X86InstrInfo.cpp revision 8c66df2c7a0e6309eb26d83741f3e121fd3b8550
1//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/CodeGen/LiveVariables.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineDominators.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/StackMaps.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/MC/MCAsmInfo.h"
31#include "llvm/MC/MCInst.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetOptions.h"
37#include <limits>
38
39#define GET_INSTRINFO_CTOR_DTOR
40#include "X86GenInstrInfo.inc"
41
42using namespace llvm;
43
44static cl::opt<bool>
45NoFusing("disable-spill-fusing",
46         cl::desc("Disable fusing of spill code into instructions"));
47static cl::opt<bool>
48PrintFailedFusing("print-failed-fuse-candidates",
49                  cl::desc("Print instructions that the allocator wants to"
50                           " fuse, but the X86 backend currently can't"),
51                  cl::Hidden);
52static cl::opt<bool>
53ReMatPICStubLoad("remat-pic-stub-load",
54                 cl::desc("Re-materialize load from stub in PIC mode"),
55                 cl::init(false), cl::Hidden);
56
57enum {
58  // Select which memory operand is being unfolded.
59  // (stored in bits 0 - 3)
60  TB_INDEX_0    = 0,
61  TB_INDEX_1    = 1,
62  TB_INDEX_2    = 2,
63  TB_INDEX_3    = 3,
64  TB_INDEX_MASK = 0xf,
65
66  // Do not insert the reverse map (MemOp -> RegOp) into the table.
67  // This may be needed because there is a many -> one mapping.
68  TB_NO_REVERSE   = 1 << 4,
69
70  // Do not insert the forward map (RegOp -> MemOp) into the table.
71  // This is needed for Native Client, which prohibits branch
72  // instructions from using a memory operand.
73  TB_NO_FORWARD   = 1 << 5,
74
75  TB_FOLDED_LOAD  = 1 << 6,
76  TB_FOLDED_STORE = 1 << 7,
77
78  // Minimum alignment required for load/store.
79  // Used for RegOp->MemOp conversion.
80  // (stored in bits 8 - 15)
81  TB_ALIGN_SHIFT = 8,
82  TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT,
83  TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT,
84  TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT,
85  TB_ALIGN_64    =   64 << TB_ALIGN_SHIFT,
86  TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT
87};
88
89struct X86OpTblEntry {
90  uint16_t RegOp;
91  uint16_t MemOp;
92  uint16_t Flags;
93};
94
95// pin vtable to this file
96void X86InstrInfo::anchor() {}
97
98X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
99  : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
100                     ? X86::ADJCALLSTACKDOWN64
101                     : X86::ADJCALLSTACKDOWN32),
102                    (tm.getSubtarget<X86Subtarget>().is64Bit()
103                     ? X86::ADJCALLSTACKUP64
104                     : X86::ADJCALLSTACKUP32)),
105    TM(tm), RI(tm) {
106
107  static const X86OpTblEntry OpTbl2Addr[] = {
108    { X86::ADC32ri,     X86::ADC32mi,    0 },
109    { X86::ADC32ri8,    X86::ADC32mi8,   0 },
110    { X86::ADC32rr,     X86::ADC32mr,    0 },
111    { X86::ADC64ri32,   X86::ADC64mi32,  0 },
112    { X86::ADC64ri8,    X86::ADC64mi8,   0 },
113    { X86::ADC64rr,     X86::ADC64mr,    0 },
114    { X86::ADD16ri,     X86::ADD16mi,    0 },
115    { X86::ADD16ri8,    X86::ADD16mi8,   0 },
116    { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE },
117    { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE },
118    { X86::ADD16rr,     X86::ADD16mr,    0 },
119    { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE },
120    { X86::ADD32ri,     X86::ADD32mi,    0 },
121    { X86::ADD32ri8,    X86::ADD32mi8,   0 },
122    { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE },
123    { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE },
124    { X86::ADD32rr,     X86::ADD32mr,    0 },
125    { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE },
126    { X86::ADD64ri32,   X86::ADD64mi32,  0 },
127    { X86::ADD64ri8,    X86::ADD64mi8,   0 },
128    { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE },
129    { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE },
130    { X86::ADD64rr,     X86::ADD64mr,    0 },
131    { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE },
132    { X86::ADD8ri,      X86::ADD8mi,     0 },
133    { X86::ADD8rr,      X86::ADD8mr,     0 },
134    { X86::AND16ri,     X86::AND16mi,    0 },
135    { X86::AND16ri8,    X86::AND16mi8,   0 },
136    { X86::AND16rr,     X86::AND16mr,    0 },
137    { X86::AND32ri,     X86::AND32mi,    0 },
138    { X86::AND32ri8,    X86::AND32mi8,   0 },
139    { X86::AND32rr,     X86::AND32mr,    0 },
140    { X86::AND64ri32,   X86::AND64mi32,  0 },
141    { X86::AND64ri8,    X86::AND64mi8,   0 },
142    { X86::AND64rr,     X86::AND64mr,    0 },
143    { X86::AND8ri,      X86::AND8mi,     0 },
144    { X86::AND8rr,      X86::AND8mr,     0 },
145    { X86::DEC16r,      X86::DEC16m,     0 },
146    { X86::DEC32r,      X86::DEC32m,     0 },
147    { X86::DEC64_16r,   X86::DEC64_16m,  0 },
148    { X86::DEC64_32r,   X86::DEC64_32m,  0 },
149    { X86::DEC64r,      X86::DEC64m,     0 },
150    { X86::DEC8r,       X86::DEC8m,      0 },
151    { X86::INC16r,      X86::INC16m,     0 },
152    { X86::INC32r,      X86::INC32m,     0 },
153    { X86::INC64_16r,   X86::INC64_16m,  0 },
154    { X86::INC64_32r,   X86::INC64_32m,  0 },
155    { X86::INC64r,      X86::INC64m,     0 },
156    { X86::INC8r,       X86::INC8m,      0 },
157    { X86::NEG16r,      X86::NEG16m,     0 },
158    { X86::NEG32r,      X86::NEG32m,     0 },
159    { X86::NEG64r,      X86::NEG64m,     0 },
160    { X86::NEG8r,       X86::NEG8m,      0 },
161    { X86::NOT16r,      X86::NOT16m,     0 },
162    { X86::NOT32r,      X86::NOT32m,     0 },
163    { X86::NOT64r,      X86::NOT64m,     0 },
164    { X86::NOT8r,       X86::NOT8m,      0 },
165    { X86::OR16ri,      X86::OR16mi,     0 },
166    { X86::OR16ri8,     X86::OR16mi8,    0 },
167    { X86::OR16rr,      X86::OR16mr,     0 },
168    { X86::OR32ri,      X86::OR32mi,     0 },
169    { X86::OR32ri8,     X86::OR32mi8,    0 },
170    { X86::OR32rr,      X86::OR32mr,     0 },
171    { X86::OR64ri32,    X86::OR64mi32,   0 },
172    { X86::OR64ri8,     X86::OR64mi8,    0 },
173    { X86::OR64rr,      X86::OR64mr,     0 },
174    { X86::OR8ri,       X86::OR8mi,      0 },
175    { X86::OR8rr,       X86::OR8mr,      0 },
176    { X86::ROL16r1,     X86::ROL16m1,    0 },
177    { X86::ROL16rCL,    X86::ROL16mCL,   0 },
178    { X86::ROL16ri,     X86::ROL16mi,    0 },
179    { X86::ROL32r1,     X86::ROL32m1,    0 },
180    { X86::ROL32rCL,    X86::ROL32mCL,   0 },
181    { X86::ROL32ri,     X86::ROL32mi,    0 },
182    { X86::ROL64r1,     X86::ROL64m1,    0 },
183    { X86::ROL64rCL,    X86::ROL64mCL,   0 },
184    { X86::ROL64ri,     X86::ROL64mi,    0 },
185    { X86::ROL8r1,      X86::ROL8m1,     0 },
186    { X86::ROL8rCL,     X86::ROL8mCL,    0 },
187    { X86::ROL8ri,      X86::ROL8mi,     0 },
188    { X86::ROR16r1,     X86::ROR16m1,    0 },
189    { X86::ROR16rCL,    X86::ROR16mCL,   0 },
190    { X86::ROR16ri,     X86::ROR16mi,    0 },
191    { X86::ROR32r1,     X86::ROR32m1,    0 },
192    { X86::ROR32rCL,    X86::ROR32mCL,   0 },
193    { X86::ROR32ri,     X86::ROR32mi,    0 },
194    { X86::ROR64r1,     X86::ROR64m1,    0 },
195    { X86::ROR64rCL,    X86::ROR64mCL,   0 },
196    { X86::ROR64ri,     X86::ROR64mi,    0 },
197    { X86::ROR8r1,      X86::ROR8m1,     0 },
198    { X86::ROR8rCL,     X86::ROR8mCL,    0 },
199    { X86::ROR8ri,      X86::ROR8mi,     0 },
200    { X86::SAR16r1,     X86::SAR16m1,    0 },
201    { X86::SAR16rCL,    X86::SAR16mCL,   0 },
202    { X86::SAR16ri,     X86::SAR16mi,    0 },
203    { X86::SAR32r1,     X86::SAR32m1,    0 },
204    { X86::SAR32rCL,    X86::SAR32mCL,   0 },
205    { X86::SAR32ri,     X86::SAR32mi,    0 },
206    { X86::SAR64r1,     X86::SAR64m1,    0 },
207    { X86::SAR64rCL,    X86::SAR64mCL,   0 },
208    { X86::SAR64ri,     X86::SAR64mi,    0 },
209    { X86::SAR8r1,      X86::SAR8m1,     0 },
210    { X86::SAR8rCL,     X86::SAR8mCL,    0 },
211    { X86::SAR8ri,      X86::SAR8mi,     0 },
212    { X86::SBB32ri,     X86::SBB32mi,    0 },
213    { X86::SBB32ri8,    X86::SBB32mi8,   0 },
214    { X86::SBB32rr,     X86::SBB32mr,    0 },
215    { X86::SBB64ri32,   X86::SBB64mi32,  0 },
216    { X86::SBB64ri8,    X86::SBB64mi8,   0 },
217    { X86::SBB64rr,     X86::SBB64mr,    0 },
218    { X86::SHL16rCL,    X86::SHL16mCL,   0 },
219    { X86::SHL16ri,     X86::SHL16mi,    0 },
220    { X86::SHL32rCL,    X86::SHL32mCL,   0 },
221    { X86::SHL32ri,     X86::SHL32mi,    0 },
222    { X86::SHL64rCL,    X86::SHL64mCL,   0 },
223    { X86::SHL64ri,     X86::SHL64mi,    0 },
224    { X86::SHL8rCL,     X86::SHL8mCL,    0 },
225    { X86::SHL8ri,      X86::SHL8mi,     0 },
226    { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 },
227    { X86::SHLD16rri8,  X86::SHLD16mri8, 0 },
228    { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 },
229    { X86::SHLD32rri8,  X86::SHLD32mri8, 0 },
230    { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 },
231    { X86::SHLD64rri8,  X86::SHLD64mri8, 0 },
232    { X86::SHR16r1,     X86::SHR16m1,    0 },
233    { X86::SHR16rCL,    X86::SHR16mCL,   0 },
234    { X86::SHR16ri,     X86::SHR16mi,    0 },
235    { X86::SHR32r1,     X86::SHR32m1,    0 },
236    { X86::SHR32rCL,    X86::SHR32mCL,   0 },
237    { X86::SHR32ri,     X86::SHR32mi,    0 },
238    { X86::SHR64r1,     X86::SHR64m1,    0 },
239    { X86::SHR64rCL,    X86::SHR64mCL,   0 },
240    { X86::SHR64ri,     X86::SHR64mi,    0 },
241    { X86::SHR8r1,      X86::SHR8m1,     0 },
242    { X86::SHR8rCL,     X86::SHR8mCL,    0 },
243    { X86::SHR8ri,      X86::SHR8mi,     0 },
244    { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 },
245    { X86::SHRD16rri8,  X86::SHRD16mri8, 0 },
246    { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 },
247    { X86::SHRD32rri8,  X86::SHRD32mri8, 0 },
248    { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 },
249    { X86::SHRD64rri8,  X86::SHRD64mri8, 0 },
250    { X86::SUB16ri,     X86::SUB16mi,    0 },
251    { X86::SUB16ri8,    X86::SUB16mi8,   0 },
252    { X86::SUB16rr,     X86::SUB16mr,    0 },
253    { X86::SUB32ri,     X86::SUB32mi,    0 },
254    { X86::SUB32ri8,    X86::SUB32mi8,   0 },
255    { X86::SUB32rr,     X86::SUB32mr,    0 },
256    { X86::SUB64ri32,   X86::SUB64mi32,  0 },
257    { X86::SUB64ri8,    X86::SUB64mi8,   0 },
258    { X86::SUB64rr,     X86::SUB64mr,    0 },
259    { X86::SUB8ri,      X86::SUB8mi,     0 },
260    { X86::SUB8rr,      X86::SUB8mr,     0 },
261    { X86::XOR16ri,     X86::XOR16mi,    0 },
262    { X86::XOR16ri8,    X86::XOR16mi8,   0 },
263    { X86::XOR16rr,     X86::XOR16mr,    0 },
264    { X86::XOR32ri,     X86::XOR32mi,    0 },
265    { X86::XOR32ri8,    X86::XOR32mi8,   0 },
266    { X86::XOR32rr,     X86::XOR32mr,    0 },
267    { X86::XOR64ri32,   X86::XOR64mi32,  0 },
268    { X86::XOR64ri8,    X86::XOR64mi8,   0 },
269    { X86::XOR64rr,     X86::XOR64mr,    0 },
270    { X86::XOR8ri,      X86::XOR8mi,     0 },
271    { X86::XOR8rr,      X86::XOR8mr,     0 }
272  };
273
274  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
275    unsigned RegOp = OpTbl2Addr[i].RegOp;
276    unsigned MemOp = OpTbl2Addr[i].MemOp;
277    unsigned Flags = OpTbl2Addr[i].Flags;
278    AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
279                  RegOp, MemOp,
280                  // Index 0, folded load and store, no alignment requirement.
281                  Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
282  }
283
284  static const X86OpTblEntry OpTbl0[] = {
285    { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD },
286    { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD },
287    { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD },
288    { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD },
289    { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD },
290    { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD },
291    { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD },
292    { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD },
293    { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD },
294    { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD },
295    { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD },
296    { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD },
297    { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD },
298    { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD },
299    { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD },
300    { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD },
301    { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD },
302    { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD },
303    { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD },
304    { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD },
305    { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE },
306    { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD },
307    { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD },
308    { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD },
309    { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD },
310    { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD },
311    { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD },
312    { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD },
313    { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD },
314    { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD },
315    { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD },
316    { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE },
317    { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE },
318    { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE },
319    { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE },
320    { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE },
321    { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE },
322    { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE },
323    { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE },
324    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
325    { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
326    { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
327    { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
328    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE },
329    { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE },
330    { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE },
331    { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE },
332    { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE },
333    { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE },
334    { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD },
335    { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD },
336    { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD },
337    { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD },
338    { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE },
339    { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE },
340    { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE },
341    { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE },
342    { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE },
343    { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE },
344    { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE },
345    { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE },
346    { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE },
347    { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE },
348    { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE },
349    { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE },
350    { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE },
351    { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE },
352    { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE },
353    { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE },
354    { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD },
355    { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD },
356    { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD },
357    { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD },
358    { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD },
359    { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD },
360    // AVX 128-bit versions of foldable instructions
361    { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE  },
362    { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
363    { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
364    { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
365    { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
366    { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE },
367    { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
368    { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE },
369    { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE },
370    { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE },
371    { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE },
372    // AVX 256-bit foldable instructions
373    { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
374    { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
375    { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
376    { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
377    { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE },
378    { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE },
379    // AVX-512 foldable instructions
380    { X86::VMOVPDI2DIZrr,X86::VMOVPDI2DIZmr,  TB_FOLDED_STORE }
381  };
382
383  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
384    unsigned RegOp      = OpTbl0[i].RegOp;
385    unsigned MemOp      = OpTbl0[i].MemOp;
386    unsigned Flags      = OpTbl0[i].Flags;
387    AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
388                  RegOp, MemOp, TB_INDEX_0 | Flags);
389  }
390
391  static const X86OpTblEntry OpTbl1[] = {
392    { X86::CMP16rr,         X86::CMP16rm,             0 },
393    { X86::CMP32rr,         X86::CMP32rm,             0 },
394    { X86::CMP64rr,         X86::CMP64rm,             0 },
395    { X86::CMP8rr,          X86::CMP8rm,              0 },
396    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 },
397    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm,        0 },
398    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 },
399    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm,        0 },
400    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 },
401    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 },
402    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 },
403    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 },
404    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 },
405    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 },
406    { X86::IMUL16rri,       X86::IMUL16rmi,           0 },
407    { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 },
408    { X86::IMUL32rri,       X86::IMUL32rmi,           0 },
409    { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 },
410    { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 },
411    { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 },
412    { X86::Int_COMISDrr,    X86::Int_COMISDrm,        0 },
413    { X86::Int_COMISSrr,    X86::Int_COMISSrm,        0 },
414    { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm,        0 },
415    { X86::CVTSD2SIrr,      X86::CVTSD2SIrm,          0 },
416    { X86::CVTSS2SI64rr,    X86::CVTSS2SI64rm,        0 },
417    { X86::CVTSS2SIrr,      X86::CVTSS2SIrm,          0 },
418    { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 },
419    { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 },
420    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm,  0 },
421    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm,     0 },
422    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm,  0 },
423    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm,     0 },
424    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       0 },
425    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       0 },
426    { X86::MOV16rr,         X86::MOV16rm,             0 },
427    { X86::MOV32rr,         X86::MOV32rm,             0 },
428    { X86::MOV64rr,         X86::MOV64rm,             0 },
429    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 },
430    { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 },
431    { X86::MOV8rr,          X86::MOV8rm,              0 },
432    { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 },
433    { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 },
434    { X86::MOVDDUPrr,       X86::MOVDDUPrm,           0 },
435    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 },
436    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 },
437    { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 },
438    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 },
439    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 },
440    { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 },
441    { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 },
442    { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 },
443    { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 },
444    { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 },
445    { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 },
446    { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 },
447    { X86::MOVUPSrr,        X86::MOVUPSrm,            0 },
448    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm,        0 },
449    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 },
450    { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 },
451    { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 },
452    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 },
453    { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 },
454    { X86::PABSBrr128,      X86::PABSBrm128,          TB_ALIGN_16 },
455    { X86::PABSDrr128,      X86::PABSDrm128,          TB_ALIGN_16 },
456    { X86::PABSWrr128,      X86::PABSWrm128,          TB_ALIGN_16 },
457    { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 },
458    { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 },
459    { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 },
460    { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 },
461    { X86::RCPPSr_Int,      X86::RCPPSm_Int,          TB_ALIGN_16 },
462    { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 },
463    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int,        TB_ALIGN_16 },
464    { X86::RSQRTSSr,        X86::RSQRTSSm,            0 },
465    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 },
466    { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 },
467    { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 },
468    { X86::SQRTSDr,         X86::SQRTSDm,             0 },
469    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 },
470    { X86::SQRTSSr,         X86::SQRTSSm,             0 },
471    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         0 },
472    { X86::TEST16rr,        X86::TEST16rm,            0 },
473    { X86::TEST32rr,        X86::TEST32rm,            0 },
474    { X86::TEST64rr,        X86::TEST64rm,            0 },
475    { X86::TEST8rr,         X86::TEST8rm,             0 },
476    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
477    { X86::UCOMISDrr,       X86::UCOMISDrm,           0 },
478    { X86::UCOMISSrr,       X86::UCOMISSrm,           0 },
479    // AVX 128-bit versions of foldable instructions
480    { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       0 },
481    { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       0 },
482    { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      0 },
483    { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      0 },
484    { X86::VCVTTSD2SI64rr,  X86::VCVTTSD2SI64rm,      0 },
485    { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
486    { X86::VCVTTSD2SIrr,    X86::VCVTTSD2SIrm,        0 },
487    { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm,    0 },
488    { X86::VCVTTSS2SI64rr,  X86::VCVTTSS2SI64rm,      0 },
489    { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
490    { X86::VCVTTSS2SIrr,    X86::VCVTTSS2SIrm,        0 },
491    { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm,    0 },
492    { X86::VCVTSD2SI64rr,   X86::VCVTSD2SI64rm,       0 },
493    { X86::VCVTSD2SIrr,     X86::VCVTSD2SIrm,         0 },
494    { X86::VCVTSS2SI64rr,   X86::VCVTSS2SI64rm,       0 },
495    { X86::VCVTSS2SIrr,     X86::VCVTSS2SIrm,         0 },
496    { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 },
497    { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 },
498    { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 },
499    { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 },
500    { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          0 },
501    { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 },
502    { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 },
503    { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 },
504    { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         TB_ALIGN_16 },
505    { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         TB_ALIGN_16 },
506    { X86::VMOVUPDrr,       X86::VMOVUPDrm,           0 },
507    { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 },
508    { X86::VMOVZQI2PQIrr,   X86::VMOVZQI2PQIrm,       0 },
509    { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 },
510    { X86::VPABSBrr128,     X86::VPABSBrm128,         0 },
511    { X86::VPABSDrr128,     X86::VPABSDrm128,         0 },
512    { X86::VPABSWrr128,     X86::VPABSWrm128,         0 },
513    { X86::VPERMILPDri,     X86::VPERMILPDmi,         0 },
514    { X86::VPERMILPSri,     X86::VPERMILPSmi,         0 },
515    { X86::VPSHUFDri,       X86::VPSHUFDmi,           0 },
516    { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          0 },
517    { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          0 },
518    { X86::VRCPPSr,         X86::VRCPPSm,             0 },
519    { X86::VRCPPSr_Int,     X86::VRCPPSm_Int,         0 },
520    { X86::VRSQRTPSr,       X86::VRSQRTPSm,           0 },
521    { X86::VRSQRTPSr_Int,   X86::VRSQRTPSm_Int,       0 },
522    { X86::VSQRTPDr,        X86::VSQRTPDm,            0 },
523    { X86::VSQRTPSr,        X86::VSQRTPSm,            0 },
524    { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 },
525    { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 },
526    { X86::VBROADCASTSSrr,  X86::VBROADCASTSSrm,      TB_NO_REVERSE },
527
528    // AVX 256-bit foldable instructions
529    { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 },
530    { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 },
531    { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_32 },
532    { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 },
533    { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 },
534    { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        0 },
535    { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        0 },
536
537    // AVX2 foldable instructions
538    { X86::VPABSBrr256,     X86::VPABSBrm256,         0 },
539    { X86::VPABSDrr256,     X86::VPABSDrm256,         0 },
540    { X86::VPABSWrr256,     X86::VPABSWrm256,         0 },
541    { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          0 },
542    { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         0 },
543    { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         0 },
544    { X86::VRCPPSYr,        X86::VRCPPSYm,            0 },
545    { X86::VRCPPSYr_Int,    X86::VRCPPSYm_Int,        0 },
546    { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          0 },
547    { X86::VSQRTPDYr,       X86::VSQRTPDYm,           0 },
548    { X86::VSQRTPSYr,       X86::VSQRTPSYm,           0 },
549    { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm,     TB_NO_REVERSE },
550    { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm,     TB_NO_REVERSE },
551
552    // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
553    { X86::BEXTR32rr,       X86::BEXTR32rm,           0 },
554    { X86::BEXTR64rr,       X86::BEXTR64rm,           0 },
555    { X86::BEXTRI32ri,      X86::BEXTRI32mi,          0 },
556    { X86::BEXTRI64ri,      X86::BEXTRI64mi,          0 },
557    { X86::BLCFILL32rr,     X86::BLCFILL32rm,         0 },
558    { X86::BLCFILL64rr,     X86::BLCFILL64rm,         0 },
559    { X86::BLCI32rr,        X86::BLCI32rm,            0 },
560    { X86::BLCI64rr,        X86::BLCI64rm,            0 },
561    { X86::BLCIC32rr,       X86::BLCIC32rm,           0 },
562    { X86::BLCIC64rr,       X86::BLCIC64rm,           0 },
563    { X86::BLCMSK32rr,      X86::BLCMSK32rm,          0 },
564    { X86::BLCMSK64rr,      X86::BLCMSK64rm,          0 },
565    { X86::BLCS32rr,        X86::BLCS32rm,            0 },
566    { X86::BLCS64rr,        X86::BLCS64rm,            0 },
567    { X86::BLSFILL32rr,     X86::BLSFILL32rm,         0 },
568    { X86::BLSFILL64rr,     X86::BLSFILL64rm,         0 },
569    { X86::BLSI32rr,        X86::BLSI32rm,            0 },
570    { X86::BLSI64rr,        X86::BLSI64rm,            0 },
571    { X86::BLSIC32rr,       X86::BLSIC32rm,           0 },
572    { X86::BLSIC64rr,       X86::BLSIC64rm,           0 },
573    { X86::BLSMSK32rr,      X86::BLSMSK32rm,          0 },
574    { X86::BLSMSK64rr,      X86::BLSMSK64rm,          0 },
575    { X86::BLSR32rr,        X86::BLSR32rm,            0 },
576    { X86::BLSR64rr,        X86::BLSR64rm,            0 },
577    { X86::BZHI32rr,        X86::BZHI32rm,            0 },
578    { X86::BZHI64rr,        X86::BZHI64rm,            0 },
579    { X86::LZCNT16rr,       X86::LZCNT16rm,           0 },
580    { X86::LZCNT32rr,       X86::LZCNT32rm,           0 },
581    { X86::LZCNT64rr,       X86::LZCNT64rm,           0 },
582    { X86::POPCNT16rr,      X86::POPCNT16rm,          0 },
583    { X86::POPCNT32rr,      X86::POPCNT32rm,          0 },
584    { X86::POPCNT64rr,      X86::POPCNT64rm,          0 },
585    { X86::RORX32ri,        X86::RORX32mi,            0 },
586    { X86::RORX64ri,        X86::RORX64mi,            0 },
587    { X86::SARX32rr,        X86::SARX32rm,            0 },
588    { X86::SARX64rr,        X86::SARX64rm,            0 },
589    { X86::SHRX32rr,        X86::SHRX32rm,            0 },
590    { X86::SHRX64rr,        X86::SHRX64rm,            0 },
591    { X86::SHLX32rr,        X86::SHLX32rm,            0 },
592    { X86::SHLX64rr,        X86::SHLX64rm,            0 },
593    { X86::T1MSKC32rr,      X86::T1MSKC32rm,          0 },
594    { X86::T1MSKC64rr,      X86::T1MSKC64rm,          0 },
595    { X86::TZCNT16rr,       X86::TZCNT16rm,           0 },
596    { X86::TZCNT32rr,       X86::TZCNT32rm,           0 },
597    { X86::TZCNT64rr,       X86::TZCNT64rm,           0 },
598    { X86::TZMSK32rr,       X86::TZMSK32rm,           0 },
599    { X86::TZMSK64rr,       X86::TZMSK64rm,           0 },
600
601    // AVX-512 foldable instructions
602    { X86::VMOV64toPQIZrr,  X86::VMOVQI2PQIZrm,       0 },
603    { X86::VMOVDI2SSZrr,    X86::VMOVDI2SSZrm,        0 },
604    { X86::VMOVDQA32rr,     X86::VMOVDQA32rm,         TB_ALIGN_64 },
605    { X86::VMOVDQA64rr,     X86::VMOVDQA64rm,         TB_ALIGN_64 },
606    { X86::VMOVDQU32rr,     X86::VMOVDQU32rm,         0 },
607    { X86::VMOVDQU64rr,     X86::VMOVDQU64rm,         0 },
608
609    // AES foldable instructions
610    { X86::AESIMCrr,              X86::AESIMCrm,              TB_ALIGN_16 },
611    { X86::AESKEYGENASSIST128rr,  X86::AESKEYGENASSIST128rm,  TB_ALIGN_16 },
612    { X86::VAESIMCrr,             X86::VAESIMCrm,             TB_ALIGN_16 },
613    { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, TB_ALIGN_16 },
614  };
615
616  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
617    unsigned RegOp = OpTbl1[i].RegOp;
618    unsigned MemOp = OpTbl1[i].MemOp;
619    unsigned Flags = OpTbl1[i].Flags;
620    AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
621                  RegOp, MemOp,
622                  // Index 1, folded load
623                  Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
624  }
625
626  static const X86OpTblEntry OpTbl2[] = {
627    { X86::ADC32rr,         X86::ADC32rm,       0 },
628    { X86::ADC64rr,         X86::ADC64rm,       0 },
629    { X86::ADD16rr,         X86::ADD16rm,       0 },
630    { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE },
631    { X86::ADD32rr,         X86::ADD32rm,       0 },
632    { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE },
633    { X86::ADD64rr,         X86::ADD64rm,       0 },
634    { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE },
635    { X86::ADD8rr,          X86::ADD8rm,        0 },
636    { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 },
637    { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 },
638    { X86::ADDSDrr,         X86::ADDSDrm,       0 },
639    { X86::ADDSSrr,         X86::ADDSSrm,       0 },
640    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 },
641    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 },
642    { X86::AND16rr,         X86::AND16rm,       0 },
643    { X86::AND32rr,         X86::AND32rm,       0 },
644    { X86::AND64rr,         X86::AND64rm,       0 },
645    { X86::AND8rr,          X86::AND8rm,        0 },
646    { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 },
647    { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 },
648    { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 },
649    { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 },
650    { X86::BLENDPDrri,      X86::BLENDPDrmi,    TB_ALIGN_16 },
651    { X86::BLENDPSrri,      X86::BLENDPSrmi,    TB_ALIGN_16 },
652    { X86::BLENDVPDrr0,     X86::BLENDVPDrm0,   TB_ALIGN_16 },
653    { X86::BLENDVPSrr0,     X86::BLENDVPSrm0,   TB_ALIGN_16 },
654    { X86::CMOVA16rr,       X86::CMOVA16rm,     0 },
655    { X86::CMOVA32rr,       X86::CMOVA32rm,     0 },
656    { X86::CMOVA64rr,       X86::CMOVA64rm,     0 },
657    { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 },
658    { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 },
659    { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 },
660    { X86::CMOVB16rr,       X86::CMOVB16rm,     0 },
661    { X86::CMOVB32rr,       X86::CMOVB32rm,     0 },
662    { X86::CMOVB64rr,       X86::CMOVB64rm,     0 },
663    { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 },
664    { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 },
665    { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 },
666    { X86::CMOVE16rr,       X86::CMOVE16rm,     0 },
667    { X86::CMOVE32rr,       X86::CMOVE32rm,     0 },
668    { X86::CMOVE64rr,       X86::CMOVE64rm,     0 },
669    { X86::CMOVG16rr,       X86::CMOVG16rm,     0 },
670    { X86::CMOVG32rr,       X86::CMOVG32rm,     0 },
671    { X86::CMOVG64rr,       X86::CMOVG64rm,     0 },
672    { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 },
673    { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 },
674    { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 },
675    { X86::CMOVL16rr,       X86::CMOVL16rm,     0 },
676    { X86::CMOVL32rr,       X86::CMOVL32rm,     0 },
677    { X86::CMOVL64rr,       X86::CMOVL64rm,     0 },
678    { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 },
679    { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 },
680    { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 },
681    { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 },
682    { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 },
683    { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 },
684    { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 },
685    { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 },
686    { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 },
687    { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 },
688    { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 },
689    { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 },
690    { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 },
691    { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 },
692    { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 },
693    { X86::CMOVO16rr,       X86::CMOVO16rm,     0 },
694    { X86::CMOVO32rr,       X86::CMOVO32rm,     0 },
695    { X86::CMOVO64rr,       X86::CMOVO64rm,     0 },
696    { X86::CMOVP16rr,       X86::CMOVP16rm,     0 },
697    { X86::CMOVP32rr,       X86::CMOVP32rm,     0 },
698    { X86::CMOVP64rr,       X86::CMOVP64rm,     0 },
699    { X86::CMOVS16rr,       X86::CMOVS16rm,     0 },
700    { X86::CMOVS32rr,       X86::CMOVS32rm,     0 },
701    { X86::CMOVS64rr,       X86::CMOVS64rm,     0 },
702    { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 },
703    { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 },
704    { X86::CMPSDrr,         X86::CMPSDrm,       0 },
705    { X86::CMPSSrr,         X86::CMPSSrm,       0 },
706    { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 },
707    { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 },
708    { X86::DIVSDrr,         X86::DIVSDrm,       0 },
709    { X86::DIVSSrr,         X86::DIVSSrm,       0 },
710    { X86::FsANDNPDrr,      X86::FsANDNPDrm,    TB_ALIGN_16 },
711    { X86::FsANDNPSrr,      X86::FsANDNPSrm,    TB_ALIGN_16 },
712    { X86::FsANDPDrr,       X86::FsANDPDrm,     TB_ALIGN_16 },
713    { X86::FsANDPSrr,       X86::FsANDPSrm,     TB_ALIGN_16 },
714    { X86::FsORPDrr,        X86::FsORPDrm,      TB_ALIGN_16 },
715    { X86::FsORPSrr,        X86::FsORPSrm,      TB_ALIGN_16 },
716    { X86::FsXORPDrr,       X86::FsXORPDrm,     TB_ALIGN_16 },
717    { X86::FsXORPSrr,       X86::FsXORPSrm,     TB_ALIGN_16 },
718    { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 },
719    { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 },
720    { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 },
721    { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 },
722    { X86::IMUL16rr,        X86::IMUL16rm,      0 },
723    { X86::IMUL32rr,        X86::IMUL32rm,      0 },
724    { X86::IMUL64rr,        X86::IMUL64rm,      0 },
725    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm,   0 },
726    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm,   0 },
727    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm,      0 },
728    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm,    0 },
729    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm,      0 },
730    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm,    0 },
731    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 },
732    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 },
733    { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 },
734    { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 },
735    { X86::MAXSDrr,         X86::MAXSDrm,       0 },
736    { X86::MAXSSrr,         X86::MAXSSrm,       0 },
737    { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 },
738    { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 },
739    { X86::MINSDrr,         X86::MINSDrm,       0 },
740    { X86::MINSSrr,         X86::MINSSrm,       0 },
741    { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 },
742    { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 },
743    { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 },
744    { X86::MULSDrr,         X86::MULSDrm,       0 },
745    { X86::MULSSrr,         X86::MULSSrm,       0 },
746    { X86::OR16rr,          X86::OR16rm,        0 },
747    { X86::OR32rr,          X86::OR32rm,        0 },
748    { X86::OR64rr,          X86::OR64rm,        0 },
749    { X86::OR8rr,           X86::OR8rm,         0 },
750    { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 },
751    { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 },
752    { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 },
753    { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 },
754    { X86::PACKUSDWrr,      X86::PACKUSDWrm,    TB_ALIGN_16 },
755    { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 },
756    { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 },
757    { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 },
758    { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 },
759    { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 },
760    { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 },
761    { X86::PADDUSBrr,       X86::PADDUSBrm,     TB_ALIGN_16 },
762    { X86::PADDUSWrr,       X86::PADDUSWrm,     TB_ALIGN_16 },
763    { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 },
764    { X86::PALIGNR128rr,    X86::PALIGNR128rm,  TB_ALIGN_16 },
765    { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 },
766    { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 },
767    { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 },
768    { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 },
769    { X86::PBLENDWrri,      X86::PBLENDWrmi,    TB_ALIGN_16 },
770    { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 },
771    { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 },
772    { X86::PCMPEQQrr,       X86::PCMPEQQrm,     TB_ALIGN_16 },
773    { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 },
774    { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 },
775    { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 },
776    { X86::PCMPGTQrr,       X86::PCMPGTQrm,     TB_ALIGN_16 },
777    { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 },
778    { X86::PHADDDrr,        X86::PHADDDrm,      TB_ALIGN_16 },
779    { X86::PHADDWrr,        X86::PHADDWrm,      TB_ALIGN_16 },
780    { X86::PHADDSWrr128,    X86::PHADDSWrm128,  TB_ALIGN_16 },
781    { X86::PHSUBDrr,        X86::PHSUBDrm,      TB_ALIGN_16 },
782    { X86::PHSUBSWrr128,    X86::PHSUBSWrm128,  TB_ALIGN_16 },
783    { X86::PHSUBWrr,        X86::PHSUBWrm,      TB_ALIGN_16 },
784    { X86::PINSRWrri,       X86::PINSRWrmi,     TB_ALIGN_16 },
785    { X86::PMADDUBSWrr128,  X86::PMADDUBSWrm128, TB_ALIGN_16 },
786    { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 },
787    { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 },
788    { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 },
789    { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 },
790    { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 },
791    { X86::PMINSBrr,        X86::PMINSBrm,      TB_ALIGN_16 },
792    { X86::PMINSDrr,        X86::PMINSDrm,      TB_ALIGN_16 },
793    { X86::PMINUDrr,        X86::PMINUDrm,      TB_ALIGN_16 },
794    { X86::PMINUWrr,        X86::PMINUWrm,      TB_ALIGN_16 },
795    { X86::PMAXSBrr,        X86::PMAXSBrm,      TB_ALIGN_16 },
796    { X86::PMAXSDrr,        X86::PMAXSDrm,      TB_ALIGN_16 },
797    { X86::PMAXUDrr,        X86::PMAXUDrm,      TB_ALIGN_16 },
798    { X86::PMAXUWrr,        X86::PMAXUWrm,      TB_ALIGN_16 },
799    { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 },
800    { X86::PMULHRSWrr128,   X86::PMULHRSWrm128, TB_ALIGN_16 },
801    { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 },
802    { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 },
803    { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 },
804    { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 },
805    { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 },
806    { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 },
807    { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 },
808    { X86::PSHUFBrr,        X86::PSHUFBrm,      TB_ALIGN_16 },
809    { X86::PSIGNBrr,        X86::PSIGNBrm,      TB_ALIGN_16 },
810    { X86::PSIGNWrr,        X86::PSIGNWrm,      TB_ALIGN_16 },
811    { X86::PSIGNDrr,        X86::PSIGNDrm,      TB_ALIGN_16 },
812    { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 },
813    { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 },
814    { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 },
815    { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 },
816    { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 },
817    { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 },
818    { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 },
819    { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 },
820    { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 },
821    { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 },
822    { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 },
823    { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 },
824    { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 },
825    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 },
826    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 },
827    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 },
828    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 },
829    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 },
830    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 },
831    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 },
832    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 },
833    { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 },
834    { X86::SBB32rr,         X86::SBB32rm,       0 },
835    { X86::SBB64rr,         X86::SBB64rm,       0 },
836    { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 },
837    { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 },
838    { X86::SUB16rr,         X86::SUB16rm,       0 },
839    { X86::SUB32rr,         X86::SUB32rm,       0 },
840    { X86::SUB64rr,         X86::SUB64rm,       0 },
841    { X86::SUB8rr,          X86::SUB8rm,        0 },
842    { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 },
843    { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 },
844    { X86::SUBSDrr,         X86::SUBSDrm,       0 },
845    { X86::SUBSSrr,         X86::SUBSSrm,       0 },
846    // FIXME: TEST*rr -> swapped operand of TEST*mr.
847    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 },
848    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 },
849    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 },
850    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 },
851    { X86::XOR16rr,         X86::XOR16rm,       0 },
852    { X86::XOR32rr,         X86::XOR32rm,       0 },
853    { X86::XOR64rr,         X86::XOR64rm,       0 },
854    { X86::XOR8rr,          X86::XOR8rm,        0 },
855    { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 },
856    { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 },
857    // AVX 128-bit versions of foldable instructions
858    { X86::VCVTSD2SSrr,       X86::VCVTSD2SSrm,        0 },
859    { X86::Int_VCVTSD2SSrr,   X86::Int_VCVTSD2SSrm,    0 },
860    { X86::VCVTSI2SD64rr,     X86::VCVTSI2SD64rm,      0 },
861    { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm,  0 },
862    { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 },
863    { X86::Int_VCVTSI2SDrr,   X86::Int_VCVTSI2SDrm,    0 },
864    { X86::VCVTSI2SS64rr,     X86::VCVTSI2SS64rm,      0 },
865    { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm,  0 },
866    { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 },
867    { X86::Int_VCVTSI2SSrr,   X86::Int_VCVTSI2SSrm,    0 },
868    { X86::VCVTSS2SDrr,       X86::VCVTSS2SDrm,        0 },
869    { X86::Int_VCVTSS2SDrr,   X86::Int_VCVTSS2SDrm,    0 },
870    { X86::VCVTTPD2DQrr,      X86::VCVTTPD2DQXrm,      0 },
871    { X86::VCVTTPS2DQrr,      X86::VCVTTPS2DQrm,       0 },
872    { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 },
873    { X86::VSQRTSDr,          X86::VSQRTSDm,           0 },
874    { X86::VSQRTSSr,          X86::VSQRTSSm,           0 },
875    { X86::VADDPDrr,          X86::VADDPDrm,           0 },
876    { X86::VADDPSrr,          X86::VADDPSrm,           0 },
877    { X86::VADDSDrr,          X86::VADDSDrm,           0 },
878    { X86::VADDSSrr,          X86::VADDSSrm,           0 },
879    { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        0 },
880    { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        0 },
881    { X86::VANDNPDrr,         X86::VANDNPDrm,          0 },
882    { X86::VANDNPSrr,         X86::VANDNPSrm,          0 },
883    { X86::VANDPDrr,          X86::VANDPDrm,           0 },
884    { X86::VANDPSrr,          X86::VANDPSrm,           0 },
885    { X86::VBLENDPDrri,       X86::VBLENDPDrmi,        0 },
886    { X86::VBLENDPSrri,       X86::VBLENDPSrmi,        0 },
887    { X86::VBLENDVPDrr,       X86::VBLENDVPDrm,        0 },
888    { X86::VBLENDVPSrr,       X86::VBLENDVPSrm,        0 },
889    { X86::VCMPPDrri,         X86::VCMPPDrmi,          0 },
890    { X86::VCMPPSrri,         X86::VCMPPSrmi,          0 },
891    { X86::VCMPSDrr,          X86::VCMPSDrm,           0 },
892    { X86::VCMPSSrr,          X86::VCMPSSrm,           0 },
893    { X86::VDIVPDrr,          X86::VDIVPDrm,           0 },
894    { X86::VDIVPSrr,          X86::VDIVPSrm,           0 },
895    { X86::VDIVSDrr,          X86::VDIVSDrm,           0 },
896    { X86::VDIVSSrr,          X86::VDIVSSrm,           0 },
897    { X86::VFsANDNPDrr,       X86::VFsANDNPDrm,        TB_ALIGN_16 },
898    { X86::VFsANDNPSrr,       X86::VFsANDNPSrm,        TB_ALIGN_16 },
899    { X86::VFsANDPDrr,        X86::VFsANDPDrm,         TB_ALIGN_16 },
900    { X86::VFsANDPSrr,        X86::VFsANDPSrm,         TB_ALIGN_16 },
901    { X86::VFsORPDrr,         X86::VFsORPDrm,          TB_ALIGN_16 },
902    { X86::VFsORPSrr,         X86::VFsORPSrm,          TB_ALIGN_16 },
903    { X86::VFsXORPDrr,        X86::VFsXORPDrm,         TB_ALIGN_16 },
904    { X86::VFsXORPSrr,        X86::VFsXORPSrm,         TB_ALIGN_16 },
905    { X86::VHADDPDrr,         X86::VHADDPDrm,          0 },
906    { X86::VHADDPSrr,         X86::VHADDPSrm,          0 },
907    { X86::VHSUBPDrr,         X86::VHSUBPDrm,          0 },
908    { X86::VHSUBPSrr,         X86::VHSUBPSrm,          0 },
909    { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 },
910    { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 },
911    { X86::VMAXPDrr,          X86::VMAXPDrm,           0 },
912    { X86::VMAXPSrr,          X86::VMAXPSrm,           0 },
913    { X86::VMAXSDrr,          X86::VMAXSDrm,           0 },
914    { X86::VMAXSSrr,          X86::VMAXSSrm,           0 },
915    { X86::VMINPDrr,          X86::VMINPDrm,           0 },
916    { X86::VMINPSrr,          X86::VMINPSrm,           0 },
917    { X86::VMINSDrr,          X86::VMINSDrm,           0 },
918    { X86::VMINSSrr,          X86::VMINSSrm,           0 },
919    { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        0 },
920    { X86::VMULPDrr,          X86::VMULPDrm,           0 },
921    { X86::VMULPSrr,          X86::VMULPSrm,           0 },
922    { X86::VMULSDrr,          X86::VMULSDrm,           0 },
923    { X86::VMULSSrr,          X86::VMULSSrm,           0 },
924    { X86::VORPDrr,           X86::VORPDrm,            0 },
925    { X86::VORPSrr,           X86::VORPSrm,            0 },
926    { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        0 },
927    { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        0 },
928    { X86::VPACKUSDWrr,       X86::VPACKUSDWrm,        0 },
929    { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        0 },
930    { X86::VPADDBrr,          X86::VPADDBrm,           0 },
931    { X86::VPADDDrr,          X86::VPADDDrm,           0 },
932    { X86::VPADDQrr,          X86::VPADDQrm,           0 },
933    { X86::VPADDSBrr,         X86::VPADDSBrm,          0 },
934    { X86::VPADDSWrr,         X86::VPADDSWrm,          0 },
935    { X86::VPADDUSBrr,        X86::VPADDUSBrm,         0 },
936    { X86::VPADDUSWrr,        X86::VPADDUSWrm,         0 },
937    { X86::VPADDWrr,          X86::VPADDWrm,           0 },
938    { X86::VPALIGNR128rr,     X86::VPALIGNR128rm,      0 },
939    { X86::VPANDNrr,          X86::VPANDNrm,           0 },
940    { X86::VPANDrr,           X86::VPANDrm,            0 },
941    { X86::VPAVGBrr,          X86::VPAVGBrm,           0 },
942    { X86::VPAVGWrr,          X86::VPAVGWrm,           0 },
943    { X86::VPBLENDWrri,       X86::VPBLENDWrmi,        0 },
944    { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         0 },
945    { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         0 },
946    { X86::VPCMPEQQrr,        X86::VPCMPEQQrm,         0 },
947    { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         0 },
948    { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         0 },
949    { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         0 },
950    { X86::VPCMPGTQrr,        X86::VPCMPGTQrm,         0 },
951    { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         0 },
952    { X86::VPHADDDrr,         X86::VPHADDDrm,          0 },
953    { X86::VPHADDSWrr128,     X86::VPHADDSWrm128,      0 },
954    { X86::VPHADDWrr,         X86::VPHADDWrm,          0 },
955    { X86::VPHSUBDrr,         X86::VPHSUBDrm,          0 },
956    { X86::VPHSUBSWrr128,     X86::VPHSUBSWrm128,      0 },
957    { X86::VPHSUBWrr,         X86::VPHSUBWrm,          0 },
958    { X86::VPERMILPDrr,       X86::VPERMILPDrm,        0 },
959    { X86::VPERMILPSrr,       X86::VPERMILPSrm,        0 },
960    { X86::VPINSRWrri,        X86::VPINSRWrmi,         0 },
961    { X86::VPMADDUBSWrr128,   X86::VPMADDUBSWrm128,    0 },
962    { X86::VPMADDWDrr,        X86::VPMADDWDrm,         0 },
963    { X86::VPMAXSWrr,         X86::VPMAXSWrm,          0 },
964    { X86::VPMAXUBrr,         X86::VPMAXUBrm,          0 },
965    { X86::VPMINSWrr,         X86::VPMINSWrm,          0 },
966    { X86::VPMINUBrr,         X86::VPMINUBrm,          0 },
967    { X86::VPMINSBrr,         X86::VPMINSBrm,          0 },
968    { X86::VPMINSDrr,         X86::VPMINSDrm,          0 },
969    { X86::VPMINUDrr,         X86::VPMINUDrm,          0 },
970    { X86::VPMINUWrr,         X86::VPMINUWrm,          0 },
971    { X86::VPMAXSBrr,         X86::VPMAXSBrm,          0 },
972    { X86::VPMAXSDrr,         X86::VPMAXSDrm,          0 },
973    { X86::VPMAXUDrr,         X86::VPMAXUDrm,          0 },
974    { X86::VPMAXUWrr,         X86::VPMAXUWrm,          0 },
975    { X86::VPMULDQrr,         X86::VPMULDQrm,          0 },
976    { X86::VPMULHRSWrr128,    X86::VPMULHRSWrm128,     0 },
977    { X86::VPMULHUWrr,        X86::VPMULHUWrm,         0 },
978    { X86::VPMULHWrr,         X86::VPMULHWrm,          0 },
979    { X86::VPMULLDrr,         X86::VPMULLDrm,          0 },
980    { X86::VPMULLWrr,         X86::VPMULLWrm,          0 },
981    { X86::VPMULUDQrr,        X86::VPMULUDQrm,         0 },
982    { X86::VPORrr,            X86::VPORrm,             0 },
983    { X86::VPSADBWrr,         X86::VPSADBWrm,          0 },
984    { X86::VPSHUFBrr,         X86::VPSHUFBrm,          0 },
985    { X86::VPSIGNBrr,         X86::VPSIGNBrm,          0 },
986    { X86::VPSIGNWrr,         X86::VPSIGNWrm,          0 },
987    { X86::VPSIGNDrr,         X86::VPSIGNDrm,          0 },
988    { X86::VPSLLDrr,          X86::VPSLLDrm,           0 },
989    { X86::VPSLLQrr,          X86::VPSLLQrm,           0 },
990    { X86::VPSLLWrr,          X86::VPSLLWrm,           0 },
991    { X86::VPSRADrr,          X86::VPSRADrm,           0 },
992    { X86::VPSRAWrr,          X86::VPSRAWrm,           0 },
993    { X86::VPSRLDrr,          X86::VPSRLDrm,           0 },
994    { X86::VPSRLQrr,          X86::VPSRLQrm,           0 },
995    { X86::VPSRLWrr,          X86::VPSRLWrm,           0 },
996    { X86::VPSUBBrr,          X86::VPSUBBrm,           0 },
997    { X86::VPSUBDrr,          X86::VPSUBDrm,           0 },
998    { X86::VPSUBSBrr,         X86::VPSUBSBrm,          0 },
999    { X86::VPSUBSWrr,         X86::VPSUBSWrm,          0 },
1000    { X86::VPSUBWrr,          X86::VPSUBWrm,           0 },
1001    { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       0 },
1002    { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       0 },
1003    { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      0 },
1004    { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       0 },
1005    { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       0 },
1006    { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       0 },
1007    { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      0 },
1008    { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       0 },
1009    { X86::VPXORrr,           X86::VPXORrm,            0 },
1010    { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         0 },
1011    { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         0 },
1012    { X86::VSUBPDrr,          X86::VSUBPDrm,           0 },
1013    { X86::VSUBPSrr,          X86::VSUBPSrm,           0 },
1014    { X86::VSUBSDrr,          X86::VSUBSDrm,           0 },
1015    { X86::VSUBSSrr,          X86::VSUBSSrm,           0 },
1016    { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        0 },
1017    { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        0 },
1018    { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        0 },
1019    { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        0 },
1020    { X86::VXORPDrr,          X86::VXORPDrm,           0 },
1021    { X86::VXORPSrr,          X86::VXORPSrm,           0 },
1022    // AVX 256-bit foldable instructions
1023    { X86::VADDPDYrr,         X86::VADDPDYrm,          0 },
1024    { X86::VADDPSYrr,         X86::VADDPSYrm,          0 },
1025    { X86::VADDSUBPDYrr,      X86::VADDSUBPDYrm,       0 },
1026    { X86::VADDSUBPSYrr,      X86::VADDSUBPSYrm,       0 },
1027    { X86::VANDNPDYrr,        X86::VANDNPDYrm,         0 },
1028    { X86::VANDNPSYrr,        X86::VANDNPSYrm,         0 },
1029    { X86::VANDPDYrr,         X86::VANDPDYrm,          0 },
1030    { X86::VANDPSYrr,         X86::VANDPSYrm,          0 },
1031    { X86::VBLENDPDYrri,      X86::VBLENDPDYrmi,       0 },
1032    { X86::VBLENDPSYrri,      X86::VBLENDPSYrmi,       0 },
1033    { X86::VBLENDVPDYrr,      X86::VBLENDVPDYrm,       0 },
1034    { X86::VBLENDVPSYrr,      X86::VBLENDVPSYrm,       0 },
1035    { X86::VCMPPDYrri,        X86::VCMPPDYrmi,         0 },
1036    { X86::VCMPPSYrri,        X86::VCMPPSYrmi,         0 },
1037    { X86::VDIVPDYrr,         X86::VDIVPDYrm,          0 },
1038    { X86::VDIVPSYrr,         X86::VDIVPSYrm,          0 },
1039    { X86::VHADDPDYrr,        X86::VHADDPDYrm,         0 },
1040    { X86::VHADDPSYrr,        X86::VHADDPSYrm,         0 },
1041    { X86::VHSUBPDYrr,        X86::VHSUBPDYrm,         0 },
1042    { X86::VHSUBPSYrr,        X86::VHSUBPSYrm,         0 },
1043    { X86::VINSERTF128rr,     X86::VINSERTF128rm,      0 },
1044    { X86::VMAXPDYrr,         X86::VMAXPDYrm,          0 },
1045    { X86::VMAXPSYrr,         X86::VMAXPSYrm,          0 },
1046    { X86::VMINPDYrr,         X86::VMINPDYrm,          0 },
1047    { X86::VMINPSYrr,         X86::VMINPSYrm,          0 },
1048    { X86::VMULPDYrr,         X86::VMULPDYrm,          0 },
1049    { X86::VMULPSYrr,         X86::VMULPSYrm,          0 },
1050    { X86::VORPDYrr,          X86::VORPDYrm,           0 },
1051    { X86::VORPSYrr,          X86::VORPSYrm,           0 },
1052    { X86::VPERM2F128rr,      X86::VPERM2F128rm,       0 },
1053    { X86::VPERMILPDYrr,      X86::VPERMILPDYrm,       0 },
1054    { X86::VPERMILPSYrr,      X86::VPERMILPSYrm,       0 },
1055    { X86::VSHUFPDYrri,       X86::VSHUFPDYrmi,        0 },
1056    { X86::VSHUFPSYrri,       X86::VSHUFPSYrmi,        0 },
1057    { X86::VSUBPDYrr,         X86::VSUBPDYrm,          0 },
1058    { X86::VSUBPSYrr,         X86::VSUBPSYrm,          0 },
1059    { X86::VUNPCKHPDYrr,      X86::VUNPCKHPDYrm,       0 },
1060    { X86::VUNPCKHPSYrr,      X86::VUNPCKHPSYrm,       0 },
1061    { X86::VUNPCKLPDYrr,      X86::VUNPCKLPDYrm,       0 },
1062    { X86::VUNPCKLPSYrr,      X86::VUNPCKLPSYrm,       0 },
1063    { X86::VXORPDYrr,         X86::VXORPDYrm,          0 },
1064    { X86::VXORPSYrr,         X86::VXORPSYrm,          0 },
1065    // AVX2 foldable instructions
1066    { X86::VINSERTI128rr,     X86::VINSERTI128rm,      0 },
1067    { X86::VPACKSSDWYrr,      X86::VPACKSSDWYrm,       0 },
1068    { X86::VPACKSSWBYrr,      X86::VPACKSSWBYrm,       0 },
1069    { X86::VPACKUSDWYrr,      X86::VPACKUSDWYrm,       0 },
1070    { X86::VPACKUSWBYrr,      X86::VPACKUSWBYrm,       0 },
1071    { X86::VPADDBYrr,         X86::VPADDBYrm,          0 },
1072    { X86::VPADDDYrr,         X86::VPADDDYrm,          0 },
1073    { X86::VPADDQYrr,         X86::VPADDQYrm,          0 },
1074    { X86::VPADDSBYrr,        X86::VPADDSBYrm,         0 },
1075    { X86::VPADDSWYrr,        X86::VPADDSWYrm,         0 },
1076    { X86::VPADDUSBYrr,       X86::VPADDUSBYrm,        0 },
1077    { X86::VPADDUSWYrr,       X86::VPADDUSWYrm,        0 },
1078    { X86::VPADDWYrr,         X86::VPADDWYrm,          0 },
1079    { X86::VPALIGNR256rr,     X86::VPALIGNR256rm,      0 },
1080    { X86::VPANDNYrr,         X86::VPANDNYrm,          0 },
1081    { X86::VPANDYrr,          X86::VPANDYrm,           0 },
1082    { X86::VPAVGBYrr,         X86::VPAVGBYrm,          0 },
1083    { X86::VPAVGWYrr,         X86::VPAVGWYrm,          0 },
1084    { X86::VPBLENDDrri,       X86::VPBLENDDrmi,        0 },
1085    { X86::VPBLENDDYrri,      X86::VPBLENDDYrmi,       0 },
1086    { X86::VPBLENDWYrri,      X86::VPBLENDWYrmi,       0 },
1087    { X86::VPCMPEQBYrr,       X86::VPCMPEQBYrm,        0 },
1088    { X86::VPCMPEQDYrr,       X86::VPCMPEQDYrm,        0 },
1089    { X86::VPCMPEQQYrr,       X86::VPCMPEQQYrm,        0 },
1090    { X86::VPCMPEQWYrr,       X86::VPCMPEQWYrm,        0 },
1091    { X86::VPCMPGTBYrr,       X86::VPCMPGTBYrm,        0 },
1092    { X86::VPCMPGTDYrr,       X86::VPCMPGTDYrm,        0 },
1093    { X86::VPCMPGTQYrr,       X86::VPCMPGTQYrm,        0 },
1094    { X86::VPCMPGTWYrr,       X86::VPCMPGTWYrm,        0 },
1095    { X86::VPERM2I128rr,      X86::VPERM2I128rm,       0 },
1096    { X86::VPERMDYrr,         X86::VPERMDYrm,          0 },
1097    { X86::VPERMPDYri,        X86::VPERMPDYmi,         0 },
1098    { X86::VPERMPSYrr,        X86::VPERMPSYrm,         0 },
1099    { X86::VPERMQYri,         X86::VPERMQYmi,          0 },
1100    { X86::VPHADDDYrr,        X86::VPHADDDYrm,         0 },
1101    { X86::VPHADDSWrr256,     X86::VPHADDSWrm256,      0 },
1102    { X86::VPHADDWYrr,        X86::VPHADDWYrm,         0 },
1103    { X86::VPHSUBDYrr,        X86::VPHSUBDYrm,         0 },
1104    { X86::VPHSUBSWrr256,     X86::VPHSUBSWrm256,      0 },
1105    { X86::VPHSUBWYrr,        X86::VPHSUBWYrm,         0 },
1106    { X86::VPMADDUBSWrr256,   X86::VPMADDUBSWrm256,    0 },
1107    { X86::VPMADDWDYrr,       X86::VPMADDWDYrm,        0 },
1108    { X86::VPMAXSWYrr,        X86::VPMAXSWYrm,         0 },
1109    { X86::VPMAXUBYrr,        X86::VPMAXUBYrm,         0 },
1110    { X86::VPMINSWYrr,        X86::VPMINSWYrm,         0 },
1111    { X86::VPMINUBYrr,        X86::VPMINUBYrm,         0 },
1112    { X86::VPMINSBYrr,        X86::VPMINSBYrm,         0 },
1113    { X86::VPMINSDYrr,        X86::VPMINSDYrm,         0 },
1114    { X86::VPMINUDYrr,        X86::VPMINUDYrm,         0 },
1115    { X86::VPMINUWYrr,        X86::VPMINUWYrm,         0 },
1116    { X86::VPMAXSBYrr,        X86::VPMAXSBYrm,         0 },
1117    { X86::VPMAXSDYrr,        X86::VPMAXSDYrm,         0 },
1118    { X86::VPMAXUDYrr,        X86::VPMAXUDYrm,         0 },
1119    { X86::VPMAXUWYrr,        X86::VPMAXUWYrm,         0 },
1120    { X86::VMPSADBWYrri,      X86::VMPSADBWYrmi,       0 },
1121    { X86::VPMULDQYrr,        X86::VPMULDQYrm,         0 },
1122    { X86::VPMULHRSWrr256,    X86::VPMULHRSWrm256,     0 },
1123    { X86::VPMULHUWYrr,       X86::VPMULHUWYrm,        0 },
1124    { X86::VPMULHWYrr,        X86::VPMULHWYrm,         0 },
1125    { X86::VPMULLDYrr,        X86::VPMULLDYrm,         0 },
1126    { X86::VPMULLWYrr,        X86::VPMULLWYrm,         0 },
1127    { X86::VPMULUDQYrr,       X86::VPMULUDQYrm,        0 },
1128    { X86::VPORYrr,           X86::VPORYrm,            0 },
1129    { X86::VPSADBWYrr,        X86::VPSADBWYrm,         0 },
1130    { X86::VPSHUFBYrr,        X86::VPSHUFBYrm,         0 },
1131    { X86::VPSIGNBYrr,        X86::VPSIGNBYrm,         0 },
1132    { X86::VPSIGNWYrr,        X86::VPSIGNWYrm,         0 },
1133    { X86::VPSIGNDYrr,        X86::VPSIGNDYrm,         0 },
1134    { X86::VPSLLDYrr,         X86::VPSLLDYrm,          0 },
1135    { X86::VPSLLQYrr,         X86::VPSLLQYrm,          0 },
1136    { X86::VPSLLWYrr,         X86::VPSLLWYrm,          0 },
1137    { X86::VPSLLVDrr,         X86::VPSLLVDrm,          0 },
1138    { X86::VPSLLVDYrr,        X86::VPSLLVDYrm,         0 },
1139    { X86::VPSLLVQrr,         X86::VPSLLVQrm,          0 },
1140    { X86::VPSLLVQYrr,        X86::VPSLLVQYrm,         0 },
1141    { X86::VPSRADYrr,         X86::VPSRADYrm,          0 },
1142    { X86::VPSRAWYrr,         X86::VPSRAWYrm,          0 },
1143    { X86::VPSRAVDrr,         X86::VPSRAVDrm,          0 },
1144    { X86::VPSRAVDYrr,        X86::VPSRAVDYrm,         0 },
1145    { X86::VPSRLDYrr,         X86::VPSRLDYrm,          0 },
1146    { X86::VPSRLQYrr,         X86::VPSRLQYrm,          0 },
1147    { X86::VPSRLWYrr,         X86::VPSRLWYrm,          0 },
1148    { X86::VPSRLVDrr,         X86::VPSRLVDrm,          0 },
1149    { X86::VPSRLVDYrr,        X86::VPSRLVDYrm,         0 },
1150    { X86::VPSRLVQrr,         X86::VPSRLVQrm,          0 },
1151    { X86::VPSRLVQYrr,        X86::VPSRLVQYrm,         0 },
1152    { X86::VPSUBBYrr,         X86::VPSUBBYrm,          0 },
1153    { X86::VPSUBDYrr,         X86::VPSUBDYrm,          0 },
1154    { X86::VPSUBSBYrr,        X86::VPSUBSBYrm,         0 },
1155    { X86::VPSUBSWYrr,        X86::VPSUBSWYrm,         0 },
1156    { X86::VPSUBWYrr,         X86::VPSUBWYrm,          0 },
1157    { X86::VPUNPCKHBWYrr,     X86::VPUNPCKHBWYrm,      0 },
1158    { X86::VPUNPCKHDQYrr,     X86::VPUNPCKHDQYrm,      0 },
1159    { X86::VPUNPCKHQDQYrr,    X86::VPUNPCKHQDQYrm,     0 },
1160    { X86::VPUNPCKHWDYrr,     X86::VPUNPCKHWDYrm,      0 },
1161    { X86::VPUNPCKLBWYrr,     X86::VPUNPCKLBWYrm,      0 },
1162    { X86::VPUNPCKLDQYrr,     X86::VPUNPCKLDQYrm,      0 },
1163    { X86::VPUNPCKLQDQYrr,    X86::VPUNPCKLQDQYrm,     0 },
1164    { X86::VPUNPCKLWDYrr,     X86::VPUNPCKLWDYrm,      0 },
1165    { X86::VPXORYrr,          X86::VPXORYrm,           0 },
1166    // FIXME: add AVX 256-bit foldable instructions
1167
1168    // FMA4 foldable patterns
1169    { X86::VFMADDSS4rr,       X86::VFMADDSS4mr,        0           },
1170    { X86::VFMADDSD4rr,       X86::VFMADDSD4mr,        0           },
1171    { X86::VFMADDPS4rr,       X86::VFMADDPS4mr,        TB_ALIGN_16 },
1172    { X86::VFMADDPD4rr,       X86::VFMADDPD4mr,        TB_ALIGN_16 },
1173    { X86::VFMADDPS4rrY,      X86::VFMADDPS4mrY,       TB_ALIGN_32 },
1174    { X86::VFMADDPD4rrY,      X86::VFMADDPD4mrY,       TB_ALIGN_32 },
1175    { X86::VFNMADDSS4rr,      X86::VFNMADDSS4mr,       0           },
1176    { X86::VFNMADDSD4rr,      X86::VFNMADDSD4mr,       0           },
1177    { X86::VFNMADDPS4rr,      X86::VFNMADDPS4mr,       TB_ALIGN_16 },
1178    { X86::VFNMADDPD4rr,      X86::VFNMADDPD4mr,       TB_ALIGN_16 },
1179    { X86::VFNMADDPS4rrY,     X86::VFNMADDPS4mrY,      TB_ALIGN_32 },
1180    { X86::VFNMADDPD4rrY,     X86::VFNMADDPD4mrY,      TB_ALIGN_32 },
1181    { X86::VFMSUBSS4rr,       X86::VFMSUBSS4mr,        0           },
1182    { X86::VFMSUBSD4rr,       X86::VFMSUBSD4mr,        0           },
1183    { X86::VFMSUBPS4rr,       X86::VFMSUBPS4mr,        TB_ALIGN_16 },
1184    { X86::VFMSUBPD4rr,       X86::VFMSUBPD4mr,        TB_ALIGN_16 },
1185    { X86::VFMSUBPS4rrY,      X86::VFMSUBPS4mrY,       TB_ALIGN_32 },
1186    { X86::VFMSUBPD4rrY,      X86::VFMSUBPD4mrY,       TB_ALIGN_32 },
1187    { X86::VFNMSUBSS4rr,      X86::VFNMSUBSS4mr,       0           },
1188    { X86::VFNMSUBSD4rr,      X86::VFNMSUBSD4mr,       0           },
1189    { X86::VFNMSUBPS4rr,      X86::VFNMSUBPS4mr,       TB_ALIGN_16 },
1190    { X86::VFNMSUBPD4rr,      X86::VFNMSUBPD4mr,       TB_ALIGN_16 },
1191    { X86::VFNMSUBPS4rrY,     X86::VFNMSUBPS4mrY,      TB_ALIGN_32 },
1192    { X86::VFNMSUBPD4rrY,     X86::VFNMSUBPD4mrY,      TB_ALIGN_32 },
1193    { X86::VFMADDSUBPS4rr,    X86::VFMADDSUBPS4mr,     TB_ALIGN_16 },
1194    { X86::VFMADDSUBPD4rr,    X86::VFMADDSUBPD4mr,     TB_ALIGN_16 },
1195    { X86::VFMADDSUBPS4rrY,   X86::VFMADDSUBPS4mrY,    TB_ALIGN_32 },
1196    { X86::VFMADDSUBPD4rrY,   X86::VFMADDSUBPD4mrY,    TB_ALIGN_32 },
1197    { X86::VFMSUBADDPS4rr,    X86::VFMSUBADDPS4mr,     TB_ALIGN_16 },
1198    { X86::VFMSUBADDPD4rr,    X86::VFMSUBADDPD4mr,     TB_ALIGN_16 },
1199    { X86::VFMSUBADDPS4rrY,   X86::VFMSUBADDPS4mrY,    TB_ALIGN_32 },
1200    { X86::VFMSUBADDPD4rrY,   X86::VFMSUBADDPD4mrY,    TB_ALIGN_32 },
1201
1202    // BMI/BMI2 foldable instructions
1203    { X86::ANDN32rr,          X86::ANDN32rm,            0 },
1204    { X86::ANDN64rr,          X86::ANDN64rm,            0 },
1205    { X86::MULX32rr,          X86::MULX32rm,            0 },
1206    { X86::MULX64rr,          X86::MULX64rm,            0 },
1207    { X86::PDEP32rr,          X86::PDEP32rm,            0 },
1208    { X86::PDEP64rr,          X86::PDEP64rm,            0 },
1209    { X86::PEXT32rr,          X86::PEXT32rm,            0 },
1210    { X86::PEXT64rr,          X86::PEXT64rm,            0 },
1211
1212    // AVX-512 foldable instructions
1213    { X86::VPADDDZrr,         X86::VPADDDZrm,           0 },
1214    { X86::VPADDQZrr,         X86::VPADDQZrm,           0 },
1215    { X86::VADDPSZrr,         X86::VADDPSZrm,           0 },
1216    { X86::VADDPDZrr,         X86::VADDPDZrm,           0 },
1217    { X86::VSUBPSZrr,         X86::VSUBPSZrm,           0 },
1218    { X86::VSUBPDZrr,         X86::VSUBPDZrm,           0 },
1219    { X86::VMULPSZrr,         X86::VMULPSZrm,           0 },
1220    { X86::VMULPDZrr,         X86::VMULPDZrm,           0 },
1221    { X86::VDIVPSZrr,         X86::VDIVPSZrm,           0 },
1222    { X86::VDIVPDZrr,         X86::VDIVPDZrm,           0 },
1223    { X86::VMINPSZrr,         X86::VMINPSZrm,           0 },
1224    { X86::VMINPDZrr,         X86::VMINPDZrm,           0 },
1225    { X86::VMAXPSZrr,         X86::VMAXPSZrm,           0 },
1226    { X86::VMAXPDZrr,         X86::VMAXPDZrm,           0 },
1227    { X86::VPERMPDZri,        X86::VPERMPDZmi,          0 },
1228    { X86::VPERMPSZrr,        X86::VPERMPSZrm,          0 },
1229    { X86::VPSLLVDZrr,        X86::VPSLLVDZrm,          0 },
1230    { X86::VPSLLVQZrr,        X86::VPSLLVQZrm,          0 },
1231    { X86::VPSRAVDZrr,        X86::VPSRAVDZrm,          0 },
1232    { X86::VPSRLVDZrr,        X86::VPSRLVDZrm,          0 },
1233    { X86::VPSRLVQZrr,        X86::VPSRLVQZrm,          0 },
1234    { X86::VSHUFPDZrri,       X86::VSHUFPDZrmi,         0 },
1235    { X86::VSHUFPSZrri,       X86::VSHUFPSZrmi,         0 },
1236    { X86::VALIGNQrri,        X86::VALIGNQrmi,          0 },
1237    { X86::VALIGNDrri,        X86::VALIGNDrmi,          0 },
1238
1239    // AES foldable instructions
1240    { X86::AESDECLASTrr,      X86::AESDECLASTrm,        TB_ALIGN_16 },
1241    { X86::AESDECrr,          X86::AESDECrm,            TB_ALIGN_16 },
1242    { X86::AESENCLASTrr,      X86::AESENCLASTrm,        TB_ALIGN_16 },
1243    { X86::AESENCrr,          X86::AESENCrm,            TB_ALIGN_16 },
1244    { X86::VAESDECLASTrr,     X86::VAESDECLASTrm,       TB_ALIGN_16 },
1245    { X86::VAESDECrr,         X86::VAESDECrm,           TB_ALIGN_16 },
1246    { X86::VAESENCLASTrr,     X86::VAESENCLASTrm,       TB_ALIGN_16 },
1247    { X86::VAESENCrr,         X86::VAESENCrm,           TB_ALIGN_16 },
1248
1249    // SHA foldable instructions
1250    { X86::SHA1MSG1rr,        X86::SHA1MSG1rm,          TB_ALIGN_16 },
1251    { X86::SHA1MSG2rr,        X86::SHA1MSG2rm,          TB_ALIGN_16 },
1252    { X86::SHA1NEXTErr,       X86::SHA1NEXTErm,         TB_ALIGN_16 },
1253    { X86::SHA1RNDS4rri,      X86::SHA1RNDS4rmi,        TB_ALIGN_16 },
1254    { X86::SHA256MSG1rr,      X86::SHA256MSG1rm,        TB_ALIGN_16 },
1255    { X86::SHA256MSG2rr,      X86::SHA256MSG2rm,        TB_ALIGN_16 },
1256    { X86::SHA256RNDS2rr,     X86::SHA256RNDS2rm,       TB_ALIGN_16 },
1257  };
1258
1259  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
1260    unsigned RegOp = OpTbl2[i].RegOp;
1261    unsigned MemOp = OpTbl2[i].MemOp;
1262    unsigned Flags = OpTbl2[i].Flags;
1263    AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
1264                  RegOp, MemOp,
1265                  // Index 2, folded load
1266                  Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
1267  }
1268
1269  static const X86OpTblEntry OpTbl3[] = {
1270    // FMA foldable instructions
1271    { X86::VFMADDSSr231r,         X86::VFMADDSSr231m,         0 },
1272    { X86::VFMADDSDr231r,         X86::VFMADDSDr231m,         0 },
1273    { X86::VFMADDSSr132r,         X86::VFMADDSSr132m,         0 },
1274    { X86::VFMADDSDr132r,         X86::VFMADDSDr132m,         0 },
1275    { X86::VFMADDSSr213r,         X86::VFMADDSSr213m,         0 },
1276    { X86::VFMADDSDr213r,         X86::VFMADDSDr213m,         0 },
1277    { X86::VFMADDSSr213r_Int,     X86::VFMADDSSr213m_Int,     0 },
1278    { X86::VFMADDSDr213r_Int,     X86::VFMADDSDr213m_Int,     0 },
1279
1280    { X86::VFMADDPSr231r,         X86::VFMADDPSr231m,         TB_ALIGN_16 },
1281    { X86::VFMADDPDr231r,         X86::VFMADDPDr231m,         TB_ALIGN_16 },
1282    { X86::VFMADDPSr132r,         X86::VFMADDPSr132m,         TB_ALIGN_16 },
1283    { X86::VFMADDPDr132r,         X86::VFMADDPDr132m,         TB_ALIGN_16 },
1284    { X86::VFMADDPSr213r,         X86::VFMADDPSr213m,         TB_ALIGN_16 },
1285    { X86::VFMADDPDr213r,         X86::VFMADDPDr213m,         TB_ALIGN_16 },
1286    { X86::VFMADDPSr231rY,        X86::VFMADDPSr231mY,        TB_ALIGN_32 },
1287    { X86::VFMADDPDr231rY,        X86::VFMADDPDr231mY,        TB_ALIGN_32 },
1288    { X86::VFMADDPSr132rY,        X86::VFMADDPSr132mY,        TB_ALIGN_32 },
1289    { X86::VFMADDPDr132rY,        X86::VFMADDPDr132mY,        TB_ALIGN_32 },
1290    { X86::VFMADDPSr213rY,        X86::VFMADDPSr213mY,        TB_ALIGN_32 },
1291    { X86::VFMADDPDr213rY,        X86::VFMADDPDr213mY,        TB_ALIGN_32 },
1292
1293    { X86::VFNMADDSSr231r,        X86::VFNMADDSSr231m,        0 },
1294    { X86::VFNMADDSDr231r,        X86::VFNMADDSDr231m,        0 },
1295    { X86::VFNMADDSSr132r,        X86::VFNMADDSSr132m,        0 },
1296    { X86::VFNMADDSDr132r,        X86::VFNMADDSDr132m,        0 },
1297    { X86::VFNMADDSSr213r,        X86::VFNMADDSSr213m,        0 },
1298    { X86::VFNMADDSDr213r,        X86::VFNMADDSDr213m,        0 },
1299    { X86::VFNMADDSSr213r_Int,    X86::VFNMADDSSr213m_Int,    0 },
1300    { X86::VFNMADDSDr213r_Int,    X86::VFNMADDSDr213m_Int,    0 },
1301
1302    { X86::VFNMADDPSr231r,        X86::VFNMADDPSr231m,        TB_ALIGN_16 },
1303    { X86::VFNMADDPDr231r,        X86::VFNMADDPDr231m,        TB_ALIGN_16 },
1304    { X86::VFNMADDPSr132r,        X86::VFNMADDPSr132m,        TB_ALIGN_16 },
1305    { X86::VFNMADDPDr132r,        X86::VFNMADDPDr132m,        TB_ALIGN_16 },
1306    { X86::VFNMADDPSr213r,        X86::VFNMADDPSr213m,        TB_ALIGN_16 },
1307    { X86::VFNMADDPDr213r,        X86::VFNMADDPDr213m,        TB_ALIGN_16 },
1308    { X86::VFNMADDPSr231rY,       X86::VFNMADDPSr231mY,       TB_ALIGN_32 },
1309    { X86::VFNMADDPDr231rY,       X86::VFNMADDPDr231mY,       TB_ALIGN_32 },
1310    { X86::VFNMADDPSr132rY,       X86::VFNMADDPSr132mY,       TB_ALIGN_32 },
1311    { X86::VFNMADDPDr132rY,       X86::VFNMADDPDr132mY,       TB_ALIGN_32 },
1312    { X86::VFNMADDPSr213rY,       X86::VFNMADDPSr213mY,       TB_ALIGN_32 },
1313    { X86::VFNMADDPDr213rY,       X86::VFNMADDPDr213mY,       TB_ALIGN_32 },
1314
1315    { X86::VFMSUBSSr231r,         X86::VFMSUBSSr231m,         0 },
1316    { X86::VFMSUBSDr231r,         X86::VFMSUBSDr231m,         0 },
1317    { X86::VFMSUBSSr132r,         X86::VFMSUBSSr132m,         0 },
1318    { X86::VFMSUBSDr132r,         X86::VFMSUBSDr132m,         0 },
1319    { X86::VFMSUBSSr213r,         X86::VFMSUBSSr213m,         0 },
1320    { X86::VFMSUBSDr213r,         X86::VFMSUBSDr213m,         0 },
1321    { X86::VFMSUBSSr213r_Int,     X86::VFMSUBSSr213m_Int,     0 },
1322    { X86::VFMSUBSDr213r_Int,     X86::VFMSUBSDr213m_Int,     0 },
1323
1324    { X86::VFMSUBPSr231r,         X86::VFMSUBPSr231m,         TB_ALIGN_16 },
1325    { X86::VFMSUBPDr231r,         X86::VFMSUBPDr231m,         TB_ALIGN_16 },
1326    { X86::VFMSUBPSr132r,         X86::VFMSUBPSr132m,         TB_ALIGN_16 },
1327    { X86::VFMSUBPDr132r,         X86::VFMSUBPDr132m,         TB_ALIGN_16 },
1328    { X86::VFMSUBPSr213r,         X86::VFMSUBPSr213m,         TB_ALIGN_16 },
1329    { X86::VFMSUBPDr213r,         X86::VFMSUBPDr213m,         TB_ALIGN_16 },
1330    { X86::VFMSUBPSr231rY,        X86::VFMSUBPSr231mY,        TB_ALIGN_32 },
1331    { X86::VFMSUBPDr231rY,        X86::VFMSUBPDr231mY,        TB_ALIGN_32 },
1332    { X86::VFMSUBPSr132rY,        X86::VFMSUBPSr132mY,        TB_ALIGN_32 },
1333    { X86::VFMSUBPDr132rY,        X86::VFMSUBPDr132mY,        TB_ALIGN_32 },
1334    { X86::VFMSUBPSr213rY,        X86::VFMSUBPSr213mY,        TB_ALIGN_32 },
1335    { X86::VFMSUBPDr213rY,        X86::VFMSUBPDr213mY,        TB_ALIGN_32 },
1336
1337    { X86::VFNMSUBSSr231r,        X86::VFNMSUBSSr231m,        0 },
1338    { X86::VFNMSUBSDr231r,        X86::VFNMSUBSDr231m,        0 },
1339    { X86::VFNMSUBSSr132r,        X86::VFNMSUBSSr132m,        0 },
1340    { X86::VFNMSUBSDr132r,        X86::VFNMSUBSDr132m,        0 },
1341    { X86::VFNMSUBSSr213r,        X86::VFNMSUBSSr213m,        0 },
1342    { X86::VFNMSUBSDr213r,        X86::VFNMSUBSDr213m,        0 },
1343    { X86::VFNMSUBSSr213r_Int,    X86::VFNMSUBSSr213m_Int,    0 },
1344    { X86::VFNMSUBSDr213r_Int,    X86::VFNMSUBSDr213m_Int,    0 },
1345
1346    { X86::VFNMSUBPSr231r,        X86::VFNMSUBPSr231m,        TB_ALIGN_16 },
1347    { X86::VFNMSUBPDr231r,        X86::VFNMSUBPDr231m,        TB_ALIGN_16 },
1348    { X86::VFNMSUBPSr132r,        X86::VFNMSUBPSr132m,        TB_ALIGN_16 },
1349    { X86::VFNMSUBPDr132r,        X86::VFNMSUBPDr132m,        TB_ALIGN_16 },
1350    { X86::VFNMSUBPSr213r,        X86::VFNMSUBPSr213m,        TB_ALIGN_16 },
1351    { X86::VFNMSUBPDr213r,        X86::VFNMSUBPDr213m,        TB_ALIGN_16 },
1352    { X86::VFNMSUBPSr231rY,       X86::VFNMSUBPSr231mY,       TB_ALIGN_32 },
1353    { X86::VFNMSUBPDr231rY,       X86::VFNMSUBPDr231mY,       TB_ALIGN_32 },
1354    { X86::VFNMSUBPSr132rY,       X86::VFNMSUBPSr132mY,       TB_ALIGN_32 },
1355    { X86::VFNMSUBPDr132rY,       X86::VFNMSUBPDr132mY,       TB_ALIGN_32 },
1356    { X86::VFNMSUBPSr213rY,       X86::VFNMSUBPSr213mY,       TB_ALIGN_32 },
1357    { X86::VFNMSUBPDr213rY,       X86::VFNMSUBPDr213mY,       TB_ALIGN_32 },
1358
1359    { X86::VFMADDSUBPSr231r,      X86::VFMADDSUBPSr231m,      TB_ALIGN_16 },
1360    { X86::VFMADDSUBPDr231r,      X86::VFMADDSUBPDr231m,      TB_ALIGN_16 },
1361    { X86::VFMADDSUBPSr132r,      X86::VFMADDSUBPSr132m,      TB_ALIGN_16 },
1362    { X86::VFMADDSUBPDr132r,      X86::VFMADDSUBPDr132m,      TB_ALIGN_16 },
1363    { X86::VFMADDSUBPSr213r,      X86::VFMADDSUBPSr213m,      TB_ALIGN_16 },
1364    { X86::VFMADDSUBPDr213r,      X86::VFMADDSUBPDr213m,      TB_ALIGN_16 },
1365    { X86::VFMADDSUBPSr231rY,     X86::VFMADDSUBPSr231mY,     TB_ALIGN_32 },
1366    { X86::VFMADDSUBPDr231rY,     X86::VFMADDSUBPDr231mY,     TB_ALIGN_32 },
1367    { X86::VFMADDSUBPSr132rY,     X86::VFMADDSUBPSr132mY,     TB_ALIGN_32 },
1368    { X86::VFMADDSUBPDr132rY,     X86::VFMADDSUBPDr132mY,     TB_ALIGN_32 },
1369    { X86::VFMADDSUBPSr213rY,     X86::VFMADDSUBPSr213mY,     TB_ALIGN_32 },
1370    { X86::VFMADDSUBPDr213rY,     X86::VFMADDSUBPDr213mY,     TB_ALIGN_32 },
1371
1372    { X86::VFMSUBADDPSr231r,      X86::VFMSUBADDPSr231m,      TB_ALIGN_16 },
1373    { X86::VFMSUBADDPDr231r,      X86::VFMSUBADDPDr231m,      TB_ALIGN_16 },
1374    { X86::VFMSUBADDPSr132r,      X86::VFMSUBADDPSr132m,      TB_ALIGN_16 },
1375    { X86::VFMSUBADDPDr132r,      X86::VFMSUBADDPDr132m,      TB_ALIGN_16 },
1376    { X86::VFMSUBADDPSr213r,      X86::VFMSUBADDPSr213m,      TB_ALIGN_16 },
1377    { X86::VFMSUBADDPDr213r,      X86::VFMSUBADDPDr213m,      TB_ALIGN_16 },
1378    { X86::VFMSUBADDPSr231rY,     X86::VFMSUBADDPSr231mY,     TB_ALIGN_32 },
1379    { X86::VFMSUBADDPDr231rY,     X86::VFMSUBADDPDr231mY,     TB_ALIGN_32 },
1380    { X86::VFMSUBADDPSr132rY,     X86::VFMSUBADDPSr132mY,     TB_ALIGN_32 },
1381    { X86::VFMSUBADDPDr132rY,     X86::VFMSUBADDPDr132mY,     TB_ALIGN_32 },
1382    { X86::VFMSUBADDPSr213rY,     X86::VFMSUBADDPSr213mY,     TB_ALIGN_32 },
1383    { X86::VFMSUBADDPDr213rY,     X86::VFMSUBADDPDr213mY,     TB_ALIGN_32 },
1384
1385    // FMA4 foldable patterns
1386    { X86::VFMADDSS4rr,           X86::VFMADDSS4rm,           0           },
1387    { X86::VFMADDSD4rr,           X86::VFMADDSD4rm,           0           },
1388    { X86::VFMADDPS4rr,           X86::VFMADDPS4rm,           TB_ALIGN_16 },
1389    { X86::VFMADDPD4rr,           X86::VFMADDPD4rm,           TB_ALIGN_16 },
1390    { X86::VFMADDPS4rrY,          X86::VFMADDPS4rmY,          TB_ALIGN_32 },
1391    { X86::VFMADDPD4rrY,          X86::VFMADDPD4rmY,          TB_ALIGN_32 },
1392    { X86::VFNMADDSS4rr,          X86::VFNMADDSS4rm,          0           },
1393    { X86::VFNMADDSD4rr,          X86::VFNMADDSD4rm,          0           },
1394    { X86::VFNMADDPS4rr,          X86::VFNMADDPS4rm,          TB_ALIGN_16 },
1395    { X86::VFNMADDPD4rr,          X86::VFNMADDPD4rm,          TB_ALIGN_16 },
1396    { X86::VFNMADDPS4rrY,         X86::VFNMADDPS4rmY,         TB_ALIGN_32 },
1397    { X86::VFNMADDPD4rrY,         X86::VFNMADDPD4rmY,         TB_ALIGN_32 },
1398    { X86::VFMSUBSS4rr,           X86::VFMSUBSS4rm,           0           },
1399    { X86::VFMSUBSD4rr,           X86::VFMSUBSD4rm,           0           },
1400    { X86::VFMSUBPS4rr,           X86::VFMSUBPS4rm,           TB_ALIGN_16 },
1401    { X86::VFMSUBPD4rr,           X86::VFMSUBPD4rm,           TB_ALIGN_16 },
1402    { X86::VFMSUBPS4rrY,          X86::VFMSUBPS4rmY,          TB_ALIGN_32 },
1403    { X86::VFMSUBPD4rrY,          X86::VFMSUBPD4rmY,          TB_ALIGN_32 },
1404    { X86::VFNMSUBSS4rr,          X86::VFNMSUBSS4rm,          0           },
1405    { X86::VFNMSUBSD4rr,          X86::VFNMSUBSD4rm,          0           },
1406    { X86::VFNMSUBPS4rr,          X86::VFNMSUBPS4rm,          TB_ALIGN_16 },
1407    { X86::VFNMSUBPD4rr,          X86::VFNMSUBPD4rm,          TB_ALIGN_16 },
1408    { X86::VFNMSUBPS4rrY,         X86::VFNMSUBPS4rmY,         TB_ALIGN_32 },
1409    { X86::VFNMSUBPD4rrY,         X86::VFNMSUBPD4rmY,         TB_ALIGN_32 },
1410    { X86::VFMADDSUBPS4rr,        X86::VFMADDSUBPS4rm,        TB_ALIGN_16 },
1411    { X86::VFMADDSUBPD4rr,        X86::VFMADDSUBPD4rm,        TB_ALIGN_16 },
1412    { X86::VFMADDSUBPS4rrY,       X86::VFMADDSUBPS4rmY,       TB_ALIGN_32 },
1413    { X86::VFMADDSUBPD4rrY,       X86::VFMADDSUBPD4rmY,       TB_ALIGN_32 },
1414    { X86::VFMSUBADDPS4rr,        X86::VFMSUBADDPS4rm,        TB_ALIGN_16 },
1415    { X86::VFMSUBADDPD4rr,        X86::VFMSUBADDPD4rm,        TB_ALIGN_16 },
1416    { X86::VFMSUBADDPS4rrY,       X86::VFMSUBADDPS4rmY,       TB_ALIGN_32 },
1417    { X86::VFMSUBADDPD4rrY,       X86::VFMSUBADDPD4rmY,       TB_ALIGN_32 },
1418    // AVX-512 VPERMI instructions with 3 source operands.
1419    { X86::VPERMI2Drr,            X86::VPERMI2Drm,            0 },
1420    { X86::VPERMI2Qrr,            X86::VPERMI2Qrm,            0 },
1421    { X86::VPERMI2PSrr,           X86::VPERMI2PSrm,           0 },
1422    { X86::VPERMI2PDrr,           X86::VPERMI2PDrm,           0 },
1423  };
1424
1425  for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) {
1426    unsigned RegOp = OpTbl3[i].RegOp;
1427    unsigned MemOp = OpTbl3[i].MemOp;
1428    unsigned Flags = OpTbl3[i].Flags;
1429    AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
1430                  RegOp, MemOp,
1431                  // Index 3, folded load
1432                  Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
1433  }
1434
1435}
1436
1437void
1438X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
1439                            MemOp2RegOpTableType &M2RTable,
1440                            unsigned RegOp, unsigned MemOp, unsigned Flags) {
1441    if ((Flags & TB_NO_FORWARD) == 0) {
1442      assert(!R2MTable.count(RegOp) && "Duplicate entry!");
1443      R2MTable[RegOp] = std::make_pair(MemOp, Flags);
1444    }
1445    if ((Flags & TB_NO_REVERSE) == 0) {
1446      assert(!M2RTable.count(MemOp) &&
1447           "Duplicated entries in unfolding maps?");
1448      M2RTable[MemOp] = std::make_pair(RegOp, Flags);
1449    }
1450}
1451
1452bool
1453X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1454                                    unsigned &SrcReg, unsigned &DstReg,
1455                                    unsigned &SubIdx) const {
1456  switch (MI.getOpcode()) {
1457  default: break;
1458  case X86::MOVSX16rr8:
1459  case X86::MOVZX16rr8:
1460  case X86::MOVSX32rr8:
1461  case X86::MOVZX32rr8:
1462  case X86::MOVSX64rr8:
1463    if (!TM.getSubtarget<X86Subtarget>().is64Bit())
1464      // It's not always legal to reference the low 8-bit of the larger
1465      // register in 32-bit mode.
1466      return false;
1467  case X86::MOVSX32rr16:
1468  case X86::MOVZX32rr16:
1469  case X86::MOVSX64rr16:
1470  case X86::MOVSX64rr32: {
1471    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
1472      // Be conservative.
1473      return false;
1474    SrcReg = MI.getOperand(1).getReg();
1475    DstReg = MI.getOperand(0).getReg();
1476    switch (MI.getOpcode()) {
1477    default: llvm_unreachable("Unreachable!");
1478    case X86::MOVSX16rr8:
1479    case X86::MOVZX16rr8:
1480    case X86::MOVSX32rr8:
1481    case X86::MOVZX32rr8:
1482    case X86::MOVSX64rr8:
1483      SubIdx = X86::sub_8bit;
1484      break;
1485    case X86::MOVSX32rr16:
1486    case X86::MOVZX32rr16:
1487    case X86::MOVSX64rr16:
1488      SubIdx = X86::sub_16bit;
1489      break;
1490    case X86::MOVSX64rr32:
1491      SubIdx = X86::sub_32bit;
1492      break;
1493    }
1494    return true;
1495  }
1496  }
1497  return false;
1498}
1499
1500/// isFrameOperand - Return true and the FrameIndex if the specified
1501/// operand and follow operands form a reference to the stack frame.
1502bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
1503                                  int &FrameIndex) const {
1504  if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
1505      MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
1506      MI->getOperand(Op+1).getImm() == 1 &&
1507      MI->getOperand(Op+2).getReg() == 0 &&
1508      MI->getOperand(Op+3).getImm() == 0) {
1509    FrameIndex = MI->getOperand(Op).getIndex();
1510    return true;
1511  }
1512  return false;
1513}
1514
1515static bool isFrameLoadOpcode(int Opcode) {
1516  switch (Opcode) {
1517  default:
1518    return false;
1519  case X86::MOV8rm:
1520  case X86::MOV16rm:
1521  case X86::MOV32rm:
1522  case X86::MOV64rm:
1523  case X86::LD_Fp64m:
1524  case X86::MOVSSrm:
1525  case X86::MOVSDrm:
1526  case X86::MOVAPSrm:
1527  case X86::MOVAPDrm:
1528  case X86::MOVDQArm:
1529  case X86::VMOVSSrm:
1530  case X86::VMOVSDrm:
1531  case X86::VMOVAPSrm:
1532  case X86::VMOVAPDrm:
1533  case X86::VMOVDQArm:
1534  case X86::VMOVAPSYrm:
1535  case X86::VMOVAPDYrm:
1536  case X86::VMOVDQAYrm:
1537  case X86::MMX_MOVD64rm:
1538  case X86::MMX_MOVQ64rm:
1539  case X86::VMOVDQA32rm:
1540  case X86::VMOVDQA64rm:
1541    return true;
1542  }
1543}
1544
1545static bool isFrameStoreOpcode(int Opcode) {
1546  switch (Opcode) {
1547  default: break;
1548  case X86::MOV8mr:
1549  case X86::MOV16mr:
1550  case X86::MOV32mr:
1551  case X86::MOV64mr:
1552  case X86::ST_FpP64m:
1553  case X86::MOVSSmr:
1554  case X86::MOVSDmr:
1555  case X86::MOVAPSmr:
1556  case X86::MOVAPDmr:
1557  case X86::MOVDQAmr:
1558  case X86::VMOVSSmr:
1559  case X86::VMOVSDmr:
1560  case X86::VMOVAPSmr:
1561  case X86::VMOVAPDmr:
1562  case X86::VMOVDQAmr:
1563  case X86::VMOVAPSYmr:
1564  case X86::VMOVAPDYmr:
1565  case X86::VMOVDQAYmr:
1566  case X86::MMX_MOVD64mr:
1567  case X86::MMX_MOVQ64mr:
1568  case X86::MMX_MOVNTQmr:
1569    return true;
1570  }
1571  return false;
1572}
1573
1574unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
1575                                           int &FrameIndex) const {
1576  if (isFrameLoadOpcode(MI->getOpcode()))
1577    if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
1578      return MI->getOperand(0).getReg();
1579  return 0;
1580}
1581
1582unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1583                                                 int &FrameIndex) const {
1584  if (isFrameLoadOpcode(MI->getOpcode())) {
1585    unsigned Reg;
1586    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
1587      return Reg;
1588    // Check for post-frame index elimination operations
1589    const MachineMemOperand *Dummy;
1590    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1591  }
1592  return 0;
1593}
1594
1595unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
1596                                          int &FrameIndex) const {
1597  if (isFrameStoreOpcode(MI->getOpcode()))
1598    if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
1599        isFrameOperand(MI, 0, FrameIndex))
1600      return MI->getOperand(X86::AddrNumOperands).getReg();
1601  return 0;
1602}
1603
1604unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
1605                                                int &FrameIndex) const {
1606  if (isFrameStoreOpcode(MI->getOpcode())) {
1607    unsigned Reg;
1608    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
1609      return Reg;
1610    // Check for post-frame index elimination operations
1611    const MachineMemOperand *Dummy;
1612    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
1613  }
1614  return 0;
1615}
1616
1617/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
1618/// X86::MOVPC32r.
1619static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
1620  // Don't waste compile time scanning use-def chains of physregs.
1621  if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
1622    return false;
1623  bool isPICBase = false;
1624  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
1625         E = MRI.def_end(); I != E; ++I) {
1626    MachineInstr *DefMI = I.getOperand().getParent();
1627    if (DefMI->getOpcode() != X86::MOVPC32r)
1628      return false;
1629    assert(!isPICBase && "More than one PIC base?");
1630    isPICBase = true;
1631  }
1632  return isPICBase;
1633}
1634
1635bool
1636X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
1637                                                AliasAnalysis *AA) const {
1638  switch (MI->getOpcode()) {
1639  default: break;
1640  case X86::MOV8rm:
1641  case X86::MOV16rm:
1642  case X86::MOV32rm:
1643  case X86::MOV64rm:
1644  case X86::LD_Fp64m:
1645  case X86::MOVSSrm:
1646  case X86::MOVSDrm:
1647  case X86::MOVAPSrm:
1648  case X86::MOVUPSrm:
1649  case X86::MOVAPDrm:
1650  case X86::MOVDQArm:
1651  case X86::MOVDQUrm:
1652  case X86::VMOVSSrm:
1653  case X86::VMOVSDrm:
1654  case X86::VMOVAPSrm:
1655  case X86::VMOVUPSrm:
1656  case X86::VMOVAPDrm:
1657  case X86::VMOVDQArm:
1658  case X86::VMOVDQUrm:
1659  case X86::VMOVAPSYrm:
1660  case X86::VMOVUPSYrm:
1661  case X86::VMOVAPDYrm:
1662  case X86::VMOVDQAYrm:
1663  case X86::VMOVDQUYrm:
1664  case X86::MMX_MOVD64rm:
1665  case X86::MMX_MOVQ64rm:
1666  case X86::FsVMOVAPSrm:
1667  case X86::FsVMOVAPDrm:
1668  case X86::FsMOVAPSrm:
1669  case X86::FsMOVAPDrm: {
1670    // Loads from constant pools are trivially rematerializable.
1671    if (MI->getOperand(1).isReg() &&
1672        MI->getOperand(2).isImm() &&
1673        MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
1674        MI->isInvariantLoad(AA)) {
1675      unsigned BaseReg = MI->getOperand(1).getReg();
1676      if (BaseReg == 0 || BaseReg == X86::RIP)
1677        return true;
1678      // Allow re-materialization of PIC load.
1679      if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
1680        return false;
1681      const MachineFunction &MF = *MI->getParent()->getParent();
1682      const MachineRegisterInfo &MRI = MF.getRegInfo();
1683      return regIsPICBase(BaseReg, MRI);
1684    }
1685    return false;
1686  }
1687
1688  case X86::LEA32r:
1689  case X86::LEA64r: {
1690    if (MI->getOperand(2).isImm() &&
1691        MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
1692        !MI->getOperand(4).isReg()) {
1693      // lea fi#, lea GV, etc. are all rematerializable.
1694      if (!MI->getOperand(1).isReg())
1695        return true;
1696      unsigned BaseReg = MI->getOperand(1).getReg();
1697      if (BaseReg == 0)
1698        return true;
1699      // Allow re-materialization of lea PICBase + x.
1700      const MachineFunction &MF = *MI->getParent()->getParent();
1701      const MachineRegisterInfo &MRI = MF.getRegInfo();
1702      return regIsPICBase(BaseReg, MRI);
1703    }
1704    return false;
1705  }
1706  }
1707
1708  // All other instructions marked M_REMATERIALIZABLE are always trivially
1709  // rematerializable.
1710  return true;
1711}
1712
1713/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
1714/// would clobber the EFLAGS condition register. Note the result may be
1715/// conservative. If it cannot definitely determine the safety after visiting
1716/// a few instructions in each direction it assumes it's not safe.
1717static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
1718                                  MachineBasicBlock::iterator I) {
1719  MachineBasicBlock::iterator E = MBB.end();
1720
1721  // For compile time consideration, if we are not able to determine the
1722  // safety after visiting 4 instructions in each direction, we will assume
1723  // it's not safe.
1724  MachineBasicBlock::iterator Iter = I;
1725  for (unsigned i = 0; Iter != E && i < 4; ++i) {
1726    bool SeenDef = false;
1727    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1728      MachineOperand &MO = Iter->getOperand(j);
1729      if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
1730        SeenDef = true;
1731      if (!MO.isReg())
1732        continue;
1733      if (MO.getReg() == X86::EFLAGS) {
1734        if (MO.isUse())
1735          return false;
1736        SeenDef = true;
1737      }
1738    }
1739
1740    if (SeenDef)
1741      // This instruction defines EFLAGS, no need to look any further.
1742      return true;
1743    ++Iter;
1744    // Skip over DBG_VALUE.
1745    while (Iter != E && Iter->isDebugValue())
1746      ++Iter;
1747  }
1748
1749  // It is safe to clobber EFLAGS at the end of a block of no successor has it
1750  // live in.
1751  if (Iter == E) {
1752    for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
1753           SE = MBB.succ_end(); SI != SE; ++SI)
1754      if ((*SI)->isLiveIn(X86::EFLAGS))
1755        return false;
1756    return true;
1757  }
1758
1759  MachineBasicBlock::iterator B = MBB.begin();
1760  Iter = I;
1761  for (unsigned i = 0; i < 4; ++i) {
1762    // If we make it to the beginning of the block, it's safe to clobber
1763    // EFLAGS iff EFLAGS is not live-in.
1764    if (Iter == B)
1765      return !MBB.isLiveIn(X86::EFLAGS);
1766
1767    --Iter;
1768    // Skip over DBG_VALUE.
1769    while (Iter != B && Iter->isDebugValue())
1770      --Iter;
1771
1772    bool SawKill = false;
1773    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1774      MachineOperand &MO = Iter->getOperand(j);
1775      // A register mask may clobber EFLAGS, but we should still look for a
1776      // live EFLAGS def.
1777      if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
1778        SawKill = true;
1779      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1780        if (MO.isDef()) return MO.isDead();
1781        if (MO.isKill()) SawKill = true;
1782      }
1783    }
1784
1785    if (SawKill)
1786      // This instruction kills EFLAGS and doesn't redefine it, so
1787      // there's no need to look further.
1788      return true;
1789  }
1790
1791  // Conservative answer.
1792  return false;
1793}
1794
1795void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1796                                 MachineBasicBlock::iterator I,
1797                                 unsigned DestReg, unsigned SubIdx,
1798                                 const MachineInstr *Orig,
1799                                 const TargetRegisterInfo &TRI) const {
1800  // MOV32r0 is implemented with a xor which clobbers condition code.
1801  // Re-materialize it as movri instructions to avoid side effects.
1802  unsigned Opc = Orig->getOpcode();
1803  if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) {
1804    DebugLoc DL = Orig->getDebugLoc();
1805    BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0))
1806      .addImm(0);
1807  } else {
1808    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1809    MBB.insert(I, MI);
1810  }
1811
1812  MachineInstr *NewMI = prior(I);
1813  NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1814}
1815
1816/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1817/// is not marked dead.
1818static bool hasLiveCondCodeDef(MachineInstr *MI) {
1819  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1820    MachineOperand &MO = MI->getOperand(i);
1821    if (MO.isReg() && MO.isDef() &&
1822        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1823      return true;
1824    }
1825  }
1826  return false;
1827}
1828
1829/// getTruncatedShiftCount - check whether the shift count for a machine operand
1830/// is non-zero.
1831inline static unsigned getTruncatedShiftCount(MachineInstr *MI,
1832                                              unsigned ShiftAmtOperandIdx) {
1833  // The shift count is six bits with the REX.W prefix and five bits without.
1834  unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
1835  unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm();
1836  return Imm & ShiftCountMask;
1837}
1838
1839/// isTruncatedShiftCountForLEA - check whether the given shift count is appropriate
1840/// can be represented by a LEA instruction.
1841inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
1842  // Left shift instructions can be transformed into load-effective-address
1843  // instructions if we can encode them appropriately.
1844  // A LEA instruction utilizes a SIB byte to encode it's scale factor.
1845  // The SIB.scale field is two bits wide which means that we can encode any
1846  // shift amount less than 4.
1847  return ShAmt < 4 && ShAmt > 0;
1848}
1849
1850bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
1851                                  unsigned Opc, bool AllowSP,
1852                                  unsigned &NewSrc, bool &isKill, bool &isUndef,
1853                                  MachineOperand &ImplicitOp) const {
1854  MachineFunction &MF = *MI->getParent()->getParent();
1855  const TargetRegisterClass *RC;
1856  if (AllowSP) {
1857    RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1858  } else {
1859    RC = Opc != X86::LEA32r ?
1860      &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1861  }
1862  unsigned SrcReg = Src.getReg();
1863
1864  // For both LEA64 and LEA32 the register already has essentially the right
1865  // type (32-bit or 64-bit) we may just need to forbid SP.
1866  if (Opc != X86::LEA64_32r) {
1867    NewSrc = SrcReg;
1868    isKill = Src.isKill();
1869    isUndef = Src.isUndef();
1870
1871    if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
1872        !MF.getRegInfo().constrainRegClass(NewSrc, RC))
1873      return false;
1874
1875    return true;
1876  }
1877
1878  // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1879  // another we need to add 64-bit registers to the final MI.
1880  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1881    ImplicitOp = Src;
1882    ImplicitOp.setImplicit();
1883
1884    NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64);
1885    MachineBasicBlock::LivenessQueryResult LQR =
1886      MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
1887
1888    switch (LQR) {
1889    case MachineBasicBlock::LQR_Unknown:
1890      // We can't give sane liveness flags to the instruction, abandon LEA
1891      // formation.
1892      return false;
1893    case MachineBasicBlock::LQR_Live:
1894      isKill = MI->killsRegister(SrcReg);
1895      isUndef = false;
1896      break;
1897    default:
1898      // The physreg itself is dead, so we have to use it as an <undef>.
1899      isKill = false;
1900      isUndef = true;
1901      break;
1902    }
1903  } else {
1904    // Virtual register of the wrong class, we have to create a temporary 64-bit
1905    // vreg to feed into the LEA.
1906    NewSrc = MF.getRegInfo().createVirtualRegister(RC);
1907    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1908            get(TargetOpcode::COPY))
1909      .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1910        .addOperand(Src);
1911
1912    // Which is obviously going to be dead after we're done with it.
1913    isKill = true;
1914    isUndef = false;
1915  }
1916
1917  // We've set all the parameters without issue.
1918  return true;
1919}
1920
1921/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1922/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1923/// to a 32-bit superregister and then truncating back down to a 16-bit
1924/// subregister.
1925MachineInstr *
1926X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1927                                           MachineFunction::iterator &MFI,
1928                                           MachineBasicBlock::iterator &MBBI,
1929                                           LiveVariables *LV) const {
1930  MachineInstr *MI = MBBI;
1931  unsigned Dest = MI->getOperand(0).getReg();
1932  unsigned Src = MI->getOperand(1).getReg();
1933  bool isDead = MI->getOperand(0).isDead();
1934  bool isKill = MI->getOperand(1).isKill();
1935
1936  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1937  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1938  unsigned Opc, leaInReg;
1939  if (TM.getSubtarget<X86Subtarget>().is64Bit()) {
1940    Opc = X86::LEA64_32r;
1941    leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1942  } else {
1943    Opc = X86::LEA32r;
1944    leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1945  }
1946
1947  // Build and insert into an implicit UNDEF value. This is OK because
1948  // well be shifting and then extracting the lower 16-bits.
1949  // This has the potential to cause partial register stall. e.g.
1950  //   movw    (%rbp,%rcx,2), %dx
1951  //   leal    -65(%rdx), %esi
1952  // But testing has shown this *does* help performance in 64-bit mode (at
1953  // least on modern x86 machines).
1954  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1955  MachineInstr *InsMI =
1956    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1957    .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1958    .addReg(Src, getKillRegState(isKill));
1959
1960  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1961                                    get(Opc), leaOutReg);
1962  switch (MIOpc) {
1963  default: llvm_unreachable("Unreachable!");
1964  case X86::SHL16ri: {
1965    unsigned ShAmt = MI->getOperand(2).getImm();
1966    MIB.addReg(0).addImm(1 << ShAmt)
1967       .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
1968    break;
1969  }
1970  case X86::INC16r:
1971  case X86::INC64_16r:
1972    addRegOffset(MIB, leaInReg, true, 1);
1973    break;
1974  case X86::DEC16r:
1975  case X86::DEC64_16r:
1976    addRegOffset(MIB, leaInReg, true, -1);
1977    break;
1978  case X86::ADD16ri:
1979  case X86::ADD16ri8:
1980  case X86::ADD16ri_DB:
1981  case X86::ADD16ri8_DB:
1982    addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1983    break;
1984  case X86::ADD16rr:
1985  case X86::ADD16rr_DB: {
1986    unsigned Src2 = MI->getOperand(2).getReg();
1987    bool isKill2 = MI->getOperand(2).isKill();
1988    unsigned leaInReg2 = 0;
1989    MachineInstr *InsMI2 = 0;
1990    if (Src == Src2) {
1991      // ADD16rr %reg1028<kill>, %reg1028
1992      // just a single insert_subreg.
1993      addRegReg(MIB, leaInReg, true, leaInReg, false);
1994    } else {
1995      if (TM.getSubtarget<X86Subtarget>().is64Bit())
1996        leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1997      else
1998        leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1999      // Build and insert into an implicit UNDEF value. This is OK because
2000      // well be shifting and then extracting the lower 16-bits.
2001      BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
2002      InsMI2 =
2003        BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
2004        .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
2005        .addReg(Src2, getKillRegState(isKill2));
2006      addRegReg(MIB, leaInReg, true, leaInReg2, true);
2007    }
2008    if (LV && isKill2 && InsMI2)
2009      LV->replaceKillInstruction(Src2, MI, InsMI2);
2010    break;
2011  }
2012  }
2013
2014  MachineInstr *NewMI = MIB;
2015  MachineInstr *ExtMI =
2016    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
2017    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
2018    .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
2019
2020  if (LV) {
2021    // Update live variables
2022    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
2023    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
2024    if (isKill)
2025      LV->replaceKillInstruction(Src, MI, InsMI);
2026    if (isDead)
2027      LV->replaceKillInstruction(Dest, MI, ExtMI);
2028  }
2029
2030  return ExtMI;
2031}
2032
2033/// convertToThreeAddress - This method must be implemented by targets that
2034/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
2035/// may be able to convert a two-address instruction into a true
2036/// three-address instruction on demand.  This allows the X86 target (for
2037/// example) to convert ADD and SHL instructions into LEA instructions if they
2038/// would require register copies due to two-addressness.
2039///
2040/// This method returns a null pointer if the transformation cannot be
2041/// performed, otherwise it returns the new instruction.
2042///
2043MachineInstr *
2044X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
2045                                    MachineBasicBlock::iterator &MBBI,
2046                                    LiveVariables *LV) const {
2047  MachineInstr *MI = MBBI;
2048
2049  // The following opcodes also sets the condition code register(s). Only
2050  // convert them to equivalent lea if the condition code register def's
2051  // are dead!
2052  if (hasLiveCondCodeDef(MI))
2053    return 0;
2054
2055  MachineFunction &MF = *MI->getParent()->getParent();
2056  // All instructions input are two-addr instructions.  Get the known operands.
2057  const MachineOperand &Dest = MI->getOperand(0);
2058  const MachineOperand &Src = MI->getOperand(1);
2059
2060  MachineInstr *NewMI = NULL;
2061  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
2062  // we have better subtarget support, enable the 16-bit LEA generation here.
2063  // 16-bit LEA is also slow on Core2.
2064  bool DisableLEA16 = true;
2065  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2066
2067  unsigned MIOpc = MI->getOpcode();
2068  switch (MIOpc) {
2069  case X86::SHUFPSrri: {
2070    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
2071    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
2072
2073    unsigned B = MI->getOperand(1).getReg();
2074    unsigned C = MI->getOperand(2).getReg();
2075    if (B != C) return 0;
2076    unsigned M = MI->getOperand(3).getImm();
2077    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
2078      .addOperand(Dest).addOperand(Src).addImm(M);
2079    break;
2080  }
2081  case X86::SHUFPDrri: {
2082    assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!");
2083    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
2084
2085    unsigned B = MI->getOperand(1).getReg();
2086    unsigned C = MI->getOperand(2).getReg();
2087    if (B != C) return 0;
2088    unsigned M = MI->getOperand(3).getImm();
2089
2090    // Convert to PSHUFD mask.
2091    M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44;
2092
2093    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
2094      .addOperand(Dest).addOperand(Src).addImm(M);
2095    break;
2096  }
2097  case X86::SHL64ri: {
2098    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2099    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2100    if (!isTruncatedShiftCountForLEA(ShAmt)) return 0;
2101
2102    // LEA can't handle RSP.
2103    if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
2104        !MF.getRegInfo().constrainRegClass(Src.getReg(),
2105                                           &X86::GR64_NOSPRegClass))
2106      return 0;
2107
2108    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2109      .addOperand(Dest)
2110      .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
2111    break;
2112  }
2113  case X86::SHL32ri: {
2114    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2115    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2116    if (!isTruncatedShiftCountForLEA(ShAmt)) return 0;
2117
2118    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2119
2120    // LEA can't handle ESP.
2121    bool isKill, isUndef;
2122    unsigned SrcReg;
2123    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2124    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2125                        SrcReg, isKill, isUndef, ImplicitOp))
2126      return 0;
2127
2128    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2129      .addOperand(Dest)
2130      .addReg(0).addImm(1 << ShAmt)
2131      .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
2132      .addImm(0).addReg(0);
2133    if (ImplicitOp.getReg() != 0)
2134      MIB.addOperand(ImplicitOp);
2135    NewMI = MIB;
2136
2137    break;
2138  }
2139  case X86::SHL16ri: {
2140    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2141    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2142    if (!isTruncatedShiftCountForLEA(ShAmt)) return 0;
2143
2144    if (DisableLEA16)
2145      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
2146    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2147      .addOperand(Dest)
2148      .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
2149    break;
2150  }
2151  default: {
2152
2153    switch (MIOpc) {
2154    default: return 0;
2155    case X86::INC64r:
2156    case X86::INC32r:
2157    case X86::INC64_32r: {
2158      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2159      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
2160        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2161      bool isKill, isUndef;
2162      unsigned SrcReg;
2163      MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2164      if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2165                          SrcReg, isKill, isUndef, ImplicitOp))
2166        return 0;
2167
2168      MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2169          .addOperand(Dest)
2170          .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
2171      if (ImplicitOp.getReg() != 0)
2172        MIB.addOperand(ImplicitOp);
2173
2174      NewMI = addOffset(MIB, 1);
2175      break;
2176    }
2177    case X86::INC16r:
2178    case X86::INC64_16r:
2179      if (DisableLEA16)
2180        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
2181      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2182      NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2183                        .addOperand(Dest).addOperand(Src), 1);
2184      break;
2185    case X86::DEC64r:
2186    case X86::DEC32r:
2187    case X86::DEC64_32r: {
2188      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2189      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
2190        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2191
2192      bool isKill, isUndef;
2193      unsigned SrcReg;
2194      MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2195      if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2196                          SrcReg, isKill, isUndef, ImplicitOp))
2197        return 0;
2198
2199      MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2200          .addOperand(Dest)
2201          .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2202      if (ImplicitOp.getReg() != 0)
2203        MIB.addOperand(ImplicitOp);
2204
2205      NewMI = addOffset(MIB, -1);
2206
2207      break;
2208    }
2209    case X86::DEC16r:
2210    case X86::DEC64_16r:
2211      if (DisableLEA16)
2212        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
2213      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2214      NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2215                        .addOperand(Dest).addOperand(Src), -1);
2216      break;
2217    case X86::ADD64rr:
2218    case X86::ADD64rr_DB:
2219    case X86::ADD32rr:
2220    case X86::ADD32rr_DB: {
2221      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2222      unsigned Opc;
2223      if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
2224        Opc = X86::LEA64r;
2225      else
2226        Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2227
2228      bool isKill, isUndef;
2229      unsigned SrcReg;
2230      MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2231      if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2232                          SrcReg, isKill, isUndef, ImplicitOp))
2233        return 0;
2234
2235      const MachineOperand &Src2 = MI->getOperand(2);
2236      bool isKill2, isUndef2;
2237      unsigned SrcReg2;
2238      MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
2239      if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
2240                          SrcReg2, isKill2, isUndef2, ImplicitOp2))
2241        return 0;
2242
2243      MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2244        .addOperand(Dest);
2245      if (ImplicitOp.getReg() != 0)
2246        MIB.addOperand(ImplicitOp);
2247      if (ImplicitOp2.getReg() != 0)
2248        MIB.addOperand(ImplicitOp2);
2249
2250      NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
2251
2252      // Preserve undefness of the operands.
2253      NewMI->getOperand(1).setIsUndef(isUndef);
2254      NewMI->getOperand(3).setIsUndef(isUndef2);
2255
2256      if (LV && Src2.isKill())
2257        LV->replaceKillInstruction(SrcReg2, MI, NewMI);
2258      break;
2259    }
2260    case X86::ADD16rr:
2261    case X86::ADD16rr_DB: {
2262      if (DisableLEA16)
2263        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
2264      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2265      unsigned Src2 = MI->getOperand(2).getReg();
2266      bool isKill2 = MI->getOperand(2).isKill();
2267      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2268                        .addOperand(Dest),
2269                        Src.getReg(), Src.isKill(), Src2, isKill2);
2270
2271      // Preserve undefness of the operands.
2272      bool isUndef = MI->getOperand(1).isUndef();
2273      bool isUndef2 = MI->getOperand(2).isUndef();
2274      NewMI->getOperand(1).setIsUndef(isUndef);
2275      NewMI->getOperand(3).setIsUndef(isUndef2);
2276
2277      if (LV && isKill2)
2278        LV->replaceKillInstruction(Src2, MI, NewMI);
2279      break;
2280    }
2281    case X86::ADD64ri32:
2282    case X86::ADD64ri8:
2283    case X86::ADD64ri32_DB:
2284    case X86::ADD64ri8_DB:
2285      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2286      NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2287                        .addOperand(Dest).addOperand(Src),
2288                        MI->getOperand(2).getImm());
2289      break;
2290    case X86::ADD32ri:
2291    case X86::ADD32ri8:
2292    case X86::ADD32ri_DB:
2293    case X86::ADD32ri8_DB: {
2294      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2295      unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2296
2297      bool isKill, isUndef;
2298      unsigned SrcReg;
2299      MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2300      if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2301                          SrcReg, isKill, isUndef, ImplicitOp))
2302        return 0;
2303
2304      MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2305          .addOperand(Dest)
2306          .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2307      if (ImplicitOp.getReg() != 0)
2308        MIB.addOperand(ImplicitOp);
2309
2310      NewMI = addOffset(MIB, MI->getOperand(2).getImm());
2311      break;
2312    }
2313    case X86::ADD16ri:
2314    case X86::ADD16ri8:
2315    case X86::ADD16ri_DB:
2316    case X86::ADD16ri8_DB:
2317      if (DisableLEA16)
2318        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
2319      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2320      NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2321                        .addOperand(Dest).addOperand(Src),
2322                        MI->getOperand(2).getImm());
2323      break;
2324    }
2325  }
2326  }
2327
2328  if (!NewMI) return 0;
2329
2330  if (LV) {  // Update live variables
2331    if (Src.isKill())
2332      LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
2333    if (Dest.isDead())
2334      LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
2335  }
2336
2337  MFI->insert(MBBI, NewMI);          // Insert the new inst
2338  return NewMI;
2339}
2340
2341/// commuteInstruction - We have a few instructions that must be hacked on to
2342/// commute them.
2343///
2344MachineInstr *
2345X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
2346  switch (MI->getOpcode()) {
2347  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2348  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
2349  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
2350  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2351  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2352  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
2353    unsigned Opc;
2354    unsigned Size;
2355    switch (MI->getOpcode()) {
2356    default: llvm_unreachable("Unreachable!");
2357    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2358    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2359    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2360    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
2361    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2362    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
2363    }
2364    unsigned Amt = MI->getOperand(3).getImm();
2365    if (NewMI) {
2366      MachineFunction &MF = *MI->getParent()->getParent();
2367      MI = MF.CloneMachineInstr(MI);
2368      NewMI = false;
2369    }
2370    MI->setDesc(get(Opc));
2371    MI->getOperand(3).setImm(Size-Amt);
2372    return TargetInstrInfo::commuteInstruction(MI, NewMI);
2373  }
2374  case X86::CMOVB16rr:  case X86::CMOVB32rr:  case X86::CMOVB64rr:
2375  case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
2376  case X86::CMOVE16rr:  case X86::CMOVE32rr:  case X86::CMOVE64rr:
2377  case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
2378  case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
2379  case X86::CMOVA16rr:  case X86::CMOVA32rr:  case X86::CMOVA64rr:
2380  case X86::CMOVL16rr:  case X86::CMOVL32rr:  case X86::CMOVL64rr:
2381  case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
2382  case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
2383  case X86::CMOVG16rr:  case X86::CMOVG32rr:  case X86::CMOVG64rr:
2384  case X86::CMOVS16rr:  case X86::CMOVS32rr:  case X86::CMOVS64rr:
2385  case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
2386  case X86::CMOVP16rr:  case X86::CMOVP32rr:  case X86::CMOVP64rr:
2387  case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
2388  case X86::CMOVO16rr:  case X86::CMOVO32rr:  case X86::CMOVO64rr:
2389  case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
2390    unsigned Opc;
2391    switch (MI->getOpcode()) {
2392    default: llvm_unreachable("Unreachable!");
2393    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
2394    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
2395    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
2396    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
2397    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
2398    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
2399    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
2400    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
2401    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
2402    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
2403    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
2404    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
2405    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
2406    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
2407    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
2408    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
2409    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
2410    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
2411    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
2412    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
2413    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
2414    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
2415    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
2416    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
2417    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
2418    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
2419    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
2420    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
2421    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
2422    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
2423    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
2424    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
2425    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
2426    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
2427    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
2428    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
2429    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
2430    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
2431    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
2432    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
2433    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
2434    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
2435    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
2436    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
2437    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
2438    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
2439    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
2440    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
2441    }
2442    if (NewMI) {
2443      MachineFunction &MF = *MI->getParent()->getParent();
2444      MI = MF.CloneMachineInstr(MI);
2445      NewMI = false;
2446    }
2447    MI->setDesc(get(Opc));
2448    // Fallthrough intended.
2449  }
2450  default:
2451    return TargetInstrInfo::commuteInstruction(MI, NewMI);
2452  }
2453}
2454
2455static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
2456  switch (BrOpc) {
2457  default: return X86::COND_INVALID;
2458  case X86::JE_4:  return X86::COND_E;
2459  case X86::JNE_4: return X86::COND_NE;
2460  case X86::JL_4:  return X86::COND_L;
2461  case X86::JLE_4: return X86::COND_LE;
2462  case X86::JG_4:  return X86::COND_G;
2463  case X86::JGE_4: return X86::COND_GE;
2464  case X86::JB_4:  return X86::COND_B;
2465  case X86::JBE_4: return X86::COND_BE;
2466  case X86::JA_4:  return X86::COND_A;
2467  case X86::JAE_4: return X86::COND_AE;
2468  case X86::JS_4:  return X86::COND_S;
2469  case X86::JNS_4: return X86::COND_NS;
2470  case X86::JP_4:  return X86::COND_P;
2471  case X86::JNP_4: return X86::COND_NP;
2472  case X86::JO_4:  return X86::COND_O;
2473  case X86::JNO_4: return X86::COND_NO;
2474  }
2475}
2476
2477/// getCondFromSETOpc - return condition code of a SET opcode.
2478static X86::CondCode getCondFromSETOpc(unsigned Opc) {
2479  switch (Opc) {
2480  default: return X86::COND_INVALID;
2481  case X86::SETAr:  case X86::SETAm:  return X86::COND_A;
2482  case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
2483  case X86::SETBr:  case X86::SETBm:  return X86::COND_B;
2484  case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
2485  case X86::SETEr:  case X86::SETEm:  return X86::COND_E;
2486  case X86::SETGr:  case X86::SETGm:  return X86::COND_G;
2487  case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
2488  case X86::SETLr:  case X86::SETLm:  return X86::COND_L;
2489  case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
2490  case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
2491  case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
2492  case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
2493  case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
2494  case X86::SETOr:  case X86::SETOm:  return X86::COND_O;
2495  case X86::SETPr:  case X86::SETPm:  return X86::COND_P;
2496  case X86::SETSr:  case X86::SETSm:  return X86::COND_S;
2497  }
2498}
2499
2500/// getCondFromCmovOpc - return condition code of a CMov opcode.
2501X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
2502  switch (Opc) {
2503  default: return X86::COND_INVALID;
2504  case X86::CMOVA16rm:  case X86::CMOVA16rr:  case X86::CMOVA32rm:
2505  case X86::CMOVA32rr:  case X86::CMOVA64rm:  case X86::CMOVA64rr:
2506    return X86::COND_A;
2507  case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
2508  case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
2509    return X86::COND_AE;
2510  case X86::CMOVB16rm:  case X86::CMOVB16rr:  case X86::CMOVB32rm:
2511  case X86::CMOVB32rr:  case X86::CMOVB64rm:  case X86::CMOVB64rr:
2512    return X86::COND_B;
2513  case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
2514  case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
2515    return X86::COND_BE;
2516  case X86::CMOVE16rm:  case X86::CMOVE16rr:  case X86::CMOVE32rm:
2517  case X86::CMOVE32rr:  case X86::CMOVE64rm:  case X86::CMOVE64rr:
2518    return X86::COND_E;
2519  case X86::CMOVG16rm:  case X86::CMOVG16rr:  case X86::CMOVG32rm:
2520  case X86::CMOVG32rr:  case X86::CMOVG64rm:  case X86::CMOVG64rr:
2521    return X86::COND_G;
2522  case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
2523  case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
2524    return X86::COND_GE;
2525  case X86::CMOVL16rm:  case X86::CMOVL16rr:  case X86::CMOVL32rm:
2526  case X86::CMOVL32rr:  case X86::CMOVL64rm:  case X86::CMOVL64rr:
2527    return X86::COND_L;
2528  case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
2529  case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
2530    return X86::COND_LE;
2531  case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
2532  case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
2533    return X86::COND_NE;
2534  case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
2535  case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
2536    return X86::COND_NO;
2537  case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
2538  case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
2539    return X86::COND_NP;
2540  case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
2541  case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
2542    return X86::COND_NS;
2543  case X86::CMOVO16rm:  case X86::CMOVO16rr:  case X86::CMOVO32rm:
2544  case X86::CMOVO32rr:  case X86::CMOVO64rm:  case X86::CMOVO64rr:
2545    return X86::COND_O;
2546  case X86::CMOVP16rm:  case X86::CMOVP16rr:  case X86::CMOVP32rm:
2547  case X86::CMOVP32rr:  case X86::CMOVP64rm:  case X86::CMOVP64rr:
2548    return X86::COND_P;
2549  case X86::CMOVS16rm:  case X86::CMOVS16rr:  case X86::CMOVS32rm:
2550  case X86::CMOVS32rr:  case X86::CMOVS64rm:  case X86::CMOVS64rr:
2551    return X86::COND_S;
2552  }
2553}
2554
2555unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
2556  switch (CC) {
2557  default: llvm_unreachable("Illegal condition code!");
2558  case X86::COND_E:  return X86::JE_4;
2559  case X86::COND_NE: return X86::JNE_4;
2560  case X86::COND_L:  return X86::JL_4;
2561  case X86::COND_LE: return X86::JLE_4;
2562  case X86::COND_G:  return X86::JG_4;
2563  case X86::COND_GE: return X86::JGE_4;
2564  case X86::COND_B:  return X86::JB_4;
2565  case X86::COND_BE: return X86::JBE_4;
2566  case X86::COND_A:  return X86::JA_4;
2567  case X86::COND_AE: return X86::JAE_4;
2568  case X86::COND_S:  return X86::JS_4;
2569  case X86::COND_NS: return X86::JNS_4;
2570  case X86::COND_P:  return X86::JP_4;
2571  case X86::COND_NP: return X86::JNP_4;
2572  case X86::COND_O:  return X86::JO_4;
2573  case X86::COND_NO: return X86::JNO_4;
2574  }
2575}
2576
2577/// GetOppositeBranchCondition - Return the inverse of the specified condition,
2578/// e.g. turning COND_E to COND_NE.
2579X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2580  switch (CC) {
2581  default: llvm_unreachable("Illegal condition code!");
2582  case X86::COND_E:  return X86::COND_NE;
2583  case X86::COND_NE: return X86::COND_E;
2584  case X86::COND_L:  return X86::COND_GE;
2585  case X86::COND_LE: return X86::COND_G;
2586  case X86::COND_G:  return X86::COND_LE;
2587  case X86::COND_GE: return X86::COND_L;
2588  case X86::COND_B:  return X86::COND_AE;
2589  case X86::COND_BE: return X86::COND_A;
2590  case X86::COND_A:  return X86::COND_BE;
2591  case X86::COND_AE: return X86::COND_B;
2592  case X86::COND_S:  return X86::COND_NS;
2593  case X86::COND_NS: return X86::COND_S;
2594  case X86::COND_P:  return X86::COND_NP;
2595  case X86::COND_NP: return X86::COND_P;
2596  case X86::COND_O:  return X86::COND_NO;
2597  case X86::COND_NO: return X86::COND_O;
2598  }
2599}
2600
2601/// getSwappedCondition - assume the flags are set by MI(a,b), return
2602/// the condition code if we modify the instructions such that flags are
2603/// set by MI(b,a).
2604static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2605  switch (CC) {
2606  default: return X86::COND_INVALID;
2607  case X86::COND_E:  return X86::COND_E;
2608  case X86::COND_NE: return X86::COND_NE;
2609  case X86::COND_L:  return X86::COND_G;
2610  case X86::COND_LE: return X86::COND_GE;
2611  case X86::COND_G:  return X86::COND_L;
2612  case X86::COND_GE: return X86::COND_LE;
2613  case X86::COND_B:  return X86::COND_A;
2614  case X86::COND_BE: return X86::COND_AE;
2615  case X86::COND_A:  return X86::COND_B;
2616  case X86::COND_AE: return X86::COND_BE;
2617  }
2618}
2619
2620/// getSETFromCond - Return a set opcode for the given condition and
2621/// whether it has memory operand.
2622static unsigned getSETFromCond(X86::CondCode CC,
2623                               bool HasMemoryOperand) {
2624  static const uint16_t Opc[16][2] = {
2625    { X86::SETAr,  X86::SETAm  },
2626    { X86::SETAEr, X86::SETAEm },
2627    { X86::SETBr,  X86::SETBm  },
2628    { X86::SETBEr, X86::SETBEm },
2629    { X86::SETEr,  X86::SETEm  },
2630    { X86::SETGr,  X86::SETGm  },
2631    { X86::SETGEr, X86::SETGEm },
2632    { X86::SETLr,  X86::SETLm  },
2633    { X86::SETLEr, X86::SETLEm },
2634    { X86::SETNEr, X86::SETNEm },
2635    { X86::SETNOr, X86::SETNOm },
2636    { X86::SETNPr, X86::SETNPm },
2637    { X86::SETNSr, X86::SETNSm },
2638    { X86::SETOr,  X86::SETOm  },
2639    { X86::SETPr,  X86::SETPm  },
2640    { X86::SETSr,  X86::SETSm  }
2641  };
2642
2643  assert(CC < 16 && "Can only handle standard cond codes");
2644  return Opc[CC][HasMemoryOperand ? 1 : 0];
2645}
2646
2647/// getCMovFromCond - Return a cmov opcode for the given condition,
2648/// register size in bytes, and operand type.
2649static unsigned getCMovFromCond(X86::CondCode CC, unsigned RegBytes,
2650                                bool HasMemoryOperand) {
2651  static const uint16_t Opc[32][3] = {
2652    { X86::CMOVA16rr,  X86::CMOVA32rr,  X86::CMOVA64rr  },
2653    { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
2654    { X86::CMOVB16rr,  X86::CMOVB32rr,  X86::CMOVB64rr  },
2655    { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
2656    { X86::CMOVE16rr,  X86::CMOVE32rr,  X86::CMOVE64rr  },
2657    { X86::CMOVG16rr,  X86::CMOVG32rr,  X86::CMOVG64rr  },
2658    { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
2659    { X86::CMOVL16rr,  X86::CMOVL32rr,  X86::CMOVL64rr  },
2660    { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
2661    { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
2662    { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
2663    { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
2664    { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
2665    { X86::CMOVO16rr,  X86::CMOVO32rr,  X86::CMOVO64rr  },
2666    { X86::CMOVP16rr,  X86::CMOVP32rr,  X86::CMOVP64rr  },
2667    { X86::CMOVS16rr,  X86::CMOVS32rr,  X86::CMOVS64rr  },
2668    { X86::CMOVA16rm,  X86::CMOVA32rm,  X86::CMOVA64rm  },
2669    { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
2670    { X86::CMOVB16rm,  X86::CMOVB32rm,  X86::CMOVB64rm  },
2671    { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
2672    { X86::CMOVE16rm,  X86::CMOVE32rm,  X86::CMOVE64rm  },
2673    { X86::CMOVG16rm,  X86::CMOVG32rm,  X86::CMOVG64rm  },
2674    { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
2675    { X86::CMOVL16rm,  X86::CMOVL32rm,  X86::CMOVL64rm  },
2676    { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
2677    { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
2678    { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
2679    { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
2680    { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
2681    { X86::CMOVO16rm,  X86::CMOVO32rm,  X86::CMOVO64rm  },
2682    { X86::CMOVP16rm,  X86::CMOVP32rm,  X86::CMOVP64rm  },
2683    { X86::CMOVS16rm,  X86::CMOVS32rm,  X86::CMOVS64rm  }
2684  };
2685
2686  assert(CC < 16 && "Can only handle standard cond codes");
2687  unsigned Idx = HasMemoryOperand ? 16+CC : CC;
2688  switch(RegBytes) {
2689  default: llvm_unreachable("Illegal register size!");
2690  case 2: return Opc[Idx][0];
2691  case 4: return Opc[Idx][1];
2692  case 8: return Opc[Idx][2];
2693  }
2694}
2695
2696bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
2697  if (!MI->isTerminator()) return false;
2698
2699  // Conditional branch is a special case.
2700  if (MI->isBranch() && !MI->isBarrier())
2701    return true;
2702  if (!MI->isPredicable())
2703    return true;
2704  return !isPredicated(MI);
2705}
2706
2707bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
2708                                 MachineBasicBlock *&TBB,
2709                                 MachineBasicBlock *&FBB,
2710                                 SmallVectorImpl<MachineOperand> &Cond,
2711                                 bool AllowModify) const {
2712  // Start from the bottom of the block and work up, examining the
2713  // terminator instructions.
2714  MachineBasicBlock::iterator I = MBB.end();
2715  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2716  while (I != MBB.begin()) {
2717    --I;
2718    if (I->isDebugValue())
2719      continue;
2720
2721    // Working from the bottom, when we see a non-terminator instruction, we're
2722    // done.
2723    if (!isUnpredicatedTerminator(I))
2724      break;
2725
2726    // A terminator that isn't a branch can't easily be handled by this
2727    // analysis.
2728    if (!I->isBranch())
2729      return true;
2730
2731    // Handle unconditional branches.
2732    if (I->getOpcode() == X86::JMP_4) {
2733      UnCondBrIter = I;
2734
2735      if (!AllowModify) {
2736        TBB = I->getOperand(0).getMBB();
2737        continue;
2738      }
2739
2740      // If the block has any instructions after a JMP, delete them.
2741      while (llvm::next(I) != MBB.end())
2742        llvm::next(I)->eraseFromParent();
2743
2744      Cond.clear();
2745      FBB = 0;
2746
2747      // Delete the JMP if it's equivalent to a fall-through.
2748      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2749        TBB = 0;
2750        I->eraseFromParent();
2751        I = MBB.end();
2752        UnCondBrIter = MBB.end();
2753        continue;
2754      }
2755
2756      // TBB is used to indicate the unconditional destination.
2757      TBB = I->getOperand(0).getMBB();
2758      continue;
2759    }
2760
2761    // Handle conditional branches.
2762    X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
2763    if (BranchCode == X86::COND_INVALID)
2764      return true;  // Can't handle indirect branch.
2765
2766    // Working from the bottom, handle the first conditional branch.
2767    if (Cond.empty()) {
2768      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2769      if (AllowModify && UnCondBrIter != MBB.end() &&
2770          MBB.isLayoutSuccessor(TargetBB)) {
2771        // If we can modify the code and it ends in something like:
2772        //
2773        //     jCC L1
2774        //     jmp L2
2775        //   L1:
2776        //     ...
2777        //   L2:
2778        //
2779        // Then we can change this to:
2780        //
2781        //     jnCC L2
2782        //   L1:
2783        //     ...
2784        //   L2:
2785        //
2786        // Which is a bit more efficient.
2787        // We conditionally jump to the fall-through block.
2788        BranchCode = GetOppositeBranchCondition(BranchCode);
2789        unsigned JNCC = GetCondBranchFromCond(BranchCode);
2790        MachineBasicBlock::iterator OldInst = I;
2791
2792        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
2793          .addMBB(UnCondBrIter->getOperand(0).getMBB());
2794        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
2795          .addMBB(TargetBB);
2796
2797        OldInst->eraseFromParent();
2798        UnCondBrIter->eraseFromParent();
2799
2800        // Restart the analysis.
2801        UnCondBrIter = MBB.end();
2802        I = MBB.end();
2803        continue;
2804      }
2805
2806      FBB = TBB;
2807      TBB = I->getOperand(0).getMBB();
2808      Cond.push_back(MachineOperand::CreateImm(BranchCode));
2809      continue;
2810    }
2811
2812    // Handle subsequent conditional branches. Only handle the case where all
2813    // conditional branches branch to the same destination and their condition
2814    // opcodes fit one of the special multi-branch idioms.
2815    assert(Cond.size() == 1);
2816    assert(TBB);
2817
2818    // Only handle the case where all conditional branches branch to the same
2819    // destination.
2820    if (TBB != I->getOperand(0).getMBB())
2821      return true;
2822
2823    // If the conditions are the same, we can leave them alone.
2824    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
2825    if (OldBranchCode == BranchCode)
2826      continue;
2827
2828    // If they differ, see if they fit one of the known patterns. Theoretically,
2829    // we could handle more patterns here, but we shouldn't expect to see them
2830    // if instruction selection has done a reasonable job.
2831    if ((OldBranchCode == X86::COND_NP &&
2832         BranchCode == X86::COND_E) ||
2833        (OldBranchCode == X86::COND_E &&
2834         BranchCode == X86::COND_NP))
2835      BranchCode = X86::COND_NP_OR_E;
2836    else if ((OldBranchCode == X86::COND_P &&
2837              BranchCode == X86::COND_NE) ||
2838             (OldBranchCode == X86::COND_NE &&
2839              BranchCode == X86::COND_P))
2840      BranchCode = X86::COND_NE_OR_P;
2841    else
2842      return true;
2843
2844    // Update the MachineOperand.
2845    Cond[0].setImm(BranchCode);
2846  }
2847
2848  return false;
2849}
2850
2851unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
2852  MachineBasicBlock::iterator I = MBB.end();
2853  unsigned Count = 0;
2854
2855  while (I != MBB.begin()) {
2856    --I;
2857    if (I->isDebugValue())
2858      continue;
2859    if (I->getOpcode() != X86::JMP_4 &&
2860        getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
2861      break;
2862    // Remove the branch.
2863    I->eraseFromParent();
2864    I = MBB.end();
2865    ++Count;
2866  }
2867
2868  return Count;
2869}
2870
2871unsigned
2872X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
2873                           MachineBasicBlock *FBB,
2874                           const SmallVectorImpl<MachineOperand> &Cond,
2875                           DebugLoc DL) const {
2876  // Shouldn't be a fall through.
2877  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
2878  assert((Cond.size() == 1 || Cond.size() == 0) &&
2879         "X86 branch conditions have one component!");
2880
2881  if (Cond.empty()) {
2882    // Unconditional branch?
2883    assert(!FBB && "Unconditional branch with multiple successors!");
2884    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
2885    return 1;
2886  }
2887
2888  // Conditional branch.
2889  unsigned Count = 0;
2890  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2891  switch (CC) {
2892  case X86::COND_NP_OR_E:
2893    // Synthesize NP_OR_E with two branches.
2894    BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
2895    ++Count;
2896    BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
2897    ++Count;
2898    break;
2899  case X86::COND_NE_OR_P:
2900    // Synthesize NE_OR_P with two branches.
2901    BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
2902    ++Count;
2903    BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
2904    ++Count;
2905    break;
2906  default: {
2907    unsigned Opc = GetCondBranchFromCond(CC);
2908    BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
2909    ++Count;
2910  }
2911  }
2912  if (FBB) {
2913    // Two-way Conditional branch. Insert the second branch.
2914    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
2915    ++Count;
2916  }
2917  return Count;
2918}
2919
2920bool X86InstrInfo::
2921canInsertSelect(const MachineBasicBlock &MBB,
2922                const SmallVectorImpl<MachineOperand> &Cond,
2923                unsigned TrueReg, unsigned FalseReg,
2924                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
2925  // Not all subtargets have cmov instructions.
2926  if (!TM.getSubtarget<X86Subtarget>().hasCMov())
2927    return false;
2928  if (Cond.size() != 1)
2929    return false;
2930  // We cannot do the composite conditions, at least not in SSA form.
2931  if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
2932    return false;
2933
2934  // Check register classes.
2935  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2936  const TargetRegisterClass *RC =
2937    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
2938  if (!RC)
2939    return false;
2940
2941  // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2942  if (X86::GR16RegClass.hasSubClassEq(RC) ||
2943      X86::GR32RegClass.hasSubClassEq(RC) ||
2944      X86::GR64RegClass.hasSubClassEq(RC)) {
2945    // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2946    // Bridge. Probably Ivy Bridge as well.
2947    CondCycles = 2;
2948    TrueCycles = 2;
2949    FalseCycles = 2;
2950    return true;
2951  }
2952
2953  // Can't do vectors.
2954  return false;
2955}
2956
2957void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
2958                                MachineBasicBlock::iterator I, DebugLoc DL,
2959                                unsigned DstReg,
2960                                const SmallVectorImpl<MachineOperand> &Cond,
2961                                unsigned TrueReg, unsigned FalseReg) const {
2962   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2963   assert(Cond.size() == 1 && "Invalid Cond array");
2964   unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
2965                                  MRI.getRegClass(DstReg)->getSize(),
2966                                  false/*HasMemoryOperand*/);
2967   BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
2968}
2969
2970/// isHReg - Test if the given register is a physical h register.
2971static bool isHReg(unsigned Reg) {
2972  return X86::GR8_ABCD_HRegClass.contains(Reg);
2973}
2974
2975// Try and copy between VR128/VR64 and GR64 registers.
2976static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2977                                        const X86Subtarget& Subtarget) {
2978
2979
2980  // SrcReg(VR128) -> DestReg(GR64)
2981  // SrcReg(VR64)  -> DestReg(GR64)
2982  // SrcReg(GR64)  -> DestReg(VR128)
2983  // SrcReg(GR64)  -> DestReg(VR64)
2984
2985  bool HasAVX = Subtarget.hasAVX();
2986  bool HasAVX512 = Subtarget.hasAVX512();
2987  if (X86::GR64RegClass.contains(DestReg)) {
2988    if (X86::VR128XRegClass.contains(SrcReg))
2989      // Copy from a VR128 register to a GR64 register.
2990      return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr :
2991                                               X86::MOVPQIto64rr);
2992    if (X86::VR64RegClass.contains(SrcReg))
2993      // Copy from a VR64 register to a GR64 register.
2994      return X86::MOVSDto64rr;
2995  } else if (X86::GR64RegClass.contains(SrcReg)) {
2996    // Copy from a GR64 register to a VR128 register.
2997    if (X86::VR128XRegClass.contains(DestReg))
2998      return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr :
2999                                               X86::MOV64toPQIrr);
3000    // Copy from a GR64 register to a VR64 register.
3001    if (X86::VR64RegClass.contains(DestReg))
3002      return X86::MOV64toSDrr;
3003  }
3004
3005  // SrcReg(FR32) -> DestReg(GR32)
3006  // SrcReg(GR32) -> DestReg(FR32)
3007
3008  if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg))
3009    // Copy from a FR32 register to a GR32 register.
3010    return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr);
3011
3012  if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
3013    // Copy from a GR32 register to a FR32 register.
3014    return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr);
3015  return 0;
3016}
3017
3018static
3019unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg) {
3020  if (X86::VR128XRegClass.contains(DestReg, SrcReg) ||
3021      X86::VR256XRegClass.contains(DestReg, SrcReg) ||
3022      X86::VR512RegClass.contains(DestReg, SrcReg)) {
3023     DestReg = get512BitSuperRegister(DestReg);
3024     SrcReg = get512BitSuperRegister(SrcReg);
3025     return X86::VMOVAPSZrr;
3026  }
3027  if ((X86::VK8RegClass.contains(DestReg) ||
3028       X86::VK16RegClass.contains(DestReg)) &&
3029      (X86::VK8RegClass.contains(SrcReg) ||
3030       X86::VK16RegClass.contains(SrcReg)))
3031    return X86::KMOVWkk;
3032  return 0;
3033}
3034
3035void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3036                               MachineBasicBlock::iterator MI, DebugLoc DL,
3037                               unsigned DestReg, unsigned SrcReg,
3038                               bool KillSrc) const {
3039  // First deal with the normal symmetric copies.
3040  bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
3041  bool HasAVX512 = TM.getSubtarget<X86Subtarget>().hasAVX512();
3042  unsigned Opc = 0;
3043  if (X86::GR64RegClass.contains(DestReg, SrcReg))
3044    Opc = X86::MOV64rr;
3045  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3046    Opc = X86::MOV32rr;
3047  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3048    Opc = X86::MOV16rr;
3049  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3050    // Copying to or from a physical H register on x86-64 requires a NOREX
3051    // move.  Otherwise use a normal move.
3052    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3053        TM.getSubtarget<X86Subtarget>().is64Bit()) {
3054      Opc = X86::MOV8rr_NOREX;
3055      // Both operands must be encodable without an REX prefix.
3056      assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3057             "8-bit H register can not be copied outside GR8_NOREX");
3058    } else
3059      Opc = X86::MOV8rr;
3060  }
3061  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3062    Opc = X86::MMX_MOVQ64rr;
3063  else if (HasAVX512)
3064    Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg);
3065  else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3066    Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3067  else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3068    Opc = X86::VMOVAPSYrr;
3069  if (!Opc)
3070    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, TM.getSubtarget<X86Subtarget>());
3071
3072  if (Opc) {
3073    BuildMI(MBB, MI, DL, get(Opc), DestReg)
3074      .addReg(SrcReg, getKillRegState(KillSrc));
3075    return;
3076  }
3077
3078  // Moving EFLAGS to / from another register requires a push and a pop.
3079  // Notice that we have to adjust the stack if we don't want to clobber the
3080  // first frame index. See X86FrameLowering.cpp - colobbersTheStack.
3081  if (SrcReg == X86::EFLAGS) {
3082    if (X86::GR64RegClass.contains(DestReg)) {
3083      BuildMI(MBB, MI, DL, get(X86::PUSHF64));
3084      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
3085      return;
3086    }
3087    if (X86::GR32RegClass.contains(DestReg)) {
3088      BuildMI(MBB, MI, DL, get(X86::PUSHF32));
3089      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
3090      return;
3091    }
3092  }
3093  if (DestReg == X86::EFLAGS) {
3094    if (X86::GR64RegClass.contains(SrcReg)) {
3095      BuildMI(MBB, MI, DL, get(X86::PUSH64r))
3096        .addReg(SrcReg, getKillRegState(KillSrc));
3097      BuildMI(MBB, MI, DL, get(X86::POPF64));
3098      return;
3099    }
3100    if (X86::GR32RegClass.contains(SrcReg)) {
3101      BuildMI(MBB, MI, DL, get(X86::PUSH32r))
3102        .addReg(SrcReg, getKillRegState(KillSrc));
3103      BuildMI(MBB, MI, DL, get(X86::POPF32));
3104      return;
3105    }
3106  }
3107
3108  DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
3109               << " to " << RI.getName(DestReg) << '\n');
3110  llvm_unreachable("Cannot emit physreg copy instruction");
3111}
3112
3113static unsigned getLoadStoreRegOpcode(unsigned Reg,
3114                                      const TargetRegisterClass *RC,
3115                                      bool isStackAligned,
3116                                      const TargetMachine &TM,
3117                                      bool load) {
3118  if (TM.getSubtarget<X86Subtarget>().hasAVX512()) {
3119    if (X86::VK8RegClass.hasSubClassEq(RC)  ||
3120      X86::VK16RegClass.hasSubClassEq(RC))
3121      return load ? X86::KMOVWkm : X86::KMOVWmk;
3122    if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC))
3123      return load ? X86::VMOVSSZrm : X86::VMOVSSZmr;
3124    if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC))
3125      return load ? X86::VMOVSDZrm : X86::VMOVSDZmr;
3126    if (X86::VR512RegClass.hasSubClassEq(RC))
3127      return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3128  }
3129
3130  bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
3131  switch (RC->getSize()) {
3132  default:
3133    llvm_unreachable("Unknown spill size");
3134  case 1:
3135    assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3136    if (TM.getSubtarget<X86Subtarget>().is64Bit())
3137      // Copying to or from a physical H register on x86-64 requires a NOREX
3138      // move.  Otherwise use a normal move.
3139      if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3140        return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3141    return load ? X86::MOV8rm : X86::MOV8mr;
3142  case 2:
3143    assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3144    return load ? X86::MOV16rm : X86::MOV16mr;
3145  case 4:
3146    if (X86::GR32RegClass.hasSubClassEq(RC))
3147      return load ? X86::MOV32rm : X86::MOV32mr;
3148    if (X86::FR32RegClass.hasSubClassEq(RC))
3149      return load ?
3150        (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
3151        (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
3152    if (X86::RFP32RegClass.hasSubClassEq(RC))
3153      return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3154    llvm_unreachable("Unknown 4-byte regclass");
3155  case 8:
3156    if (X86::GR64RegClass.hasSubClassEq(RC))
3157      return load ? X86::MOV64rm : X86::MOV64mr;
3158    if (X86::FR64RegClass.hasSubClassEq(RC))
3159      return load ?
3160        (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
3161        (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
3162    if (X86::VR64RegClass.hasSubClassEq(RC))
3163      return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3164    if (X86::RFP64RegClass.hasSubClassEq(RC))
3165      return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3166    llvm_unreachable("Unknown 8-byte regclass");
3167  case 10:
3168    assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3169    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3170  case 16: {
3171    assert((X86::VR128RegClass.hasSubClassEq(RC) ||
3172            X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass");
3173    // If stack is realigned we can use aligned stores.
3174    if (isStackAligned)
3175      return load ?
3176        (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
3177        (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
3178    else
3179      return load ?
3180        (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
3181        (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
3182  }
3183  case 32:
3184    assert((X86::VR256RegClass.hasSubClassEq(RC) ||
3185            X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass");
3186    // If stack is realigned we can use aligned stores.
3187    if (isStackAligned)
3188      return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
3189    else
3190      return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
3191  case 64:
3192    assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3193    if (isStackAligned)
3194      return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3195    else
3196      return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3197  }
3198}
3199
3200static unsigned getStoreRegOpcode(unsigned SrcReg,
3201                                  const TargetRegisterClass *RC,
3202                                  bool isStackAligned,
3203                                  TargetMachine &TM) {
3204  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
3205}
3206
3207
3208static unsigned getLoadRegOpcode(unsigned DestReg,
3209                                 const TargetRegisterClass *RC,
3210                                 bool isStackAligned,
3211                                 const TargetMachine &TM) {
3212  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
3213}
3214
3215void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3216                                       MachineBasicBlock::iterator MI,
3217                                       unsigned SrcReg, bool isKill, int FrameIdx,
3218                                       const TargetRegisterClass *RC,
3219                                       const TargetRegisterInfo *TRI) const {
3220  const MachineFunction &MF = *MBB.getParent();
3221  assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
3222         "Stack slot too small for store");
3223  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
3224  bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
3225    RI.canRealignStack(MF);
3226  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
3227  DebugLoc DL = MBB.findDebugLoc(MI);
3228  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
3229    .addReg(SrcReg, getKillRegState(isKill));
3230}
3231
3232void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
3233                                  bool isKill,
3234                                  SmallVectorImpl<MachineOperand> &Addr,
3235                                  const TargetRegisterClass *RC,
3236                                  MachineInstr::mmo_iterator MMOBegin,
3237                                  MachineInstr::mmo_iterator MMOEnd,
3238                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
3239  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
3240  bool isAligned = MMOBegin != MMOEnd &&
3241                   (*MMOBegin)->getAlignment() >= Alignment;
3242  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
3243  DebugLoc DL;
3244  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
3245  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3246    MIB.addOperand(Addr[i]);
3247  MIB.addReg(SrcReg, getKillRegState(isKill));
3248  (*MIB).setMemRefs(MMOBegin, MMOEnd);
3249  NewMIs.push_back(MIB);
3250}
3251
3252
3253void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3254                                        MachineBasicBlock::iterator MI,
3255                                        unsigned DestReg, int FrameIdx,
3256                                        const TargetRegisterClass *RC,
3257                                        const TargetRegisterInfo *TRI) const {
3258  const MachineFunction &MF = *MBB.getParent();
3259  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
3260  bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
3261    RI.canRealignStack(MF);
3262  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
3263  DebugLoc DL = MBB.findDebugLoc(MI);
3264  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
3265}
3266
3267void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
3268                                 SmallVectorImpl<MachineOperand> &Addr,
3269                                 const TargetRegisterClass *RC,
3270                                 MachineInstr::mmo_iterator MMOBegin,
3271                                 MachineInstr::mmo_iterator MMOEnd,
3272                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
3273  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
3274  bool isAligned = MMOBegin != MMOEnd &&
3275                   (*MMOBegin)->getAlignment() >= Alignment;
3276  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
3277  DebugLoc DL;
3278  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
3279  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3280    MIB.addOperand(Addr[i]);
3281  (*MIB).setMemRefs(MMOBegin, MMOEnd);
3282  NewMIs.push_back(MIB);
3283}
3284
3285bool X86InstrInfo::
3286analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
3287               int &CmpMask, int &CmpValue) const {
3288  switch (MI->getOpcode()) {
3289  default: break;
3290  case X86::CMP64ri32:
3291  case X86::CMP64ri8:
3292  case X86::CMP32ri:
3293  case X86::CMP32ri8:
3294  case X86::CMP16ri:
3295  case X86::CMP16ri8:
3296  case X86::CMP8ri:
3297    SrcReg = MI->getOperand(0).getReg();
3298    SrcReg2 = 0;
3299    CmpMask = ~0;
3300    CmpValue = MI->getOperand(1).getImm();
3301    return true;
3302  // A SUB can be used to perform comparison.
3303  case X86::SUB64rm:
3304  case X86::SUB32rm:
3305  case X86::SUB16rm:
3306  case X86::SUB8rm:
3307    SrcReg = MI->getOperand(1).getReg();
3308    SrcReg2 = 0;
3309    CmpMask = ~0;
3310    CmpValue = 0;
3311    return true;
3312  case X86::SUB64rr:
3313  case X86::SUB32rr:
3314  case X86::SUB16rr:
3315  case X86::SUB8rr:
3316    SrcReg = MI->getOperand(1).getReg();
3317    SrcReg2 = MI->getOperand(2).getReg();
3318    CmpMask = ~0;
3319    CmpValue = 0;
3320    return true;
3321  case X86::SUB64ri32:
3322  case X86::SUB64ri8:
3323  case X86::SUB32ri:
3324  case X86::SUB32ri8:
3325  case X86::SUB16ri:
3326  case X86::SUB16ri8:
3327  case X86::SUB8ri:
3328    SrcReg = MI->getOperand(1).getReg();
3329    SrcReg2 = 0;
3330    CmpMask = ~0;
3331    CmpValue = MI->getOperand(2).getImm();
3332    return true;
3333  case X86::CMP64rr:
3334  case X86::CMP32rr:
3335  case X86::CMP16rr:
3336  case X86::CMP8rr:
3337    SrcReg = MI->getOperand(0).getReg();
3338    SrcReg2 = MI->getOperand(1).getReg();
3339    CmpMask = ~0;
3340    CmpValue = 0;
3341    return true;
3342  case X86::TEST8rr:
3343  case X86::TEST16rr:
3344  case X86::TEST32rr:
3345  case X86::TEST64rr:
3346    SrcReg = MI->getOperand(0).getReg();
3347    if (MI->getOperand(1).getReg() != SrcReg) return false;
3348    // Compare against zero.
3349    SrcReg2 = 0;
3350    CmpMask = ~0;
3351    CmpValue = 0;
3352    return true;
3353  }
3354  return false;
3355}
3356
3357/// isRedundantFlagInstr - check whether the first instruction, whose only
3358/// purpose is to update flags, can be made redundant.
3359/// CMPrr can be made redundant by SUBrr if the operands are the same.
3360/// This function can be extended later on.
3361/// SrcReg, SrcRegs: register operands for FlagI.
3362/// ImmValue: immediate for FlagI if it takes an immediate.
3363inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
3364                                        unsigned SrcReg2, int ImmValue,
3365                                        MachineInstr *OI) {
3366  if (((FlagI->getOpcode() == X86::CMP64rr &&
3367        OI->getOpcode() == X86::SUB64rr) ||
3368       (FlagI->getOpcode() == X86::CMP32rr &&
3369        OI->getOpcode() == X86::SUB32rr)||
3370       (FlagI->getOpcode() == X86::CMP16rr &&
3371        OI->getOpcode() == X86::SUB16rr)||
3372       (FlagI->getOpcode() == X86::CMP8rr &&
3373        OI->getOpcode() == X86::SUB8rr)) &&
3374      ((OI->getOperand(1).getReg() == SrcReg &&
3375        OI->getOperand(2).getReg() == SrcReg2) ||
3376       (OI->getOperand(1).getReg() == SrcReg2 &&
3377        OI->getOperand(2).getReg() == SrcReg)))
3378    return true;
3379
3380  if (((FlagI->getOpcode() == X86::CMP64ri32 &&
3381        OI->getOpcode() == X86::SUB64ri32) ||
3382       (FlagI->getOpcode() == X86::CMP64ri8 &&
3383        OI->getOpcode() == X86::SUB64ri8) ||
3384       (FlagI->getOpcode() == X86::CMP32ri &&
3385        OI->getOpcode() == X86::SUB32ri) ||
3386       (FlagI->getOpcode() == X86::CMP32ri8 &&
3387        OI->getOpcode() == X86::SUB32ri8) ||
3388       (FlagI->getOpcode() == X86::CMP16ri &&
3389        OI->getOpcode() == X86::SUB16ri) ||
3390       (FlagI->getOpcode() == X86::CMP16ri8 &&
3391        OI->getOpcode() == X86::SUB16ri8) ||
3392       (FlagI->getOpcode() == X86::CMP8ri &&
3393        OI->getOpcode() == X86::SUB8ri)) &&
3394      OI->getOperand(1).getReg() == SrcReg &&
3395      OI->getOperand(2).getImm() == ImmValue)
3396    return true;
3397  return false;
3398}
3399
3400/// isDefConvertible - check whether the definition can be converted
3401/// to remove a comparison against zero.
3402inline static bool isDefConvertible(MachineInstr *MI) {
3403  switch (MI->getOpcode()) {
3404  default: return false;
3405
3406  // The shift instructions only modify ZF if their shift count is non-zero.
3407  // N.B.: The processor truncates the shift count depending on the encoding.
3408  case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
3409  case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
3410     return getTruncatedShiftCount(MI, 2) != 0;
3411
3412  // Some left shift instructions can be turned into LEA instructions but only
3413  // if their flags aren't used. Avoid transforming such instructions.
3414  case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
3415    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
3416    if (isTruncatedShiftCountForLEA(ShAmt)) return false;
3417    return ShAmt != 0;
3418  }
3419
3420  case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
3421  case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
3422     return getTruncatedShiftCount(MI, 3) != 0;
3423
3424  case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
3425  case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
3426  case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
3427  case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
3428  case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
3429  case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
3430  case X86::DEC64_32r: case X86::DEC64_16r:
3431  case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
3432  case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
3433  case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
3434  case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
3435  case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
3436  case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
3437  case X86::INC64_32r: case X86::INC64_16r:
3438  case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
3439  case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
3440  case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
3441  case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
3442  case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
3443  case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
3444  case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
3445  case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
3446  case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
3447  case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
3448  case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
3449  case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
3450  case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
3451  case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
3452  case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
3453  case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
3454  case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
3455  case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
3456  case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
3457  case X86::ADC32ri:   case X86::ADC32ri8:
3458  case X86::ADC32rr:   case X86::ADC64ri32:
3459  case X86::ADC64ri8:  case X86::ADC64rr:
3460  case X86::SBB32ri:   case X86::SBB32ri8:
3461  case X86::SBB32rr:   case X86::SBB64ri32:
3462  case X86::SBB64ri8:  case X86::SBB64rr:
3463  case X86::ANDN32rr:  case X86::ANDN32rm:
3464  case X86::ANDN64rr:  case X86::ANDN64rm:
3465  case X86::BEXTR32rr: case X86::BEXTR64rr:
3466  case X86::BEXTR32rm: case X86::BEXTR64rm:
3467  case X86::BLSI32rr:  case X86::BLSI32rm:
3468  case X86::BLSI64rr:  case X86::BLSI64rm:
3469  case X86::BLSMSK32rr:case X86::BLSMSK32rm:
3470  case X86::BLSMSK64rr:case X86::BLSMSK64rm:
3471  case X86::BLSR32rr:  case X86::BLSR32rm:
3472  case X86::BLSR64rr:  case X86::BLSR64rm:
3473  case X86::BZHI32rr:  case X86::BZHI32rm:
3474  case X86::BZHI64rr:  case X86::BZHI64rm:
3475  case X86::LZCNT16rr: case X86::LZCNT16rm:
3476  case X86::LZCNT32rr: case X86::LZCNT32rm:
3477  case X86::LZCNT64rr: case X86::LZCNT64rm:
3478  case X86::POPCNT16rr:case X86::POPCNT16rm:
3479  case X86::POPCNT32rr:case X86::POPCNT32rm:
3480  case X86::POPCNT64rr:case X86::POPCNT64rm:
3481  case X86::TZCNT16rr: case X86::TZCNT16rm:
3482  case X86::TZCNT32rr: case X86::TZCNT32rm:
3483  case X86::TZCNT64rr: case X86::TZCNT64rm:
3484    return true;
3485  }
3486}
3487
3488/// optimizeCompareInstr - Check if there exists an earlier instruction that
3489/// operates on the same source operands and sets flags in the same way as
3490/// Compare; remove Compare if possible.
3491bool X86InstrInfo::
3492optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
3493                     int CmpMask, int CmpValue,
3494                     const MachineRegisterInfo *MRI) const {
3495  // Check whether we can replace SUB with CMP.
3496  unsigned NewOpcode = 0;
3497  switch (CmpInstr->getOpcode()) {
3498  default: break;
3499  case X86::SUB64ri32:
3500  case X86::SUB64ri8:
3501  case X86::SUB32ri:
3502  case X86::SUB32ri8:
3503  case X86::SUB16ri:
3504  case X86::SUB16ri8:
3505  case X86::SUB8ri:
3506  case X86::SUB64rm:
3507  case X86::SUB32rm:
3508  case X86::SUB16rm:
3509  case X86::SUB8rm:
3510  case X86::SUB64rr:
3511  case X86::SUB32rr:
3512  case X86::SUB16rr:
3513  case X86::SUB8rr: {
3514    if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
3515      return false;
3516    // There is no use of the destination register, we can replace SUB with CMP.
3517    switch (CmpInstr->getOpcode()) {
3518    default: llvm_unreachable("Unreachable!");
3519    case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
3520    case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
3521    case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
3522    case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
3523    case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
3524    case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
3525    case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
3526    case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
3527    case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
3528    case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
3529    case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
3530    case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
3531    case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
3532    case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
3533    case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
3534    }
3535    CmpInstr->setDesc(get(NewOpcode));
3536    CmpInstr->RemoveOperand(0);
3537    // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3538    if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
3539        NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
3540      return false;
3541  }
3542  }
3543
3544  // Get the unique definition of SrcReg.
3545  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3546  if (!MI) return false;
3547
3548  // CmpInstr is the first instruction of the BB.
3549  MachineBasicBlock::iterator I = CmpInstr, Def = MI;
3550
3551  // If we are comparing against zero, check whether we can use MI to update
3552  // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3553  bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
3554  if (IsCmpZero && (MI->getParent() != CmpInstr->getParent() ||
3555      !isDefConvertible(MI)))
3556    return false;
3557
3558  // We are searching for an earlier instruction that can make CmpInstr
3559  // redundant and that instruction will be saved in Sub.
3560  MachineInstr *Sub = NULL;
3561  const TargetRegisterInfo *TRI = &getRegisterInfo();
3562
3563  // We iterate backward, starting from the instruction before CmpInstr and
3564  // stop when reaching the definition of a source register or done with the BB.
3565  // RI points to the instruction before CmpInstr.
3566  // If the definition is in this basic block, RE points to the definition;
3567  // otherwise, RE is the rend of the basic block.
3568  MachineBasicBlock::reverse_iterator
3569      RI = MachineBasicBlock::reverse_iterator(I),
3570      RE = CmpInstr->getParent() == MI->getParent() ?
3571           MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
3572           CmpInstr->getParent()->rend();
3573  MachineInstr *Movr0Inst = 0;
3574  for (; RI != RE; ++RI) {
3575    MachineInstr *Instr = &*RI;
3576    // Check whether CmpInstr can be made redundant by the current instruction.
3577    if (!IsCmpZero &&
3578        isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
3579      Sub = Instr;
3580      break;
3581    }
3582
3583    if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
3584        Instr->readsRegister(X86::EFLAGS, TRI)) {
3585      // This instruction modifies or uses EFLAGS.
3586
3587      // MOV32r0 etc. are implemented with xor which clobbers condition code.
3588      // They are safe to move up, if the definition to EFLAGS is dead and
3589      // earlier instructions do not read or write EFLAGS.
3590      if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 &&
3591          Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
3592        Movr0Inst = Instr;
3593        continue;
3594      }
3595
3596      // We can't remove CmpInstr.
3597      return false;
3598    }
3599  }
3600
3601  // Return false if no candidates exist.
3602  if (!IsCmpZero && !Sub)
3603    return false;
3604
3605  bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
3606                    Sub->getOperand(2).getReg() == SrcReg);
3607
3608  // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
3609  // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3610  // If we are done with the basic block, we need to check whether EFLAGS is
3611  // live-out.
3612  bool IsSafe = false;
3613  SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
3614  MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
3615  for (++I; I != E; ++I) {
3616    const MachineInstr &Instr = *I;
3617    bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
3618    bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
3619    // We should check the usage if this instruction uses and updates EFLAGS.
3620    if (!UseEFLAGS && ModifyEFLAGS) {
3621      // It is safe to remove CmpInstr if EFLAGS is updated again.
3622      IsSafe = true;
3623      break;
3624    }
3625    if (!UseEFLAGS && !ModifyEFLAGS)
3626      continue;
3627
3628    // EFLAGS is used by this instruction.
3629    X86::CondCode OldCC;
3630    bool OpcIsSET = false;
3631    if (IsCmpZero || IsSwapped) {
3632      // We decode the condition code from opcode.
3633      if (Instr.isBranch())
3634        OldCC = getCondFromBranchOpc(Instr.getOpcode());
3635      else {
3636        OldCC = getCondFromSETOpc(Instr.getOpcode());
3637        if (OldCC != X86::COND_INVALID)
3638          OpcIsSET = true;
3639        else
3640          OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
3641      }
3642      if (OldCC == X86::COND_INVALID) return false;
3643    }
3644    if (IsCmpZero) {
3645      switch (OldCC) {
3646      default: break;
3647      case X86::COND_A: case X86::COND_AE:
3648      case X86::COND_B: case X86::COND_BE:
3649      case X86::COND_G: case X86::COND_GE:
3650      case X86::COND_L: case X86::COND_LE:
3651      case X86::COND_O: case X86::COND_NO:
3652        // CF and OF are used, we can't perform this optimization.
3653        return false;
3654      }
3655    } else if (IsSwapped) {
3656      // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3657      // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3658      // We swap the condition code and synthesize the new opcode.
3659      X86::CondCode NewCC = getSwappedCondition(OldCC);
3660      if (NewCC == X86::COND_INVALID) return false;
3661
3662      // Synthesize the new opcode.
3663      bool HasMemoryOperand = Instr.hasOneMemOperand();
3664      unsigned NewOpc;
3665      if (Instr.isBranch())
3666        NewOpc = GetCondBranchFromCond(NewCC);
3667      else if(OpcIsSET)
3668        NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
3669      else {
3670        unsigned DstReg = Instr.getOperand(0).getReg();
3671        NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
3672                                 HasMemoryOperand);
3673      }
3674
3675      // Push the MachineInstr to OpsToUpdate.
3676      // If it is safe to remove CmpInstr, the condition code of these
3677      // instructions will be modified.
3678      OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
3679    }
3680    if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
3681      // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
3682      IsSafe = true;
3683      break;
3684    }
3685  }
3686
3687  // If EFLAGS is not killed nor re-defined, we should check whether it is
3688  // live-out. If it is live-out, do not optimize.
3689  if ((IsCmpZero || IsSwapped) && !IsSafe) {
3690    MachineBasicBlock *MBB = CmpInstr->getParent();
3691    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
3692             SE = MBB->succ_end(); SI != SE; ++SI)
3693      if ((*SI)->isLiveIn(X86::EFLAGS))
3694        return false;
3695  }
3696
3697  // The instruction to be updated is either Sub or MI.
3698  Sub = IsCmpZero ? MI : Sub;
3699  // Move Movr0Inst to the appropriate place before Sub.
3700  if (Movr0Inst) {
3701    // Look backwards until we find a def that doesn't use the current EFLAGS.
3702    Def = Sub;
3703    MachineBasicBlock::reverse_iterator
3704      InsertI = MachineBasicBlock::reverse_iterator(++Def),
3705                InsertE = Sub->getParent()->rend();
3706    for (; InsertI != InsertE; ++InsertI) {
3707      MachineInstr *Instr = &*InsertI;
3708      if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
3709          Instr->modifiesRegister(X86::EFLAGS, TRI)) {
3710        Sub->getParent()->remove(Movr0Inst);
3711        Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
3712                                   Movr0Inst);
3713        break;
3714      }
3715    }
3716    if (InsertI == InsertE)
3717      return false;
3718  }
3719
3720  // Make sure Sub instruction defines EFLAGS and mark the def live.
3721  unsigned i = 0, e = Sub->getNumOperands();
3722  for (; i != e; ++i) {
3723    MachineOperand &MO = Sub->getOperand(i);
3724    if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
3725      MO.setIsDead(false);
3726      break;
3727    }
3728  }
3729  assert(i != e && "Unable to locate a def EFLAGS operand");
3730
3731  CmpInstr->eraseFromParent();
3732
3733  // Modify the condition code of instructions in OpsToUpdate.
3734  for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
3735    OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
3736  return true;
3737}
3738
3739/// optimizeLoadInstr - Try to remove the load by folding it to a register
3740/// operand at the use. We fold the load instructions if load defines a virtual
3741/// register, the virtual register is used once in the same BB, and the
3742/// instructions in-between do not load or store, and have no side effects.
3743MachineInstr* X86InstrInfo::
3744optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI,
3745                  unsigned &FoldAsLoadDefReg,
3746                  MachineInstr *&DefMI) const {
3747  if (FoldAsLoadDefReg == 0)
3748    return 0;
3749  // To be conservative, if there exists another load, clear the load candidate.
3750  if (MI->mayLoad()) {
3751    FoldAsLoadDefReg = 0;
3752    return 0;
3753  }
3754
3755  // Check whether we can move DefMI here.
3756  DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
3757  assert(DefMI);
3758  bool SawStore = false;
3759  if (!DefMI->isSafeToMove(this, 0, SawStore))
3760    return 0;
3761
3762  // We try to commute MI if possible.
3763  unsigned IdxEnd = (MI->isCommutable()) ? 2 : 1;
3764  for (unsigned Idx = 0; Idx < IdxEnd; Idx++) {
3765    // Collect information about virtual register operands of MI.
3766    unsigned SrcOperandId = 0;
3767    bool FoundSrcOperand = false;
3768    for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
3769      MachineOperand &MO = MI->getOperand(i);
3770      if (!MO.isReg())
3771        continue;
3772      unsigned Reg = MO.getReg();
3773      if (Reg != FoldAsLoadDefReg)
3774        continue;
3775      // Do not fold if we have a subreg use or a def or multiple uses.
3776      if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
3777        return 0;
3778
3779      SrcOperandId = i;
3780      FoundSrcOperand = true;
3781    }
3782    if (!FoundSrcOperand) return 0;
3783
3784    // Check whether we can fold the def into SrcOperandId.
3785    SmallVector<unsigned, 8> Ops;
3786    Ops.push_back(SrcOperandId);
3787    MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI);
3788    if (FoldMI) {
3789      FoldAsLoadDefReg = 0;
3790      return FoldMI;
3791    }
3792
3793    if (Idx == 1) {
3794      // MI was changed but it didn't help, commute it back!
3795      commuteInstruction(MI, false);
3796      return 0;
3797    }
3798
3799    // Check whether we can commute MI and enable folding.
3800    if (MI->isCommutable()) {
3801      MachineInstr *NewMI = commuteInstruction(MI, false);
3802      // Unable to commute.
3803      if (!NewMI) return 0;
3804      if (NewMI != MI) {
3805        // New instruction. It doesn't need to be kept.
3806        NewMI->eraseFromParent();
3807        return 0;
3808      }
3809    }
3810  }
3811  return 0;
3812}
3813
3814/// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
3815/// instruction with two undef reads of the register being defined.  This is
3816/// used for mapping:
3817///   %xmm4 = V_SET0
3818/// to:
3819///   %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
3820///
3821static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
3822                             const MCInstrDesc &Desc) {
3823  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3824  unsigned Reg = MIB->getOperand(0).getReg();
3825  MIB->setDesc(Desc);
3826
3827  // MachineInstr::addOperand() will insert explicit operands before any
3828  // implicit operands.
3829  MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3830  // But we don't trust that.
3831  assert(MIB->getOperand(1).getReg() == Reg &&
3832         MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
3833  return true;
3834}
3835
3836bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
3837  bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
3838  MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
3839  switch (MI->getOpcode()) {
3840  case X86::SETB_C8r:
3841    return Expand2AddrUndef(MIB, get(X86::SBB8rr));
3842  case X86::SETB_C16r:
3843    return Expand2AddrUndef(MIB, get(X86::SBB16rr));
3844  case X86::SETB_C32r:
3845    return Expand2AddrUndef(MIB, get(X86::SBB32rr));
3846  case X86::SETB_C64r:
3847    return Expand2AddrUndef(MIB, get(X86::SBB64rr));
3848  case X86::V_SET0:
3849  case X86::FsFLD0SS:
3850  case X86::FsFLD0SD:
3851    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
3852  case X86::AVX_SET0:
3853    assert(HasAVX && "AVX not supported");
3854    return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
3855  case X86::AVX512_512_SET0:
3856    return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
3857  case X86::V_SETALLONES:
3858    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
3859  case X86::AVX2_SETALLONES:
3860    return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
3861  case X86::TEST8ri_NOREX:
3862    MI->setDesc(get(X86::TEST8ri));
3863    return true;
3864  case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr));
3865  case X86::KSET1B:
3866  case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr));
3867  }
3868  return false;
3869}
3870
3871static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
3872                                     const SmallVectorImpl<MachineOperand> &MOs,
3873                                     MachineInstr *MI,
3874                                     const TargetInstrInfo &TII) {
3875  // Create the base instruction with the memory operand as the first part.
3876  // Omit the implicit operands, something BuildMI can't do.
3877  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
3878                                              MI->getDebugLoc(), true);
3879  MachineInstrBuilder MIB(MF, NewMI);
3880  unsigned NumAddrOps = MOs.size();
3881  for (unsigned i = 0; i != NumAddrOps; ++i)
3882    MIB.addOperand(MOs[i]);
3883  if (NumAddrOps < 4)  // FrameIndex only
3884    addOffset(MIB, 0);
3885
3886  // Loop over the rest of the ri operands, converting them over.
3887  unsigned NumOps = MI->getDesc().getNumOperands()-2;
3888  for (unsigned i = 0; i != NumOps; ++i) {
3889    MachineOperand &MO = MI->getOperand(i+2);
3890    MIB.addOperand(MO);
3891  }
3892  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
3893    MachineOperand &MO = MI->getOperand(i);
3894    MIB.addOperand(MO);
3895  }
3896  return MIB;
3897}
3898
3899static MachineInstr *FuseInst(MachineFunction &MF,
3900                              unsigned Opcode, unsigned OpNo,
3901                              const SmallVectorImpl<MachineOperand> &MOs,
3902                              MachineInstr *MI, const TargetInstrInfo &TII) {
3903  // Omit the implicit operands, something BuildMI can't do.
3904  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
3905                                              MI->getDebugLoc(), true);
3906  MachineInstrBuilder MIB(MF, NewMI);
3907
3908  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
3909    MachineOperand &MO = MI->getOperand(i);
3910    if (i == OpNo) {
3911      assert(MO.isReg() && "Expected to fold into reg operand!");
3912      unsigned NumAddrOps = MOs.size();
3913      for (unsigned i = 0; i != NumAddrOps; ++i)
3914        MIB.addOperand(MOs[i]);
3915      if (NumAddrOps < 4)  // FrameIndex only
3916        addOffset(MIB, 0);
3917    } else {
3918      MIB.addOperand(MO);
3919    }
3920  }
3921  return MIB;
3922}
3923
3924static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
3925                                const SmallVectorImpl<MachineOperand> &MOs,
3926                                MachineInstr *MI) {
3927  MachineFunction &MF = *MI->getParent()->getParent();
3928  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
3929
3930  unsigned NumAddrOps = MOs.size();
3931  for (unsigned i = 0; i != NumAddrOps; ++i)
3932    MIB.addOperand(MOs[i]);
3933  if (NumAddrOps < 4)  // FrameIndex only
3934    addOffset(MIB, 0);
3935  return MIB.addImm(0);
3936}
3937
3938MachineInstr*
3939X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
3940                                    MachineInstr *MI, unsigned i,
3941                                    const SmallVectorImpl<MachineOperand> &MOs,
3942                                    unsigned Size, unsigned Align) const {
3943  const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
3944  bool isCallRegIndirect = TM.getSubtarget<X86Subtarget>().callRegIndirect();
3945  bool isTwoAddrFold = false;
3946
3947  // Atom favors register form of call. So, we do not fold loads into calls
3948  // when X86Subtarget is Atom.
3949  if (isCallRegIndirect &&
3950    (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r)) {
3951    return NULL;
3952  }
3953
3954  unsigned NumOps = MI->getDesc().getNumOperands();
3955  bool isTwoAddr = NumOps > 1 &&
3956    MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
3957
3958  // FIXME: AsmPrinter doesn't know how to handle
3959  // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
3960  if (MI->getOpcode() == X86::ADD32ri &&
3961      MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
3962    return NULL;
3963
3964  MachineInstr *NewMI = NULL;
3965  // Folding a memory location into the two-address part of a two-address
3966  // instruction is different than folding it other places.  It requires
3967  // replacing the *two* registers with the memory location.
3968  if (isTwoAddr && NumOps >= 2 && i < 2 &&
3969      MI->getOperand(0).isReg() &&
3970      MI->getOperand(1).isReg() &&
3971      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
3972    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
3973    isTwoAddrFold = true;
3974  } else if (i == 0) { // If operand 0
3975    if (MI->getOpcode() == X86::MOV32r0) {
3976      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
3977      if (NewMI)
3978        return NewMI;
3979    }
3980
3981    OpcodeTablePtr = &RegOp2MemOpTable0;
3982  } else if (i == 1) {
3983    OpcodeTablePtr = &RegOp2MemOpTable1;
3984  } else if (i == 2) {
3985    OpcodeTablePtr = &RegOp2MemOpTable2;
3986  } else if (i == 3) {
3987    OpcodeTablePtr = &RegOp2MemOpTable3;
3988  }
3989
3990  // If table selected...
3991  if (OpcodeTablePtr) {
3992    // Find the Opcode to fuse
3993    DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3994      OpcodeTablePtr->find(MI->getOpcode());
3995    if (I != OpcodeTablePtr->end()) {
3996      unsigned Opcode = I->second.first;
3997      unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
3998      if (Align < MinAlign)
3999        return NULL;
4000      bool NarrowToMOV32rm = false;
4001      if (Size) {
4002        unsigned RCSize = getRegClass(MI->getDesc(), i, &RI, MF)->getSize();
4003        if (Size < RCSize) {
4004          // Check if it's safe to fold the load. If the size of the object is
4005          // narrower than the load width, then it's not.
4006          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
4007            return NULL;
4008          // If this is a 64-bit load, but the spill slot is 32, then we can do
4009          // a 32-bit load which is implicitly zero-extended. This likely is due
4010          // to liveintervalanalysis remat'ing a load from stack slot.
4011          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
4012            return NULL;
4013          Opcode = X86::MOV32rm;
4014          NarrowToMOV32rm = true;
4015        }
4016      }
4017
4018      if (isTwoAddrFold)
4019        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
4020      else
4021        NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
4022
4023      if (NarrowToMOV32rm) {
4024        // If this is the special case where we use a MOV32rm to load a 32-bit
4025        // value and zero-extend the top bits. Change the destination register
4026        // to a 32-bit one.
4027        unsigned DstReg = NewMI->getOperand(0).getReg();
4028        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
4029          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
4030                                                   X86::sub_32bit));
4031        else
4032          NewMI->getOperand(0).setSubReg(X86::sub_32bit);
4033      }
4034      return NewMI;
4035    }
4036  }
4037
4038  // No fusion
4039  if (PrintFailedFusing && !MI->isCopy())
4040    dbgs() << "We failed to fuse operand " << i << " in " << *MI;
4041  return NULL;
4042}
4043
4044/// hasPartialRegUpdate - Return true for all instructions that only update
4045/// the first 32 or 64-bits of the destination register and leave the rest
4046/// unmodified. This can be used to avoid folding loads if the instructions
4047/// only update part of the destination register, and the non-updated part is
4048/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4049/// instructions breaks the partial register dependency and it can improve
4050/// performance. e.g.:
4051///
4052///   movss (%rdi), %xmm0
4053///   cvtss2sd %xmm0, %xmm0
4054///
4055/// Instead of
4056///   cvtss2sd (%rdi), %xmm0
4057///
4058/// FIXME: This should be turned into a TSFlags.
4059///
4060static bool hasPartialRegUpdate(unsigned Opcode) {
4061  switch (Opcode) {
4062  case X86::CVTSI2SSrr:
4063  case X86::CVTSI2SS64rr:
4064  case X86::CVTSI2SDrr:
4065  case X86::CVTSI2SD64rr:
4066  case X86::CVTSD2SSrr:
4067  case X86::Int_CVTSD2SSrr:
4068  case X86::CVTSS2SDrr:
4069  case X86::Int_CVTSS2SDrr:
4070  case X86::RCPSSr:
4071  case X86::RCPSSr_Int:
4072  case X86::ROUNDSDr:
4073  case X86::ROUNDSDr_Int:
4074  case X86::ROUNDSSr:
4075  case X86::ROUNDSSr_Int:
4076  case X86::RSQRTSSr:
4077  case X86::RSQRTSSr_Int:
4078  case X86::SQRTSSr:
4079  case X86::SQRTSSr_Int:
4080    return true;
4081  }
4082
4083  return false;
4084}
4085
4086/// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle
4087/// instructions we would like before a partial register update.
4088unsigned X86InstrInfo::
4089getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
4090                             const TargetRegisterInfo *TRI) const {
4091  if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
4092    return 0;
4093
4094  // If MI is marked as reading Reg, the partial register update is wanted.
4095  const MachineOperand &MO = MI->getOperand(0);
4096  unsigned Reg = MO.getReg();
4097  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4098    if (MO.readsReg() || MI->readsVirtualRegister(Reg))
4099      return 0;
4100  } else {
4101    if (MI->readsRegister(Reg, TRI))
4102      return 0;
4103  }
4104
4105  // If any of the preceding 16 instructions are reading Reg, insert a
4106  // dependency breaking instruction.  The magic number is based on a few
4107  // Nehalem experiments.
4108  return 16;
4109}
4110
4111// Return true for any instruction the copies the high bits of the first source
4112// operand into the unused high bits of the destination operand.
4113static bool hasUndefRegUpdate(unsigned Opcode) {
4114  switch (Opcode) {
4115  case X86::VCVTSI2SSrr:
4116  case X86::Int_VCVTSI2SSrr:
4117  case X86::VCVTSI2SS64rr:
4118  case X86::Int_VCVTSI2SS64rr:
4119  case X86::VCVTSI2SDrr:
4120  case X86::Int_VCVTSI2SDrr:
4121  case X86::VCVTSI2SD64rr:
4122  case X86::Int_VCVTSI2SD64rr:
4123  case X86::VCVTSD2SSrr:
4124  case X86::Int_VCVTSD2SSrr:
4125  case X86::VCVTSS2SDrr:
4126  case X86::Int_VCVTSS2SDrr:
4127  case X86::VRCPSSr:
4128  case X86::VROUNDSDr:
4129  case X86::VROUNDSDr_Int:
4130  case X86::VROUNDSSr:
4131  case X86::VROUNDSSr_Int:
4132  case X86::VRSQRTSSr:
4133  case X86::VSQRTSSr:
4134
4135  // AVX-512
4136  case X86::VCVTSD2SSZrr:
4137  case X86::VCVTSS2SDZrr:
4138    return true;
4139  }
4140
4141  return false;
4142}
4143
4144/// Inform the ExeDepsFix pass how many idle instructions we would like before
4145/// certain undef register reads.
4146///
4147/// This catches the VCVTSI2SD family of instructions:
4148///
4149/// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
4150///
4151/// We should to be careful *not* to catch VXOR idioms which are presumably
4152/// handled specially in the pipeline:
4153///
4154/// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1
4155///
4156/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
4157/// high bits that are passed-through are not live.
4158unsigned X86InstrInfo::
4159getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
4160                     const TargetRegisterInfo *TRI) const {
4161  if (!hasUndefRegUpdate(MI->getOpcode()))
4162    return 0;
4163
4164  // Set the OpNum parameter to the first source operand.
4165  OpNum = 1;
4166
4167  const MachineOperand &MO = MI->getOperand(OpNum);
4168  if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
4169    // Use the same magic number as getPartialRegUpdateClearance.
4170    return 16;
4171  }
4172  return 0;
4173}
4174
4175void X86InstrInfo::
4176breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
4177                          const TargetRegisterInfo *TRI) const {
4178  unsigned Reg = MI->getOperand(OpNum).getReg();
4179  // If MI kills this register, the false dependence is already broken.
4180  if (MI->killsRegister(Reg, TRI))
4181    return;
4182  if (X86::VR128RegClass.contains(Reg)) {
4183    // These instructions are all floating point domain, so xorps is the best
4184    // choice.
4185    bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
4186    unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
4187    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
4188      .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4189  } else if (X86::VR256RegClass.contains(Reg)) {
4190    // Use vxorps to clear the full ymm register.
4191    // It wants to read and write the xmm sub-register.
4192    unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
4193    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
4194      .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
4195      .addReg(Reg, RegState::ImplicitDefine);
4196  } else
4197    return;
4198  MI->addRegisterKilled(Reg, TRI, true);
4199}
4200
4201static MachineInstr* foldPatchpoint(MachineFunction &MF,
4202                                    MachineInstr *MI,
4203                                    const SmallVectorImpl<unsigned> &Ops,
4204                                    int FrameIndex,
4205                                    const TargetInstrInfo &TII) {
4206  bool hasDef = MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
4207                !MI->getOperand(0).isImplicit();
4208  unsigned StartIdx = hasDef ? 1 : 0;
4209
4210  switch (MI->getOpcode()) {
4211  case TargetOpcode::STACKMAP:
4212    StartIdx += 2; // Skip ID, nShadowBytes.
4213    break;
4214  case TargetOpcode::PATCHPOINT:
4215    // Skip ID, numBytes, Target, numArgs.
4216    // For PatchPoint, the call args are not foldable.
4217    StartIdx += MI->getOperand(StartIdx+3).getImm() + 4;
4218    break;
4219  default:
4220    llvm_unreachable("unexpected stackmap opcode");
4221  }
4222
4223  // Return false if any operands requested for folding are not foldable (not
4224  // part of the stackmap's live values).
4225  for (SmallVectorImpl<unsigned>::const_iterator I = Ops.begin(), E = Ops.end();
4226       I != E; ++I) {
4227    if (*I < StartIdx)
4228      return 0;
4229  }
4230
4231  MachineInstr *NewMI =
4232    MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true);
4233  MachineInstrBuilder MIB(MF, NewMI);
4234
4235  // No need to fold return, the meta data, and function arguments
4236  for (unsigned i = 0; i < StartIdx; ++i)
4237    MIB.addOperand(MI->getOperand(i));
4238
4239  for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) {
4240    MachineOperand &MO = MI->getOperand(i);
4241    if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) {
4242      MIB.addOperand(MachineOperand::CreateImm(StackMaps::IndirectMemRefOp));
4243      MIB.addOperand(MachineOperand::CreateFI(FrameIndex));
4244      addOffset(MIB, 0);
4245    }
4246    else
4247      MIB.addOperand(MO);
4248  }
4249  return NewMI;
4250}
4251
4252MachineInstr*
4253X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
4254                                    const SmallVectorImpl<unsigned> &Ops,
4255                                    int FrameIndex) const {
4256  // Special case stack map and patch point intrinsics.
4257  if (MI->getOpcode() == TargetOpcode::STACKMAP
4258      || MI->getOpcode() == TargetOpcode::PATCHPOINT) {
4259    return foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
4260  }
4261  // Check switch flag
4262  if (NoFusing) return NULL;
4263
4264  // Unless optimizing for size, don't fold to avoid partial
4265  // register update stalls
4266  if (!MF.getFunction()->getAttributes().
4267        hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
4268      hasPartialRegUpdate(MI->getOpcode()))
4269    return 0;
4270
4271  const MachineFrameInfo *MFI = MF.getFrameInfo();
4272  unsigned Size = MFI->getObjectSize(FrameIndex);
4273  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
4274  // If the function stack isn't realigned we don't want to fold instructions
4275  // that need increased alignment.
4276  if (!RI.needsStackRealignment(MF))
4277    Alignment = std::min(Alignment, TM.getFrameLowering()->getStackAlignment());
4278  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
4279    unsigned NewOpc = 0;
4280    unsigned RCSize = 0;
4281    switch (MI->getOpcode()) {
4282    default: return NULL;
4283    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
4284    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
4285    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
4286    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
4287    }
4288    // Check if it's safe to fold the load. If the size of the object is
4289    // narrower than the load width, then it's not.
4290    if (Size < RCSize)
4291      return NULL;
4292    // Change to CMPXXri r, 0 first.
4293    MI->setDesc(get(NewOpc));
4294    MI->getOperand(1).ChangeToImmediate(0);
4295  } else if (Ops.size() != 1)
4296    return NULL;
4297
4298  SmallVector<MachineOperand,4> MOs;
4299  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
4300  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
4301}
4302
4303MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
4304                                                  MachineInstr *MI,
4305                                           const SmallVectorImpl<unsigned> &Ops,
4306                                                  MachineInstr *LoadMI) const {
4307  // If loading from a FrameIndex, fold directly from the FrameIndex.
4308  unsigned NumOps = LoadMI->getDesc().getNumOperands();
4309  int FrameIndex;
4310  if (isLoadFromStackSlot(LoadMI, FrameIndex))
4311    return foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
4312
4313  // Check switch flag
4314  if (NoFusing) return NULL;
4315
4316  // Unless optimizing for size, don't fold to avoid partial
4317  // register update stalls
4318  if (!MF.getFunction()->getAttributes().
4319        hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
4320      hasPartialRegUpdate(MI->getOpcode()))
4321    return 0;
4322
4323  // Determine the alignment of the load.
4324  unsigned Alignment = 0;
4325  if (LoadMI->hasOneMemOperand())
4326    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
4327  else
4328    switch (LoadMI->getOpcode()) {
4329    case X86::AVX2_SETALLONES:
4330    case X86::AVX_SET0:
4331      Alignment = 32;
4332      break;
4333    case X86::V_SET0:
4334    case X86::V_SETALLONES:
4335      Alignment = 16;
4336      break;
4337    case X86::FsFLD0SD:
4338      Alignment = 8;
4339      break;
4340    case X86::FsFLD0SS:
4341      Alignment = 4;
4342      break;
4343    default:
4344      return 0;
4345    }
4346  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
4347    unsigned NewOpc = 0;
4348    switch (MI->getOpcode()) {
4349    default: return NULL;
4350    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
4351    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
4352    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
4353    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
4354    }
4355    // Change to CMPXXri r, 0 first.
4356    MI->setDesc(get(NewOpc));
4357    MI->getOperand(1).ChangeToImmediate(0);
4358  } else if (Ops.size() != 1)
4359    return NULL;
4360
4361  // Make sure the subregisters match.
4362  // Otherwise we risk changing the size of the load.
4363  if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
4364    return NULL;
4365
4366  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
4367  switch (LoadMI->getOpcode()) {
4368  case X86::V_SET0:
4369  case X86::V_SETALLONES:
4370  case X86::AVX2_SETALLONES:
4371  case X86::AVX_SET0:
4372  case X86::FsFLD0SD:
4373  case X86::FsFLD0SS: {
4374    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
4375    // Create a constant-pool entry and operands to load from it.
4376
4377    // Medium and large mode can't fold loads this way.
4378    if (TM.getCodeModel() != CodeModel::Small &&
4379        TM.getCodeModel() != CodeModel::Kernel)
4380      return NULL;
4381
4382    // x86-32 PIC requires a PIC base register for constant pools.
4383    unsigned PICBase = 0;
4384    if (TM.getRelocationModel() == Reloc::PIC_) {
4385      if (TM.getSubtarget<X86Subtarget>().is64Bit())
4386        PICBase = X86::RIP;
4387      else
4388        // FIXME: PICBase = getGlobalBaseReg(&MF);
4389        // This doesn't work for several reasons.
4390        // 1. GlobalBaseReg may have been spilled.
4391        // 2. It may not be live at MI.
4392        return NULL;
4393    }
4394
4395    // Create a constant-pool entry.
4396    MachineConstantPool &MCP = *MF.getConstantPool();
4397    Type *Ty;
4398    unsigned Opc = LoadMI->getOpcode();
4399    if (Opc == X86::FsFLD0SS)
4400      Ty = Type::getFloatTy(MF.getFunction()->getContext());
4401    else if (Opc == X86::FsFLD0SD)
4402      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
4403    else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0)
4404      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
4405    else
4406      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
4407
4408    bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES);
4409    const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
4410                                    Constant::getNullValue(Ty);
4411    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
4412
4413    // Create operands to load from the constant pool entry.
4414    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
4415    MOs.push_back(MachineOperand::CreateImm(1));
4416    MOs.push_back(MachineOperand::CreateReg(0, false));
4417    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
4418    MOs.push_back(MachineOperand::CreateReg(0, false));
4419    break;
4420  }
4421  default: {
4422    if ((LoadMI->getOpcode() == X86::MOVSSrm ||
4423         LoadMI->getOpcode() == X86::VMOVSSrm) &&
4424        MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
4425          > 4)
4426      // These instructions only load 32 bits, we can't fold them if the
4427      // destination register is wider than 32 bits (4 bytes).
4428      return NULL;
4429    if ((LoadMI->getOpcode() == X86::MOVSDrm ||
4430         LoadMI->getOpcode() == X86::VMOVSDrm) &&
4431        MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
4432          > 8)
4433      // These instructions only load 64 bits, we can't fold them if the
4434      // destination register is wider than 64 bits (8 bytes).
4435      return NULL;
4436
4437    // Folding a normal load. Just copy the load's address operands.
4438    for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
4439      MOs.push_back(LoadMI->getOperand(i));
4440    break;
4441  }
4442  }
4443  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
4444}
4445
4446
4447bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
4448                                  const SmallVectorImpl<unsigned> &Ops) const {
4449  // Check switch flag
4450  if (NoFusing) return 0;
4451
4452  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
4453    switch (MI->getOpcode()) {
4454    default: return false;
4455    case X86::TEST8rr:
4456    case X86::TEST16rr:
4457    case X86::TEST32rr:
4458    case X86::TEST64rr:
4459      return true;
4460    case X86::ADD32ri:
4461      // FIXME: AsmPrinter doesn't know how to handle
4462      // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4463      if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4464        return false;
4465      break;
4466    }
4467  }
4468
4469  if (Ops.size() != 1)
4470    return false;
4471
4472  unsigned OpNum = Ops[0];
4473  unsigned Opc = MI->getOpcode();
4474  unsigned NumOps = MI->getDesc().getNumOperands();
4475  bool isTwoAddr = NumOps > 1 &&
4476    MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
4477
4478  // Folding a memory location into the two-address part of a two-address
4479  // instruction is different than folding it other places.  It requires
4480  // replacing the *two* registers with the memory location.
4481  const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
4482  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
4483    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
4484  } else if (OpNum == 0) { // If operand 0
4485    if (Opc == X86::MOV32r0)
4486      return true;
4487
4488    OpcodeTablePtr = &RegOp2MemOpTable0;
4489  } else if (OpNum == 1) {
4490    OpcodeTablePtr = &RegOp2MemOpTable1;
4491  } else if (OpNum == 2) {
4492    OpcodeTablePtr = &RegOp2MemOpTable2;
4493  } else if (OpNum == 3) {
4494    OpcodeTablePtr = &RegOp2MemOpTable3;
4495  }
4496
4497  if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
4498    return true;
4499  return TargetInstrInfo::canFoldMemoryOperand(MI, Ops);
4500}
4501
4502bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
4503                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
4504                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
4505  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4506    MemOp2RegOpTable.find(MI->getOpcode());
4507  if (I == MemOp2RegOpTable.end())
4508    return false;
4509  unsigned Opc = I->second.first;
4510  unsigned Index = I->second.second & TB_INDEX_MASK;
4511  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4512  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
4513  if (UnfoldLoad && !FoldedLoad)
4514    return false;
4515  UnfoldLoad &= FoldedLoad;
4516  if (UnfoldStore && !FoldedStore)
4517    return false;
4518  UnfoldStore &= FoldedStore;
4519
4520  const MCInstrDesc &MCID = get(Opc);
4521  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
4522  if (!MI->hasOneMemOperand() &&
4523      RC == &X86::VR128RegClass &&
4524      !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
4525    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
4526    // conservatively assume the address is unaligned. That's bad for
4527    // performance.
4528    return false;
4529  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
4530  SmallVector<MachineOperand,2> BeforeOps;
4531  SmallVector<MachineOperand,2> AfterOps;
4532  SmallVector<MachineOperand,4> ImpOps;
4533  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
4534    MachineOperand &Op = MI->getOperand(i);
4535    if (i >= Index && i < Index + X86::AddrNumOperands)
4536      AddrOps.push_back(Op);
4537    else if (Op.isReg() && Op.isImplicit())
4538      ImpOps.push_back(Op);
4539    else if (i < Index)
4540      BeforeOps.push_back(Op);
4541    else if (i > Index)
4542      AfterOps.push_back(Op);
4543  }
4544
4545  // Emit the load instruction.
4546  if (UnfoldLoad) {
4547    std::pair<MachineInstr::mmo_iterator,
4548              MachineInstr::mmo_iterator> MMOs =
4549      MF.extractLoadMemRefs(MI->memoperands_begin(),
4550                            MI->memoperands_end());
4551    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
4552    if (UnfoldStore) {
4553      // Address operands cannot be marked isKill.
4554      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
4555        MachineOperand &MO = NewMIs[0]->getOperand(i);
4556        if (MO.isReg())
4557          MO.setIsKill(false);
4558      }
4559    }
4560  }
4561
4562  // Emit the data processing instruction.
4563  MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
4564  MachineInstrBuilder MIB(MF, DataMI);
4565
4566  if (FoldedStore)
4567    MIB.addReg(Reg, RegState::Define);
4568  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
4569    MIB.addOperand(BeforeOps[i]);
4570  if (FoldedLoad)
4571    MIB.addReg(Reg);
4572  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
4573    MIB.addOperand(AfterOps[i]);
4574  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
4575    MachineOperand &MO = ImpOps[i];
4576    MIB.addReg(MO.getReg(),
4577               getDefRegState(MO.isDef()) |
4578               RegState::Implicit |
4579               getKillRegState(MO.isKill()) |
4580               getDeadRegState(MO.isDead()) |
4581               getUndefRegState(MO.isUndef()));
4582  }
4583  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
4584  switch (DataMI->getOpcode()) {
4585  default: break;
4586  case X86::CMP64ri32:
4587  case X86::CMP64ri8:
4588  case X86::CMP32ri:
4589  case X86::CMP32ri8:
4590  case X86::CMP16ri:
4591  case X86::CMP16ri8:
4592  case X86::CMP8ri: {
4593    MachineOperand &MO0 = DataMI->getOperand(0);
4594    MachineOperand &MO1 = DataMI->getOperand(1);
4595    if (MO1.getImm() == 0) {
4596      unsigned NewOpc;
4597      switch (DataMI->getOpcode()) {
4598      default: llvm_unreachable("Unreachable!");
4599      case X86::CMP64ri8:
4600      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
4601      case X86::CMP32ri8:
4602      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
4603      case X86::CMP16ri8:
4604      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
4605      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
4606      }
4607      DataMI->setDesc(get(NewOpc));
4608      MO1.ChangeToRegister(MO0.getReg(), false);
4609    }
4610  }
4611  }
4612  NewMIs.push_back(DataMI);
4613
4614  // Emit the store instruction.
4615  if (UnfoldStore) {
4616    const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
4617    std::pair<MachineInstr::mmo_iterator,
4618              MachineInstr::mmo_iterator> MMOs =
4619      MF.extractStoreMemRefs(MI->memoperands_begin(),
4620                             MI->memoperands_end());
4621    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
4622  }
4623
4624  return true;
4625}
4626
4627bool
4628X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
4629                                  SmallVectorImpl<SDNode*> &NewNodes) const {
4630  if (!N->isMachineOpcode())
4631    return false;
4632
4633  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4634    MemOp2RegOpTable.find(N->getMachineOpcode());
4635  if (I == MemOp2RegOpTable.end())
4636    return false;
4637  unsigned Opc = I->second.first;
4638  unsigned Index = I->second.second & TB_INDEX_MASK;
4639  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4640  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
4641  const MCInstrDesc &MCID = get(Opc);
4642  MachineFunction &MF = DAG.getMachineFunction();
4643  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
4644  unsigned NumDefs = MCID.NumDefs;
4645  std::vector<SDValue> AddrOps;
4646  std::vector<SDValue> BeforeOps;
4647  std::vector<SDValue> AfterOps;
4648  SDLoc dl(N);
4649  unsigned NumOps = N->getNumOperands();
4650  for (unsigned i = 0; i != NumOps-1; ++i) {
4651    SDValue Op = N->getOperand(i);
4652    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
4653      AddrOps.push_back(Op);
4654    else if (i < Index-NumDefs)
4655      BeforeOps.push_back(Op);
4656    else if (i > Index-NumDefs)
4657      AfterOps.push_back(Op);
4658  }
4659  SDValue Chain = N->getOperand(NumOps-1);
4660  AddrOps.push_back(Chain);
4661
4662  // Emit the load instruction.
4663  SDNode *Load = 0;
4664  if (FoldedLoad) {
4665    EVT VT = *RC->vt_begin();
4666    std::pair<MachineInstr::mmo_iterator,
4667              MachineInstr::mmo_iterator> MMOs =
4668      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
4669                            cast<MachineSDNode>(N)->memoperands_end());
4670    if (!(*MMOs.first) &&
4671        RC == &X86::VR128RegClass &&
4672        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
4673      // Do not introduce a slow unaligned load.
4674      return false;
4675    unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
4676    bool isAligned = (*MMOs.first) &&
4677                     (*MMOs.first)->getAlignment() >= Alignment;
4678    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
4679                              VT, MVT::Other, AddrOps);
4680    NewNodes.push_back(Load);
4681
4682    // Preserve memory reference information.
4683    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
4684  }
4685
4686  // Emit the data processing instruction.
4687  std::vector<EVT> VTs;
4688  const TargetRegisterClass *DstRC = 0;
4689  if (MCID.getNumDefs() > 0) {
4690    DstRC = getRegClass(MCID, 0, &RI, MF);
4691    VTs.push_back(*DstRC->vt_begin());
4692  }
4693  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
4694    EVT VT = N->getValueType(i);
4695    if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
4696      VTs.push_back(VT);
4697  }
4698  if (Load)
4699    BeforeOps.push_back(SDValue(Load, 0));
4700  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
4701  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
4702  NewNodes.push_back(NewNode);
4703
4704  // Emit the store instruction.
4705  if (FoldedStore) {
4706    AddrOps.pop_back();
4707    AddrOps.push_back(SDValue(NewNode, 0));
4708    AddrOps.push_back(Chain);
4709    std::pair<MachineInstr::mmo_iterator,
4710              MachineInstr::mmo_iterator> MMOs =
4711      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
4712                             cast<MachineSDNode>(N)->memoperands_end());
4713    if (!(*MMOs.first) &&
4714        RC == &X86::VR128RegClass &&
4715        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
4716      // Do not introduce a slow unaligned store.
4717      return false;
4718    unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
4719    bool isAligned = (*MMOs.first) &&
4720                     (*MMOs.first)->getAlignment() >= Alignment;
4721    SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
4722                                                         isAligned, TM),
4723                                       dl, MVT::Other, AddrOps);
4724    NewNodes.push_back(Store);
4725
4726    // Preserve memory reference information.
4727    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
4728  }
4729
4730  return true;
4731}
4732
4733unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
4734                                      bool UnfoldLoad, bool UnfoldStore,
4735                                      unsigned *LoadRegIndex) const {
4736  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4737    MemOp2RegOpTable.find(Opc);
4738  if (I == MemOp2RegOpTable.end())
4739    return 0;
4740  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4741  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
4742  if (UnfoldLoad && !FoldedLoad)
4743    return 0;
4744  if (UnfoldStore && !FoldedStore)
4745    return 0;
4746  if (LoadRegIndex)
4747    *LoadRegIndex = I->second.second & TB_INDEX_MASK;
4748  return I->second.first;
4749}
4750
4751bool
4752X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
4753                                     int64_t &Offset1, int64_t &Offset2) const {
4754  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
4755    return false;
4756  unsigned Opc1 = Load1->getMachineOpcode();
4757  unsigned Opc2 = Load2->getMachineOpcode();
4758  switch (Opc1) {
4759  default: return false;
4760  case X86::MOV8rm:
4761  case X86::MOV16rm:
4762  case X86::MOV32rm:
4763  case X86::MOV64rm:
4764  case X86::LD_Fp32m:
4765  case X86::LD_Fp64m:
4766  case X86::LD_Fp80m:
4767  case X86::MOVSSrm:
4768  case X86::MOVSDrm:
4769  case X86::MMX_MOVD64rm:
4770  case X86::MMX_MOVQ64rm:
4771  case X86::FsMOVAPSrm:
4772  case X86::FsMOVAPDrm:
4773  case X86::MOVAPSrm:
4774  case X86::MOVUPSrm:
4775  case X86::MOVAPDrm:
4776  case X86::MOVDQArm:
4777  case X86::MOVDQUrm:
4778  // AVX load instructions
4779  case X86::VMOVSSrm:
4780  case X86::VMOVSDrm:
4781  case X86::FsVMOVAPSrm:
4782  case X86::FsVMOVAPDrm:
4783  case X86::VMOVAPSrm:
4784  case X86::VMOVUPSrm:
4785  case X86::VMOVAPDrm:
4786  case X86::VMOVDQArm:
4787  case X86::VMOVDQUrm:
4788  case X86::VMOVAPSYrm:
4789  case X86::VMOVUPSYrm:
4790  case X86::VMOVAPDYrm:
4791  case X86::VMOVDQAYrm:
4792  case X86::VMOVDQUYrm:
4793    break;
4794  }
4795  switch (Opc2) {
4796  default: return false;
4797  case X86::MOV8rm:
4798  case X86::MOV16rm:
4799  case X86::MOV32rm:
4800  case X86::MOV64rm:
4801  case X86::LD_Fp32m:
4802  case X86::LD_Fp64m:
4803  case X86::LD_Fp80m:
4804  case X86::MOVSSrm:
4805  case X86::MOVSDrm:
4806  case X86::MMX_MOVD64rm:
4807  case X86::MMX_MOVQ64rm:
4808  case X86::FsMOVAPSrm:
4809  case X86::FsMOVAPDrm:
4810  case X86::MOVAPSrm:
4811  case X86::MOVUPSrm:
4812  case X86::MOVAPDrm:
4813  case X86::MOVDQArm:
4814  case X86::MOVDQUrm:
4815  // AVX load instructions
4816  case X86::VMOVSSrm:
4817  case X86::VMOVSDrm:
4818  case X86::FsVMOVAPSrm:
4819  case X86::FsVMOVAPDrm:
4820  case X86::VMOVAPSrm:
4821  case X86::VMOVUPSrm:
4822  case X86::VMOVAPDrm:
4823  case X86::VMOVDQArm:
4824  case X86::VMOVDQUrm:
4825  case X86::VMOVAPSYrm:
4826  case X86::VMOVUPSYrm:
4827  case X86::VMOVAPDYrm:
4828  case X86::VMOVDQAYrm:
4829  case X86::VMOVDQUYrm:
4830    break;
4831  }
4832
4833  // Check if chain operands and base addresses match.
4834  if (Load1->getOperand(0) != Load2->getOperand(0) ||
4835      Load1->getOperand(5) != Load2->getOperand(5))
4836    return false;
4837  // Segment operands should match as well.
4838  if (Load1->getOperand(4) != Load2->getOperand(4))
4839    return false;
4840  // Scale should be 1, Index should be Reg0.
4841  if (Load1->getOperand(1) == Load2->getOperand(1) &&
4842      Load1->getOperand(2) == Load2->getOperand(2)) {
4843    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
4844      return false;
4845
4846    // Now let's examine the displacements.
4847    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
4848        isa<ConstantSDNode>(Load2->getOperand(3))) {
4849      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
4850      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
4851      return true;
4852    }
4853  }
4854  return false;
4855}
4856
4857bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
4858                                           int64_t Offset1, int64_t Offset2,
4859                                           unsigned NumLoads) const {
4860  assert(Offset2 > Offset1);
4861  if ((Offset2 - Offset1) / 8 > 64)
4862    return false;
4863
4864  unsigned Opc1 = Load1->getMachineOpcode();
4865  unsigned Opc2 = Load2->getMachineOpcode();
4866  if (Opc1 != Opc2)
4867    return false;  // FIXME: overly conservative?
4868
4869  switch (Opc1) {
4870  default: break;
4871  case X86::LD_Fp32m:
4872  case X86::LD_Fp64m:
4873  case X86::LD_Fp80m:
4874  case X86::MMX_MOVD64rm:
4875  case X86::MMX_MOVQ64rm:
4876    return false;
4877  }
4878
4879  EVT VT = Load1->getValueType(0);
4880  switch (VT.getSimpleVT().SimpleTy) {
4881  default:
4882    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
4883    // have 16 of them to play with.
4884    if (TM.getSubtargetImpl()->is64Bit()) {
4885      if (NumLoads >= 3)
4886        return false;
4887    } else if (NumLoads) {
4888      return false;
4889    }
4890    break;
4891  case MVT::i8:
4892  case MVT::i16:
4893  case MVT::i32:
4894  case MVT::i64:
4895  case MVT::f32:
4896  case MVT::f64:
4897    if (NumLoads)
4898      return false;
4899    break;
4900  }
4901
4902  return true;
4903}
4904
4905bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
4906                                          MachineInstr *Second) const {
4907  // Check if this processor supports macro-fusion. Since this is a minor
4908  // heuristic, we haven't specifically reserved a feature. hasAVX is a decent
4909  // proxy for SandyBridge+.
4910  if (!TM.getSubtarget<X86Subtarget>().hasAVX())
4911    return false;
4912
4913  enum {
4914    FuseTest,
4915    FuseCmp,
4916    FuseInc
4917  } FuseKind;
4918
4919  switch(Second->getOpcode()) {
4920  default:
4921    return false;
4922  case X86::JE_4:
4923  case X86::JNE_4:
4924  case X86::JL_4:
4925  case X86::JLE_4:
4926  case X86::JG_4:
4927  case X86::JGE_4:
4928    FuseKind = FuseInc;
4929    break;
4930  case X86::JB_4:
4931  case X86::JBE_4:
4932  case X86::JA_4:
4933  case X86::JAE_4:
4934    FuseKind = FuseCmp;
4935    break;
4936  case X86::JS_4:
4937  case X86::JNS_4:
4938  case X86::JP_4:
4939  case X86::JNP_4:
4940  case X86::JO_4:
4941  case X86::JNO_4:
4942    FuseKind = FuseTest;
4943    break;
4944  }
4945  switch (First->getOpcode()) {
4946  default:
4947    return false;
4948  case X86::TEST8rr:
4949  case X86::TEST16rr:
4950  case X86::TEST32rr:
4951  case X86::TEST64rr:
4952  case X86::TEST8ri:
4953  case X86::TEST16ri:
4954  case X86::TEST32ri:
4955  case X86::TEST32i32:
4956  case X86::TEST64i32:
4957  case X86::TEST64ri32:
4958  case X86::TEST8rm:
4959  case X86::TEST16rm:
4960  case X86::TEST32rm:
4961  case X86::TEST64rm:
4962  case X86::AND16i16:
4963  case X86::AND16ri:
4964  case X86::AND16ri8:
4965  case X86::AND16rm:
4966  case X86::AND16rr:
4967  case X86::AND32i32:
4968  case X86::AND32ri:
4969  case X86::AND32ri8:
4970  case X86::AND32rm:
4971  case X86::AND32rr:
4972  case X86::AND64i32:
4973  case X86::AND64ri32:
4974  case X86::AND64ri8:
4975  case X86::AND64rm:
4976  case X86::AND64rr:
4977  case X86::AND8i8:
4978  case X86::AND8ri:
4979  case X86::AND8rm:
4980  case X86::AND8rr:
4981    return true;
4982  case X86::CMP16i16:
4983  case X86::CMP16ri:
4984  case X86::CMP16ri8:
4985  case X86::CMP16rm:
4986  case X86::CMP16rr:
4987  case X86::CMP32i32:
4988  case X86::CMP32ri:
4989  case X86::CMP32ri8:
4990  case X86::CMP32rm:
4991  case X86::CMP32rr:
4992  case X86::CMP64i32:
4993  case X86::CMP64ri32:
4994  case X86::CMP64ri8:
4995  case X86::CMP64rm:
4996  case X86::CMP64rr:
4997  case X86::CMP8i8:
4998  case X86::CMP8ri:
4999  case X86::CMP8rm:
5000  case X86::CMP8rr:
5001  case X86::ADD16i16:
5002  case X86::ADD16ri:
5003  case X86::ADD16ri8:
5004  case X86::ADD16ri8_DB:
5005  case X86::ADD16ri_DB:
5006  case X86::ADD16rm:
5007  case X86::ADD16rr:
5008  case X86::ADD16rr_DB:
5009  case X86::ADD32i32:
5010  case X86::ADD32ri:
5011  case X86::ADD32ri8:
5012  case X86::ADD32ri8_DB:
5013  case X86::ADD32ri_DB:
5014  case X86::ADD32rm:
5015  case X86::ADD32rr:
5016  case X86::ADD32rr_DB:
5017  case X86::ADD64i32:
5018  case X86::ADD64ri32:
5019  case X86::ADD64ri32_DB:
5020  case X86::ADD64ri8:
5021  case X86::ADD64ri8_DB:
5022  case X86::ADD64rm:
5023  case X86::ADD64rr:
5024  case X86::ADD64rr_DB:
5025  case X86::ADD8i8:
5026  case X86::ADD8mi:
5027  case X86::ADD8mr:
5028  case X86::ADD8ri:
5029  case X86::ADD8rm:
5030  case X86::ADD8rr:
5031  case X86::SUB16i16:
5032  case X86::SUB16ri:
5033  case X86::SUB16ri8:
5034  case X86::SUB16rm:
5035  case X86::SUB16rr:
5036  case X86::SUB32i32:
5037  case X86::SUB32ri:
5038  case X86::SUB32ri8:
5039  case X86::SUB32rm:
5040  case X86::SUB32rr:
5041  case X86::SUB64i32:
5042  case X86::SUB64ri32:
5043  case X86::SUB64ri8:
5044  case X86::SUB64rm:
5045  case X86::SUB64rr:
5046  case X86::SUB8i8:
5047  case X86::SUB8ri:
5048  case X86::SUB8rm:
5049  case X86::SUB8rr:
5050    return FuseKind == FuseCmp || FuseKind == FuseInc;
5051  case X86::INC16r:
5052  case X86::INC32r:
5053  case X86::INC64_16r:
5054  case X86::INC64_32r:
5055  case X86::INC64r:
5056  case X86::INC8r:
5057  case X86::DEC16r:
5058  case X86::DEC32r:
5059  case X86::DEC64_16r:
5060  case X86::DEC64_32r:
5061  case X86::DEC64r:
5062  case X86::DEC8r:
5063    return FuseKind == FuseInc;
5064  }
5065}
5066
5067bool X86InstrInfo::
5068ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
5069  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
5070  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
5071  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
5072    return true;
5073  Cond[0].setImm(GetOppositeBranchCondition(CC));
5074  return false;
5075}
5076
5077bool X86InstrInfo::
5078isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
5079  // FIXME: Return false for x87 stack register classes for now. We can't
5080  // allow any loads of these registers before FpGet_ST0_80.
5081  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
5082           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
5083}
5084
5085/// getGlobalBaseReg - Return a virtual register initialized with the
5086/// the global base register value. Output instructions required to
5087/// initialize the register in the function entry block, if necessary.
5088///
5089/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
5090///
5091unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
5092  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
5093         "X86-64 PIC uses RIP relative addressing");
5094
5095  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
5096  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
5097  if (GlobalBaseReg != 0)
5098    return GlobalBaseReg;
5099
5100  // Create the register. The code to initialize it is inserted
5101  // later, by the CGBR pass (below).
5102  MachineRegisterInfo &RegInfo = MF->getRegInfo();
5103  GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
5104  X86FI->setGlobalBaseReg(GlobalBaseReg);
5105  return GlobalBaseReg;
5106}
5107
5108// These are the replaceable SSE instructions. Some of these have Int variants
5109// that we don't include here. We don't want to replace instructions selected
5110// by intrinsics.
5111static const uint16_t ReplaceableInstrs[][3] = {
5112  //PackedSingle     PackedDouble    PackedInt
5113  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
5114  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
5115  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
5116  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
5117  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
5118  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
5119  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
5120  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
5121  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
5122  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
5123  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
5124  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
5125  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
5126  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
5127  // AVX 128-bit support
5128  { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
5129  { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
5130  { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
5131  { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
5132  { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
5133  { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
5134  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
5135  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
5136  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
5137  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
5138  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
5139  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
5140  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
5141  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
5142  // AVX 256-bit support
5143  { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
5144  { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
5145  { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
5146  { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
5147  { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
5148  { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr }
5149};
5150
5151static const uint16_t ReplaceableInstrsAVX2[][3] = {
5152  //PackedSingle       PackedDouble       PackedInt
5153  { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
5154  { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
5155  { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
5156  { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
5157  { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
5158  { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
5159  { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
5160  { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
5161  { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
5162  { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
5163  { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
5164  { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
5165  { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
5166  { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr }
5167};
5168
5169// FIXME: Some shuffle and unpack instructions have equivalents in different
5170// domains, but they require a bit more work than just switching opcodes.
5171
5172static const uint16_t *lookup(unsigned opcode, unsigned domain) {
5173  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
5174    if (ReplaceableInstrs[i][domain-1] == opcode)
5175      return ReplaceableInstrs[i];
5176  return 0;
5177}
5178
5179static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
5180  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
5181    if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
5182      return ReplaceableInstrsAVX2[i];
5183  return 0;
5184}
5185
5186std::pair<uint16_t, uint16_t>
5187X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
5188  uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
5189  bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2();
5190  uint16_t validDomains = 0;
5191  if (domain && lookup(MI->getOpcode(), domain))
5192    validDomains = 0xe;
5193  else if (domain && lookupAVX2(MI->getOpcode(), domain))
5194    validDomains = hasAVX2 ? 0xe : 0x6;
5195  return std::make_pair(domain, validDomains);
5196}
5197
5198void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
5199  assert(Domain>0 && Domain<4 && "Invalid execution domain");
5200  uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
5201  assert(dom && "Not an SSE instruction");
5202  const uint16_t *table = lookup(MI->getOpcode(), dom);
5203  if (!table) { // try the other table
5204    assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) &&
5205           "256-bit vector operations only available in AVX2");
5206    table = lookupAVX2(MI->getOpcode(), dom);
5207  }
5208  assert(table && "Cannot change domain");
5209  MI->setDesc(get(table[Domain-1]));
5210}
5211
5212/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
5213void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
5214  NopInst.setOpcode(X86::NOOP);
5215}
5216
5217bool X86InstrInfo::isHighLatencyDef(int opc) const {
5218  switch (opc) {
5219  default: return false;
5220  case X86::DIVSDrm:
5221  case X86::DIVSDrm_Int:
5222  case X86::DIVSDrr:
5223  case X86::DIVSDrr_Int:
5224  case X86::DIVSSrm:
5225  case X86::DIVSSrm_Int:
5226  case X86::DIVSSrr:
5227  case X86::DIVSSrr_Int:
5228  case X86::SQRTPDm:
5229  case X86::SQRTPDr:
5230  case X86::SQRTPSm:
5231  case X86::SQRTPSr:
5232  case X86::SQRTSDm:
5233  case X86::SQRTSDm_Int:
5234  case X86::SQRTSDr:
5235  case X86::SQRTSDr_Int:
5236  case X86::SQRTSSm:
5237  case X86::SQRTSSm_Int:
5238  case X86::SQRTSSr:
5239  case X86::SQRTSSr_Int:
5240  // AVX instructions with high latency
5241  case X86::VDIVSDrm:
5242  case X86::VDIVSDrm_Int:
5243  case X86::VDIVSDrr:
5244  case X86::VDIVSDrr_Int:
5245  case X86::VDIVSSrm:
5246  case X86::VDIVSSrm_Int:
5247  case X86::VDIVSSrr:
5248  case X86::VDIVSSrr_Int:
5249  case X86::VSQRTPDm:
5250  case X86::VSQRTPDr:
5251  case X86::VSQRTPSm:
5252  case X86::VSQRTPSr:
5253  case X86::VSQRTSDm:
5254  case X86::VSQRTSDm_Int:
5255  case X86::VSQRTSDr:
5256  case X86::VSQRTSSm:
5257  case X86::VSQRTSSm_Int:
5258  case X86::VSQRTSSr:
5259  case X86::VSQRTPDZrm:
5260  case X86::VSQRTPDZrr:
5261  case X86::VSQRTPSZrm:
5262  case X86::VSQRTPSZrr:
5263  case X86::VSQRTSDZm:
5264  case X86::VSQRTSDZm_Int:
5265  case X86::VSQRTSDZr:
5266  case X86::VSQRTSSZm_Int:
5267  case X86::VSQRTSSZr:
5268  case X86::VSQRTSSZm:
5269  case X86::VDIVSDZrm:
5270  case X86::VDIVSDZrr:
5271  case X86::VDIVSSZrm:
5272  case X86::VDIVSSZrr:
5273
5274  case X86::VGATHERQPSZrm:
5275  case X86::VGATHERQPDZrm:
5276  case X86::VGATHERDPDZrm:
5277  case X86::VGATHERDPSZrm:
5278  case X86::VPGATHERQDZrm:
5279  case X86::VPGATHERQQZrm:
5280  case X86::VPGATHERDDZrm:
5281  case X86::VPGATHERDQZrm:
5282  case X86::VSCATTERQPDZmr:
5283  case X86::VSCATTERQPSZmr:
5284  case X86::VSCATTERDPDZmr:
5285  case X86::VSCATTERDPSZmr:
5286  case X86::VPSCATTERQDZmr:
5287  case X86::VPSCATTERQQZmr:
5288  case X86::VPSCATTERDDZmr:
5289  case X86::VPSCATTERDQZmr:
5290    return true;
5291  }
5292}
5293
5294bool X86InstrInfo::
5295hasHighOperandLatency(const InstrItineraryData *ItinData,
5296                      const MachineRegisterInfo *MRI,
5297                      const MachineInstr *DefMI, unsigned DefIdx,
5298                      const MachineInstr *UseMI, unsigned UseIdx) const {
5299  return isHighLatencyDef(DefMI->getOpcode());
5300}
5301
5302namespace {
5303  /// CGBR - Create Global Base Reg pass. This initializes the PIC
5304  /// global base register for x86-32.
5305  struct CGBR : public MachineFunctionPass {
5306    static char ID;
5307    CGBR() : MachineFunctionPass(ID) {}
5308
5309    virtual bool runOnMachineFunction(MachineFunction &MF) {
5310      const X86TargetMachine *TM =
5311        static_cast<const X86TargetMachine *>(&MF.getTarget());
5312
5313      assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
5314             "X86-64 PIC uses RIP relative addressing");
5315
5316      // Only emit a global base reg in PIC mode.
5317      if (TM->getRelocationModel() != Reloc::PIC_)
5318        return false;
5319
5320      X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
5321      unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
5322
5323      // If we didn't need a GlobalBaseReg, don't insert code.
5324      if (GlobalBaseReg == 0)
5325        return false;
5326
5327      // Insert the set of GlobalBaseReg into the first MBB of the function
5328      MachineBasicBlock &FirstMBB = MF.front();
5329      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
5330      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
5331      MachineRegisterInfo &RegInfo = MF.getRegInfo();
5332      const X86InstrInfo *TII = TM->getInstrInfo();
5333
5334      unsigned PC;
5335      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
5336        PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
5337      else
5338        PC = GlobalBaseReg;
5339
5340      // Operand of MovePCtoStack is completely ignored by asm printer. It's
5341      // only used in JIT code emission as displacement to pc.
5342      BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
5343
5344      // If we're using vanilla 'GOT' PIC style, we should use relative addressing
5345      // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
5346      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
5347        // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
5348        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
5349          .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
5350                                        X86II::MO_GOT_ABSOLUTE_ADDRESS);
5351      }
5352
5353      return true;
5354    }
5355
5356    virtual const char *getPassName() const {
5357      return "X86 PIC Global Base Reg Initialization";
5358    }
5359
5360    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
5361      AU.setPreservesCFG();
5362      MachineFunctionPass::getAnalysisUsage(AU);
5363    }
5364  };
5365}
5366
5367char CGBR::ID = 0;
5368FunctionPass*
5369llvm::createGlobalBaseRegPass() { return new CGBR(); }
5370
5371namespace {
5372  struct LDTLSCleanup : public MachineFunctionPass {
5373    static char ID;
5374    LDTLSCleanup() : MachineFunctionPass(ID) {}
5375
5376    virtual bool runOnMachineFunction(MachineFunction &MF) {
5377      X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
5378      if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
5379        // No point folding accesses if there isn't at least two.
5380        return false;
5381      }
5382
5383      MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
5384      return VisitNode(DT->getRootNode(), 0);
5385    }
5386
5387    // Visit the dominator subtree rooted at Node in pre-order.
5388    // If TLSBaseAddrReg is non-null, then use that to replace any
5389    // TLS_base_addr instructions. Otherwise, create the register
5390    // when the first such instruction is seen, and then use it
5391    // as we encounter more instructions.
5392    bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
5393      MachineBasicBlock *BB = Node->getBlock();
5394      bool Changed = false;
5395
5396      // Traverse the current block.
5397      for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
5398           ++I) {
5399        switch (I->getOpcode()) {
5400          case X86::TLS_base_addr32:
5401          case X86::TLS_base_addr64:
5402            if (TLSBaseAddrReg)
5403              I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
5404            else
5405              I = SetRegister(I, &TLSBaseAddrReg);
5406            Changed = true;
5407            break;
5408          default:
5409            break;
5410        }
5411      }
5412
5413      // Visit the children of this block in the dominator tree.
5414      for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
5415           I != E; ++I) {
5416        Changed |= VisitNode(*I, TLSBaseAddrReg);
5417      }
5418
5419      return Changed;
5420    }
5421
5422    // Replace the TLS_base_addr instruction I with a copy from
5423    // TLSBaseAddrReg, returning the new instruction.
5424    MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
5425                                         unsigned TLSBaseAddrReg) {
5426      MachineFunction *MF = I->getParent()->getParent();
5427      const X86TargetMachine *TM =
5428          static_cast<const X86TargetMachine *>(&MF->getTarget());
5429      const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
5430      const X86InstrInfo *TII = TM->getInstrInfo();
5431
5432      // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
5433      MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
5434                                   TII->get(TargetOpcode::COPY),
5435                                   is64Bit ? X86::RAX : X86::EAX)
5436                                   .addReg(TLSBaseAddrReg);
5437
5438      // Erase the TLS_base_addr instruction.
5439      I->eraseFromParent();
5440
5441      return Copy;
5442    }
5443
5444    // Create a virtal register in *TLSBaseAddrReg, and populate it by
5445    // inserting a copy instruction after I. Returns the new instruction.
5446    MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
5447      MachineFunction *MF = I->getParent()->getParent();
5448      const X86TargetMachine *TM =
5449          static_cast<const X86TargetMachine *>(&MF->getTarget());
5450      const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
5451      const X86InstrInfo *TII = TM->getInstrInfo();
5452
5453      // Create a virtual register for the TLS base address.
5454      MachineRegisterInfo &RegInfo = MF->getRegInfo();
5455      *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
5456                                                      ? &X86::GR64RegClass
5457                                                      : &X86::GR32RegClass);
5458
5459      // Insert a copy from RAX/EAX to TLSBaseAddrReg.
5460      MachineInstr *Next = I->getNextNode();
5461      MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
5462                                   TII->get(TargetOpcode::COPY),
5463                                   *TLSBaseAddrReg)
5464                                   .addReg(is64Bit ? X86::RAX : X86::EAX);
5465
5466      return Copy;
5467    }
5468
5469    virtual const char *getPassName() const {
5470      return "Local Dynamic TLS Access Clean-up";
5471    }
5472
5473    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
5474      AU.setPreservesCFG();
5475      AU.addRequired<MachineDominatorTree>();
5476      MachineFunctionPass::getAnalysisUsage(AU);
5477    }
5478  };
5479}
5480
5481char LDTLSCleanup::ID = 0;
5482FunctionPass*
5483llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
5484