  [(set EFLAGS, (X86cmp RFP64:$lhs, RFP64:$rhs))]>;
557def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
558                  [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>;
559}
560
561let Defs = [FPSW], Uses = [ST0] in {
562def UCOM_Fr    : FPI<0xDD, MRM4r,    // FPSW = cmp ST(0) with ST(i)
563                    (outs), (ins RST:$reg), "fucom\t$reg", IIC_FUCOM>;
564def UCOM_FPr   : FPI<0xDD, MRM5r,    // FPSW = cmp ST(0) with ST(i), pop
565                    (outs), (ins RST:$reg), "fucomp\t$reg", IIC_FUCOM>;
566def UCOM_FPPr  : FPI<0xDA, MRM_E9,       // cmp ST(0) with ST(1), pop, pop
567                    (outs), (ins), "fucompp", IIC_FUCOM>;
568}
569
570let Defs = [EFLAGS, FPSW], Uses = [ST0] in {
571def UCOM_FIr   : FPI<0xDB, MRM5r,     // CC = cmp ST(0) with ST(i)
572                    (outs), (ins RST:$reg), "fucomi\t$reg", IIC_FUCOMI>;
573def UCOM_FIPr  : FPI<0xDF, MRM5r,     // CC = cmp ST(0) with ST(i), pop
574                    (outs), (ins RST:$reg), "fucompi\t$reg", IIC_FUCOMI>;
575}
576
577let Defs = [EFLAGS, FPSW] in {
578def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RST:$reg),
579                  "fcomi\t$reg", IIC_FCOMI>;
580def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RST:$reg),
581                   "fcompi\t$reg", IIC_FCOMI>;
582}
583} // SchedRW
584
585// Floating point flag ops.
586let SchedRW = [WriteALU] in {
587let Defs = [AX], Uses = [FPSW] in
588def FNSTSW16r : I<0xDF, MRM_E0,                  // AX = fp flags
589                  (outs), (ins), "fnstsw\t{%ax|ax}",
590                  [(set AX, (X86fp_stsw FPSW))], IIC_FNSTSW>;
591
592def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
593                  (outs), (ins i16mem:$dst), "fnstcw\t$dst",
594                  [(X86fp_cwd_get16 addr:$dst)], IIC_FNSTCW>;
595} // SchedRW
596let mayLoad = 1 in
597def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
598                  (outs), (ins i16mem:$dst), "fldcw\t$dst", [], IIC_FLDCW>,
599                Sched<[WriteLoad]>;
600
601// FPU control instructions
602let SchedRW = [WriteMicrocoded] in {
603let Defs = [FPSW] in
604def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", [], IIC_FNINIT>;
605def FFREE : FPI<0xDD, MRM0r, (outs), (ins RST:$reg),
606                "ffree\t$reg", IIC_FFREE>;
607// Clear exceptions
608
609let Defs = [FPSW] in
610def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", [], IIC_FNCLEX>;
611} // SchedRW
612
613// Operandless floating-point instructions for the disassembler.
614let SchedRW = [WriteMicrocoded] in {
615def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", [], IIC_WAIT>;
616
617def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", [], IIC_FNOP>;
618def FXAM : I<0xD9, MRM_E5, (outs), (ins), "fxam", [], IIC_FXAM>;
619def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", [], IIC_FLDL>;
620def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", [], IIC_FLDL>;
621def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", [], IIC_FLDL>;
622def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", [], IIC_FLDL>;
623def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", [], IIC_FLDL>;
624def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", [], IIC_F2XM1>;
625def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", [], IIC_FYL2X>;
626def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", [], IIC_FPTAN>;
627def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", [], IIC_FPATAN>;
628def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", [], IIC_FXTRACT>;
629def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", [], IIC_FPREM1>;
630def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", [], IIC_FPSTP>;
631def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", [], IIC_FPSTP>;
632def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", [], IIC_FPREM>;
633def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", [], IIC_FYL2XP1>;
634def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", [], IIC_FSINCOS>;
635def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", [], IIC_FRNDINT>;
636def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", [], IIC_FSCALE>;
637def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", [], IIC_FCOMPP>;
638
639def FXSAVE : I<0xAE, MRM0m, (outs opaque512mem:$dst), (ins),
640               "fxsave\t$dst", [], IIC_FXSAVE>, TB;
641def FXSAVE64 : RI<0xAE, MRM0m, (outs opaque512mem:$dst), (ins),
642                  "fxsave{q|64}\t$dst", [], IIC_FXSAVE>, TB, 
643                  Requires<[In64BitMode]>;
644def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
645                "fxrstor\t$src", [], IIC_FXRSTOR>, TB;
646def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
647                  "fxrstor{q|64}\t$src", [], IIC_FXRSTOR>, TB,
648                  Requires<[In64BitMode]>;
649} // SchedRW
650
651//===----------------------------------------------------------------------===//
652// Non-Instruction Patterns
653//===----------------------------------------------------------------------===//
654
655// Required for RET of f32 / f64 / f80 values.
656def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>;
657def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>;
658def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>;
659
660// Required for CALL which return f32 / f64 / f80 values.
661def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>;
662def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op, 
663                                                          RFP64:$src)>;
664def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>;
665def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op, 
666                                                          RFP80:$src)>;
667def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op, 
668                                                          RFP80:$src)>;
669def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op,
670                                                         RFP80:$src)>;
671
672// Floating point constant -0.0 and -1.0
673def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
674def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
675def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
676def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
677def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
678def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
679
680// Used to conv. i64 to f64 since there isn't a SSE version.
681def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>;
682
683// FP extensions map onto simple pseudo-value conversions if they are to/from
684// the FP stack.
685def : Pat<(f64 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
686          Requires<[FPStackf32]>;
687def : Pat<(f80 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
688           Requires<[FPStackf32]>;
689def : Pat<(f80 (fextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
690           Requires<[FPStackf64]>;
691
692// FP truncations map onto simple pseudo-value conversions if they are to/from
693// the FP stack.  We have validated that only value-preserving truncations make
694// it through isel.
695def : Pat<(f32 (fround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
696          Requires<[FPStackf32]>;
697def : Pat<(f32 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
698           Requires<[FPStackf32]>;
699def : Pat<(f64 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
700           Requires<[FPStackf64]>;
701