X86InstrInfo.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/CodeGen/LiveVariables.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineDominators.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/StackMaps.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/MC/MCAsmInfo.h"
31#include "llvm/MC/MCExpr.h"
32#include "llvm/MC/MCInst.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Target/TargetOptions.h"
38#include <limits>
39
40using namespace llvm;
41
42#define DEBUG_TYPE "x86-instr-info"
43
44#define GET_INSTRINFO_CTOR_DTOR
45#include "X86GenInstrInfo.inc"
46
47static cl::opt<bool>
48NoFusing("disable-spill-fusing",
49         cl::desc("Disable fusing of spill code into instructions"));
50static cl::opt<bool>
51PrintFailedFusing("print-failed-fuse-candidates",
52                  cl::desc("Print instructions that the allocator wants to"
53                           " fuse, but the X86 backend currently can't"),
54                  cl::Hidden);
55static cl::opt<bool>
56ReMatPICStubLoad("remat-pic-stub-load",
57                 cl::desc("Re-materialize load from stub in PIC mode"),
58                 cl::init(false), cl::Hidden);
59
60enum {
61  // Select which memory operand is being unfolded.
62  // (stored in bits 0 - 3)
63  TB_INDEX_0    = 0,
64  TB_INDEX_1    = 1,
65  TB_INDEX_2    = 2,
66  TB_INDEX_3    = 3,
67  TB_INDEX_MASK = 0xf,
68
69  // Do not insert the reverse map (MemOp -> RegOp) into the table.
70  // This may be needed because there is a many -> one mapping.
71  TB_NO_REVERSE   = 1 << 4,
72
73  // Do not insert the forward map (RegOp -> MemOp) into the table.
74  // This is needed for Native Client, which prohibits branch
75  // instructions from using a memory operand.
76  TB_NO_FORWARD   = 1 << 5,
77
78  TB_FOLDED_LOAD  = 1 << 6,
79  TB_FOLDED_STORE = 1 << 7,
80
81  // Minimum alignment required for load/store.
82  // Used for RegOp->MemOp conversion.
83  // (stored in bits 8 - 15)
84  TB_ALIGN_SHIFT = 8,
85  TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT,
86  TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT,
87  TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT,
88  TB_ALIGN_64    =   64 << TB_ALIGN_SHIFT,
89  TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT
90};
91
92struct X86OpTblEntry {
93  uint16_t RegOp;
94  uint16_t MemOp;
95  uint16_t Flags;
96};
97
98// Pin the vtable to this file.
99void X86InstrInfo::anchor() {}
100
101X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
102    : X86GenInstrInfo(
103          (STI.is64Bit() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32),
104          (STI.is64Bit() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32)),
105      Subtarget(STI), RI(STI) {
106
107  static const X86OpTblEntry OpTbl2Addr[] = {
108    { X86::ADC32ri,     X86::ADC32mi,    0 },
109    { X86::ADC32ri8,    X86::ADC32mi8,   0 },
110    { X86::ADC32rr,     X86::ADC32mr,    0 },
111    { X86::ADC64ri32,   X86::ADC64mi32,  0 },
112    { X86::ADC64ri8,    X86::ADC64mi8,   0 },
113    { X86::ADC64rr,     X86::ADC64mr,    0 },
114    { X86::ADD16ri,     X86::ADD16mi,    0 },
115    { X86::ADD16ri8,    X86::ADD16mi8,   0 },
116    { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE },
117    { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE },
118    { X86::ADD16rr,     X86::ADD16mr,    0 },
119    { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE },
120    { X86::ADD32ri,     X86::ADD32mi,    0 },
121    { X86::ADD32ri8,    X86::ADD32mi8,   0 },
122    { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE },
123    { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE },
124    { X86::ADD32rr,     X86::ADD32mr,    0 },
125    { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE },
126    { X86::ADD64ri32,   X86::ADD64mi32,  0 },
127    { X86::ADD64ri8,    X86::ADD64mi8,   0 },
128    { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE },
129    { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE },
130    { X86::ADD64rr,     X86::ADD64mr,    0 },
131    { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE },
132    { X86::ADD8ri,      X86::ADD8mi,     0 },
133    { X86::ADD8rr,      X86::ADD8mr,     0 },
134    { X86::AND16ri,     X86::AND16mi,    0 },
135    { X86::AND16ri8,    X86::AND16mi8,   0 },
136    { X86::AND16rr,     X86::AND16mr,    0 },
137    { X86::AND32ri,     X86::AND32mi,    0 },
138    { X86::AND32ri8,    X86::AND32mi8,   0 },
139    { X86::AND32rr,     X86::AND32mr,    0 },
140    { X86::AND64ri32,   X86::AND64mi32,  0 },
141    { X86::AND64ri8,    X86::AND64mi8,   0 },
142    { X86::AND64rr,     X86::AND64mr,    0 },
143    { X86::AND8ri,      X86::AND8mi,     0 },
144    { X86::AND8rr,      X86::AND8mr,     0 },
145    { X86::DEC16r,      X86::DEC16m,     0 },
146    { X86::DEC32r,      X86::DEC32m,     0 },
147    { X86::DEC64_16r,   X86::DEC64_16m,  0 },
148    { X86::DEC64_32r,   X86::DEC64_32m,  0 },
149    { X86::DEC64r,      X86::DEC64m,     0 },
150    { X86::DEC8r,       X86::DEC8m,      0 },
151    { X86::INC16r,      X86::INC16m,     0 },
152    { X86::INC32r,      X86::INC32m,     0 },
153    { X86::INC64_16r,   X86::INC64_16m,  0 },
154    { X86::INC64_32r,   X86::INC64_32m,  0 },
155    { X86::INC64r,      X86::INC64m,     0 },
156    { X86::INC8r,       X86::INC8m,      0 },
157    { X86::NEG16r,      X86::NEG16m,     0 },
158    { X86::NEG32r,      X86::NEG32m,     0 },
159    { X86::NEG64r,      X86::NEG64m,     0 },
160    { X86::NEG8r,       X86::NEG8m,      0 },
161    { X86::NOT16r,      X86::NOT16m,     0 },
162    { X86::NOT32r,      X86::NOT32m,     0 },
163    { X86::NOT64r,      X86::NOT64m,     0 },
164    { X86::NOT8r,       X86::NOT8m,      0 },
165    { X86::OR16ri,      X86::OR16mi,     0 },
166    { X86::OR16ri8,     X86::OR16mi8,    0 },
167    { X86::OR16rr,      X86::OR16mr,     0 },
168    { X86::OR32ri,      X86::OR32mi,     0 },
169    { X86::OR32ri8,     X86::OR32mi8,    0 },
170    { X86::OR32rr,      X86::OR32mr,     0 },
171    { X86::OR64ri32,    X86::OR64mi32,   0 },
172    { X86::OR64ri8,     X86::OR64mi8,    0 },
173    { X86::OR64rr,      X86::OR64mr,     0 },
174    { X86::OR8ri,       X86::OR8mi,      0 },
175    { X86::OR8rr,       X86::OR8mr,      0 },
176    { X86::ROL16r1,     X86::ROL16m1,    0 },
177    { X86::ROL16rCL,    X86::ROL16mCL,   0 },
178    { X86::ROL16ri,     X86::ROL16mi,    0 },
179    { X86::ROL32r1,     X86::ROL32m1,    0 },
180    { X86::ROL32rCL,    X86::ROL32mCL,   0 },
181    { X86::ROL32ri,     X86::ROL32mi,    0 },
182    { X86::ROL64r1,     X86::ROL64m1,    0 },
183    { X86::ROL64rCL,    X86::ROL64mCL,   0 },
184    { X86::ROL64ri,     X86::ROL64mi,    0 },
185    { X86::ROL8r1,      X86::ROL8m1,     0 },
186    { X86::ROL8rCL,     X86::ROL8mCL,    0 },
187    { X86::ROL8ri,      X86::ROL8mi,     0 },
188    { X86::ROR16r1,     X86::ROR16m1,    0 },
189    { X86::ROR16rCL,    X86::ROR16mCL,   0 },
190    { X86::ROR16ri,     X86::ROR16mi,    0 },
191    { X86::ROR32r1,     X86::ROR32m1,    0 },
192    { X86::ROR32rCL,    X86::ROR32mCL,   0 },
193    { X86::ROR32ri,     X86::ROR32mi,    0 },
194    { X86::ROR64r1,     X86::ROR64m1,    0 },
195    { X86::ROR64rCL,    X86::ROR64mCL,   0 },
196    { X86::ROR64ri,     X86::ROR64mi,    0 },
197    { X86::ROR8r1,      X86::ROR8m1,     0 },
198    { X86::ROR8rCL,     X86::ROR8mCL,    0 },
199    { X86::ROR8ri,      X86::ROR8mi,     0 },
200    { X86::SAR16r1,     X86::SAR16m1,    0 },
201    { X86::SAR16rCL,    X86::SAR16mCL,   0 },
202    { X86::SAR16ri,     X86::SAR16mi,    0 },
203    { X86::SAR32r1,     X86::SAR32m1,    0 },
204    { X86::SAR32rCL,    X86::SAR32mCL,   0 },
205    { X86::SAR32ri,     X86::SAR32mi,    0 },
206    { X86::SAR64r1,     X86::SAR64m1,    0 },
207    { X86::SAR64rCL,    X86::SAR64mCL,   0 },
208    { X86::SAR64ri,     X86::SAR64mi,    0 },
209    { X86::SAR8r1,      X86::SAR8m1,     0 },
210    { X86::SAR8rCL,     X86::SAR8mCL,    0 },
211    { X86::SAR8ri,      X86::SAR8mi,     0 },
212    { X86::SBB32ri,     X86::SBB32mi,    0 },
213    { X86::SBB32ri8,    X86::SBB32mi8,   0 },
214    { X86::SBB32rr,     X86::SBB32mr,    0 },
215    { X86::SBB64ri32,   X86::SBB64mi32,  0 },
216    { X86::SBB64ri8,    X86::SBB64mi8,   0 },
217    { X86::SBB64rr,     X86::SBB64mr,    0 },
218    { X86::SHL16rCL,    X86::SHL16mCL,   0 },
219    { X86::SHL16ri,     X86::SHL16mi,    0 },
220    { X86::SHL32rCL,    X86::SHL32mCL,   0 },
221    { X86::SHL32ri,     X86::SHL32mi,    0 },
222    { X86::SHL64rCL,    X86::SHL64mCL,   0 },
223    { X86::SHL64ri,     X86::SHL64mi,    0 },
224    { X86::SHL8rCL,     X86::SHL8mCL,    0 },
225    { X86::SHL8ri,      X86::SHL8mi,     0 },
226    { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 },
227    { X86::SHLD16rri8,  X86::SHLD16mri8, 0 },
228    { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 },
229    { X86::SHLD32rri8,  X86::SHLD32mri8, 0 },
230    { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 },
231    { X86::SHLD64rri8,  X86::SHLD64mri8, 0 },
232    { X86::SHR16r1,     X86::SHR16m1,    0 },
233    { X86::SHR16rCL,    X86::SHR16mCL,   0 },
234    { X86::SHR16ri,     X86::SHR16mi,    0 },
235    { X86::SHR32r1,     X86::SHR32m1,    0 },
236    { X86::SHR32rCL,    X86::SHR32mCL,   0 },
237    { X86::SHR32ri,     X86::SHR32mi,    0 },
238    { X86::SHR64r1,     X86::SHR64m1,    0 },
239    { X86::SHR64rCL,    X86::SHR64mCL,   0 },
240    { X86::SHR64ri,     X86::SHR64mi,    0 },
241    { X86::SHR8r1,      X86::SHR8m1,     0 },
242    { X86::SHR8rCL,     X86::SHR8mCL,    0 },
243    { X86::SHR8ri,      X86::SHR8mi,     0 },
244    { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 },
245    { X86::SHRD16rri8,  X86::SHRD16mri8, 0 },
246    { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 },
247    { X86::SHRD32rri8,  X86::SHRD32mri8, 0 },
248    { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 },
249    { X86::SHRD64rri8,  X86::SHRD64mri8, 0 },
250    { X86::SUB16ri,     X86::SUB16mi,    0 },
251    { X86::SUB16ri8,    X86::SUB16mi8,   0 },
252    { X86::SUB16rr,     X86::SUB16mr,    0 },
253    { X86::SUB32ri,     X86::SUB32mi,    0 },
254    { X86::SUB32ri8,    X86::SUB32mi8,   0 },
255    { X86::SUB32rr,     X86::SUB32mr,    0 },
256    { X86::SUB64ri32,   X86::SUB64mi32,  0 },
257    { X86::SUB64ri8,    X86::SUB64mi8,   0 },
258    { X86::SUB64rr,     X86::SUB64mr,    0 },
259    { X86::SUB8ri,      X86::SUB8mi,     0 },
260    { X86::SUB8rr,      X86::SUB8mr,     0 },
261    { X86::XOR16ri,     X86::XOR16mi,    0 },
262    { X86::XOR16ri8,    X86::XOR16mi8,   0 },
263    { X86::XOR16rr,     X86::XOR16mr,    0 },
264    { X86::XOR32ri,     X86::XOR32mi,    0 },
265    { X86::XOR32ri8,    X86::XOR32mi8,   0 },
266    { X86::XOR32rr,     X86::XOR32mr,    0 },
267    { X86::XOR64ri32,   X86::XOR64mi32,  0 },
268    { X86::XOR64ri8,    X86::XOR64mi8,   0 },
269    { X86::XOR64rr,     X86::XOR64mr,    0 },
270    { X86::XOR8ri,      X86::XOR8mi,     0 },
271    { X86::XOR8rr,      X86::XOR8mr,     0 }
272  };
273
274  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
275    unsigned RegOp = OpTbl2Addr[i].RegOp;
276    unsigned MemOp = OpTbl2Addr[i].MemOp;
277    unsigned Flags = OpTbl2Addr[i].Flags;
278    AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
279                  RegOp, MemOp,
280                  // Index 0, folded load and store, no alignment requirement.
281                  Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
282  }
283
284  static const X86OpTblEntry OpTbl0[] = {
285    { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD },
286    { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD },
287    { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD },
288    { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD },
289    { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD },
290    { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD },
291    { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD },
292    { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD },
293    { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD },
294    { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD },
295    { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD },
296    { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD },
297    { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD },
298    { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD },
299    { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD },
300    { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD },
301    { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD },
302    { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD },
303    { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD },
304    { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD },
305    { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE },
306    { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD },
307    { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD },
308    { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD },
309    { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD },
310    { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD },
311    { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD },
312    { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD },
313    { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD },
314    { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD },
315    { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD },
316    { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE },
317    { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE },
318    { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE },
319    { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE },
320    { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE },
321    { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE },
322    { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE },
323    { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE },
324    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
325    { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
326    { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
327    { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
328    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE },
329    { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE },
330    { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE },
331    { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE },
332    { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE },
333    { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE },
334    { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD },
335    { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD },
336    { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD },
337    { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD },
338    { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE },
339    { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE },
340    { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE },
341    { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE },
342    { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE },
343    { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE },
344    { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE },
345    { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE },
346    { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE },
347    { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE },
348    { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE },
349    { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE },
350    { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE },
351    { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE },
352    { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE },
353    { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE },
354    { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD },
355    { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD },
356    { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD },
357    { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD },
358    { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD },
359    { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD },
360    // AVX 128-bit versions of foldable instructions
361    { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE  },
362    { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
363    { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
364    { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
365    { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
366    { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE },
367    { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
368    { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE },
369    { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE },
370    { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE },
371    { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE },
372    // AVX 256-bit foldable instructions
373    { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
374    { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
375    { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
376    { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
377    { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE },
378    { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE },
379    // AVX-512 foldable instructions
380    { X86::VMOVPDI2DIZrr,X86::VMOVPDI2DIZmr,  TB_FOLDED_STORE }
381  };
382
383  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
384    unsigned RegOp      = OpTbl0[i].RegOp;
385    unsigned MemOp      = OpTbl0[i].MemOp;
386    unsigned Flags      = OpTbl0[i].Flags;
387    AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
388                  RegOp, MemOp, TB_INDEX_0 | Flags);
389  }
390
391  static const X86OpTblEntry OpTbl1[] = {
392    { X86::CMP16rr,         X86::CMP16rm,             0 },
393    { X86::CMP32rr,         X86::CMP32rm,             0 },
394    { X86::CMP64rr,         X86::CMP64rm,             0 },
395    { X86::CMP8rr,          X86::CMP8rm,              0 },
396    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 },
397    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm,        0 },
398    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 },
399    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm,        0 },
400    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 },
401    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 },
402    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 },
403    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 },
404    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 },
405    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 },
406    { X86::IMUL16rri,       X86::IMUL16rmi,           0 },
407    { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 },
408    { X86::IMUL32rri,       X86::IMUL32rmi,           0 },
409    { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 },
410    { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 },
411    { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 },
412    { X86::Int_COMISDrr,    X86::Int_COMISDrm,        0 },
413    { X86::Int_COMISSrr,    X86::Int_COMISSrm,        0 },
414    { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm,        0 },
415    { X86::CVTSD2SIrr,      X86::CVTSD2SIrm,          0 },
416    { X86::CVTSS2SI64rr,    X86::CVTSS2SI64rm,        0 },
417    { X86::CVTSS2SIrr,      X86::CVTSS2SIrm,          0 },
418    { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 },
419    { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 },
420    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm,  0 },
421    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm,     0 },
422    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm,  0 },
423    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm,     0 },
424    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       0 },
425    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       0 },
426    { X86::MOV16rr,         X86::MOV16rm,             0 },
427    { X86::MOV32rr,         X86::MOV32rm,             0 },
428    { X86::MOV64rr,         X86::MOV64rm,             0 },
429    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 },
430    { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 },
431    { X86::MOV8rr,          X86::MOV8rm,              0 },
432    { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 },
433    { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 },
434    { X86::MOVDDUPrr,       X86::MOVDDUPrm,           0 },
435    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 },
436    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 },
437    { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 },
438    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 },
439    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 },
440    { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 },
441    { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 },
442    { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 },
443    { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 },
444    { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 },
445    { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 },
446    { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 },
447    { X86::MOVUPSrr,        X86::MOVUPSrm,            0 },
448    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm,        0 },
449    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 },
450    { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 },
451    { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 },
452    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 },
453    { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 },
454    { X86::PABSBrr128,      X86::PABSBrm128,          TB_ALIGN_16 },
455    { X86::PABSDrr128,      X86::PABSDrm128,          TB_ALIGN_16 },
456    { X86::PABSWrr128,      X86::PABSWrm128,          TB_ALIGN_16 },
457    { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 },
458    { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 },
459    { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 },
460    { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 },
461    { X86::RCPPSr_Int,      X86::RCPPSm_Int,          TB_ALIGN_16 },
462    { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 },
463    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int,        TB_ALIGN_16 },
464    { X86::RSQRTSSr,        X86::RSQRTSSm,            0 },
465    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 },
466    { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 },
467    { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 },
468    { X86::SQRTSDr,         X86::SQRTSDm,             0 },
469    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 },
470    { X86::SQRTSSr,         X86::SQRTSSm,             0 },
471    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         0 },
472    { X86::TEST16rr,        X86::TEST16rm,            0 },
473    { X86::TEST32rr,        X86::TEST32rm,            0 },
474    { X86::TEST64rr,        X86::TEST64rm,            0 },
475    { X86::TEST8rr,         X86::TEST8rm,             0 },
476    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
477    { X86::UCOMISDrr,       X86::UCOMISDrm,           0 },
478    { X86::UCOMISSrr,       X86::UCOMISSrm,           0 },
479    // AVX 128-bit versions of foldable instructions
480    { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       0 },
481    { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       0 },
482    { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      0 },
483    { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      0 },
484    { X86::VCVTTSD2SI64rr,  X86::VCVTTSD2SI64rm,      0 },
485    { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
486    { X86::VCVTTSD2SIrr,    X86::VCVTTSD2SIrm,        0 },
487    { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm,    0 },
488    { X86::VCVTTSS2SI64rr,  X86::VCVTTSS2SI64rm,      0 },
489    { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
490    { X86::VCVTTSS2SIrr,    X86::VCVTTSS2SIrm,        0 },
491    { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm,    0 },
492    { X86::VCVTSD2SI64rr,   X86::VCVTSD2SI64rm,       0 },
493    { X86::VCVTSD2SIrr,     X86::VCVTSD2SIrm,         0 },
494    { X86::VCVTSS2SI64rr,   X86::VCVTSS2SI64rm,       0 },
495    { X86::VCVTSS2SIrr,     X86::VCVTSS2SIrm,         0 },
496    { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 },
497    { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 },
498    { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 },
499    { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 },
500    { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          0 },
501    { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 },
502    { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 },
503    { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 },
504    { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         TB_ALIGN_16 },
505    { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         TB_ALIGN_16 },
506    { X86::VMOVUPDrr,       X86::VMOVUPDrm,           0 },
507    { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 },
508    { X86::VMOVZQI2PQIrr,   X86::VMOVZQI2PQIrm,       0 },
509    { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 },
510    { X86::VPABSBrr128,     X86::VPABSBrm128,         0 },
511    { X86::VPABSDrr128,     X86::VPABSDrm128,         0 },
512    { X86::VPABSWrr128,     X86::VPABSWrm128,         0 },
513    { X86::VPERMILPDri,     X86::VPERMILPDmi,         0 },
514    { X86::VPERMILPSri,     X86::VPERMILPSmi,         0 },
515    { X86::VPSHUFDri,       X86::VPSHUFDmi,           0 },
516    { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          0 },
517    { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          0 },
518    { X86::VRCPPSr,         X86::VRCPPSm,             0 },
519    { X86::VRCPPSr_Int,     X86::VRCPPSm_Int,         0 },
520    { X86::VRSQRTPSr,       X86::VRSQRTPSm,           0 },
521    { X86::VRSQRTPSr_Int,   X86::VRSQRTPSm_Int,       0 },
522    { X86::VSQRTPDr,        X86::VSQRTPDm,            0 },
523    { X86::VSQRTPSr,        X86::VSQRTPSm,            0 },
524    { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 },
525    { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 },
526    { X86::VBROADCASTSSrr,  X86::VBROADCASTSSrm,      TB_NO_REVERSE },
527
528    // AVX 256-bit foldable instructions
529    { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 },
530    { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 },
531    { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_32 },
532    { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 },
533    { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 },
534    { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        0 },
535    { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        0 },
536
537    // AVX2 foldable instructions
538    { X86::VPABSBrr256,     X86::VPABSBrm256,         0 },
539    { X86::VPABSDrr256,     X86::VPABSDrm256,         0 },
540    { X86::VPABSWrr256,     X86::VPABSWrm256,         0 },
541    { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          0 },
542    { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         0 },
543    { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         0 },
544    { X86::VRCPPSYr,        X86::VRCPPSYm,            0 },
545    { X86::VRCPPSYr_Int,    X86::VRCPPSYm_Int,        0 },
546    { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          0 },
547    { X86::VSQRTPDYr,       X86::VSQRTPDYm,           0 },
548    { X86::VSQRTPSYr,       X86::VSQRTPSYm,           0 },
549    { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm,     TB_NO_REVERSE },
550    { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm,     TB_NO_REVERSE },
551
552    // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
553    { X86::BEXTR32rr,       X86::BEXTR32rm,           0 },
554    { X86::BEXTR64rr,       X86::BEXTR64rm,           0 },
555    { X86::BEXTRI32ri,      X86::BEXTRI32mi,          0 },
556    { X86::BEXTRI64ri,      X86::BEXTRI64mi,          0 },
557    { X86::BLCFILL32rr,     X86::BLCFILL32rm,         0 },
558    { X86::BLCFILL64rr,     X86::BLCFILL64rm,         0 },
559    { X86::BLCI32rr,        X86::BLCI32rm,            0 },
560    { X86::BLCI64rr,        X86::BLCI64rm,            0 },
561    { X86::BLCIC32rr,       X86::BLCIC32rm,           0 },
562    { X86::BLCIC64rr,       X86::BLCIC64rm,           0 },
563    { X86::BLCMSK32rr,      X86::BLCMSK32rm,          0 },
564    { X86::BLCMSK64rr,      X86::BLCMSK64rm,          0 },
565    { X86::BLCS32rr,        X86::BLCS32rm,            0 },
566    { X86::BLCS64rr,        X86::BLCS64rm,            0 },
567    { X86::BLSFILL32rr,     X86::BLSFILL32rm,         0 },
568    { X86::BLSFILL64rr,     X86::BLSFILL64rm,         0 },
569    { X86::BLSI32rr,        X86::BLSI32rm,            0 },
570    { X86::BLSI64rr,        X86::BLSI64rm,            0 },
571    { X86::BLSIC32rr,       X86::BLSIC32rm,           0 },
572    { X86::BLSIC64rr,       X86::BLSIC64rm,           0 },
573    { X86::BLSMSK32rr,      X86::BLSMSK32rm,          0 },
574    { X86::BLSMSK64rr,      X86::BLSMSK64rm,          0 },
575    { X86::BLSR32rr,        X86::BLSR32rm,            0 },
576    { X86::BLSR64rr,        X86::BLSR64rm,            0 },
577    { X86::BZHI32rr,        X86::BZHI32rm,            0 },
578    { X86::BZHI64rr,        X86::BZHI64rm,            0 },
579    { X86::LZCNT16rr,       X86::LZCNT16rm,           0 },
580    { X86::LZCNT32rr,       X86::LZCNT32rm,           0 },
581    { X86::LZCNT64rr,       X86::LZCNT64rm,           0 },
582    { X86::POPCNT16rr,      X86::POPCNT16rm,          0 },
583    { X86::POPCNT32rr,      X86::POPCNT32rm,          0 },
584    { X86::POPCNT64rr,      X86::POPCNT64rm,          0 },
585    { X86::RORX32ri,        X86::RORX32mi,            0 },
586    { X86::RORX64ri,        X86::RORX64mi,            0 },
587    { X86::SARX32rr,        X86::SARX32rm,            0 },
588    { X86::SARX64rr,        X86::SARX64rm,            0 },
589    { X86::SHRX32rr,        X86::SHRX32rm,            0 },
590    { X86::SHRX64rr,        X86::SHRX64rm,            0 },
591    { X86::SHLX32rr,        X86::SHLX32rm,            0 },
592    { X86::SHLX64rr,        X86::SHLX64rm,            0 },
593    { X86::T1MSKC32rr,      X86::T1MSKC32rm,          0 },
594    { X86::T1MSKC64rr,      X86::T1MSKC64rm,          0 },
595    { X86::TZCNT16rr,       X86::TZCNT16rm,           0 },
596    { X86::TZCNT32rr,       X86::TZCNT32rm,           0 },
597    { X86::TZCNT64rr,       X86::TZCNT64rm,           0 },
598    { X86::TZMSK32rr,       X86::TZMSK32rm,           0 },
599    { X86::TZMSK64rr,       X86::TZMSK64rm,           0 },
600
601    // AVX-512 foldable instructions
602    { X86::VMOV64toPQIZrr,  X86::VMOVQI2PQIZrm,       0 },
603    { X86::VMOVDI2SSZrr,    X86::VMOVDI2SSZrm,        0 },
604    { X86::VMOVDQA32rr,     X86::VMOVDQA32rm,         TB_ALIGN_64 },
605    { X86::VMOVDQA64rr,     X86::VMOVDQA64rm,         TB_ALIGN_64 },
606    { X86::VMOVDQU32rr,     X86::VMOVDQU32rm,         0 },
607    { X86::VMOVDQU64rr,     X86::VMOVDQU64rm,         0 },
608    { X86::VPABSDZrr,       X86::VPABSDZrm,           0 },
609    { X86::VPABSQZrr,       X86::VPABSQZrm,           0 },
610
611    // AES foldable instructions
612    { X86::AESIMCrr,              X86::AESIMCrm,              TB_ALIGN_16 },
613    { X86::AESKEYGENASSIST128rr,  X86::AESKEYGENASSIST128rm,  TB_ALIGN_16 },
614    { X86::VAESIMCrr,             X86::VAESIMCrm,             TB_ALIGN_16 },
615    { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, TB_ALIGN_16 },
616  };
617
618  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
619    unsigned RegOp = OpTbl1[i].RegOp;
620    unsigned MemOp = OpTbl1[i].MemOp;
621    unsigned Flags = OpTbl1[i].Flags;
622    AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
623                  RegOp, MemOp,
624                  // Index 1, folded load
625                  Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
626  }
627
628  static const X86OpTblEntry OpTbl2[] = {
629    { X86::ADC32rr,         X86::ADC32rm,       0 },
630    { X86::ADC64rr,         X86::ADC64rm,       0 },
631    { X86::ADD16rr,         X86::ADD16rm,       0 },
632    { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE },
633    { X86::ADD32rr,         X86::ADD32rm,       0 },
634    { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE },
635    { X86::ADD64rr,         X86::ADD64rm,       0 },
636    { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE },
637    { X86::ADD8rr,          X86::ADD8rm,        0 },
638    { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 },
639    { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 },
640    { X86::ADDSDrr,         X86::ADDSDrm,       0 },
641    { X86::ADDSSrr,         X86::ADDSSrm,       0 },
642    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 },
643    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 },
644    { X86::AND16rr,         X86::AND16rm,       0 },
645    { X86::AND32rr,         X86::AND32rm,       0 },
646    { X86::AND64rr,         X86::AND64rm,       0 },
647    { X86::AND8rr,          X86::AND8rm,        0 },
648    { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 },
649    { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 },
650    { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 },
651    { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 },
652    { X86::BLENDPDrri,      X86::BLENDPDrmi,    TB_ALIGN_16 },
653    { X86::BLENDPSrri,      X86::BLENDPSrmi,    TB_ALIGN_16 },
654    { X86::BLENDVPDrr0,     X86::BLENDVPDrm0,   TB_ALIGN_16 },
655    { X86::BLENDVPSrr0,     X86::BLENDVPSrm0,   TB_ALIGN_16 },
656    { X86::CMOVA16rr,       X86::CMOVA16rm,     0 },
657    { X86::CMOVA32rr,       X86::CMOVA32rm,     0 },
658    { X86::CMOVA64rr,       X86::CMOVA64rm,     0 },
659    { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 },
660    { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 },
661    { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 },
662    { X86::CMOVB16rr,       X86::CMOVB16rm,     0 },
663    { X86::CMOVB32rr,       X86::CMOVB32rm,     0 },
664    { X86::CMOVB64rr,       X86::CMOVB64rm,     0 },
665    { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 },
666    { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 },
667    { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 },
668    { X86::CMOVE16rr,       X86::CMOVE16rm,     0 },
669    { X86::CMOVE32rr,       X86::CMOVE32rm,     0 },
670    { X86::CMOVE64rr,       X86::CMOVE64rm,     0 },
671    { X86::CMOVG16rr,       X86::CMOVG16rm,     0 },
672    { X86::CMOVG32rr,       X86::CMOVG32rm,     0 },
673    { X86::CMOVG64rr,       X86::CMOVG64rm,     0 },
674    { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 },
675    { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 },
676    { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 },
677    { X86::CMOVL16rr,       X86::CMOVL16rm,     0 },
678    { X86::CMOVL32rr,       X86::CMOVL32rm,     0 },
679    { X86::CMOVL64rr,       X86::CMOVL64rm,     0 },
680    { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 },
681    { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 },
682    { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 },
683    { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 },
684    { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 },
685    { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 },
686    { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 },
687    { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 },
688    { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 },
689    { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 },
690    { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 },
691    { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 },
692    { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 },
693    { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 },
694    { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 },
695    { X86::CMOVO16rr,       X86::CMOVO16rm,     0 },
696    { X86::CMOVO32rr,       X86::CMOVO32rm,     0 },
697    { X86::CMOVO64rr,       X86::CMOVO64rm,     0 },
698    { X86::CMOVP16rr,       X86::CMOVP16rm,     0 },
699    { X86::CMOVP32rr,       X86::CMOVP32rm,     0 },
700    { X86::CMOVP64rr,       X86::CMOVP64rm,     0 },
701    { X86::CMOVS16rr,       X86::CMOVS16rm,     0 },
702    { X86::CMOVS32rr,       X86::CMOVS32rm,     0 },
703    { X86::CMOVS64rr,       X86::CMOVS64rm,     0 },
704    { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 },
705    { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 },
706    { X86::CMPSDrr,         X86::CMPSDrm,       0 },
707    { X86::CMPSSrr,         X86::CMPSSrm,       0 },
708    { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 },
709    { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 },
710    { X86::DIVSDrr,         X86::DIVSDrm,       0 },
711    { X86::DIVSSrr,         X86::DIVSSrm,       0 },
712    { X86::FsANDNPDrr,      X86::FsANDNPDrm,    TB_ALIGN_16 },
713    { X86::FsANDNPSrr,      X86::FsANDNPSrm,    TB_ALIGN_16 },
714    { X86::FsANDPDrr,       X86::FsANDPDrm,     TB_ALIGN_16 },
715    { X86::FsANDPSrr,       X86::FsANDPSrm,     TB_ALIGN_16 },
716    { X86::FsORPDrr,        X86::FsORPDrm,      TB_ALIGN_16 },
717    { X86::FsORPSrr,        X86::FsORPSrm,      TB_ALIGN_16 },
718    { X86::FsXORPDrr,       X86::FsXORPDrm,     TB_ALIGN_16 },
719    { X86::FsXORPSrr,       X86::FsXORPSrm,     TB_ALIGN_16 },
720    { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 },
721    { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 },
722    { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 },
723    { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 },
724    { X86::IMUL16rr,        X86::IMUL16rm,      0 },
725    { X86::IMUL32rr,        X86::IMUL32rm,      0 },
726    { X86::IMUL64rr,        X86::IMUL64rm,      0 },
727    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm,   0 },
728    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm,   0 },
729    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm,      0 },
730    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm,    0 },
731    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm,      0 },
732    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm,    0 },
733    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 },
734    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 },
735    { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 },
736    { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 },
737    { X86::MAXSDrr,         X86::MAXSDrm,       0 },
738    { X86::MAXSSrr,         X86::MAXSSrm,       0 },
739    { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 },
740    { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 },
741    { X86::MINSDrr,         X86::MINSDrm,       0 },
742    { X86::MINSSrr,         X86::MINSSrm,       0 },
743    { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 },
744    { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 },
745    { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 },
746    { X86::MULSDrr,         X86::MULSDrm,       0 },
747    { X86::MULSSrr,         X86::MULSSrm,       0 },
748    { X86::OR16rr,          X86::OR16rm,        0 },
749    { X86::OR32rr,          X86::OR32rm,        0 },
750    { X86::OR64rr,          X86::OR64rm,        0 },
751    { X86::OR8rr,           X86::OR8rm,         0 },
752    { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 },
753    { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 },
754    { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 },
755    { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 },
756    { X86::PACKUSDWrr,      X86::PACKUSDWrm,    TB_ALIGN_16 },
757    { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 },
758    { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 },
759    { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 },
760    { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 },
761    { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 },
762    { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 },
763    { X86::PADDUSBrr,       X86::PADDUSBrm,     TB_ALIGN_16 },
764    { X86::PADDUSWrr,       X86::PADDUSWrm,     TB_ALIGN_16 },
765    { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 },
766    { X86::PALIGNR128rr,    X86::PALIGNR128rm,  TB_ALIGN_16 },
767    { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 },
768    { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 },
769    { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 },
770    { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 },
771    { X86::PBLENDWrri,      X86::PBLENDWrmi,    TB_ALIGN_16 },
772    { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 },
773    { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 },
774    { X86::PCMPEQQrr,       X86::PCMPEQQrm,     TB_ALIGN_16 },
775    { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 },
776    { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 },
777    { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 },
778    { X86::PCMPGTQrr,       X86::PCMPGTQrm,     TB_ALIGN_16 },
779    { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 },
780    { X86::PHADDDrr,        X86::PHADDDrm,      TB_ALIGN_16 },
781    { X86::PHADDWrr,        X86::PHADDWrm,      TB_ALIGN_16 },
782    { X86::PHADDSWrr128,    X86::PHADDSWrm128,  TB_ALIGN_16 },
783    { X86::PHSUBDrr,        X86::PHSUBDrm,      TB_ALIGN_16 },
784    { X86::PHSUBSWrr128,    X86::PHSUBSWrm128,  TB_ALIGN_16 },
785    { X86::PHSUBWrr,        X86::PHSUBWrm,      TB_ALIGN_16 },
786    { X86::PINSRWrri,       X86::PINSRWrmi,     TB_ALIGN_16 },
787    { X86::PMADDUBSWrr128,  X86::PMADDUBSWrm128, TB_ALIGN_16 },
788    { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 },
789    { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 },
790    { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 },
791    { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 },
792    { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 },
793    { X86::PMINSBrr,        X86::PMINSBrm,      TB_ALIGN_16 },
794    { X86::PMINSDrr,        X86::PMINSDrm,      TB_ALIGN_16 },
795    { X86::PMINUDrr,        X86::PMINUDrm,      TB_ALIGN_16 },
796    { X86::PMINUWrr,        X86::PMINUWrm,      TB_ALIGN_16 },
797    { X86::PMAXSBrr,        X86::PMAXSBrm,      TB_ALIGN_16 },
798    { X86::PMAXSDrr,        X86::PMAXSDrm,      TB_ALIGN_16 },
799    { X86::PMAXUDrr,        X86::PMAXUDrm,      TB_ALIGN_16 },
800    { X86::PMAXUWrr,        X86::PMAXUWrm,      TB_ALIGN_16 },
801    { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 },
802    { X86::PMULHRSWrr128,   X86::PMULHRSWrm128, TB_ALIGN_16 },
803    { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 },
804    { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 },
805    { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 },
806    { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 },
807    { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 },
808    { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 },
809    { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 },
810    { X86::PSHUFBrr,        X86::PSHUFBrm,      TB_ALIGN_16 },
811    { X86::PSIGNBrr,        X86::PSIGNBrm,      TB_ALIGN_16 },
812    { X86::PSIGNWrr,        X86::PSIGNWrm,      TB_ALIGN_16 },
813    { X86::PSIGNDrr,        X86::PSIGNDrm,      TB_ALIGN_16 },
814    { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 },
815    { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 },
816    { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 },
817    { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 },
818    { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 },
819    { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 },
820    { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 },
821    { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 },
822    { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 },
823    { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 },
824    { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 },
825    { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 },
826    { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 },
827    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 },
828    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 },
829    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 },
830    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 },
831    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 },
832    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 },
833    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 },
834    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 },
835    { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 },
836    { X86::SBB32rr,         X86::SBB32rm,       0 },
837    { X86::SBB64rr,         X86::SBB64rm,       0 },
838    { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 },
839    { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 },
840    { X86::SUB16rr,         X86::SUB16rm,       0 },
841    { X86::SUB32rr,         X86::SUB32rm,       0 },
842    { X86::SUB64rr,         X86::SUB64rm,       0 },
843    { X86::SUB8rr,          X86::SUB8rm,        0 },
844    { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 },
845    { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 },
846    { X86::SUBSDrr,         X86::SUBSDrm,       0 },
847    { X86::SUBSSrr,         X86::SUBSSrm,       0 },
848    // FIXME: TEST*rr -> swapped operand of TEST*mr.
849    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 },
850    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 },
851    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 },
852    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 },
853    { X86::XOR16rr,         X86::XOR16rm,       0 },
854    { X86::XOR32rr,         X86::XOR32rm,       0 },
855    { X86::XOR64rr,         X86::XOR64rm,       0 },
856    { X86::XOR8rr,          X86::XOR8rm,        0 },
857    { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 },
858    { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 },
859    // AVX 128-bit versions of foldable instructions
860    { X86::VCVTSD2SSrr,       X86::VCVTSD2SSrm,        0 },
861    { X86::Int_VCVTSD2SSrr,   X86::Int_VCVTSD2SSrm,    0 },
862    { X86::VCVTSI2SD64rr,     X86::VCVTSI2SD64rm,      0 },
863    { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm,  0 },
864    { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 },
865    { X86::Int_VCVTSI2SDrr,   X86::Int_VCVTSI2SDrm,    0 },
866    { X86::VCVTSI2SS64rr,     X86::VCVTSI2SS64rm,      0 },
867    { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm,  0 },
868    { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 },
869    { X86::Int_VCVTSI2SSrr,   X86::Int_VCVTSI2SSrm,    0 },
870    { X86::VCVTSS2SDrr,       X86::VCVTSS2SDrm,        0 },
871    { X86::Int_VCVTSS2SDrr,   X86::Int_VCVTSS2SDrm,    0 },
872    { X86::VCVTTPD2DQrr,      X86::VCVTTPD2DQXrm,      0 },
873    { X86::VCVTTPS2DQrr,      X86::VCVTTPS2DQrm,       0 },
874    { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 },
875    { X86::VSQRTSDr,          X86::VSQRTSDm,           0 },
876    { X86::VSQRTSSr,          X86::VSQRTSSm,           0 },
877    { X86::VADDPDrr,          X86::VADDPDrm,           0 },
878    { X86::VADDPSrr,          X86::VADDPSrm,           0 },
879    { X86::VADDSDrr,          X86::VADDSDrm,           0 },
880    { X86::VADDSSrr,          X86::VADDSSrm,           0 },
881    { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        0 },
882    { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        0 },
883    { X86::VANDNPDrr,         X86::VANDNPDrm,          0 },
884    { X86::VANDNPSrr,         X86::VANDNPSrm,          0 },
885    { X86::VANDPDrr,          X86::VANDPDrm,           0 },
886    { X86::VANDPSrr,          X86::VANDPSrm,           0 },
887    { X86::VBLENDPDrri,       X86::VBLENDPDrmi,        0 },
888    { X86::VBLENDPSrri,       X86::VBLENDPSrmi,        0 },
889    { X86::VBLENDVPDrr,       X86::VBLENDVPDrm,        0 },
890    { X86::VBLENDVPSrr,       X86::VBLENDVPSrm,        0 },
891    { X86::VCMPPDrri,         X86::VCMPPDrmi,          0 },
892    { X86::VCMPPSrri,         X86::VCMPPSrmi,          0 },
893    { X86::VCMPSDrr,          X86::VCMPSDrm,           0 },
894    { X86::VCMPSSrr,          X86::VCMPSSrm,           0 },
895    { X86::VDIVPDrr,          X86::VDIVPDrm,           0 },
896    { X86::VDIVPSrr,          X86::VDIVPSrm,           0 },
897    { X86::VDIVSDrr,          X86::VDIVSDrm,           0 },
898    { X86::VDIVSSrr,          X86::VDIVSSrm,           0 },
899    { X86::VFsANDNPDrr,       X86::VFsANDNPDrm,        TB_ALIGN_16 },
900    { X86::VFsANDNPSrr,       X86::VFsANDNPSrm,        TB_ALIGN_16 },
901    { X86::VFsANDPDrr,        X86::VFsANDPDrm,         TB_ALIGN_16 },
902    { X86::VFsANDPSrr,        X86::VFsANDPSrm,         TB_ALIGN_16 },
903    { X86::VFsORPDrr,         X86::VFsORPDrm,          TB_ALIGN_16 },
904    { X86::VFsORPSrr,         X86::VFsORPSrm,          TB_ALIGN_16 },
905    { X86::VFsXORPDrr,        X86::VFsXORPDrm,         TB_ALIGN_16 },
906    { X86::VFsXORPSrr,        X86::VFsXORPSrm,         TB_ALIGN_16 },
907    { X86::VHADDPDrr,         X86::VHADDPDrm,          0 },
908    { X86::VHADDPSrr,         X86::VHADDPSrm,          0 },
909    { X86::VHSUBPDrr,         X86::VHSUBPDrm,          0 },
910    { X86::VHSUBPSrr,         X86::VHSUBPSrm,          0 },
911    { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 },
912    { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 },
913    { X86::VMAXPDrr,          X86::VMAXPDrm,           0 },
914    { X86::VMAXPSrr,          X86::VMAXPSrm,           0 },
915    { X86::VMAXSDrr,          X86::VMAXSDrm,           0 },
916    { X86::VMAXSSrr,          X86::VMAXSSrm,           0 },
917    { X86::VMINPDrr,          X86::VMINPDrm,           0 },
918    { X86::VMINPSrr,          X86::VMINPSrm,           0 },
919    { X86::VMINSDrr,          X86::VMINSDrm,           0 },
920    { X86::VMINSSrr,          X86::VMINSSrm,           0 },
921    { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        0 },
922    { X86::VMULPDrr,          X86::VMULPDrm,           0 },
923    { X86::VMULPSrr,          X86::VMULPSrm,           0 },
924    { X86::VMULSDrr,          X86::VMULSDrm,           0 },
925    { X86::VMULSSrr,          X86::VMULSSrm,           0 },
926    { X86::VORPDrr,           X86::VORPDrm,            0 },
927    { X86::VORPSrr,           X86::VORPSrm,            0 },
928    { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        0 },
929    { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        0 },
930    { X86::VPACKUSDWrr,       X86::VPACKUSDWrm,        0 },
931    { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        0 },
932    { X86::VPADDBrr,          X86::VPADDBrm,           0 },
933    { X86::VPADDDrr,          X86::VPADDDrm,           0 },
934    { X86::VPADDQrr,          X86::VPADDQrm,           0 },
935    { X86::VPADDSBrr,         X86::VPADDSBrm,          0 },
936    { X86::VPADDSWrr,         X86::VPADDSWrm,          0 },
937    { X86::VPADDUSBrr,        X86::VPADDUSBrm,         0 },
938    { X86::VPADDUSWrr,        X86::VPADDUSWrm,         0 },
939    { X86::VPADDWrr,          X86::VPADDWrm,           0 },
940    { X86::VPALIGNR128rr,     X86::VPALIGNR128rm,      0 },
941    { X86::VPANDNrr,          X86::VPANDNrm,           0 },
942    { X86::VPANDrr,           X86::VPANDrm,            0 },
943    { X86::VPAVGBrr,          X86::VPAVGBrm,           0 },
944    { X86::VPAVGWrr,          X86::VPAVGWrm,           0 },
945    { X86::VPBLENDWrri,       X86::VPBLENDWrmi,        0 },
946    { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         0 },
947    { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         0 },
948    { X86::VPCMPEQQrr,        X86::VPCMPEQQrm,         0 },
949    { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         0 },
950    { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         0 },
951    { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         0 },
952    { X86::VPCMPGTQrr,        X86::VPCMPGTQrm,         0 },
953    { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         0 },
954    { X86::VPHADDDrr,         X86::VPHADDDrm,          0 },
955    { X86::VPHADDSWrr128,     X86::VPHADDSWrm128,      0 },
956    { X86::VPHADDWrr,         X86::VPHADDWrm,          0 },
957    { X86::VPHSUBDrr,         X86::VPHSUBDrm,          0 },
958    { X86::VPHSUBSWrr128,     X86::VPHSUBSWrm128,      0 },
959    { X86::VPHSUBWrr,         X86::VPHSUBWrm,          0 },
960    { X86::VPERMILPDrr,       X86::VPERMILPDrm,        0 },
961    { X86::VPERMILPSrr,       X86::VPERMILPSrm,        0 },
962    { X86::VPINSRWrri,        X86::VPINSRWrmi,         0 },
963    { X86::VPMADDUBSWrr128,   X86::VPMADDUBSWrm128,    0 },
964    { X86::VPMADDWDrr,        X86::VPMADDWDrm,         0 },
965    { X86::VPMAXSWrr,         X86::VPMAXSWrm,          0 },
966    { X86::VPMAXUBrr,         X86::VPMAXUBrm,          0 },
967    { X86::VPMINSWrr,         X86::VPMINSWrm,          0 },
968    { X86::VPMINUBrr,         X86::VPMINUBrm,          0 },
969    { X86::VPMINSBrr,         X86::VPMINSBrm,          0 },
970    { X86::VPMINSDrr,         X86::VPMINSDrm,          0 },
971    { X86::VPMINUDrr,         X86::VPMINUDrm,          0 },
972    { X86::VPMINUWrr,         X86::VPMINUWrm,          0 },
973    { X86::VPMAXSBrr,         X86::VPMAXSBrm,          0 },
974    { X86::VPMAXSDrr,         X86::VPMAXSDrm,          0 },
975    { X86::VPMAXUDrr,         X86::VPMAXUDrm,          0 },
976    { X86::VPMAXUWrr,         X86::VPMAXUWrm,          0 },
977    { X86::VPMULDQrr,         X86::VPMULDQrm,          0 },
978    { X86::VPMULHRSWrr128,    X86::VPMULHRSWrm128,     0 },
979    { X86::VPMULHUWrr,        X86::VPMULHUWrm,         0 },
980    { X86::VPMULHWrr,         X86::VPMULHWrm,          0 },
981    { X86::VPMULLDrr,         X86::VPMULLDrm,          0 },
982    { X86::VPMULLWrr,         X86::VPMULLWrm,          0 },
983    { X86::VPMULUDQrr,        X86::VPMULUDQrm,         0 },
984    { X86::VPORrr,            X86::VPORrm,             0 },
985    { X86::VPSADBWrr,         X86::VPSADBWrm,          0 },
986    { X86::VPSHUFBrr,         X86::VPSHUFBrm,          0 },
987    { X86::VPSIGNBrr,         X86::VPSIGNBrm,          0 },
988    { X86::VPSIGNWrr,         X86::VPSIGNWrm,          0 },
989    { X86::VPSIGNDrr,         X86::VPSIGNDrm,          0 },
990    { X86::VPSLLDrr,          X86::VPSLLDrm,           0 },
991    { X86::VPSLLQrr,          X86::VPSLLQrm,           0 },
992    { X86::VPSLLWrr,          X86::VPSLLWrm,           0 },
993    { X86::VPSRADrr,          X86::VPSRADrm,           0 },
994    { X86::VPSRAWrr,          X86::VPSRAWrm,           0 },
995    { X86::VPSRLDrr,          X86::VPSRLDrm,           0 },
996    { X86::VPSRLQrr,          X86::VPSRLQrm,           0 },
997    { X86::VPSRLWrr,          X86::VPSRLWrm,           0 },
998    { X86::VPSUBBrr,          X86::VPSUBBrm,           0 },
999    { X86::VPSUBDrr,          X86::VPSUBDrm,           0 },
1000    { X86::VPSUBSBrr,         X86::VPSUBSBrm,          0 },
1001    { X86::VPSUBSWrr,         X86::VPSUBSWrm,          0 },
1002    { X86::VPSUBWrr,          X86::VPSUBWrm,           0 },
1003    { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       0 },
1004    { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       0 },
1005    { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      0 },
1006    { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       0 },
1007    { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       0 },
1008    { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       0 },
1009    { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      0 },
1010    { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       0 },
1011    { X86::VPXORrr,           X86::VPXORrm,            0 },
1012    { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         0 },
1013    { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         0 },
1014    { X86::VSUBPDrr,          X86::VSUBPDrm,           0 },
1015    { X86::VSUBPSrr,          X86::VSUBPSrm,           0 },
1016    { X86::VSUBSDrr,          X86::VSUBSDrm,           0 },
1017    { X86::VSUBSSrr,          X86::VSUBSSrm,           0 },
1018    { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        0 },
1019    { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        0 },
1020    { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        0 },
1021    { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        0 },
1022    { X86::VXORPDrr,          X86::VXORPDrm,           0 },
1023    { X86::VXORPSrr,          X86::VXORPSrm,           0 },
1024    // AVX 256-bit foldable instructions
1025    { X86::VADDPDYrr,         X86::VADDPDYrm,          0 },
1026    { X86::VADDPSYrr,         X86::VADDPSYrm,          0 },
1027    { X86::VADDSUBPDYrr,      X86::VADDSUBPDYrm,       0 },
1028    { X86::VADDSUBPSYrr,      X86::VADDSUBPSYrm,       0 },
1029    { X86::VANDNPDYrr,        X86::VANDNPDYrm,         0 },
1030    { X86::VANDNPSYrr,        X86::VANDNPSYrm,         0 },
1031    { X86::VANDPDYrr,         X86::VANDPDYrm,          0 },
1032    { X86::VANDPSYrr,         X86::VANDPSYrm,          0 },
1033    { X86::VBLENDPDYrri,      X86::VBLENDPDYrmi,       0 },
1034    { X86::VBLENDPSYrri,      X86::VBLENDPSYrmi,       0 },
1035    { X86::VBLENDVPDYrr,      X86::VBLENDVPDYrm,       0 },
1036    { X86::VBLENDVPSYrr,      X86::VBLENDVPSYrm,       0 },
1037    { X86::VCMPPDYrri,        X86::VCMPPDYrmi,         0 },
1038    { X86::VCMPPSYrri,        X86::VCMPPSYrmi,         0 },
1039    { X86::VDIVPDYrr,         X86::VDIVPDYrm,          0 },
1040    { X86::VDIVPSYrr,         X86::VDIVPSYrm,          0 },
1041    { X86::VHADDPDYrr,        X86::VHADDPDYrm,         0 },
1042    { X86::VHADDPSYrr,        X86::VHADDPSYrm,         0 },
1043    { X86::VHSUBPDYrr,        X86::VHSUBPDYrm,         0 },
1044    { X86::VHSUBPSYrr,        X86::VHSUBPSYrm,         0 },
1045    { X86::VINSERTF128rr,     X86::VINSERTF128rm,      0 },
1046    { X86::VMAXPDYrr,         X86::VMAXPDYrm,          0 },
1047    { X86::VMAXPSYrr,         X86::VMAXPSYrm,          0 },
1048    { X86::VMINPDYrr,         X86::VMINPDYrm,          0 },
1049    { X86::VMINPSYrr,         X86::VMINPSYrm,          0 },
1050    { X86::VMULPDYrr,         X86::VMULPDYrm,          0 },
1051    { X86::VMULPSYrr,         X86::VMULPSYrm,          0 },
1052    { X86::VORPDYrr,          X86::VORPDYrm,           0 },
1053    { X86::VORPSYrr,          X86::VORPSYrm,           0 },
1054    { X86::VPERM2F128rr,      X86::VPERM2F128rm,       0 },
1055    { X86::VPERMILPDYrr,      X86::VPERMILPDYrm,       0 },
1056    { X86::VPERMILPSYrr,      X86::VPERMILPSYrm,       0 },
1057    { X86::VSHUFPDYrri,       X86::VSHUFPDYrmi,        0 },
1058    { X86::VSHUFPSYrri,       X86::VSHUFPSYrmi,        0 },
1059    { X86::VSUBPDYrr,         X86::VSUBPDYrm,          0 },
1060    { X86::VSUBPSYrr,         X86::VSUBPSYrm,          0 },
1061    { X86::VUNPCKHPDYrr,      X86::VUNPCKHPDYrm,       0 },
1062    { X86::VUNPCKHPSYrr,      X86::VUNPCKHPSYrm,       0 },
1063    { X86::VUNPCKLPDYrr,      X86::VUNPCKLPDYrm,       0 },
1064    { X86::VUNPCKLPSYrr,      X86::VUNPCKLPSYrm,       0 },
1065    { X86::VXORPDYrr,         X86::VXORPDYrm,          0 },
1066    { X86::VXORPSYrr,         X86::VXORPSYrm,          0 },
1067    // AVX2 foldable instructions
1068    { X86::VINSERTI128rr,     X86::VINSERTI128rm,      0 },
1069    { X86::VPACKSSDWYrr,      X86::VPACKSSDWYrm,       0 },
1070    { X86::VPACKSSWBYrr,      X86::VPACKSSWBYrm,       0 },
1071    { X86::VPACKUSDWYrr,      X86::VPACKUSDWYrm,       0 },
1072    { X86::VPACKUSWBYrr,      X86::VPACKUSWBYrm,       0 },
1073    { X86::VPADDBYrr,         X86::VPADDBYrm,          0 },
1074    { X86::VPADDDYrr,         X86::VPADDDYrm,          0 },
1075    { X86::VPADDQYrr,         X86::VPADDQYrm,          0 },
1076    { X86::VPADDSBYrr,        X86::VPADDSBYrm,         0 },
1077    { X86::VPADDSWYrr,        X86::VPADDSWYrm,         0 },
1078    { X86::VPADDUSBYrr,       X86::VPADDUSBYrm,        0 },
1079    { X86::VPADDUSWYrr,       X86::VPADDUSWYrm,        0 },
1080    { X86::VPADDWYrr,         X86::VPADDWYrm,          0 },
1081    { X86::VPALIGNR256rr,     X86::VPALIGNR256rm,      0 },
1082    { X86::VPANDNYrr,         X86::VPANDNYrm,          0 },
1083    { X86::VPANDYrr,          X86::VPANDYrm,           0 },
1084    { X86::VPAVGBYrr,         X86::VPAVGBYrm,          0 },
1085    { X86::VPAVGWYrr,         X86::VPAVGWYrm,          0 },
1086    { X86::VPBLENDDrri,       X86::VPBLENDDrmi,        0 },
1087    { X86::VPBLENDDYrri,      X86::VPBLENDDYrmi,       0 },
1088    { X86::VPBLENDWYrri,      X86::VPBLENDWYrmi,       0 },
1089    { X86::VPCMPEQBYrr,       X86::VPCMPEQBYrm,        0 },
1090    { X86::VPCMPEQDYrr,       X86::VPCMPEQDYrm,        0 },
1091    { X86::VPCMPEQQYrr,       X86::VPCMPEQQYrm,        0 },
1092    { X86::VPCMPEQWYrr,       X86::VPCMPEQWYrm,        0 },
1093    { X86::VPCMPGTBYrr,       X86::VPCMPGTBYrm,        0 },
1094    { X86::VPCMPGTDYrr,       X86::VPCMPGTDYrm,        0 },
1095    { X86::VPCMPGTQYrr,       X86::VPCMPGTQYrm,        0 },
1096    { X86::VPCMPGTWYrr,       X86::VPCMPGTWYrm,        0 },
1097    { X86::VPERM2I128rr,      X86::VPERM2I128rm,       0 },
1098    { X86::VPERMDYrr,         X86::VPERMDYrm,          0 },
1099    { X86::VPERMPDYri,        X86::VPERMPDYmi,         0 },
1100    { X86::VPERMPSYrr,        X86::VPERMPSYrm,         0 },
1101    { X86::VPERMQYri,         X86::VPERMQYmi,          0 },
1102    { X86::VPHADDDYrr,        X86::VPHADDDYrm,         0 },
1103    { X86::VPHADDSWrr256,     X86::VPHADDSWrm256,      0 },
1104    { X86::VPHADDWYrr,        X86::VPHADDWYrm,         0 },
1105    { X86::VPHSUBDYrr,        X86::VPHSUBDYrm,         0 },
1106    { X86::VPHSUBSWrr256,     X86::VPHSUBSWrm256,      0 },
1107    { X86::VPHSUBWYrr,        X86::VPHSUBWYrm,         0 },
1108    { X86::VPMADDUBSWrr256,   X86::VPMADDUBSWrm256,    0 },
1109    { X86::VPMADDWDYrr,       X86::VPMADDWDYrm,        0 },
1110    { X86::VPMAXSWYrr,        X86::VPMAXSWYrm,         0 },
1111    { X86::VPMAXUBYrr,        X86::VPMAXUBYrm,         0 },
1112    { X86::VPMINSWYrr,        X86::VPMINSWYrm,         0 },
1113    { X86::VPMINUBYrr,        X86::VPMINUBYrm,         0 },
1114    { X86::VPMINSBYrr,        X86::VPMINSBYrm,         0 },
1115    { X86::VPMINSDYrr,        X86::VPMINSDYrm,         0 },
1116    { X86::VPMINUDYrr,        X86::VPMINUDYrm,         0 },
1117    { X86::VPMINUWYrr,        X86::VPMINUWYrm,         0 },
1118    { X86::VPMAXSBYrr,        X86::VPMAXSBYrm,         0 },
1119    { X86::VPMAXSDYrr,        X86::VPMAXSDYrm,         0 },
1120    { X86::VPMAXUDYrr,        X86::VPMAXUDYrm,         0 },
1121    { X86::VPMAXUWYrr,        X86::VPMAXUWYrm,         0 },
1122    { X86::VMPSADBWYrri,      X86::VMPSADBWYrmi,       0 },
1123    { X86::VPMULDQYrr,        X86::VPMULDQYrm,         0 },
1124    { X86::VPMULHRSWrr256,    X86::VPMULHRSWrm256,     0 },
1125    { X86::VPMULHUWYrr,       X86::VPMULHUWYrm,        0 },
1126    { X86::VPMULHWYrr,        X86::VPMULHWYrm,         0 },
1127    { X86::VPMULLDYrr,        X86::VPMULLDYrm,         0 },
1128    { X86::VPMULLWYrr,        X86::VPMULLWYrm,         0 },
1129    { X86::VPMULUDQYrr,       X86::VPMULUDQYrm,        0 },
1130    { X86::VPORYrr,           X86::VPORYrm,            0 },
1131    { X86::VPSADBWYrr,        X86::VPSADBWYrm,         0 },
1132    { X86::VPSHUFBYrr,        X86::VPSHUFBYrm,         0 },
1133    { X86::VPSIGNBYrr,        X86::VPSIGNBYrm,         0 },
1134    { X86::VPSIGNWYrr,        X86::VPSIGNWYrm,         0 },
1135    { X86::VPSIGNDYrr,        X86::VPSIGNDYrm,         0 },
1136    { X86::VPSLLDYrr,         X86::VPSLLDYrm,          0 },
1137    { X86::VPSLLQYrr,         X86::VPSLLQYrm,          0 },
1138    { X86::VPSLLWYrr,         X86::VPSLLWYrm,          0 },
1139    { X86::VPSLLVDrr,         X86::VPSLLVDrm,          0 },
1140    { X86::VPSLLVDYrr,        X86::VPSLLVDYrm,         0 },
1141    { X86::VPSLLVQrr,         X86::VPSLLVQrm,          0 },
1142    { X86::VPSLLVQYrr,        X86::VPSLLVQYrm,         0 },
1143    { X86::VPSRADYrr,         X86::VPSRADYrm,          0 },
1144    { X86::VPSRAWYrr,         X86::VPSRAWYrm,          0 },
1145    { X86::VPSRAVDrr,         X86::VPSRAVDrm,          0 },
1146    { X86::VPSRAVDYrr,        X86::VPSRAVDYrm,         0 },
1147    { X86::VPSRLDYrr,         X86::VPSRLDYrm,          0 },
1148    { X86::VPSRLQYrr,         X86::VPSRLQYrm,          0 },
1149    { X86::VPSRLWYrr,         X86::VPSRLWYrm,          0 },
1150    { X86::VPSRLVDrr,         X86::VPSRLVDrm,          0 },
1151    { X86::VPSRLVDYrr,        X86::VPSRLVDYrm,         0 },
1152    { X86::VPSRLVQrr,         X86::VPSRLVQrm,          0 },
1153    { X86::VPSRLVQYrr,        X86::VPSRLVQYrm,         0 },
1154    { X86::VPSUBBYrr,         X86::VPSUBBYrm,          0 },
1155    { X86::VPSUBDYrr,         X86::VPSUBDYrm,          0 },
1156    { X86::VPSUBSBYrr,        X86::VPSUBSBYrm,         0 },
1157    { X86::VPSUBSWYrr,        X86::VPSUBSWYrm,         0 },
1158    { X86::VPSUBWYrr,         X86::VPSUBWYrm,          0 },
1159    { X86::VPUNPCKHBWYrr,     X86::VPUNPCKHBWYrm,      0 },
1160    { X86::VPUNPCKHDQYrr,     X86::VPUNPCKHDQYrm,      0 },
1161    { X86::VPUNPCKHQDQYrr,    X86::VPUNPCKHQDQYrm,     0 },
1162    { X86::VPUNPCKHWDYrr,     X86::VPUNPCKHWDYrm,      0 },
1163    { X86::VPUNPCKLBWYrr,     X86::VPUNPCKLBWYrm,      0 },
1164    { X86::VPUNPCKLDQYrr,     X86::VPUNPCKLDQYrm,      0 },
1165    { X86::VPUNPCKLQDQYrr,    X86::VPUNPCKLQDQYrm,     0 },
1166    { X86::VPUNPCKLWDYrr,     X86::VPUNPCKLWDYrm,      0 },
1167    { X86::VPXORYrr,          X86::VPXORYrm,           0 },
1168    // FIXME: add AVX 256-bit foldable instructions
1169
1170    // FMA4 foldable patterns
1171    { X86::VFMADDSS4rr,       X86::VFMADDSS4mr,        0           },
1172    { X86::VFMADDSD4rr,       X86::VFMADDSD4mr,        0           },
1173    { X86::VFMADDPS4rr,       X86::VFMADDPS4mr,        TB_ALIGN_16 },
1174    { X86::VFMADDPD4rr,       X86::VFMADDPD4mr,        TB_ALIGN_16 },
1175    { X86::VFMADDPS4rrY,      X86::VFMADDPS4mrY,       TB_ALIGN_32 },
1176    { X86::VFMADDPD4rrY,      X86::VFMADDPD4mrY,       TB_ALIGN_32 },
1177    { X86::VFNMADDSS4rr,      X86::VFNMADDSS4mr,       0           },
1178    { X86::VFNMADDSD4rr,      X86::VFNMADDSD4mr,       0           },
1179    { X86::VFNMADDPS4rr,      X86::VFNMADDPS4mr,       TB_ALIGN_16 },
1180    { X86::VFNMADDPD4rr,      X86::VFNMADDPD4mr,       TB_ALIGN_16 },
1181    { X86::VFNMADDPS4rrY,     X86::VFNMADDPS4mrY,      TB_ALIGN_32 },
1182    { X86::VFNMADDPD4rrY,     X86::VFNMADDPD4mrY,      TB_ALIGN_32 },
1183    { X86::VFMSUBSS4rr,       X86::VFMSUBSS4mr,        0           },
1184    { X86::VFMSUBSD4rr,       X86::VFMSUBSD4mr,        0           },
1185    { X86::VFMSUBPS4rr,       X86::VFMSUBPS4mr,        TB_ALIGN_16 },
1186    { X86::VFMSUBPD4rr,       X86::VFMSUBPD4mr,        TB_ALIGN_16 },
1187    { X86::VFMSUBPS4rrY,      X86::VFMSUBPS4mrY,       TB_ALIGN_32 },
1188    { X86::VFMSUBPD4rrY,      X86::VFMSUBPD4mrY,       TB_ALIGN_32 },
1189    { X86::VFNMSUBSS4rr,      X86::VFNMSUBSS4mr,       0           },
1190    { X86::VFNMSUBSD4rr,      X86::VFNMSUBSD4mr,       0           },
1191    { X86::VFNMSUBPS4rr,      X86::VFNMSUBPS4mr,       TB_ALIGN_16 },
1192    { X86::VFNMSUBPD4rr,      X86::VFNMSUBPD4mr,       TB_ALIGN_16 },
1193    { X86::VFNMSUBPS4rrY,     X86::VFNMSUBPS4mrY,      TB_ALIGN_32 },
1194    { X86::VFNMSUBPD4rrY,     X86::VFNMSUBPD4mrY,      TB_ALIGN_32 },
1195    { X86::VFMADDSUBPS4rr,    X86::VFMADDSUBPS4mr,     TB_ALIGN_16 },
1196    { X86::VFMADDSUBPD4rr,    X86::VFMADDSUBPD4mr,     TB_ALIGN_16 },
1197    { X86::VFMADDSUBPS4rrY,   X86::VFMADDSUBPS4mrY,    TB_ALIGN_32 },
1198    { X86::VFMADDSUBPD4rrY,   X86::VFMADDSUBPD4mrY,    TB_ALIGN_32 },
1199    { X86::VFMSUBADDPS4rr,    X86::VFMSUBADDPS4mr,     TB_ALIGN_16 },
1200    { X86::VFMSUBADDPD4rr,    X86::VFMSUBADDPD4mr,     TB_ALIGN_16 },
1201    { X86::VFMSUBADDPS4rrY,   X86::VFMSUBADDPS4mrY,    TB_ALIGN_32 },
1202    { X86::VFMSUBADDPD4rrY,   X86::VFMSUBADDPD4mrY,    TB_ALIGN_32 },
1203
1204    // BMI/BMI2 foldable instructions
1205    { X86::ANDN32rr,          X86::ANDN32rm,            0 },
1206    { X86::ANDN64rr,          X86::ANDN64rm,            0 },
1207    { X86::MULX32rr,          X86::MULX32rm,            0 },
1208    { X86::MULX64rr,          X86::MULX64rm,            0 },
1209    { X86::PDEP32rr,          X86::PDEP32rm,            0 },
1210    { X86::PDEP64rr,          X86::PDEP64rm,            0 },
1211    { X86::PEXT32rr,          X86::PEXT32rm,            0 },
1212    { X86::PEXT64rr,          X86::PEXT64rm,            0 },
1213
1214    // AVX-512 foldable instructions
1215    { X86::VADDPSZrr,         X86::VADDPSZrm,           0 },
1216    { X86::VADDPDZrr,         X86::VADDPDZrm,           0 },
1217    { X86::VSUBPSZrr,         X86::VSUBPSZrm,           0 },
1218    { X86::VSUBPDZrr,         X86::VSUBPDZrm,           0 },
1219    { X86::VMULPSZrr,         X86::VMULPSZrm,           0 },
1220    { X86::VMULPDZrr,         X86::VMULPDZrm,           0 },
1221    { X86::VDIVPSZrr,         X86::VDIVPSZrm,           0 },
1222    { X86::VDIVPDZrr,         X86::VDIVPDZrm,           0 },
1223    { X86::VMINPSZrr,         X86::VMINPSZrm,           0 },
1224    { X86::VMINPDZrr,         X86::VMINPDZrm,           0 },
1225    { X86::VMAXPSZrr,         X86::VMAXPSZrm,           0 },
1226    { X86::VMAXPDZrr,         X86::VMAXPDZrm,           0 },
1227    { X86::VPADDDZrr,         X86::VPADDDZrm,           0 },
1228    { X86::VPADDQZrr,         X86::VPADDQZrm,           0 },
1229    { X86::VPERMPDZri,        X86::VPERMPDZmi,          0 },
1230    { X86::VPERMPSZrr,        X86::VPERMPSZrm,          0 },
1231    { X86::VPMAXSDZrr,        X86::VPMAXSDZrm,          0 },
1232    { X86::VPMAXSQZrr,        X86::VPMAXSQZrm,          0 },
1233    { X86::VPMAXUDZrr,        X86::VPMAXUDZrm,          0 },
1234    { X86::VPMAXUQZrr,        X86::VPMAXUQZrm,          0 },
1235    { X86::VPMINSDZrr,        X86::VPMINSDZrm,          0 },
1236    { X86::VPMINSQZrr,        X86::VPMINSQZrm,          0 },
1237    { X86::VPMINUDZrr,        X86::VPMINUDZrm,          0 },
1238    { X86::VPMINUQZrr,        X86::VPMINUQZrm,          0 },
1239    { X86::VPMULDQZrr,        X86::VPMULDQZrm,          0 },
1240    { X86::VPSLLVDZrr,        X86::VPSLLVDZrm,          0 },
1241    { X86::VPSLLVQZrr,        X86::VPSLLVQZrm,          0 },
1242    { X86::VPSRAVDZrr,        X86::VPSRAVDZrm,          0 },
1243    { X86::VPSRLVDZrr,        X86::VPSRLVDZrm,          0 },
1244    { X86::VPSRLVQZrr,        X86::VPSRLVQZrm,          0 },
1245    { X86::VPSUBDZrr,         X86::VPSUBDZrm,           0 },
1246    { X86::VPSUBQZrr,         X86::VPSUBQZrm,           0 },
1247    { X86::VSHUFPDZrri,       X86::VSHUFPDZrmi,         0 },
1248    { X86::VSHUFPSZrri,       X86::VSHUFPSZrmi,         0 },
1249    { X86::VALIGNQrri,        X86::VALIGNQrmi,          0 },
1250    { X86::VALIGNDrri,        X86::VALIGNDrmi,          0 },
1251    { X86::VPMULUDQZrr,       X86::VPMULUDQZrm,         0 },
1252
1253    // AES foldable instructions
1254    { X86::AESDECLASTrr,      X86::AESDECLASTrm,        TB_ALIGN_16 },
1255    { X86::AESDECrr,          X86::AESDECrm,            TB_ALIGN_16 },
1256    { X86::AESENCLASTrr,      X86::AESENCLASTrm,        TB_ALIGN_16 },
1257    { X86::AESENCrr,          X86::AESENCrm,            TB_ALIGN_16 },
1258    { X86::VAESDECLASTrr,     X86::VAESDECLASTrm,       TB_ALIGN_16 },
1259    { X86::VAESDECrr,         X86::VAESDECrm,           TB_ALIGN_16 },
1260    { X86::VAESENCLASTrr,     X86::VAESENCLASTrm,       TB_ALIGN_16 },
1261    { X86::VAESENCrr,         X86::VAESENCrm,           TB_ALIGN_16 },
1262
1263    // SHA foldable instructions
1264    { X86::SHA1MSG1rr,        X86::SHA1MSG1rm,          TB_ALIGN_16 },
1265    { X86::SHA1MSG2rr,        X86::SHA1MSG2rm,          TB_ALIGN_16 },
1266    { X86::SHA1NEXTErr,       X86::SHA1NEXTErm,         TB_ALIGN_16 },
1267    { X86::SHA1RNDS4rri,      X86::SHA1RNDS4rmi,        TB_ALIGN_16 },
1268    { X86::SHA256MSG1rr,      X86::SHA256MSG1rm,        TB_ALIGN_16 },
1269    { X86::SHA256MSG2rr,      X86::SHA256MSG2rm,        TB_ALIGN_16 },
1270    { X86::SHA256RNDS2rr,     X86::SHA256RNDS2rm,       TB_ALIGN_16 },
1271  };
1272
1273  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
1274    unsigned RegOp = OpTbl2[i].RegOp;
1275    unsigned MemOp = OpTbl2[i].MemOp;
1276    unsigned Flags = OpTbl2[i].Flags;
1277    AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
1278                  RegOp, MemOp,
1279                  // Index 2, folded load
1280                  Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
1281  }
1282
1283  static const X86OpTblEntry OpTbl3[] = {
1284    // FMA foldable instructions
1285    { X86::VFMADDSSr231r,         X86::VFMADDSSr231m,         TB_ALIGN_NONE },
1286    { X86::VFMADDSDr231r,         X86::VFMADDSDr231m,         TB_ALIGN_NONE },
1287    { X86::VFMADDSSr132r,         X86::VFMADDSSr132m,         TB_ALIGN_NONE },
1288    { X86::VFMADDSDr132r,         X86::VFMADDSDr132m,         TB_ALIGN_NONE },
1289    { X86::VFMADDSSr213r,         X86::VFMADDSSr213m,         TB_ALIGN_NONE },
1290    { X86::VFMADDSDr213r,         X86::VFMADDSDr213m,         TB_ALIGN_NONE },
1291
1292    { X86::VFMADDPSr231r,         X86::VFMADDPSr231m,         TB_ALIGN_NONE },
1293    { X86::VFMADDPDr231r,         X86::VFMADDPDr231m,         TB_ALIGN_NONE },
1294    { X86::VFMADDPSr132r,         X86::VFMADDPSr132m,         TB_ALIGN_NONE },
1295    { X86::VFMADDPDr132r,         X86::VFMADDPDr132m,         TB_ALIGN_NONE },
1296    { X86::VFMADDPSr213r,         X86::VFMADDPSr213m,         TB_ALIGN_NONE },
1297    { X86::VFMADDPDr213r,         X86::VFMADDPDr213m,         TB_ALIGN_NONE },
1298    { X86::VFMADDPSr231rY,        X86::VFMADDPSr231mY,        TB_ALIGN_NONE },
1299    { X86::VFMADDPDr231rY,        X86::VFMADDPDr231mY,        TB_ALIGN_NONE },
1300    { X86::VFMADDPSr132rY,        X86::VFMADDPSr132mY,        TB_ALIGN_NONE },
1301    { X86::VFMADDPDr132rY,        X86::VFMADDPDr132mY,        TB_ALIGN_NONE },
1302    { X86::VFMADDPSr213rY,        X86::VFMADDPSr213mY,        TB_ALIGN_NONE },
1303    { X86::VFMADDPDr213rY,        X86::VFMADDPDr213mY,        TB_ALIGN_NONE },
1304
1305    { X86::VFNMADDSSr231r,        X86::VFNMADDSSr231m,        TB_ALIGN_NONE },
1306    { X86::VFNMADDSDr231r,        X86::VFNMADDSDr231m,        TB_ALIGN_NONE },
1307    { X86::VFNMADDSSr132r,        X86::VFNMADDSSr132m,        TB_ALIGN_NONE },
1308    { X86::VFNMADDSDr132r,        X86::VFNMADDSDr132m,        TB_ALIGN_NONE },
1309    { X86::VFNMADDSSr213r,        X86::VFNMADDSSr213m,        TB_ALIGN_NONE },
1310    { X86::VFNMADDSDr213r,        X86::VFNMADDSDr213m,        TB_ALIGN_NONE },
1311
1312    { X86::VFNMADDPSr231r,        X86::VFNMADDPSr231m,        TB_ALIGN_NONE },
1313    { X86::VFNMADDPDr231r,        X86::VFNMADDPDr231m,        TB_ALIGN_NONE },
1314    { X86::VFNMADDPSr132r,        X86::VFNMADDPSr132m,        TB_ALIGN_NONE },
1315    { X86::VFNMADDPDr132r,        X86::VFNMADDPDr132m,        TB_ALIGN_NONE },
1316    { X86::VFNMADDPSr213r,        X86::VFNMADDPSr213m,        TB_ALIGN_NONE },
1317    { X86::VFNMADDPDr213r,        X86::VFNMADDPDr213m,        TB_ALIGN_NONE },
1318    { X86::VFNMADDPSr231rY,       X86::VFNMADDPSr231mY,       TB_ALIGN_NONE },
1319    { X86::VFNMADDPDr231rY,       X86::VFNMADDPDr231mY,       TB_ALIGN_NONE },
1320    { X86::VFNMADDPSr132rY,       X86::VFNMADDPSr132mY,       TB_ALIGN_NONE },
1321    { X86::VFNMADDPDr132rY,       X86::VFNMADDPDr132mY,       TB_ALIGN_NONE },
1322    { X86::VFNMADDPSr213rY,       X86::VFNMADDPSr213mY,       TB_ALIGN_NONE },
1323    { X86::VFNMADDPDr213rY,       X86::VFNMADDPDr213mY,       TB_ALIGN_NONE },
1324
1325    { X86::VFMSUBSSr231r,         X86::VFMSUBSSr231m,         TB_ALIGN_NONE },
1326    { X86::VFMSUBSDr231r,         X86::VFMSUBSDr231m,         TB_ALIGN_NONE },
1327    { X86::VFMSUBSSr132r,         X86::VFMSUBSSr132m,         TB_ALIGN_NONE },
1328    { X86::VFMSUBSDr132r,         X86::VFMSUBSDr132m,         TB_ALIGN_NONE },
1329    { X86::VFMSUBSSr213r,         X86::VFMSUBSSr213m,         TB_ALIGN_NONE },
1330    { X86::VFMSUBSDr213r,         X86::VFMSUBSDr213m,         TB_ALIGN_NONE },
1331
1332    { X86::VFMSUBPSr231r,         X86::VFMSUBPSr231m,         TB_ALIGN_NONE },
1333    { X86::VFMSUBPDr231r,         X86::VFMSUBPDr231m,         TB_ALIGN_NONE },
1334    { X86::VFMSUBPSr132r,         X86::VFMSUBPSr132m,         TB_ALIGN_NONE },
1335    { X86::VFMSUBPDr132r,         X86::VFMSUBPDr132m,         TB_ALIGN_NONE },
1336    { X86::VFMSUBPSr213r,         X86::VFMSUBPSr213m,         TB_ALIGN_NONE },
1337    { X86::VFMSUBPDr213r,         X86::VFMSUBPDr213m,         TB_ALIGN_NONE },
1338    { X86::VFMSUBPSr231rY,        X86::VFMSUBPSr231mY,        TB_ALIGN_NONE },
1339    { X86::VFMSUBPDr231rY,        X86::VFMSUBPDr231mY,        TB_ALIGN_NONE },
1340    { X86::VFMSUBPSr132rY,        X86::VFMSUBPSr132mY,        TB_ALIGN_NONE },
1341    { X86::VFMSUBPDr132rY,        X86::VFMSUBPDr132mY,        TB_ALIGN_NONE },
1342    { X86::VFMSUBPSr213rY,        X86::VFMSUBPSr213mY,        TB_ALIGN_NONE },
1343    { X86::VFMSUBPDr213rY,        X86::VFMSUBPDr213mY,        TB_ALIGN_NONE },
1344
1345    { X86::VFNMSUBSSr231r,        X86::VFNMSUBSSr231m,        TB_ALIGN_NONE },
1346    { X86::VFNMSUBSDr231r,        X86::VFNMSUBSDr231m,        TB_ALIGN_NONE },
1347    { X86::VFNMSUBSSr132r,        X86::VFNMSUBSSr132m,        TB_ALIGN_NONE },
1348    { X86::VFNMSUBSDr132r,        X86::VFNMSUBSDr132m,        TB_ALIGN_NONE },
1349    { X86::VFNMSUBSSr213r,        X86::VFNMSUBSSr213m,        TB_ALIGN_NONE },
1350    { X86::VFNMSUBSDr213r,        X86::VFNMSUBSDr213m,        TB_ALIGN_NONE },
1351
1352    { X86::VFNMSUBPSr231r,        X86::VFNMSUBPSr231m,        TB_ALIGN_NONE },
1353    { X86::VFNMSUBPDr231r,        X86::VFNMSUBPDr231m,        TB_ALIGN_NONE },
1354    { X86::VFNMSUBPSr132r,        X86::VFNMSUBPSr132m,        TB_ALIGN_NONE },
1355    { X86::VFNMSUBPDr132r,        X86::VFNMSUBPDr132m,        TB_ALIGN_NONE },
1356    { X86::VFNMSUBPSr213r,        X86::VFNMSUBPSr213m,        TB_ALIGN_NONE },
1357    { X86::VFNMSUBPDr213r,        X86::VFNMSUBPDr213m,        TB_ALIGN_NONE },
1358    { X86::VFNMSUBPSr231rY,       X86::VFNMSUBPSr231mY,       TB_ALIGN_NONE },
1359    { X86::VFNMSUBPDr231rY,       X86::VFNMSUBPDr231mY,       TB_ALIGN_NONE },
1360    { X86::VFNMSUBPSr132rY,       X86::VFNMSUBPSr132mY,       TB_ALIGN_NONE },
1361    { X86::VFNMSUBPDr132rY,       X86::VFNMSUBPDr132mY,       TB_ALIGN_NONE },
1362    { X86::VFNMSUBPSr213rY,       X86::VFNMSUBPSr213mY,       TB_ALIGN_NONE },
1363    { X86::VFNMSUBPDr213rY,       X86::VFNMSUBPDr213mY,       TB_ALIGN_NONE },
1364
1365    { X86::VFMADDSUBPSr231r,      X86::VFMADDSUBPSr231m,      TB_ALIGN_NONE },
1366    { X86::VFMADDSUBPDr231r,      X86::VFMADDSUBPDr231m,      TB_ALIGN_NONE },
1367    { X86::VFMADDSUBPSr132r,      X86::VFMADDSUBPSr132m,      TB_ALIGN_NONE },
1368    { X86::VFMADDSUBPDr132r,      X86::VFMADDSUBPDr132m,      TB_ALIGN_NONE },
1369    { X86::VFMADDSUBPSr213r,      X86::VFMADDSUBPSr213m,      TB_ALIGN_NONE },
1370    { X86::VFMADDSUBPDr213r,      X86::VFMADDSUBPDr213m,      TB_ALIGN_NONE },
1371    { X86::VFMADDSUBPSr231rY,     X86::VFMADDSUBPSr231mY,     TB_ALIGN_NONE },
1372    { X86::VFMADDSUBPDr231rY,     X86::VFMADDSUBPDr231mY,     TB_ALIGN_NONE },
1373    { X86::VFMADDSUBPSr132rY,     X86::VFMADDSUBPSr132mY,     TB_ALIGN_NONE },
1374    { X86::VFMADDSUBPDr132rY,     X86::VFMADDSUBPDr132mY,     TB_ALIGN_NONE },
1375    { X86::VFMADDSUBPSr213rY,     X86::VFMADDSUBPSr213mY,     TB_ALIGN_NONE },
1376    { X86::VFMADDSUBPDr213rY,     X86::VFMADDSUBPDr213mY,     TB_ALIGN_NONE },
1377
1378    { X86::VFMSUBADDPSr231r,      X86::VFMSUBADDPSr231m,      TB_ALIGN_NONE },
1379    { X86::VFMSUBADDPDr231r,      X86::VFMSUBADDPDr231m,      TB_ALIGN_NONE },
1380    { X86::VFMSUBADDPSr132r,      X86::VFMSUBADDPSr132m,      TB_ALIGN_NONE },
1381    { X86::VFMSUBADDPDr132r,      X86::VFMSUBADDPDr132m,      TB_ALIGN_NONE },
1382    { X86::VFMSUBADDPSr213r,      X86::VFMSUBADDPSr213m,      TB_ALIGN_NONE },
1383    { X86::VFMSUBADDPDr213r,      X86::VFMSUBADDPDr213m,      TB_ALIGN_NONE },
1384    { X86::VFMSUBADDPSr231rY,     X86::VFMSUBADDPSr231mY,     TB_ALIGN_NONE },
1385    { X86::VFMSUBADDPDr231rY,     X86::VFMSUBADDPDr231mY,     TB_ALIGN_NONE },
1386    { X86::VFMSUBADDPSr132rY,     X86::VFMSUBADDPSr132mY,     TB_ALIGN_NONE },
1387    { X86::VFMSUBADDPDr132rY,     X86::VFMSUBADDPDr132mY,     TB_ALIGN_NONE },
1388    { X86::VFMSUBADDPSr213rY,     X86::VFMSUBADDPSr213mY,     TB_ALIGN_NONE },
1389    { X86::VFMSUBADDPDr213rY,     X86::VFMSUBADDPDr213mY,     TB_ALIGN_NONE },
1390
1391    // FMA4 foldable patterns
1392    { X86::VFMADDSS4rr,           X86::VFMADDSS4rm,           0           },
1393    { X86::VFMADDSD4rr,           X86::VFMADDSD4rm,           0           },
1394    { X86::VFMADDPS4rr,           X86::VFMADDPS4rm,           TB_ALIGN_16 },
1395    { X86::VFMADDPD4rr,           X86::VFMADDPD4rm,           TB_ALIGN_16 },
1396    { X86::VFMADDPS4rrY,          X86::VFMADDPS4rmY,          TB_ALIGN_32 },
1397    { X86::VFMADDPD4rrY,          X86::VFMADDPD4rmY,          TB_ALIGN_32 },
1398    { X86::VFNMADDSS4rr,          X86::VFNMADDSS4rm,          0           },
1399    { X86::VFNMADDSD4rr,          X86::VFNMADDSD4rm,          0           },
1400    { X86::VFNMADDPS4rr,          X86::VFNMADDPS4rm,          TB_ALIGN_16 },
1401    { X86::VFNMADDPD4rr,          X86::VFNMADDPD4rm,          TB_ALIGN_16 },
1402    { X86::VFNMADDPS4rrY,         X86::VFNMADDPS4rmY,         TB_ALIGN_32 },
1403    { X86::VFNMADDPD4rrY,         X86::VFNMADDPD4rmY,         TB_ALIGN_32 },
1404    { X86::VFMSUBSS4rr,           X86::VFMSUBSS4rm,           0           },
1405    { X86::VFMSUBSD4rr,           X86::VFMSUBSD4rm,           0           },
1406    { X86::VFMSUBPS4rr,           X86::VFMSUBPS4rm,           TB_ALIGN_16 },
1407    { X86::VFMSUBPD4rr,           X86::VFMSUBPD4rm,           TB_ALIGN_16 },
1408    { X86::VFMSUBPS4rrY,          X86::VFMSUBPS4rmY,          TB_ALIGN_32 },
1409    { X86::VFMSUBPD4rrY,          X86::VFMSUBPD4rmY,          TB_ALIGN_32 },
1410    { X86::VFNMSUBSS4rr,          X86::VFNMSUBSS4rm,          0           },
1411    { X86::VFNMSUBSD4rr,          X86::VFNMSUBSD4rm,          0           },
1412    { X86::VFNMSUBPS4rr,          X86::VFNMSUBPS4rm,          TB_ALIGN_16 },
1413    { X86::VFNMSUBPD4rr,          X86::VFNMSUBPD4rm,          TB_ALIGN_16 },
1414    { X86::VFNMSUBPS4rrY,         X86::VFNMSUBPS4rmY,         TB_ALIGN_32 },
1415    { X86::VFNMSUBPD4rrY,         X86::VFNMSUBPD4rmY,         TB_ALIGN_32 },
1416    { X86::VFMADDSUBPS4rr,        X86::VFMADDSUBPS4rm,        TB_ALIGN_16 },
1417    { X86::VFMADDSUBPD4rr,        X86::VFMADDSUBPD4rm,        TB_ALIGN_16 },
1418    { X86::VFMADDSUBPS4rrY,       X86::VFMADDSUBPS4rmY,       TB_ALIGN_32 },
1419    { X86::VFMADDSUBPD4rrY,       X86::VFMADDSUBPD4rmY,       TB_ALIGN_32 },
1420    { X86::VFMSUBADDPS4rr,        X86::VFMSUBADDPS4rm,        TB_ALIGN_16 },
1421    { X86::VFMSUBADDPD4rr,        X86::VFMSUBADDPD4rm,        TB_ALIGN_16 },
1422    { X86::VFMSUBADDPS4rrY,       X86::VFMSUBADDPS4rmY,       TB_ALIGN_32 },
1423    { X86::VFMSUBADDPD4rrY,       X86::VFMSUBADDPD4rmY,       TB_ALIGN_32 },
1424    // AVX-512 VPERMI instructions with 3 source operands.
1425    { X86::VPERMI2Drr,            X86::VPERMI2Drm,            0 },
1426    { X86::VPERMI2Qrr,            X86::VPERMI2Qrm,            0 },
1427    { X86::VPERMI2PSrr,           X86::VPERMI2PSrm,           0 },
1428    { X86::VPERMI2PDrr,           X86::VPERMI2PDrm,           0 },
1429    { X86::VBLENDMPDZrr,          X86::VBLENDMPDZrm,          0 },
1430    { X86::VBLENDMPSZrr,          X86::VBLENDMPSZrm,          0 },
1431    { X86::VPBLENDMDZrr,          X86::VPBLENDMDZrm,          0 },
1432    { X86::VPBLENDMQZrr,          X86::VPBLENDMQZrm,          0 }
1433  };
1434
1435  for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) {
1436    unsigned RegOp = OpTbl3[i].RegOp;
1437    unsigned MemOp = OpTbl3[i].MemOp;
1438    unsigned Flags = OpTbl3[i].Flags;
1439    AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
1440                  RegOp, MemOp,
1441                  // Index 3, folded load
1442                  Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
1443  }
1444
1445}
1446
1447void
1448X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
1449                            MemOp2RegOpTableType &M2RTable,
1450                            unsigned RegOp, unsigned MemOp, unsigned Flags) {
1451    if ((Flags & TB_NO_FORWARD) == 0) {
1452      assert(!R2MTable.count(RegOp) && "Duplicate entry!");
1453      R2MTable[RegOp] = std::make_pair(MemOp, Flags);
1454    }
1455    if ((Flags & TB_NO_REVERSE) == 0) {
1456      assert(!M2RTable.count(MemOp) &&
1457           "Duplicated entries in unfolding maps?");
1458      M2RTable[MemOp] = std::make_pair(RegOp, Flags);
1459    }
1460}
1461
1462bool
1463X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1464                                    unsigned &SrcReg, unsigned &DstReg,
1465                                    unsigned &SubIdx) const {
1466  switch (MI.getOpcode()) {
1467  default: break;
1468  case X86::MOVSX16rr8:
1469  case X86::MOVZX16rr8:
1470  case X86::MOVSX32rr8:
1471  case X86::MOVZX32rr8:
1472  case X86::MOVSX64rr8:
1473    if (!Subtarget.is64Bit())
1474      // It's not always legal to reference the low 8-bit of the larger
1475      // register in 32-bit mode.
1476      return false;
1477  case X86::MOVSX32rr16:
1478  case X86::MOVZX32rr16:
1479  case X86::MOVSX64rr16:
1480  case X86::MOVSX64rr32: {
1481    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
1482      // Be conservative.
1483      return false;
1484    SrcReg = MI.getOperand(1).getReg();
1485    DstReg = MI.getOperand(0).getReg();
1486    switch (MI.getOpcode()) {
1487    default: llvm_unreachable("Unreachable!");
1488    case X86::MOVSX16rr8:
1489    case X86::MOVZX16rr8:
1490    case X86::MOVSX32rr8:
1491    case X86::MOVZX32rr8:
1492    case X86::MOVSX64rr8:
1493      SubIdx = X86::sub_8bit;
1494      break;
1495    case X86::MOVSX32rr16:
1496    case X86::MOVZX32rr16:
1497    case X86::MOVSX64rr16:
1498      SubIdx = X86::sub_16bit;
1499      break;
1500    case X86::MOVSX64rr32:
1501      SubIdx = X86::sub_32bit;
1502      break;
1503    }
1504    return true;
1505  }
1506  }
1507  return false;
1508}
1509
1510/// isFrameOperand - Return true and the FrameIndex if the specified
1511/// operand and follow operands form a reference to the stack frame.
1512bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
1513                                  int &FrameIndex) const {
1514  if (MI->getOperand(Op+X86::AddrBaseReg).isFI() &&
1515      MI->getOperand(Op+X86::AddrScaleAmt).isImm() &&
1516      MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
1517      MI->getOperand(Op+X86::AddrDisp).isImm() &&
1518      MI->getOperand(Op+X86::AddrScaleAmt).getImm() == 1 &&
1519      MI->getOperand(Op+X86::AddrIndexReg).getReg() == 0 &&
1520      MI->getOperand(Op+X86::AddrDisp).getImm() == 0) {
1521    FrameIndex = MI->getOperand(Op+X86::AddrBaseReg).getIndex();
1522    return true;
1523  }
1524  return false;
1525}
1526
1527static bool isFrameLoadOpcode(int Opcode) {
1528  switch (Opcode) {
1529  default:
1530    return false;
1531  case X86::MOV8rm:
1532  case X86::MOV16rm:
1533  case X86::MOV32rm:
1534  case X86::MOV64rm:
1535  case X86::LD_Fp64m:
1536  case X86::MOVSSrm:
1537  case X86::MOVSDrm:
1538  case X86::MOVAPSrm:
1539  case X86::MOVAPDrm:
1540  case X86::MOVDQArm:
1541  case X86::VMOVSSrm:
1542  case X86::VMOVSDrm:
1543  case X86::VMOVAPSrm:
1544  case X86::VMOVAPDrm:
1545  case X86::VMOVDQArm:
1546  case X86::VMOVAPSYrm:
1547  case X86::VMOVAPDYrm:
1548  case X86::VMOVDQAYrm:
1549  case X86::MMX_MOVD64rm:
1550  case X86::MMX_MOVQ64rm:
1551  case X86::VMOVAPSZrm:
1552  case X86::VMOVUPSZrm:
1553    return true;
1554  }
1555}
1556
1557static bool isFrameStoreOpcode(int Opcode) {
1558  switch (Opcode) {
1559  default: break;
1560  case X86::MOV8mr:
1561  case X86::MOV16mr:
1562  case X86::MOV32mr:
1563  case X86::MOV64mr:
1564  case X86::ST_FpP64m:
1565  case X86::MOVSSmr:
1566  case X86::MOVSDmr:
1567  case X86::MOVAPSmr:
1568  case X86::MOVAPDmr:
1569  case X86::MOVDQAmr:
1570  case X86::VMOVSSmr:
1571  case X86::VMOVSDmr:
1572  case X86::VMOVAPSmr:
1573  case X86::VMOVAPDmr:
1574  case X86::VMOVDQAmr:
1575  case X86::VMOVAPSYmr:
1576  case X86::VMOVAPDYmr:
1577  case X86::VMOVDQAYmr:
1578  case X86::VMOVUPSZmr:
1579  case X86::VMOVAPSZmr:
1580  case X86::MMX_MOVD64mr:
1581  case X86::MMX_MOVQ64mr:
1582  case X86::MMX_MOVNTQmr:
1583    return true;
1584  }
1585  return false;
1586}
1587
1588unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
1589                                           int &FrameIndex) const {
1590  if (isFrameLoadOpcode(MI->getOpcode()))
1591    if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
1592      return MI->getOperand(0).getReg();
1593  return 0;
1594}
1595
1596unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1597                                                 int &FrameIndex) const {
1598  if (isFrameLoadOpcode(MI->getOpcode())) {
1599    unsigned Reg;
1600    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
1601      return Reg;
1602    // Check for post-frame index elimination operations
1603    const MachineMemOperand *Dummy;
1604    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1605  }
1606  return 0;
1607}
1608
1609unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
1610                                          int &FrameIndex) const {
1611  if (isFrameStoreOpcode(MI->getOpcode()))
1612    if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
1613        isFrameOperand(MI, 0, FrameIndex))
1614      return MI->getOperand(X86::AddrNumOperands).getReg();
1615  return 0;
1616}
1617
1618unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
1619                                                int &FrameIndex) const {
1620  if (isFrameStoreOpcode(MI->getOpcode())) {
1621    unsigned Reg;
1622    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
1623      return Reg;
1624    // Check for post-frame index elimination operations
1625    const MachineMemOperand *Dummy;
1626    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
1627  }
1628  return 0;
1629}
1630
1631/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
1632/// X86::MOVPC32r.
1633static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
1634  // Don't waste compile time scanning use-def chains of physregs.
1635  if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
1636    return false;
1637  bool isPICBase = false;
1638  for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
1639         E = MRI.def_instr_end(); I != E; ++I) {
1640    MachineInstr *DefMI = &*I;
1641    if (DefMI->getOpcode() != X86::MOVPC32r)
1642      return false;
1643    assert(!isPICBase && "More than one PIC base?");
1644    isPICBase = true;
1645  }
1646  return isPICBase;
1647}
1648
1649bool
1650X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
1651                                                AliasAnalysis *AA) const {
1652  switch (MI->getOpcode()) {
1653  default: break;
1654  case X86::MOV8rm:
1655  case X86::MOV16rm:
1656  case X86::MOV32rm:
1657  case X86::MOV64rm:
1658  case X86::LD_Fp64m:
1659  case X86::MOVSSrm:
1660  case X86::MOVSDrm:
1661  case X86::MOVAPSrm:
1662  case X86::MOVUPSrm:
1663  case X86::MOVAPDrm:
1664  case X86::MOVDQArm:
1665  case X86::MOVDQUrm:
1666  case X86::VMOVSSrm:
1667  case X86::VMOVSDrm:
1668  case X86::VMOVAPSrm:
1669  case X86::VMOVUPSrm:
1670  case X86::VMOVAPDrm:
1671  case X86::VMOVDQArm:
1672  case X86::VMOVDQUrm:
1673  case X86::VMOVAPSYrm:
1674  case X86::VMOVUPSYrm:
1675  case X86::VMOVAPDYrm:
1676  case X86::VMOVDQAYrm:
1677  case X86::VMOVDQUYrm:
1678  case X86::MMX_MOVD64rm:
1679  case X86::MMX_MOVQ64rm:
1680  case X86::FsVMOVAPSrm:
1681  case X86::FsVMOVAPDrm:
1682  case X86::FsMOVAPSrm:
1683  case X86::FsMOVAPDrm: {
1684    // Loads from constant pools are trivially rematerializable.
1685    if (MI->getOperand(1+X86::AddrBaseReg).isReg() &&
1686        MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
1687        MI->getOperand(1+X86::AddrIndexReg).isReg() &&
1688        MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
1689        MI->isInvariantLoad(AA)) {
1690      unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
1691      if (BaseReg == 0 || BaseReg == X86::RIP)
1692        return true;
1693      // Allow re-materialization of PIC load.
1694      if (!ReMatPICStubLoad && MI->getOperand(1+X86::AddrDisp).isGlobal())
1695        return false;
1696      const MachineFunction &MF = *MI->getParent()->getParent();
1697      const MachineRegisterInfo &MRI = MF.getRegInfo();
1698      return regIsPICBase(BaseReg, MRI);
1699    }
1700    return false;
1701  }
1702
1703  case X86::LEA32r:
1704  case X86::LEA64r: {
1705    if (MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
1706        MI->getOperand(1+X86::AddrIndexReg).isReg() &&
1707        MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
1708        !MI->getOperand(1+X86::AddrDisp).isReg()) {
1709      // lea fi#, lea GV, etc. are all rematerializable.
1710      if (!MI->getOperand(1+X86::AddrBaseReg).isReg())
1711        return true;
1712      unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
1713      if (BaseReg == 0)
1714        return true;
1715      // Allow re-materialization of lea PICBase + x.
1716      const MachineFunction &MF = *MI->getParent()->getParent();
1717      const MachineRegisterInfo &MRI = MF.getRegInfo();
1718      return regIsPICBase(BaseReg, MRI);
1719    }
1720    return false;
1721  }
1722  }
1723
1724  // All other instructions marked M_REMATERIALIZABLE are always trivially
1725  // rematerializable.
1726  return true;
1727}
1728
1729bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
1730                                         MachineBasicBlock::iterator I) const {
1731  MachineBasicBlock::iterator E = MBB.end();
1732
1733  // For compile time consideration, if we are not able to determine the
1734  // safety after visiting 4 instructions in each direction, we will assume
1735  // it's not safe.
1736  MachineBasicBlock::iterator Iter = I;
1737  for (unsigned i = 0; Iter != E && i < 4; ++i) {
1738    bool SeenDef = false;
1739    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1740      MachineOperand &MO = Iter->getOperand(j);
1741      if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
1742        SeenDef = true;
1743      if (!MO.isReg())
1744        continue;
1745      if (MO.getReg() == X86::EFLAGS) {
1746        if (MO.isUse())
1747          return false;
1748        SeenDef = true;
1749      }
1750    }
1751
1752    if (SeenDef)
1753      // This instruction defines EFLAGS, no need to look any further.
1754      return true;
1755    ++Iter;
1756    // Skip over DBG_VALUE.
1757    while (Iter != E && Iter->isDebugValue())
1758      ++Iter;
1759  }
1760
1761  // It is safe to clobber EFLAGS at the end of a block of no successor has it
1762  // live in.
1763  if (Iter == E) {
1764    for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
1765           SE = MBB.succ_end(); SI != SE; ++SI)
1766      if ((*SI)->isLiveIn(X86::EFLAGS))
1767        return false;
1768    return true;
1769  }
1770
1771  MachineBasicBlock::iterator B = MBB.begin();
1772  Iter = I;
1773  for (unsigned i = 0; i < 4; ++i) {
1774    // If we make it to the beginning of the block, it's safe to clobber
1775    // EFLAGS iff EFLAGS is not live-in.
1776    if (Iter == B)
1777      return !MBB.isLiveIn(X86::EFLAGS);
1778
1779    --Iter;
1780    // Skip over DBG_VALUE.
1781    while (Iter != B && Iter->isDebugValue())
1782      --Iter;
1783
1784    bool SawKill = false;
1785    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1786      MachineOperand &MO = Iter->getOperand(j);
1787      // A register mask may clobber EFLAGS, but we should still look for a
1788      // live EFLAGS def.
1789      if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
1790        SawKill = true;
1791      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1792        if (MO.isDef()) return MO.isDead();
1793        if (MO.isKill()) SawKill = true;
1794      }
1795    }
1796
1797    if (SawKill)
1798      // This instruction kills EFLAGS and doesn't redefine it, so
1799      // there's no need to look further.
1800      return true;
1801  }
1802
1803  // Conservative answer.
1804  return false;
1805}
1806
1807void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1808                                 MachineBasicBlock::iterator I,
1809                                 unsigned DestReg, unsigned SubIdx,
1810                                 const MachineInstr *Orig,
1811                                 const TargetRegisterInfo &TRI) const {
1812  // MOV32r0 is implemented with a xor which clobbers condition code.
1813  // Re-materialize it as movri instructions to avoid side effects.
1814  unsigned Opc = Orig->getOpcode();
1815  if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) {
1816    DebugLoc DL = Orig->getDebugLoc();
1817    BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0))
1818      .addImm(0);
1819  } else {
1820    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1821    MBB.insert(I, MI);
1822  }
1823
1824  MachineInstr *NewMI = std::prev(I);
1825  NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1826}
1827
1828/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1829/// is not marked dead.
1830static bool hasLiveCondCodeDef(MachineInstr *MI) {
1831  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1832    MachineOperand &MO = MI->getOperand(i);
1833    if (MO.isReg() && MO.isDef() &&
1834        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1835      return true;
1836    }
1837  }
1838  return false;
1839}
1840
1841/// getTruncatedShiftCount - check whether the shift count for a machine operand
1842/// is non-zero.
1843inline static unsigned getTruncatedShiftCount(MachineInstr *MI,
1844                                              unsigned ShiftAmtOperandIdx) {
1845  // The shift count is six bits with the REX.W prefix and five bits without.
1846  unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
1847  unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm();
1848  return Imm & ShiftCountMask;
1849}
1850
1851/// isTruncatedShiftCountForLEA - check whether the given shift count is appropriate
1852/// can be represented by a LEA instruction.
1853inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
1854  // Left shift instructions can be transformed into load-effective-address
1855  // instructions if we can encode them appropriately.
1856  // A LEA instruction utilizes a SIB byte to encode it's scale factor.
1857  // The SIB.scale field is two bits wide which means that we can encode any
1858  // shift amount less than 4.
1859  return ShAmt < 4 && ShAmt > 0;
1860}
1861
1862bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
1863                                  unsigned Opc, bool AllowSP,
1864                                  unsigned &NewSrc, bool &isKill, bool &isUndef,
1865                                  MachineOperand &ImplicitOp) const {
1866  MachineFunction &MF = *MI->getParent()->getParent();
1867  const TargetRegisterClass *RC;
1868  if (AllowSP) {
1869    RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1870  } else {
1871    RC = Opc != X86::LEA32r ?
1872      &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1873  }
1874  unsigned SrcReg = Src.getReg();
1875
1876  // For both LEA64 and LEA32 the register already has essentially the right
1877  // type (32-bit or 64-bit) we may just need to forbid SP.
1878  if (Opc != X86::LEA64_32r) {
1879    NewSrc = SrcReg;
1880    isKill = Src.isKill();
1881    isUndef = Src.isUndef();
1882
1883    if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
1884        !MF.getRegInfo().constrainRegClass(NewSrc, RC))
1885      return false;
1886
1887    return true;
1888  }
1889
1890  // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1891  // another we need to add 64-bit registers to the final MI.
1892  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1893    ImplicitOp = Src;
1894    ImplicitOp.setImplicit();
1895
1896    NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64);
1897    MachineBasicBlock::LivenessQueryResult LQR =
1898      MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
1899
1900    switch (LQR) {
1901    case MachineBasicBlock::LQR_Unknown:
1902      // We can't give sane liveness flags to the instruction, abandon LEA
1903      // formation.
1904      return false;
1905    case MachineBasicBlock::LQR_Live:
1906      isKill = MI->killsRegister(SrcReg);
1907      isUndef = false;
1908      break;
1909    default:
1910      // The physreg itself is dead, so we have to use it as an <undef>.
1911      isKill = false;
1912      isUndef = true;
1913      break;
1914    }
1915  } else {
1916    // Virtual register of the wrong class, we have to create a temporary 64-bit
1917    // vreg to feed into the LEA.
1918    NewSrc = MF.getRegInfo().createVirtualRegister(RC);
1919    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1920            get(TargetOpcode::COPY))
1921      .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1922        .addOperand(Src);
1923
1924    // Which is obviously going to be dead after we're done with it.
1925    isKill = true;
1926    isUndef = false;
1927  }
1928
1929  // We've set all the parameters without issue.
1930  return true;
1931}
1932
1933/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1934/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1935/// to a 32-bit superregister and then truncating back down to a 16-bit
1936/// subregister.
1937MachineInstr *
1938X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1939                                           MachineFunction::iterator &MFI,
1940                                           MachineBasicBlock::iterator &MBBI,
1941                                           LiveVariables *LV) const {
1942  MachineInstr *MI = MBBI;
1943  unsigned Dest = MI->getOperand(0).getReg();
1944  unsigned Src = MI->getOperand(1).getReg();
1945  bool isDead = MI->getOperand(0).isDead();
1946  bool isKill = MI->getOperand(1).isKill();
1947
1948  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1949  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1950  unsigned Opc, leaInReg;
1951  if (Subtarget.is64Bit()) {
1952    Opc = X86::LEA64_32r;
1953    leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1954  } else {
1955    Opc = X86::LEA32r;
1956    leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1957  }
1958
1959  // Build and insert into an implicit UNDEF value. This is OK because
1960  // well be shifting and then extracting the lower 16-bits.
1961  // This has the potential to cause partial register stall. e.g.
1962  //   movw    (%rbp,%rcx,2), %dx
1963  //   leal    -65(%rdx), %esi
1964  // But testing has shown this *does* help performance in 64-bit mode (at
1965  // least on modern x86 machines).
1966  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1967  MachineInstr *InsMI =
1968    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1969    .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1970    .addReg(Src, getKillRegState(isKill));
1971
1972  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1973                                    get(Opc), leaOutReg);
1974  switch (MIOpc) {
1975  default: llvm_unreachable("Unreachable!");
1976  case X86::SHL16ri: {
1977    unsigned ShAmt = MI->getOperand(2).getImm();
1978    MIB.addReg(0).addImm(1 << ShAmt)
1979       .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
1980    break;
1981  }
1982  case X86::INC16r:
1983  case X86::INC64_16r:
1984    addRegOffset(MIB, leaInReg, true, 1);
1985    break;
1986  case X86::DEC16r:
1987  case X86::DEC64_16r:
1988    addRegOffset(MIB, leaInReg, true, -1);
1989    break;
1990  case X86::ADD16ri:
1991  case X86::ADD16ri8:
1992  case X86::ADD16ri_DB:
1993  case X86::ADD16ri8_DB:
1994    addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1995    break;
1996  case X86::ADD16rr:
1997  case X86::ADD16rr_DB: {
1998    unsigned Src2 = MI->getOperand(2).getReg();
1999    bool isKill2 = MI->getOperand(2).isKill();
2000    unsigned leaInReg2 = 0;
2001    MachineInstr *InsMI2 = nullptr;
2002    if (Src == Src2) {
2003      // ADD16rr %reg1028<kill>, %reg1028
2004      // just a single insert_subreg.
2005      addRegReg(MIB, leaInReg, true, leaInReg, false);
2006    } else {
2007      if (Subtarget.is64Bit())
2008        leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
2009      else
2010        leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
2011      // Build and insert into an implicit UNDEF value. This is OK because
2012      // well be shifting and then extracting the lower 16-bits.
2013      BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
2014      InsMI2 =
2015        BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
2016        .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
2017        .addReg(Src2, getKillRegState(isKill2));
2018      addRegReg(MIB, leaInReg, true, leaInReg2, true);
2019    }
2020    if (LV && isKill2 && InsMI2)
2021      LV->replaceKillInstruction(Src2, MI, InsMI2);
2022    break;
2023  }
2024  }
2025
2026  MachineInstr *NewMI = MIB;
2027  MachineInstr *ExtMI =
2028    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
2029    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
2030    .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
2031
2032  if (LV) {
2033    // Update live variables
2034    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
2035    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
2036    if (isKill)
2037      LV->replaceKillInstruction(Src, MI, InsMI);
2038    if (isDead)
2039      LV->replaceKillInstruction(Dest, MI, ExtMI);
2040  }
2041
2042  return ExtMI;
2043}
2044
2045/// convertToThreeAddress - This method must be implemented by targets that
2046/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
2047/// may be able to convert a two-address instruction into a true
2048/// three-address instruction on demand.  This allows the X86 target (for
2049/// example) to convert ADD and SHL instructions into LEA instructions if they
2050/// would require register copies due to two-addressness.
2051///
2052/// This method returns a null pointer if the transformation cannot be
2053/// performed, otherwise it returns the new instruction.
2054///
2055MachineInstr *
2056X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
2057                                    MachineBasicBlock::iterator &MBBI,
2058                                    LiveVariables *LV) const {
2059  MachineInstr *MI = MBBI;
2060
2061  // The following opcodes also sets the condition code register(s). Only
2062  // convert them to equivalent lea if the condition code register def's
2063  // are dead!
2064  if (hasLiveCondCodeDef(MI))
2065    return nullptr;
2066
2067  MachineFunction &MF = *MI->getParent()->getParent();
2068  // All instructions input are two-addr instructions.  Get the known operands.
2069  const MachineOperand &Dest = MI->getOperand(0);
2070  const MachineOperand &Src = MI->getOperand(1);
2071
2072  MachineInstr *NewMI = nullptr;
2073  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
2074  // we have better subtarget support, enable the 16-bit LEA generation here.
2075  // 16-bit LEA is also slow on Core2.
2076  bool DisableLEA16 = true;
2077  bool is64Bit = Subtarget.is64Bit();
2078
2079  unsigned MIOpc = MI->getOpcode();
2080  switch (MIOpc) {
2081  case X86::SHUFPSrri: {
2082    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
2083    if (!Subtarget.hasSSE2()) return nullptr;
2084
2085    unsigned B = MI->getOperand(1).getReg();
2086    unsigned C = MI->getOperand(2).getReg();
2087    if (B != C) return nullptr;
2088    unsigned M = MI->getOperand(3).getImm();
2089    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
2090      .addOperand(Dest).addOperand(Src).addImm(M);
2091    break;
2092  }
2093  case X86::SHUFPDrri: {
2094    assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!");
2095    if (!Subtarget.hasSSE2()) return nullptr;
2096
2097    unsigned B = MI->getOperand(1).getReg();
2098    unsigned C = MI->getOperand(2).getReg();
2099    if (B != C) return nullptr;
2100    unsigned M = MI->getOperand(3).getImm();
2101
2102    // Convert to PSHUFD mask.
2103    M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44;
2104
2105    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
2106      .addOperand(Dest).addOperand(Src).addImm(M);
2107    break;
2108  }
2109  case X86::SHL64ri: {
2110    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2111    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2112    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
2113
2114    // LEA can't handle RSP.
2115    if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
2116        !MF.getRegInfo().constrainRegClass(Src.getReg(),
2117                                           &X86::GR64_NOSPRegClass))
2118      return nullptr;
2119
2120    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2121      .addOperand(Dest)
2122      .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
2123    break;
2124  }
2125  case X86::SHL32ri: {
2126    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2127    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2128    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
2129
2130    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2131
2132    // LEA can't handle ESP.
2133    bool isKill, isUndef;
2134    unsigned SrcReg;
2135    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2136    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2137                        SrcReg, isKill, isUndef, ImplicitOp))
2138      return nullptr;
2139
2140    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2141      .addOperand(Dest)
2142      .addReg(0).addImm(1 << ShAmt)
2143      .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
2144      .addImm(0).addReg(0);
2145    if (ImplicitOp.getReg() != 0)
2146      MIB.addOperand(ImplicitOp);
2147    NewMI = MIB;
2148
2149    break;
2150  }
2151  case X86::SHL16ri: {
2152    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2153    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2154    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
2155
2156    if (DisableLEA16)
2157      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : nullptr;
2158    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2159      .addOperand(Dest)
2160      .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
2161    break;
2162  }
2163  default: {
2164
2165    switch (MIOpc) {
2166    default: return nullptr;
2167    case X86::INC64r:
2168    case X86::INC32r:
2169    case X86::INC64_32r: {
2170      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2171      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
2172        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2173      bool isKill, isUndef;
2174      unsigned SrcReg;
2175      MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2176      if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2177                          SrcReg, isKill, isUndef, ImplicitOp))
2178        return nullptr;
2179
2180      MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2181          .addOperand(Dest)
2182          .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
2183      if (ImplicitOp.getReg() != 0)
2184        MIB.addOperand(ImplicitOp);
2185
2186      NewMI = addOffset(MIB, 1);
2187      break;
2188    }
2189    case X86::INC16r:
2190    case X86::INC64_16r:
2191      if (DisableLEA16)
2192        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2193                       : nullptr;
2194      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2195      NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2196                        .addOperand(Dest).addOperand(Src), 1);
2197      break;
2198    case X86::DEC64r:
2199    case X86::DEC32r:
2200    case X86::DEC64_32r: {
2201      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2202      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
2203        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2204
2205      bool isKill, isUndef;
2206      unsigned SrcReg;
2207      MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2208      if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2209                          SrcReg, isKill, isUndef, ImplicitOp))
2210        return nullptr;
2211
2212      MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2213          .addOperand(Dest)
2214          .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2215      if (ImplicitOp.getReg() != 0)
2216        MIB.addOperand(ImplicitOp);
2217
2218      NewMI = addOffset(MIB, -1);
2219
2220      break;
2221    }
2222    case X86::DEC16r:
2223    case X86::DEC64_16r:
2224      if (DisableLEA16)
2225        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2226                       : nullptr;
2227      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2228      NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2229                        .addOperand(Dest).addOperand(Src), -1);
2230      break;
2231    case X86::ADD64rr:
2232    case X86::ADD64rr_DB:
2233    case X86::ADD32rr:
2234    case X86::ADD32rr_DB: {
2235      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2236      unsigned Opc;
2237      if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
2238        Opc = X86::LEA64r;
2239      else
2240        Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2241
2242      bool isKill, isUndef;
2243      unsigned SrcReg;
2244      MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2245      if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2246                          SrcReg, isKill, isUndef, ImplicitOp))
2247        return nullptr;
2248
2249      const MachineOperand &Src2 = MI->getOperand(2);
2250      bool isKill2, isUndef2;
2251      unsigned SrcReg2;
2252      MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
2253      if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
2254                          SrcReg2, isKill2, isUndef2, ImplicitOp2))
2255        return nullptr;
2256
2257      MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2258        .addOperand(Dest);
2259      if (ImplicitOp.getReg() != 0)
2260        MIB.addOperand(ImplicitOp);
2261      if (ImplicitOp2.getReg() != 0)
2262        MIB.addOperand(ImplicitOp2);
2263
2264      NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
2265
2266      // Preserve undefness of the operands.
2267      NewMI->getOperand(1).setIsUndef(isUndef);
2268      NewMI->getOperand(3).setIsUndef(isUndef2);
2269
2270      if (LV && Src2.isKill())
2271        LV->replaceKillInstruction(SrcReg2, MI, NewMI);
2272      break;
2273    }
2274    case X86::ADD16rr:
2275    case X86::ADD16rr_DB: {
2276      if (DisableLEA16)
2277        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2278                       : nullptr;
2279      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2280      unsigned Src2 = MI->getOperand(2).getReg();
2281      bool isKill2 = MI->getOperand(2).isKill();
2282      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2283                        .addOperand(Dest),
2284                        Src.getReg(), Src.isKill(), Src2, isKill2);
2285
2286      // Preserve undefness of the operands.
2287      bool isUndef = MI->getOperand(1).isUndef();
2288      bool isUndef2 = MI->getOperand(2).isUndef();
2289      NewMI->getOperand(1).setIsUndef(isUndef);
2290      NewMI->getOperand(3).setIsUndef(isUndef2);
2291
2292      if (LV && isKill2)
2293        LV->replaceKillInstruction(Src2, MI, NewMI);
2294      break;
2295    }
2296    case X86::ADD64ri32:
2297    case X86::ADD64ri8:
2298    case X86::ADD64ri32_DB:
2299    case X86::ADD64ri8_DB:
2300      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2301      NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2302                        .addOperand(Dest).addOperand(Src),
2303                        MI->getOperand(2).getImm());
2304      break;
2305    case X86::ADD32ri:
2306    case X86::ADD32ri8:
2307    case X86::ADD32ri_DB:
2308    case X86::ADD32ri8_DB: {
2309      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2310      unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2311
2312      bool isKill, isUndef;
2313      unsigned SrcReg;
2314      MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2315      if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2316                          SrcReg, isKill, isUndef, ImplicitOp))
2317        return nullptr;
2318
2319      MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2320          .addOperand(Dest)
2321          .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2322      if (ImplicitOp.getReg() != 0)
2323        MIB.addOperand(ImplicitOp);
2324
2325      NewMI = addOffset(MIB, MI->getOperand(2).getImm());
2326      break;
2327    }
2328    case X86::ADD16ri:
2329    case X86::ADD16ri8:
2330    case X86::ADD16ri_DB:
2331    case X86::ADD16ri8_DB:
2332      if (DisableLEA16)
2333        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2334                       : nullptr;
2335      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2336      NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2337                        .addOperand(Dest).addOperand(Src),
2338                        MI->getOperand(2).getImm());
2339      break;
2340    }
2341  }
2342  }
2343
2344  if (!NewMI) return nullptr;
2345
2346  if (LV) {  // Update live variables
2347    if (Src.isKill())
2348      LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
2349    if (Dest.isDead())
2350      LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
2351  }
2352
2353  MFI->insert(MBBI, NewMI);          // Insert the new inst
2354  return NewMI;
2355}
2356
2357/// commuteInstruction - We have a few instructions that must be hacked on to
2358/// commute them.
2359///
2360MachineInstr *
2361X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
2362  switch (MI->getOpcode()) {
2363  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2364  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
2365  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
2366  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2367  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2368  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
2369    unsigned Opc;
2370    unsigned Size;
2371    switch (MI->getOpcode()) {
2372    default: llvm_unreachable("Unreachable!");
2373    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2374    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2375    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2376    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
2377    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2378    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
2379    }
2380    unsigned Amt = MI->getOperand(3).getImm();
2381    if (NewMI) {
2382      MachineFunction &MF = *MI->getParent()->getParent();
2383      MI = MF.CloneMachineInstr(MI);
2384      NewMI = false;
2385    }
2386    MI->setDesc(get(Opc));
2387    MI->getOperand(3).setImm(Size-Amt);
2388    return TargetInstrInfo::commuteInstruction(MI, NewMI);
2389  }
2390  case X86::CMOVB16rr:  case X86::CMOVB32rr:  case X86::CMOVB64rr:
2391  case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
2392  case X86::CMOVE16rr:  case X86::CMOVE32rr:  case X86::CMOVE64rr:
2393  case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
2394  case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
2395  case X86::CMOVA16rr:  case X86::CMOVA32rr:  case X86::CMOVA64rr:
2396  case X86::CMOVL16rr:  case X86::CMOVL32rr:  case X86::CMOVL64rr:
2397  case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
2398  case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
2399  case X86::CMOVG16rr:  case X86::CMOVG32rr:  case X86::CMOVG64rr:
2400  case X86::CMOVS16rr:  case X86::CMOVS32rr:  case X86::CMOVS64rr:
2401  case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
2402  case X86::CMOVP16rr:  case X86::CMOVP32rr:  case X86::CMOVP64rr:
2403  case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
2404  case X86::CMOVO16rr:  case X86::CMOVO32rr:  case X86::CMOVO64rr:
2405  case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
2406    unsigned Opc;
2407    switch (MI->getOpcode()) {
2408    default: llvm_unreachable("Unreachable!");
2409    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
2410    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
2411    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
2412    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
2413    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
2414    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
2415    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
2416    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
2417    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
2418    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
2419    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
2420    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
2421    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
2422    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
2423    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
2424    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
2425    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
2426    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
2427    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
2428    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
2429    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
2430    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
2431    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
2432    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
2433    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
2434    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
2435    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
2436    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
2437    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
2438    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
2439    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
2440    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
2441    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
2442    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
2443    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
2444    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
2445    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
2446    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
2447    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
2448    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
2449    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
2450    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
2451    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
2452    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
2453    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
2454    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
2455    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
2456    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
2457    }
2458    if (NewMI) {
2459      MachineFunction &MF = *MI->getParent()->getParent();
2460      MI = MF.CloneMachineInstr(MI);
2461      NewMI = false;
2462    }
2463    MI->setDesc(get(Opc));
2464    // Fallthrough intended.
2465  }
2466  default:
2467    return TargetInstrInfo::commuteInstruction(MI, NewMI);
2468  }
2469}
2470
2471bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
2472                                         unsigned &SrcOpIdx2) const {
2473  switch (MI->getOpcode()) {
2474    case X86::VFMADDPDr231r:
2475    case X86::VFMADDPSr231r:
2476    case X86::VFMADDSDr231r:
2477    case X86::VFMADDSSr231r:
2478    case X86::VFMSUBPDr231r:
2479    case X86::VFMSUBPSr231r:
2480    case X86::VFMSUBSDr231r:
2481    case X86::VFMSUBSSr231r:
2482    case X86::VFNMADDPDr231r:
2483    case X86::VFNMADDPSr231r:
2484    case X86::VFNMADDSDr231r:
2485    case X86::VFNMADDSSr231r:
2486    case X86::VFNMSUBPDr231r:
2487    case X86::VFNMSUBPSr231r:
2488    case X86::VFNMSUBSDr231r:
2489    case X86::VFNMSUBSSr231r:
2490    case X86::VFMADDPDr231rY:
2491    case X86::VFMADDPSr231rY:
2492    case X86::VFMSUBPDr231rY:
2493    case X86::VFMSUBPSr231rY:
2494    case X86::VFNMADDPDr231rY:
2495    case X86::VFNMADDPSr231rY:
2496    case X86::VFNMSUBPDr231rY:
2497    case X86::VFNMSUBPSr231rY:
2498      SrcOpIdx1 = 2;
2499      SrcOpIdx2 = 3;
2500      return true;
2501    default:
2502      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2503  }
2504}
2505
2506static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
2507  switch (BrOpc) {
2508  default: return X86::COND_INVALID;
2509  case X86::JE_4:  return X86::COND_E;
2510  case X86::JNE_4: return X86::COND_NE;
2511  case X86::JL_4:  return X86::COND_L;
2512  case X86::JLE_4: return X86::COND_LE;
2513  case X86::JG_4:  return X86::COND_G;
2514  case X86::JGE_4: return X86::COND_GE;
2515  case X86::JB_4:  return X86::COND_B;
2516  case X86::JBE_4: return X86::COND_BE;
2517  case X86::JA_4:  return X86::COND_A;
2518  case X86::JAE_4: return X86::COND_AE;
2519  case X86::JS_4:  return X86::COND_S;
2520  case X86::JNS_4: return X86::COND_NS;
2521  case X86::JP_4:  return X86::COND_P;
2522  case X86::JNP_4: return X86::COND_NP;
2523  case X86::JO_4:  return X86::COND_O;
2524  case X86::JNO_4: return X86::COND_NO;
2525  }
2526}
2527
2528/// getCondFromSETOpc - return condition code of a SET opcode.
2529static X86::CondCode getCondFromSETOpc(unsigned Opc) {
2530  switch (Opc) {
2531  default: return X86::COND_INVALID;
2532  case X86::SETAr:  case X86::SETAm:  return X86::COND_A;
2533  case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
2534  case X86::SETBr:  case X86::SETBm:  return X86::COND_B;
2535  case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
2536  case X86::SETEr:  case X86::SETEm:  return X86::COND_E;
2537  case X86::SETGr:  case X86::SETGm:  return X86::COND_G;
2538  case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
2539  case X86::SETLr:  case X86::SETLm:  return X86::COND_L;
2540  case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
2541  case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
2542  case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
2543  case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
2544  case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
2545  case X86::SETOr:  case X86::SETOm:  return X86::COND_O;
2546  case X86::SETPr:  case X86::SETPm:  return X86::COND_P;
2547  case X86::SETSr:  case X86::SETSm:  return X86::COND_S;
2548  }
2549}
2550
2551/// getCondFromCmovOpc - return condition code of a CMov opcode.
2552X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
2553  switch (Opc) {
2554  default: return X86::COND_INVALID;
2555  case X86::CMOVA16rm:  case X86::CMOVA16rr:  case X86::CMOVA32rm:
2556  case X86::CMOVA32rr:  case X86::CMOVA64rm:  case X86::CMOVA64rr:
2557    return X86::COND_A;
2558  case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
2559  case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
2560    return X86::COND_AE;
2561  case X86::CMOVB16rm:  case X86::CMOVB16rr:  case X86::CMOVB32rm:
2562  case X86::CMOVB32rr:  case X86::CMOVB64rm:  case X86::CMOVB64rr:
2563    return X86::COND_B;
2564  case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
2565  case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
2566    return X86::COND_BE;
2567  case X86::CMOVE16rm:  case X86::CMOVE16rr:  case X86::CMOVE32rm:
2568  case X86::CMOVE32rr:  case X86::CMOVE64rm:  case X86::CMOVE64rr:
2569    return X86::COND_E;
2570  case X86::CMOVG16rm:  case X86::CMOVG16rr:  case X86::CMOVG32rm:
2571  case X86::CMOVG32rr:  case X86::CMOVG64rm:  case X86::CMOVG64rr:
2572    return X86::COND_G;
2573  case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
2574  case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
2575    return X86::COND_GE;
2576  case X86::CMOVL16rm:  case X86::CMOVL16rr:  case X86::CMOVL32rm:
2577  case X86::CMOVL32rr:  case X86::CMOVL64rm:  case X86::CMOVL64rr:
2578    return X86::COND_L;
2579  case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
2580  case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
2581    return X86::COND_LE;
2582  case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
2583  case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
2584    return X86::COND_NE;
2585  case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
2586  case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
2587    return X86::COND_NO;
2588  case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
2589  case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
2590    return X86::COND_NP;
2591  case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
2592  case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
2593    return X86::COND_NS;
2594  case X86::CMOVO16rm:  case X86::CMOVO16rr:  case X86::CMOVO32rm:
2595  case X86::CMOVO32rr:  case X86::CMOVO64rm:  case X86::CMOVO64rr:
2596    return X86::COND_O;
2597  case X86::CMOVP16rm:  case X86::CMOVP16rr:  case X86::CMOVP32rm:
2598  case X86::CMOVP32rr:  case X86::CMOVP64rm:  case X86::CMOVP64rr:
2599    return X86::COND_P;
2600  case X86::CMOVS16rm:  case X86::CMOVS16rr:  case X86::CMOVS32rm:
2601  case X86::CMOVS32rr:  case X86::CMOVS64rm:  case X86::CMOVS64rr:
2602    return X86::COND_S;
2603  }
2604}
2605
2606unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
2607  switch (CC) {
2608  default: llvm_unreachable("Illegal condition code!");
2609  case X86::COND_E:  return X86::JE_4;
2610  case X86::COND_NE: return X86::JNE_4;
2611  case X86::COND_L:  return X86::JL_4;
2612  case X86::COND_LE: return X86::JLE_4;
2613  case X86::COND_G:  return X86::JG_4;
2614  case X86::COND_GE: return X86::JGE_4;
2615  case X86::COND_B:  return X86::JB_4;
2616  case X86::COND_BE: return X86::JBE_4;
2617  case X86::COND_A:  return X86::JA_4;
2618  case X86::COND_AE: return X86::JAE_4;
2619  case X86::COND_S:  return X86::JS_4;
2620  case X86::COND_NS: return X86::JNS_4;
2621  case X86::COND_P:  return X86::JP_4;
2622  case X86::COND_NP: return X86::JNP_4;
2623  case X86::COND_O:  return X86::JO_4;
2624  case X86::COND_NO: return X86::JNO_4;
2625  }
2626}
2627
2628/// GetOppositeBranchCondition - Return the inverse of the specified condition,
2629/// e.g. turning COND_E to COND_NE.
2630X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2631  switch (CC) {
2632  default: llvm_unreachable("Illegal condition code!");
2633  case X86::COND_E:  return X86::COND_NE;
2634  case X86::COND_NE: return X86::COND_E;
2635  case X86::COND_L:  return X86::COND_GE;
2636  case X86::COND_LE: return X86::COND_G;
2637  case X86::COND_G:  return X86::COND_LE;
2638  case X86::COND_GE: return X86::COND_L;
2639  case X86::COND_B:  return X86::COND_AE;
2640  case X86::COND_BE: return X86::COND_A;
2641  case X86::COND_A:  return X86::COND_BE;
2642  case X86::COND_AE: return X86::COND_B;
2643  case X86::COND_S:  return X86::COND_NS;
2644  case X86::COND_NS: return X86::COND_S;
2645  case X86::COND_P:  return X86::COND_NP;
2646  case X86::COND_NP: return X86::COND_P;
2647  case X86::COND_O:  return X86::COND_NO;
2648  case X86::COND_NO: return X86::COND_O;
2649  }
2650}
2651
2652/// getSwappedCondition - assume the flags are set by MI(a,b), return
2653/// the condition code if we modify the instructions such that flags are
2654/// set by MI(b,a).
2655static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2656  switch (CC) {
2657  default: return X86::COND_INVALID;
2658  case X86::COND_E:  return X86::COND_E;
2659  case X86::COND_NE: return X86::COND_NE;
2660  case X86::COND_L:  return X86::COND_G;
2661  case X86::COND_LE: return X86::COND_GE;
2662  case X86::COND_G:  return X86::COND_L;
2663  case X86::COND_GE: return X86::COND_LE;
2664  case X86::COND_B:  return X86::COND_A;
2665  case X86::COND_BE: return X86::COND_AE;
2666  case X86::COND_A:  return X86::COND_B;
2667  case X86::COND_AE: return X86::COND_BE;
2668  }
2669}
2670
2671/// getSETFromCond - Return a set opcode for the given condition and
2672/// whether it has memory operand.
2673unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
2674  static const uint16_t Opc[16][2] = {
2675    { X86::SETAr,  X86::SETAm  },
2676    { X86::SETAEr, X86::SETAEm },
2677    { X86::SETBr,  X86::SETBm  },
2678    { X86::SETBEr, X86::SETBEm },
2679    { X86::SETEr,  X86::SETEm  },
2680    { X86::SETGr,  X86::SETGm  },
2681    { X86::SETGEr, X86::SETGEm },
2682    { X86::SETLr,  X86::SETLm  },
2683    { X86::SETLEr, X86::SETLEm },
2684    { X86::SETNEr, X86::SETNEm },
2685    { X86::SETNOr, X86::SETNOm },
2686    { X86::SETNPr, X86::SETNPm },
2687    { X86::SETNSr, X86::SETNSm },
2688    { X86::SETOr,  X86::SETOm  },
2689    { X86::SETPr,  X86::SETPm  },
2690    { X86::SETSr,  X86::SETSm  }
2691  };
2692
2693  assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
2694  return Opc[CC][HasMemoryOperand ? 1 : 0];
2695}
2696
2697/// getCMovFromCond - Return a cmov opcode for the given condition,
2698/// register size in bytes, and operand type.
2699unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
2700                              bool HasMemoryOperand) {
2701  static const uint16_t Opc[32][3] = {
2702    { X86::CMOVA16rr,  X86::CMOVA32rr,  X86::CMOVA64rr  },
2703    { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
2704    { X86::CMOVB16rr,  X86::CMOVB32rr,  X86::CMOVB64rr  },
2705    { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
2706    { X86::CMOVE16rr,  X86::CMOVE32rr,  X86::CMOVE64rr  },
2707    { X86::CMOVG16rr,  X86::CMOVG32rr,  X86::CMOVG64rr  },
2708    { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
2709    { X86::CMOVL16rr,  X86::CMOVL32rr,  X86::CMOVL64rr  },
2710    { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
2711    { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
2712    { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
2713    { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
2714    { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
2715    { X86::CMOVO16rr,  X86::CMOVO32rr,  X86::CMOVO64rr  },
2716    { X86::CMOVP16rr,  X86::CMOVP32rr,  X86::CMOVP64rr  },
2717    { X86::CMOVS16rr,  X86::CMOVS32rr,  X86::CMOVS64rr  },
2718    { X86::CMOVA16rm,  X86::CMOVA32rm,  X86::CMOVA64rm  },
2719    { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
2720    { X86::CMOVB16rm,  X86::CMOVB32rm,  X86::CMOVB64rm  },
2721    { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
2722    { X86::CMOVE16rm,  X86::CMOVE32rm,  X86::CMOVE64rm  },
2723    { X86::CMOVG16rm,  X86::CMOVG32rm,  X86::CMOVG64rm  },
2724    { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
2725    { X86::CMOVL16rm,  X86::CMOVL32rm,  X86::CMOVL64rm  },
2726    { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
2727    { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
2728    { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
2729    { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
2730    { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
2731    { X86::CMOVO16rm,  X86::CMOVO32rm,  X86::CMOVO64rm  },
2732    { X86::CMOVP16rm,  X86::CMOVP32rm,  X86::CMOVP64rm  },
2733    { X86::CMOVS16rm,  X86::CMOVS32rm,  X86::CMOVS64rm  }
2734  };
2735
2736  assert(CC < 16 && "Can only handle standard cond codes");
2737  unsigned Idx = HasMemoryOperand ? 16+CC : CC;
2738  switch(RegBytes) {
2739  default: llvm_unreachable("Illegal register size!");
2740  case 2: return Opc[Idx][0];
2741  case 4: return Opc[Idx][1];
2742  case 8: return Opc[Idx][2];
2743  }
2744}
2745
2746bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
2747  if (!MI->isTerminator()) return false;
2748
2749  // Conditional branch is a special case.
2750  if (MI->isBranch() && !MI->isBarrier())
2751    return true;
2752  if (!MI->isPredicable())
2753    return true;
2754  return !isPredicated(MI);
2755}
2756
2757bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
2758                                 MachineBasicBlock *&TBB,
2759                                 MachineBasicBlock *&FBB,
2760                                 SmallVectorImpl<MachineOperand> &Cond,
2761                                 bool AllowModify) const {
2762  // Start from the bottom of the block and work up, examining the
2763  // terminator instructions.
2764  MachineBasicBlock::iterator I = MBB.end();
2765  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2766  while (I != MBB.begin()) {
2767    --I;
2768    if (I->isDebugValue())
2769      continue;
2770
2771    // Working from the bottom, when we see a non-terminator instruction, we're
2772    // done.
2773    if (!isUnpredicatedTerminator(I))
2774      break;
2775
2776    // A terminator that isn't a branch can't easily be handled by this
2777    // analysis.
2778    if (!I->isBranch())
2779      return true;
2780
2781    // Handle unconditional branches.
2782    if (I->getOpcode() == X86::JMP_4) {
2783      UnCondBrIter = I;
2784
2785      if (!AllowModify) {
2786        TBB = I->getOperand(0).getMBB();
2787        continue;
2788      }
2789
2790      // If the block has any instructions after a JMP, delete them.
2791      while (std::next(I) != MBB.end())
2792        std::next(I)->eraseFromParent();
2793
2794      Cond.clear();
2795      FBB = nullptr;
2796
2797      // Delete the JMP if it's equivalent to a fall-through.
2798      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2799        TBB = nullptr;
2800        I->eraseFromParent();
2801        I = MBB.end();
2802        UnCondBrIter = MBB.end();
2803        continue;
2804      }
2805
2806      // TBB is used to indicate the unconditional destination.
2807      TBB = I->getOperand(0).getMBB();
2808      continue;
2809    }
2810
2811    // Handle conditional branches.
2812    X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
2813    if (BranchCode == X86::COND_INVALID)
2814      return true;  // Can't handle indirect branch.
2815
2816    // Working from the bottom, handle the first conditional branch.
2817    if (Cond.empty()) {
2818      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2819      if (AllowModify && UnCondBrIter != MBB.end() &&
2820          MBB.isLayoutSuccessor(TargetBB)) {
2821        // If we can modify the code and it ends in something like:
2822        //
2823        //     jCC L1
2824        //     jmp L2
2825        //   L1:
2826        //     ...
2827        //   L2:
2828        //
2829        // Then we can change this to:
2830        //
2831        //     jnCC L2
2832        //   L1:
2833        //     ...
2834        //   L2:
2835        //
2836        // Which is a bit more efficient.
2837        // We conditionally jump to the fall-through block.
2838        BranchCode = GetOppositeBranchCondition(BranchCode);
2839        unsigned JNCC = GetCondBranchFromCond(BranchCode);
2840        MachineBasicBlock::iterator OldInst = I;
2841
2842        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
2843          .addMBB(UnCondBrIter->getOperand(0).getMBB());
2844        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
2845          .addMBB(TargetBB);
2846
2847        OldInst->eraseFromParent();
2848        UnCondBrIter->eraseFromParent();
2849
2850        // Restart the analysis.
2851        UnCondBrIter = MBB.end();
2852        I = MBB.end();
2853        continue;
2854      }
2855
2856      FBB = TBB;
2857      TBB = I->getOperand(0).getMBB();
2858      Cond.push_back(MachineOperand::CreateImm(BranchCode));
2859      continue;
2860    }
2861
2862    // Handle subsequent conditional branches. Only handle the case where all
2863    // conditional branches branch to the same destination and their condition
2864    // opcodes fit one of the special multi-branch idioms.
2865    assert(Cond.size() == 1);
2866    assert(TBB);
2867
2868    // Only handle the case where all conditional branches branch to the same
2869    // destination.
2870    if (TBB != I->getOperand(0).getMBB())
2871      return true;
2872
2873    // If the conditions are the same, we can leave them alone.
2874    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
2875    if (OldBranchCode == BranchCode)
2876      continue;
2877
2878    // If they differ, see if they fit one of the known patterns. Theoretically,
2879    // we could handle more patterns here, but we shouldn't expect to see them
2880    // if instruction selection has done a reasonable job.
2881    if ((OldBranchCode == X86::COND_NP &&
2882         BranchCode == X86::COND_E) ||
2883        (OldBranchCode == X86::COND_E &&
2884         BranchCode == X86::COND_NP))
2885      BranchCode = X86::COND_NP_OR_E;
2886    else if ((OldBranchCode == X86::COND_P &&
2887              BranchCode == X86::COND_NE) ||
2888             (OldBranchCode == X86::COND_NE &&
2889              BranchCode == X86::COND_P))
2890      BranchCode = X86::COND_NE_OR_P;
2891    else
2892      return true;
2893
2894    // Update the MachineOperand.
2895    Cond[0].setImm(BranchCode);
2896  }
2897
2898  return false;
2899}
2900
2901unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
2902  MachineBasicBlock::iterator I = MBB.end();
2903  unsigned Count = 0;
2904
2905  while (I != MBB.begin()) {
2906    --I;
2907    if (I->isDebugValue())
2908      continue;
2909    if (I->getOpcode() != X86::JMP_4 &&
2910        getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
2911      break;
2912    // Remove the branch.
2913    I->eraseFromParent();
2914    I = MBB.end();
2915    ++Count;
2916  }
2917
2918  return Count;
2919}
2920
2921unsigned
2922X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
2923                           MachineBasicBlock *FBB,
2924                           const SmallVectorImpl<MachineOperand> &Cond,
2925                           DebugLoc DL) const {
2926  // Shouldn't be a fall through.
2927  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
2928  assert((Cond.size() == 1 || Cond.size() == 0) &&
2929         "X86 branch conditions have one component!");
2930
2931  if (Cond.empty()) {
2932    // Unconditional branch?
2933    assert(!FBB && "Unconditional branch with multiple successors!");
2934    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
2935    return 1;
2936  }
2937
2938  // Conditional branch.
2939  unsigned Count = 0;
2940  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2941  switch (CC) {
2942  case X86::COND_NP_OR_E:
2943    // Synthesize NP_OR_E with two branches.
2944    BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
2945    ++Count;
2946    BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
2947    ++Count;
2948    break;
2949  case X86::COND_NE_OR_P:
2950    // Synthesize NE_OR_P with two branches.
2951    BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
2952    ++Count;
2953    BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
2954    ++Count;
2955    break;
2956  default: {
2957    unsigned Opc = GetCondBranchFromCond(CC);
2958    BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
2959    ++Count;
2960  }
2961  }
2962  if (FBB) {
2963    // Two-way Conditional branch. Insert the second branch.
2964    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
2965    ++Count;
2966  }
2967  return Count;
2968}
2969
2970bool X86InstrInfo::
2971canInsertSelect(const MachineBasicBlock &MBB,
2972                const SmallVectorImpl<MachineOperand> &Cond,
2973                unsigned TrueReg, unsigned FalseReg,
2974                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
2975  // Not all subtargets have cmov instructions.
2976  if (!Subtarget.hasCMov())
2977    return false;
2978  if (Cond.size() != 1)
2979    return false;
2980  // We cannot do the composite conditions, at least not in SSA form.
2981  if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
2982    return false;
2983
2984  // Check register classes.
2985  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2986  const TargetRegisterClass *RC =
2987    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
2988  if (!RC)
2989    return false;
2990
2991  // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2992  if (X86::GR16RegClass.hasSubClassEq(RC) ||
2993      X86::GR32RegClass.hasSubClassEq(RC) ||
2994      X86::GR64RegClass.hasSubClassEq(RC)) {
2995    // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2996    // Bridge. Probably Ivy Bridge as well.
2997    CondCycles = 2;
2998    TrueCycles = 2;
2999    FalseCycles = 2;
3000    return true;
3001  }
3002
3003  // Can't do vectors.
3004  return false;
3005}
3006
3007void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
3008                                MachineBasicBlock::iterator I, DebugLoc DL,
3009                                unsigned DstReg,
3010                                const SmallVectorImpl<MachineOperand> &Cond,
3011                                unsigned TrueReg, unsigned FalseReg) const {
3012   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3013   assert(Cond.size() == 1 && "Invalid Cond array");
3014   unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
3015                                  MRI.getRegClass(DstReg)->getSize(),
3016                                  false/*HasMemoryOperand*/);
3017   BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
3018}
3019
3020/// isHReg - Test if the given register is a physical h register.
3021static bool isHReg(unsigned Reg) {
3022  return X86::GR8_ABCD_HRegClass.contains(Reg);
3023}
3024
3025// Try and copy between VR128/VR64 and GR64 registers.
3026static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
3027                                        const X86Subtarget &Subtarget) {
3028
3029  // SrcReg(VR128) -> DestReg(GR64)
3030  // SrcReg(VR64)  -> DestReg(GR64)
3031  // SrcReg(GR64)  -> DestReg(VR128)
3032  // SrcReg(GR64)  -> DestReg(VR64)
3033
3034  bool HasAVX = Subtarget.hasAVX();
3035  bool HasAVX512 = Subtarget.hasAVX512();
3036  if (X86::GR64RegClass.contains(DestReg)) {
3037    if (X86::VR128XRegClass.contains(SrcReg))
3038      // Copy from a VR128 register to a GR64 register.
3039      return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr :
3040                                               X86::MOVPQIto64rr);
3041    if (X86::VR64RegClass.contains(SrcReg))
3042      // Copy from a VR64 register to a GR64 register.
3043      return X86::MOVSDto64rr;
3044  } else if (X86::GR64RegClass.contains(SrcReg)) {
3045    // Copy from a GR64 register to a VR128 register.
3046    if (X86::VR128XRegClass.contains(DestReg))
3047      return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr :
3048                                               X86::MOV64toPQIrr);
3049    // Copy from a GR64 register to a VR64 register.
3050    if (X86::VR64RegClass.contains(DestReg))
3051      return X86::MOV64toSDrr;
3052  }
3053
3054  // SrcReg(FR32) -> DestReg(GR32)
3055  // SrcReg(GR32) -> DestReg(FR32)
3056
3057  if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg))
3058    // Copy from a FR32 register to a GR32 register.
3059    return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr);
3060
3061  if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
3062    // Copy from a GR32 register to a FR32 register.
3063    return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr);
3064  return 0;
3065}
3066
3067inline static bool MaskRegClassContains(unsigned Reg) {
3068  return X86::VK8RegClass.contains(Reg) ||
3069         X86::VK16RegClass.contains(Reg) ||
3070         X86::VK1RegClass.contains(Reg);
3071}
3072static
3073unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg) {
3074  if (X86::VR128XRegClass.contains(DestReg, SrcReg) ||
3075      X86::VR256XRegClass.contains(DestReg, SrcReg) ||
3076      X86::VR512RegClass.contains(DestReg, SrcReg)) {
3077     DestReg = get512BitSuperRegister(DestReg);
3078     SrcReg = get512BitSuperRegister(SrcReg);
3079     return X86::VMOVAPSZrr;
3080  }
3081  if (MaskRegClassContains(DestReg) &&
3082      MaskRegClassContains(SrcReg))
3083    return X86::KMOVWkk;
3084  if (MaskRegClassContains(DestReg) &&
3085      (X86::GR32RegClass.contains(SrcReg) ||
3086       X86::GR16RegClass.contains(SrcReg) ||
3087       X86::GR8RegClass.contains(SrcReg))) {
3088    SrcReg = getX86SubSuperRegister(SrcReg, MVT::i32);
3089    return X86::KMOVWkr;
3090  }
3091  if ((X86::GR32RegClass.contains(DestReg) ||
3092       X86::GR16RegClass.contains(DestReg) ||
3093       X86::GR8RegClass.contains(DestReg)) &&
3094       MaskRegClassContains(SrcReg)) {
3095    DestReg = getX86SubSuperRegister(DestReg, MVT::i32);
3096    return X86::KMOVWrk;
3097  }
3098  return 0;
3099}
3100
3101void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3102                               MachineBasicBlock::iterator MI, DebugLoc DL,
3103                               unsigned DestReg, unsigned SrcReg,
3104                               bool KillSrc) const {
3105  // First deal with the normal symmetric copies.
3106  bool HasAVX = Subtarget.hasAVX();
3107  bool HasAVX512 = Subtarget.hasAVX512();
3108  unsigned Opc = 0;
3109  if (X86::GR64RegClass.contains(DestReg, SrcReg))
3110    Opc = X86::MOV64rr;
3111  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3112    Opc = X86::MOV32rr;
3113  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3114    Opc = X86::MOV16rr;
3115  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3116    // Copying to or from a physical H register on x86-64 requires a NOREX
3117    // move.  Otherwise use a normal move.
3118    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3119        Subtarget.is64Bit()) {
3120      Opc = X86::MOV8rr_NOREX;
3121      // Both operands must be encodable without an REX prefix.
3122      assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3123             "8-bit H register can not be copied outside GR8_NOREX");
3124    } else
3125      Opc = X86::MOV8rr;
3126  }
3127  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3128    Opc = X86::MMX_MOVQ64rr;
3129  else if (HasAVX512)
3130    Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg);
3131  else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3132    Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3133  else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3134    Opc = X86::VMOVAPSYrr;
3135  if (!Opc)
3136    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3137
3138  if (Opc) {
3139    BuildMI(MBB, MI, DL, get(Opc), DestReg)
3140      .addReg(SrcReg, getKillRegState(KillSrc));
3141    return;
3142  }
3143
3144  // Moving EFLAGS to / from another register requires a push and a pop.
3145  // Notice that we have to adjust the stack if we don't want to clobber the
3146  // first frame index. See X86FrameLowering.cpp - colobbersTheStack.
3147  if (SrcReg == X86::EFLAGS) {
3148    if (X86::GR64RegClass.contains(DestReg)) {
3149      BuildMI(MBB, MI, DL, get(X86::PUSHF64));
3150      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
3151      return;
3152    }
3153    if (X86::GR32RegClass.contains(DestReg)) {
3154      BuildMI(MBB, MI, DL, get(X86::PUSHF32));
3155      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
3156      return;
3157    }
3158  }
3159  if (DestReg == X86::EFLAGS) {
3160    if (X86::GR64RegClass.contains(SrcReg)) {
3161      BuildMI(MBB, MI, DL, get(X86::PUSH64r))
3162        .addReg(SrcReg, getKillRegState(KillSrc));
3163      BuildMI(MBB, MI, DL, get(X86::POPF64));
3164      return;
3165    }
3166    if (X86::GR32RegClass.contains(SrcReg)) {
3167      BuildMI(MBB, MI, DL, get(X86::PUSH32r))
3168        .addReg(SrcReg, getKillRegState(KillSrc));
3169      BuildMI(MBB, MI, DL, get(X86::POPF32));
3170      return;
3171    }
3172  }
3173
3174  DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
3175               << " to " << RI.getName(DestReg) << '\n');
3176  llvm_unreachable("Cannot emit physreg copy instruction");
3177}
3178
3179static unsigned getLoadStoreRegOpcode(unsigned Reg,
3180                                      const TargetRegisterClass *RC,
3181                                      bool isStackAligned,
3182                                      const X86Subtarget &STI,
3183                                      bool load) {
3184  if (STI.hasAVX512()) {
3185    if (X86::VK8RegClass.hasSubClassEq(RC)  ||
3186      X86::VK16RegClass.hasSubClassEq(RC))
3187      return load ? X86::KMOVWkm : X86::KMOVWmk;
3188    if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC))
3189      return load ? X86::VMOVSSZrm : X86::VMOVSSZmr;
3190    if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC))
3191      return load ? X86::VMOVSDZrm : X86::VMOVSDZmr;
3192    if (X86::VR512RegClass.hasSubClassEq(RC))
3193      return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3194  }
3195
3196  bool HasAVX = STI.hasAVX();
3197  switch (RC->getSize()) {
3198  default:
3199    llvm_unreachable("Unknown spill size");
3200  case 1:
3201    assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3202    if (STI.is64Bit())
3203      // Copying to or from a physical H register on x86-64 requires a NOREX
3204      // move.  Otherwise use a normal move.
3205      if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3206        return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3207    return load ? X86::MOV8rm : X86::MOV8mr;
3208  case 2:
3209    assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3210    return load ? X86::MOV16rm : X86::MOV16mr;
3211  case 4:
3212    if (X86::GR32RegClass.hasSubClassEq(RC))
3213      return load ? X86::MOV32rm : X86::MOV32mr;
3214    if (X86::FR32RegClass.hasSubClassEq(RC))
3215      return load ?
3216        (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
3217        (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
3218    if (X86::RFP32RegClass.hasSubClassEq(RC))
3219      return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3220    llvm_unreachable("Unknown 4-byte regclass");
3221  case 8:
3222    if (X86::GR64RegClass.hasSubClassEq(RC))
3223      return load ? X86::MOV64rm : X86::MOV64mr;
3224    if (X86::FR64RegClass.hasSubClassEq(RC))
3225      return load ?
3226        (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
3227        (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
3228    if (X86::VR64RegClass.hasSubClassEq(RC))
3229      return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3230    if (X86::RFP64RegClass.hasSubClassEq(RC))
3231      return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3232    llvm_unreachable("Unknown 8-byte regclass");
3233  case 10:
3234    assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3235    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3236  case 16: {
3237    assert((X86::VR128RegClass.hasSubClassEq(RC) ||
3238            X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass");
3239    // If stack is realigned we can use aligned stores.
3240    if (isStackAligned)
3241      return load ?
3242        (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
3243        (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
3244    else
3245      return load ?
3246        (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
3247        (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
3248  }
3249  case 32:
3250    assert((X86::VR256RegClass.hasSubClassEq(RC) ||
3251            X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass");
3252    // If stack is realigned we can use aligned stores.
3253    if (isStackAligned)
3254      return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
3255    else
3256      return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
3257  case 64:
3258    assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3259    if (isStackAligned)
3260      return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3261    else
3262      return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3263  }
3264}
3265
3266static unsigned getStoreRegOpcode(unsigned SrcReg,
3267                                  const TargetRegisterClass *RC,
3268                                  bool isStackAligned,
3269                                  const X86Subtarget &STI) {
3270  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
3271}
3272
3273
3274static unsigned getLoadRegOpcode(unsigned DestReg,
3275                                 const TargetRegisterClass *RC,
3276                                 bool isStackAligned,
3277                                 const X86Subtarget &STI) {
3278  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
3279}
3280
3281void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3282                                       MachineBasicBlock::iterator MI,
3283                                       unsigned SrcReg, bool isKill, int FrameIdx,
3284                                       const TargetRegisterClass *RC,
3285                                       const TargetRegisterInfo *TRI) const {
3286  const MachineFunction &MF = *MBB.getParent();
3287  assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
3288         "Stack slot too small for store");
3289  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
3290  bool isAligned =
3291      (MF.getTarget().getFrameLowering()->getStackAlignment() >= Alignment) ||
3292      RI.canRealignStack(MF);
3293  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3294  DebugLoc DL = MBB.findDebugLoc(MI);
3295  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
3296    .addReg(SrcReg, getKillRegState(isKill));
3297}
3298
3299void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
3300                                  bool isKill,
3301                                  SmallVectorImpl<MachineOperand> &Addr,
3302                                  const TargetRegisterClass *RC,
3303                                  MachineInstr::mmo_iterator MMOBegin,
3304                                  MachineInstr::mmo_iterator MMOEnd,
3305                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
3306  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
3307  bool isAligned = MMOBegin != MMOEnd &&
3308                   (*MMOBegin)->getAlignment() >= Alignment;
3309  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3310  DebugLoc DL;
3311  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
3312  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3313    MIB.addOperand(Addr[i]);
3314  MIB.addReg(SrcReg, getKillRegState(isKill));
3315  (*MIB).setMemRefs(MMOBegin, MMOEnd);
3316  NewMIs.push_back(MIB);
3317}
3318
3319
3320void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3321                                        MachineBasicBlock::iterator MI,
3322                                        unsigned DestReg, int FrameIdx,
3323                                        const TargetRegisterClass *RC,
3324                                        const TargetRegisterInfo *TRI) const {
3325  const MachineFunction &MF = *MBB.getParent();
3326  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
3327  bool isAligned =
3328      (MF.getTarget().getFrameLowering()->getStackAlignment() >= Alignment) ||
3329      RI.canRealignStack(MF);
3330  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3331  DebugLoc DL = MBB.findDebugLoc(MI);
3332  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
3333}
3334
3335void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
3336                                 SmallVectorImpl<MachineOperand> &Addr,
3337                                 const TargetRegisterClass *RC,
3338                                 MachineInstr::mmo_iterator MMOBegin,
3339                                 MachineInstr::mmo_iterator MMOEnd,
3340                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
3341  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
3342  bool isAligned = MMOBegin != MMOEnd &&
3343                   (*MMOBegin)->getAlignment() >= Alignment;
3344  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3345  DebugLoc DL;
3346  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
3347  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3348    MIB.addOperand(Addr[i]);
3349  (*MIB).setMemRefs(MMOBegin, MMOEnd);
3350  NewMIs.push_back(MIB);
3351}
3352
3353bool X86InstrInfo::
3354analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
3355               int &CmpMask, int &CmpValue) const {
3356  switch (MI->getOpcode()) {
3357  default: break;
3358  case X86::CMP64ri32:
3359  case X86::CMP64ri8:
3360  case X86::CMP32ri:
3361  case X86::CMP32ri8:
3362  case X86::CMP16ri:
3363  case X86::CMP16ri8:
3364  case X86::CMP8ri:
3365    SrcReg = MI->getOperand(0).getReg();
3366    SrcReg2 = 0;
3367    CmpMask = ~0;
3368    CmpValue = MI->getOperand(1).getImm();
3369    return true;
3370  // A SUB can be used to perform comparison.
3371  case X86::SUB64rm:
3372  case X86::SUB32rm:
3373  case X86::SUB16rm:
3374  case X86::SUB8rm:
3375    SrcReg = MI->getOperand(1).getReg();
3376    SrcReg2 = 0;
3377    CmpMask = ~0;
3378    CmpValue = 0;
3379    return true;
3380  case X86::SUB64rr:
3381  case X86::SUB32rr:
3382  case X86::SUB16rr:
3383  case X86::SUB8rr:
3384    SrcReg = MI->getOperand(1).getReg();
3385    SrcReg2 = MI->getOperand(2).getReg();
3386    CmpMask = ~0;
3387    CmpValue = 0;
3388    return true;
3389  case X86::SUB64ri32:
3390  case X86::SUB64ri8:
3391  case X86::SUB32ri:
3392  case X86::SUB32ri8:
3393  case X86::SUB16ri:
3394  case X86::SUB16ri8:
3395  case X86::SUB8ri:
3396    SrcReg = MI->getOperand(1).getReg();
3397    SrcReg2 = 0;
3398    CmpMask = ~0;
3399    CmpValue = MI->getOperand(2).getImm();
3400    return true;
3401  case X86::CMP64rr:
3402  case X86::CMP32rr:
3403  case X86::CMP16rr:
3404  case X86::CMP8rr:
3405    SrcReg = MI->getOperand(0).getReg();
3406    SrcReg2 = MI->getOperand(1).getReg();
3407    CmpMask = ~0;
3408    CmpValue = 0;
3409    return true;
3410  case X86::TEST8rr:
3411  case X86::TEST16rr:
3412  case X86::TEST32rr:
3413  case X86::TEST64rr:
3414    SrcReg = MI->getOperand(0).getReg();
3415    if (MI->getOperand(1).getReg() != SrcReg) return false;
3416    // Compare against zero.
3417    SrcReg2 = 0;
3418    CmpMask = ~0;
3419    CmpValue = 0;
3420    return true;
3421  }
3422  return false;
3423}
3424
3425/// isRedundantFlagInstr - check whether the first instruction, whose only
3426/// purpose is to update flags, can be made redundant.
3427/// CMPrr can be made redundant by SUBrr if the operands are the same.
3428/// This function can be extended later on.
3429/// SrcReg, SrcRegs: register operands for FlagI.
3430/// ImmValue: immediate for FlagI if it takes an immediate.
3431inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
3432                                        unsigned SrcReg2, int ImmValue,
3433                                        MachineInstr *OI) {
3434  if (((FlagI->getOpcode() == X86::CMP64rr &&
3435        OI->getOpcode() == X86::SUB64rr) ||
3436       (FlagI->getOpcode() == X86::CMP32rr &&
3437        OI->getOpcode() == X86::SUB32rr)||
3438       (FlagI->getOpcode() == X86::CMP16rr &&
3439        OI->getOpcode() == X86::SUB16rr)||
3440       (FlagI->getOpcode() == X86::CMP8rr &&
3441        OI->getOpcode() == X86::SUB8rr)) &&
3442      ((OI->getOperand(1).getReg() == SrcReg &&
3443        OI->getOperand(2).getReg() == SrcReg2) ||
3444       (OI->getOperand(1).getReg() == SrcReg2 &&
3445        OI->getOperand(2).getReg() == SrcReg)))
3446    return true;
3447
3448  if (((FlagI->getOpcode() == X86::CMP64ri32 &&
3449        OI->getOpcode() == X86::SUB64ri32) ||
3450       (FlagI->getOpcode() == X86::CMP64ri8 &&
3451        OI->getOpcode() == X86::SUB64ri8) ||
3452       (FlagI->getOpcode() == X86::CMP32ri &&
3453        OI->getOpcode() == X86::SUB32ri) ||
3454       (FlagI->getOpcode() == X86::CMP32ri8 &&
3455        OI->getOpcode() == X86::SUB32ri8) ||
3456       (FlagI->getOpcode() == X86::CMP16ri &&
3457        OI->getOpcode() == X86::SUB16ri) ||
3458       (FlagI->getOpcode() == X86::CMP16ri8 &&
3459        OI->getOpcode() == X86::SUB16ri8) ||
3460       (FlagI->getOpcode() == X86::CMP8ri &&
3461        OI->getOpcode() == X86::SUB8ri)) &&
3462      OI->getOperand(1).getReg() == SrcReg &&
3463      OI->getOperand(2).getImm() == ImmValue)
3464    return true;
3465  return false;
3466}
3467
3468/// isDefConvertible - check whether the definition can be converted
3469/// to remove a comparison against zero.
3470inline static bool isDefConvertible(MachineInstr *MI) {
3471  switch (MI->getOpcode()) {
3472  default: return false;
3473
3474  // The shift instructions only modify ZF if their shift count is non-zero.
3475  // N.B.: The processor truncates the shift count depending on the encoding.
3476  case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
3477  case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
3478     return getTruncatedShiftCount(MI, 2) != 0;
3479
3480  // Some left shift instructions can be turned into LEA instructions but only
3481  // if their flags aren't used. Avoid transforming such instructions.
3482  case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
3483    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
3484    if (isTruncatedShiftCountForLEA(ShAmt)) return false;
3485    return ShAmt != 0;
3486  }
3487
3488  case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
3489  case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
3490     return getTruncatedShiftCount(MI, 3) != 0;
3491
3492  case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
3493  case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
3494  case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
3495  case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
3496  case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
3497  case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
3498  case X86::DEC64_32r: case X86::DEC64_16r:
3499  case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
3500  case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
3501  case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
3502  case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
3503  case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
3504  case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
3505  case X86::INC64_32r: case X86::INC64_16r:
3506  case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
3507  case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
3508  case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
3509  case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
3510  case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
3511  case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
3512  case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
3513  case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
3514  case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
3515  case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
3516  case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
3517  case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
3518  case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
3519  case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
3520  case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
3521  case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
3522  case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
3523  case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
3524  case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
3525  case X86::ADC32ri:   case X86::ADC32ri8:
3526  case X86::ADC32rr:   case X86::ADC64ri32:
3527  case X86::ADC64ri8:  case X86::ADC64rr:
3528  case X86::SBB32ri:   case X86::SBB32ri8:
3529  case X86::SBB32rr:   case X86::SBB64ri32:
3530  case X86::SBB64ri8:  case X86::SBB64rr:
3531  case X86::ANDN32rr:  case X86::ANDN32rm:
3532  case X86::ANDN64rr:  case X86::ANDN64rm:
3533  case X86::BEXTR32rr: case X86::BEXTR64rr:
3534  case X86::BEXTR32rm: case X86::BEXTR64rm:
3535  case X86::BLSI32rr:  case X86::BLSI32rm:
3536  case X86::BLSI64rr:  case X86::BLSI64rm:
3537  case X86::BLSMSK32rr:case X86::BLSMSK32rm:
3538  case X86::BLSMSK64rr:case X86::BLSMSK64rm:
3539  case X86::BLSR32rr:  case X86::BLSR32rm:
3540  case X86::BLSR64rr:  case X86::BLSR64rm:
3541  case X86::BZHI32rr:  case X86::BZHI32rm:
3542  case X86::BZHI64rr:  case X86::BZHI64rm:
3543  case X86::LZCNT16rr: case X86::LZCNT16rm:
3544  case X86::LZCNT32rr: case X86::LZCNT32rm:
3545  case X86::LZCNT64rr: case X86::LZCNT64rm:
3546  case X86::POPCNT16rr:case X86::POPCNT16rm:
3547  case X86::POPCNT32rr:case X86::POPCNT32rm:
3548  case X86::POPCNT64rr:case X86::POPCNT64rm:
3549  case X86::TZCNT16rr: case X86::TZCNT16rm:
3550  case X86::TZCNT32rr: case X86::TZCNT32rm:
3551  case X86::TZCNT64rr: case X86::TZCNT64rm:
3552    return true;
3553  }
3554}
3555
3556/// isUseDefConvertible - check whether the use can be converted
3557/// to remove a comparison against zero.
3558static X86::CondCode isUseDefConvertible(MachineInstr *MI) {
3559  switch (MI->getOpcode()) {
3560  default: return X86::COND_INVALID;
3561  case X86::LZCNT16rr: case X86::LZCNT16rm:
3562  case X86::LZCNT32rr: case X86::LZCNT32rm:
3563  case X86::LZCNT64rr: case X86::LZCNT64rm:
3564    return X86::COND_B;
3565  case X86::POPCNT16rr:case X86::POPCNT16rm:
3566  case X86::POPCNT32rr:case X86::POPCNT32rm:
3567  case X86::POPCNT64rr:case X86::POPCNT64rm:
3568    return X86::COND_E;
3569  case X86::TZCNT16rr: case X86::TZCNT16rm:
3570  case X86::TZCNT32rr: case X86::TZCNT32rm:
3571  case X86::TZCNT64rr: case X86::TZCNT64rm:
3572    return X86::COND_B;
3573  }
3574}
3575
3576/// optimizeCompareInstr - Check if there exists an earlier instruction that
3577/// operates on the same source operands and sets flags in the same way as
3578/// Compare; remove Compare if possible.
3579bool X86InstrInfo::
3580optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
3581                     int CmpMask, int CmpValue,
3582                     const MachineRegisterInfo *MRI) const {
3583  // Check whether we can replace SUB with CMP.
3584  unsigned NewOpcode = 0;
3585  switch (CmpInstr->getOpcode()) {
3586  default: break;
3587  case X86::SUB64ri32:
3588  case X86::SUB64ri8:
3589  case X86::SUB32ri:
3590  case X86::SUB32ri8:
3591  case X86::SUB16ri:
3592  case X86::SUB16ri8:
3593  case X86::SUB8ri:
3594  case X86::SUB64rm:
3595  case X86::SUB32rm:
3596  case X86::SUB16rm:
3597  case X86::SUB8rm:
3598  case X86::SUB64rr:
3599  case X86::SUB32rr:
3600  case X86::SUB16rr:
3601  case X86::SUB8rr: {
3602    if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
3603      return false;
3604    // There is no use of the destination register, we can replace SUB with CMP.
3605    switch (CmpInstr->getOpcode()) {
3606    default: llvm_unreachable("Unreachable!");
3607    case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
3608    case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
3609    case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
3610    case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
3611    case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
3612    case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
3613    case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
3614    case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
3615    case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
3616    case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
3617    case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
3618    case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
3619    case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
3620    case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
3621    case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
3622    }
3623    CmpInstr->setDesc(get(NewOpcode));
3624    CmpInstr->RemoveOperand(0);
3625    // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3626    if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
3627        NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
3628      return false;
3629  }
3630  }
3631
3632  // Get the unique definition of SrcReg.
3633  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3634  if (!MI) return false;
3635
3636  // CmpInstr is the first instruction of the BB.
3637  MachineBasicBlock::iterator I = CmpInstr, Def = MI;
3638
3639  // If we are comparing against zero, check whether we can use MI to update
3640  // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3641  bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
3642  if (IsCmpZero && MI->getParent() != CmpInstr->getParent())
3643    return false;
3644
3645  // If we have a use of the source register between the def and our compare
3646  // instruction we can eliminate the compare iff the use sets EFLAGS in the
3647  // right way.
3648  bool ShouldUpdateCC = false;
3649  X86::CondCode NewCC = X86::COND_INVALID;
3650  if (IsCmpZero && !isDefConvertible(MI)) {
3651    // Scan forward from the use until we hit the use we're looking for or the
3652    // compare instruction.
3653    for (MachineBasicBlock::iterator J = MI;; ++J) {
3654      // Do we have a convertible instruction?
3655      NewCC = isUseDefConvertible(J);
3656      if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
3657          J->getOperand(1).getReg() == SrcReg) {
3658        assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
3659        ShouldUpdateCC = true; // Update CC later on.
3660        // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
3661        // with the new def.
3662        MI = Def = J;
3663        break;
3664      }
3665
3666      if (J == I)
3667        return false;
3668    }
3669  }
3670
3671  // We are searching for an earlier instruction that can make CmpInstr
3672  // redundant and that instruction will be saved in Sub.
3673  MachineInstr *Sub = nullptr;
3674  const TargetRegisterInfo *TRI = &getRegisterInfo();
3675
3676  // We iterate backward, starting from the instruction before CmpInstr and
3677  // stop when reaching the definition of a source register or done with the BB.
3678  // RI points to the instruction before CmpInstr.
3679  // If the definition is in this basic block, RE points to the definition;
3680  // otherwise, RE is the rend of the basic block.
3681  MachineBasicBlock::reverse_iterator
3682      RI = MachineBasicBlock::reverse_iterator(I),
3683      RE = CmpInstr->getParent() == MI->getParent() ?
3684           MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
3685           CmpInstr->getParent()->rend();
3686  MachineInstr *Movr0Inst = nullptr;
3687  for (; RI != RE; ++RI) {
3688    MachineInstr *Instr = &*RI;
3689    // Check whether CmpInstr can be made redundant by the current instruction.
3690    if (!IsCmpZero &&
3691        isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
3692      Sub = Instr;
3693      break;
3694    }
3695
3696    if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
3697        Instr->readsRegister(X86::EFLAGS, TRI)) {
3698      // This instruction modifies or uses EFLAGS.
3699
3700      // MOV32r0 etc. are implemented with xor which clobbers condition code.
3701      // They are safe to move up, if the definition to EFLAGS is dead and
3702      // earlier instructions do not read or write EFLAGS.
3703      if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 &&
3704          Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
3705        Movr0Inst = Instr;
3706        continue;
3707      }
3708
3709      // We can't remove CmpInstr.
3710      return false;
3711    }
3712  }
3713
3714  // Return false if no candidates exist.
3715  if (!IsCmpZero && !Sub)
3716    return false;
3717
3718  bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
3719                    Sub->getOperand(2).getReg() == SrcReg);
3720
3721  // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
3722  // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3723  // If we are done with the basic block, we need to check whether EFLAGS is
3724  // live-out.
3725  bool IsSafe = false;
3726  SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
3727  MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
3728  for (++I; I != E; ++I) {
3729    const MachineInstr &Instr = *I;
3730    bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
3731    bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
3732    // We should check the usage if this instruction uses and updates EFLAGS.
3733    if (!UseEFLAGS && ModifyEFLAGS) {
3734      // It is safe to remove CmpInstr if EFLAGS is updated again.
3735      IsSafe = true;
3736      break;
3737    }
3738    if (!UseEFLAGS && !ModifyEFLAGS)
3739      continue;
3740
3741    // EFLAGS is used by this instruction.
3742    X86::CondCode OldCC = X86::COND_INVALID;
3743    bool OpcIsSET = false;
3744    if (IsCmpZero || IsSwapped) {
3745      // We decode the condition code from opcode.
3746      if (Instr.isBranch())
3747        OldCC = getCondFromBranchOpc(Instr.getOpcode());
3748      else {
3749        OldCC = getCondFromSETOpc(Instr.getOpcode());
3750        if (OldCC != X86::COND_INVALID)
3751          OpcIsSET = true;
3752        else
3753          OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
3754      }
3755      if (OldCC == X86::COND_INVALID) return false;
3756    }
3757    if (IsCmpZero) {
3758      switch (OldCC) {
3759      default: break;
3760      case X86::COND_A: case X86::COND_AE:
3761      case X86::COND_B: case X86::COND_BE:
3762      case X86::COND_G: case X86::COND_GE:
3763      case X86::COND_L: case X86::COND_LE:
3764      case X86::COND_O: case X86::COND_NO:
3765        // CF and OF are used, we can't perform this optimization.
3766        return false;
3767      }
3768
3769      // If we're updating the condition code check if we have to reverse the
3770      // condition.
3771      if (ShouldUpdateCC)
3772        switch (OldCC) {
3773        default:
3774          return false;
3775        case X86::COND_E:
3776          break;
3777        case X86::COND_NE:
3778          NewCC = GetOppositeBranchCondition(NewCC);
3779          break;
3780        }
3781    } else if (IsSwapped) {
3782      // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3783      // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3784      // We swap the condition code and synthesize the new opcode.
3785      NewCC = getSwappedCondition(OldCC);
3786      if (NewCC == X86::COND_INVALID) return false;
3787    }
3788
3789    if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) {
3790      // Synthesize the new opcode.
3791      bool HasMemoryOperand = Instr.hasOneMemOperand();
3792      unsigned NewOpc;
3793      if (Instr.isBranch())
3794        NewOpc = GetCondBranchFromCond(NewCC);
3795      else if(OpcIsSET)
3796        NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
3797      else {
3798        unsigned DstReg = Instr.getOperand(0).getReg();
3799        NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
3800                                 HasMemoryOperand);
3801      }
3802
3803      // Push the MachineInstr to OpsToUpdate.
3804      // If it is safe to remove CmpInstr, the condition code of these
3805      // instructions will be modified.
3806      OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
3807    }
3808    if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
3809      // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
3810      IsSafe = true;
3811      break;
3812    }
3813  }
3814
3815  // If EFLAGS is not killed nor re-defined, we should check whether it is
3816  // live-out. If it is live-out, do not optimize.
3817  if ((IsCmpZero || IsSwapped) && !IsSafe) {
3818    MachineBasicBlock *MBB = CmpInstr->getParent();
3819    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
3820             SE = MBB->succ_end(); SI != SE; ++SI)
3821      if ((*SI)->isLiveIn(X86::EFLAGS))
3822        return false;
3823  }
3824
3825  // The instruction to be updated is either Sub or MI.
3826  Sub = IsCmpZero ? MI : Sub;
3827  // Move Movr0Inst to the appropriate place before Sub.
3828  if (Movr0Inst) {
3829    // Look backwards until we find a def that doesn't use the current EFLAGS.
3830    Def = Sub;
3831    MachineBasicBlock::reverse_iterator
3832      InsertI = MachineBasicBlock::reverse_iterator(++Def),
3833                InsertE = Sub->getParent()->rend();
3834    for (; InsertI != InsertE; ++InsertI) {
3835      MachineInstr *Instr = &*InsertI;
3836      if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
3837          Instr->modifiesRegister(X86::EFLAGS, TRI)) {
3838        Sub->getParent()->remove(Movr0Inst);
3839        Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
3840                                   Movr0Inst);
3841        break;
3842      }
3843    }
3844    if (InsertI == InsertE)
3845      return false;
3846  }
3847
3848  // Make sure Sub instruction defines EFLAGS and mark the def live.
3849  unsigned i = 0, e = Sub->getNumOperands();
3850  for (; i != e; ++i) {
3851    MachineOperand &MO = Sub->getOperand(i);
3852    if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
3853      MO.setIsDead(false);
3854      break;
3855    }
3856  }
3857  assert(i != e && "Unable to locate a def EFLAGS operand");
3858
3859  CmpInstr->eraseFromParent();
3860
3861  // Modify the condition code of instructions in OpsToUpdate.
3862  for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
3863    OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
3864  return true;
3865}
3866
3867/// optimizeLoadInstr - Try to remove the load by folding it to a register
3868/// operand at the use. We fold the load instructions if load defines a virtual
3869/// register, the virtual register is used once in the same BB, and the
3870/// instructions in-between do not load or store, and have no side effects.
3871MachineInstr* X86InstrInfo::
3872optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI,
3873                  unsigned &FoldAsLoadDefReg,
3874                  MachineInstr *&DefMI) const {
3875  if (FoldAsLoadDefReg == 0)
3876    return nullptr;
3877  // To be conservative, if there exists another load, clear the load candidate.
3878  if (MI->mayLoad()) {
3879    FoldAsLoadDefReg = 0;
3880    return nullptr;
3881  }
3882
3883  // Check whether we can move DefMI here.
3884  DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
3885  assert(DefMI);
3886  bool SawStore = false;
3887  if (!DefMI->isSafeToMove(this, nullptr, SawStore))
3888    return nullptr;
3889
3890  // We try to commute MI if possible.
3891  unsigned IdxEnd = (MI->isCommutable()) ? 2 : 1;
3892  for (unsigned Idx = 0; Idx < IdxEnd; Idx++) {
3893    // Collect information about virtual register operands of MI.
3894    unsigned SrcOperandId = 0;
3895    bool FoundSrcOperand = false;
3896    for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
3897      MachineOperand &MO = MI->getOperand(i);
3898      if (!MO.isReg())
3899        continue;
3900      unsigned Reg = MO.getReg();
3901      if (Reg != FoldAsLoadDefReg)
3902        continue;
3903      // Do not fold if we have a subreg use or a def or multiple uses.
3904      if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
3905        return nullptr;
3906
3907      SrcOperandId = i;
3908      FoundSrcOperand = true;
3909    }
3910    if (!FoundSrcOperand) return nullptr;
3911
3912    // Check whether we can fold the def into SrcOperandId.
3913    SmallVector<unsigned, 8> Ops;
3914    Ops.push_back(SrcOperandId);
3915    MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI);
3916    if (FoldMI) {
3917      FoldAsLoadDefReg = 0;
3918      return FoldMI;
3919    }
3920
3921    if (Idx == 1) {
3922      // MI was changed but it didn't help, commute it back!
3923      commuteInstruction(MI, false);
3924      return nullptr;
3925    }
3926
3927    // Check whether we can commute MI and enable folding.
3928    if (MI->isCommutable()) {
3929      MachineInstr *NewMI = commuteInstruction(MI, false);
3930      // Unable to commute.
3931      if (!NewMI) return nullptr;
3932      if (NewMI != MI) {
3933        // New instruction. It doesn't need to be kept.
3934        NewMI->eraseFromParent();
3935        return nullptr;
3936      }
3937    }
3938  }
3939  return nullptr;
3940}
3941
3942/// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
3943/// instruction with two undef reads of the register being defined.  This is
3944/// used for mapping:
3945///   %xmm4 = V_SET0
3946/// to:
3947///   %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
3948///
3949static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
3950                             const MCInstrDesc &Desc) {
3951  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3952  unsigned Reg = MIB->getOperand(0).getReg();
3953  MIB->setDesc(Desc);
3954
3955  // MachineInstr::addOperand() will insert explicit operands before any
3956  // implicit operands.
3957  MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3958  // But we don't trust that.
3959  assert(MIB->getOperand(1).getReg() == Reg &&
3960         MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
3961  return true;
3962}
3963
3964bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
3965  bool HasAVX = Subtarget.hasAVX();
3966  MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
3967  switch (MI->getOpcode()) {
3968  case X86::MOV32r0:
3969    return Expand2AddrUndef(MIB, get(X86::XOR32rr));
3970  case X86::SETB_C8r:
3971    return Expand2AddrUndef(MIB, get(X86::SBB8rr));
3972  case X86::SETB_C16r:
3973    return Expand2AddrUndef(MIB, get(X86::SBB16rr));
3974  case X86::SETB_C32r:
3975    return Expand2AddrUndef(MIB, get(X86::SBB32rr));
3976  case X86::SETB_C64r:
3977    return Expand2AddrUndef(MIB, get(X86::SBB64rr));
3978  case X86::V_SET0:
3979  case X86::FsFLD0SS:
3980  case X86::FsFLD0SD:
3981    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
3982  case X86::AVX_SET0:
3983    assert(HasAVX && "AVX not supported");
3984    return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
3985  case X86::AVX512_512_SET0:
3986    return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
3987  case X86::V_SETALLONES:
3988    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
3989  case X86::AVX2_SETALLONES:
3990    return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
3991  case X86::TEST8ri_NOREX:
3992    MI->setDesc(get(X86::TEST8ri));
3993    return true;
3994  case X86::KSET0B:
3995  case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr));
3996  case X86::KSET1B:
3997  case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr));
3998  }
3999  return false;
4000}
4001
4002static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
4003                                     const SmallVectorImpl<MachineOperand> &MOs,
4004                                     MachineInstr *MI,
4005                                     const TargetInstrInfo &TII) {
4006  // Create the base instruction with the memory operand as the first part.
4007  // Omit the implicit operands, something BuildMI can't do.
4008  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
4009                                              MI->getDebugLoc(), true);
4010  MachineInstrBuilder MIB(MF, NewMI);
4011  unsigned NumAddrOps = MOs.size();
4012  for (unsigned i = 0; i != NumAddrOps; ++i)
4013    MIB.addOperand(MOs[i]);
4014  if (NumAddrOps < 4)  // FrameIndex only
4015    addOffset(MIB, 0);
4016
4017  // Loop over the rest of the ri operands, converting them over.
4018  unsigned NumOps = MI->getDesc().getNumOperands()-2;
4019  for (unsigned i = 0; i != NumOps; ++i) {
4020    MachineOperand &MO = MI->getOperand(i+2);
4021    MIB.addOperand(MO);
4022  }
4023  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
4024    MachineOperand &MO = MI->getOperand(i);
4025    MIB.addOperand(MO);
4026  }
4027  return MIB;
4028}
4029
4030static MachineInstr *FuseInst(MachineFunction &MF,
4031                              unsigned Opcode, unsigned OpNo,
4032                              const SmallVectorImpl<MachineOperand> &MOs,
4033                              MachineInstr *MI, const TargetInstrInfo &TII) {
4034  // Omit the implicit operands, something BuildMI can't do.
4035  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
4036                                              MI->getDebugLoc(), true);
4037  MachineInstrBuilder MIB(MF, NewMI);
4038
4039  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
4040    MachineOperand &MO = MI->getOperand(i);
4041    if (i == OpNo) {
4042      assert(MO.isReg() && "Expected to fold into reg operand!");
4043      unsigned NumAddrOps = MOs.size();
4044      for (unsigned i = 0; i != NumAddrOps; ++i)
4045        MIB.addOperand(MOs[i]);
4046      if (NumAddrOps < 4)  // FrameIndex only
4047        addOffset(MIB, 0);
4048    } else {
4049      MIB.addOperand(MO);
4050    }
4051  }
4052  return MIB;
4053}
4054
4055static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
4056                                const SmallVectorImpl<MachineOperand> &MOs,
4057                                MachineInstr *MI) {
4058  MachineFunction &MF = *MI->getParent()->getParent();
4059  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
4060
4061  unsigned NumAddrOps = MOs.size();
4062  for (unsigned i = 0; i != NumAddrOps; ++i)
4063    MIB.addOperand(MOs[i]);
4064  if (NumAddrOps < 4)  // FrameIndex only
4065    addOffset(MIB, 0);
4066  return MIB.addImm(0);
4067}
4068
4069MachineInstr*
4070X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
4071                                    MachineInstr *MI, unsigned i,
4072                                    const SmallVectorImpl<MachineOperand> &MOs,
4073                                    unsigned Size, unsigned Align) const {
4074  const DenseMap<unsigned,
4075                 std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
4076  bool isCallRegIndirect = Subtarget.callRegIndirect();
4077  bool isTwoAddrFold = false;
4078
4079  // Atom favors register form of call. So, we do not fold loads into calls
4080  // when X86Subtarget is Atom.
4081  if (isCallRegIndirect &&
4082    (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r)) {
4083    return nullptr;
4084  }
4085
4086  unsigned NumOps = MI->getDesc().getNumOperands();
4087  bool isTwoAddr = NumOps > 1 &&
4088    MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
4089
4090  // FIXME: AsmPrinter doesn't know how to handle
4091  // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4092  if (MI->getOpcode() == X86::ADD32ri &&
4093      MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4094    return nullptr;
4095
4096  MachineInstr *NewMI = nullptr;
4097  // Folding a memory location into the two-address part of a two-address
4098  // instruction is different than folding it other places.  It requires
4099  // replacing the *two* registers with the memory location.
4100  if (isTwoAddr && NumOps >= 2 && i < 2 &&
4101      MI->getOperand(0).isReg() &&
4102      MI->getOperand(1).isReg() &&
4103      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
4104    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
4105    isTwoAddrFold = true;
4106  } else if (i == 0) { // If operand 0
4107    if (MI->getOpcode() == X86::MOV32r0) {
4108      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
4109      if (NewMI)
4110        return NewMI;
4111    }
4112
4113    OpcodeTablePtr = &RegOp2MemOpTable0;
4114  } else if (i == 1) {
4115    OpcodeTablePtr = &RegOp2MemOpTable1;
4116  } else if (i == 2) {
4117    OpcodeTablePtr = &RegOp2MemOpTable2;
4118  } else if (i == 3) {
4119    OpcodeTablePtr = &RegOp2MemOpTable3;
4120  }
4121
4122  // If table selected...
4123  if (OpcodeTablePtr) {
4124    // Find the Opcode to fuse
4125    DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4126      OpcodeTablePtr->find(MI->getOpcode());
4127    if (I != OpcodeTablePtr->end()) {
4128      unsigned Opcode = I->second.first;
4129      unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
4130      if (Align < MinAlign)
4131        return nullptr;
4132      bool NarrowToMOV32rm = false;
4133      if (Size) {
4134        unsigned RCSize = getRegClass(MI->getDesc(), i, &RI, MF)->getSize();
4135        if (Size < RCSize) {
4136          // Check if it's safe to fold the load. If the size of the object is
4137          // narrower than the load width, then it's not.
4138          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
4139            return nullptr;
4140          // If this is a 64-bit load, but the spill slot is 32, then we can do
4141          // a 32-bit load which is implicitly zero-extended. This likely is due
4142          // to liveintervalanalysis remat'ing a load from stack slot.
4143          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
4144            return nullptr;
4145          Opcode = X86::MOV32rm;
4146          NarrowToMOV32rm = true;
4147        }
4148      }
4149
4150      if (isTwoAddrFold)
4151        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
4152      else
4153        NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
4154
4155      if (NarrowToMOV32rm) {
4156        // If this is the special case where we use a MOV32rm to load a 32-bit
4157        // value and zero-extend the top bits. Change the destination register
4158        // to a 32-bit one.
4159        unsigned DstReg = NewMI->getOperand(0).getReg();
4160        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
4161          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
4162                                                   X86::sub_32bit));
4163        else
4164          NewMI->getOperand(0).setSubReg(X86::sub_32bit);
4165      }
4166      return NewMI;
4167    }
4168  }
4169
4170  // No fusion
4171  if (PrintFailedFusing && !MI->isCopy())
4172    dbgs() << "We failed to fuse operand " << i << " in " << *MI;
4173  return nullptr;
4174}
4175
4176/// hasPartialRegUpdate - Return true for all instructions that only update
4177/// the first 32 or 64-bits of the destination register and leave the rest
4178/// unmodified. This can be used to avoid folding loads if the instructions
4179/// only update part of the destination register, and the non-updated part is
4180/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4181/// instructions breaks the partial register dependency and it can improve
4182/// performance. e.g.:
4183///
4184///   movss (%rdi), %xmm0
4185///   cvtss2sd %xmm0, %xmm0
4186///
4187/// Instead of
4188///   cvtss2sd (%rdi), %xmm0
4189///
4190/// FIXME: This should be turned into a TSFlags.
4191///
4192static bool hasPartialRegUpdate(unsigned Opcode) {
4193  switch (Opcode) {
4194  case X86::CVTSI2SSrr:
4195  case X86::CVTSI2SS64rr:
4196  case X86::CVTSI2SDrr:
4197  case X86::CVTSI2SD64rr:
4198  case X86::CVTSD2SSrr:
4199  case X86::Int_CVTSD2SSrr:
4200  case X86::CVTSS2SDrr:
4201  case X86::Int_CVTSS2SDrr:
4202  case X86::RCPSSr:
4203  case X86::RCPSSr_Int:
4204  case X86::ROUNDSDr:
4205  case X86::ROUNDSDr_Int:
4206  case X86::ROUNDSSr:
4207  case X86::ROUNDSSr_Int:
4208  case X86::RSQRTSSr:
4209  case X86::RSQRTSSr_Int:
4210  case X86::SQRTSSr:
4211  case X86::SQRTSSr_Int:
4212    return true;
4213  }
4214
4215  return false;
4216}
4217
4218/// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle
4219/// instructions we would like before a partial register update.
4220unsigned X86InstrInfo::
4221getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
4222                             const TargetRegisterInfo *TRI) const {
4223  if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
4224    return 0;
4225
4226  // If MI is marked as reading Reg, the partial register update is wanted.
4227  const MachineOperand &MO = MI->getOperand(0);
4228  unsigned Reg = MO.getReg();
4229  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4230    if (MO.readsReg() || MI->readsVirtualRegister(Reg))
4231      return 0;
4232  } else {
4233    if (MI->readsRegister(Reg, TRI))
4234      return 0;
4235  }
4236
4237  // If any of the preceding 16 instructions are reading Reg, insert a
4238  // dependency breaking instruction.  The magic number is based on a few
4239  // Nehalem experiments.
4240  return 16;
4241}
4242
4243// Return true for any instruction the copies the high bits of the first source
4244// operand into the unused high bits of the destination operand.
4245static bool hasUndefRegUpdate(unsigned Opcode) {
4246  switch (Opcode) {
4247  case X86::VCVTSI2SSrr:
4248  case X86::Int_VCVTSI2SSrr:
4249  case X86::VCVTSI2SS64rr:
4250  case X86::Int_VCVTSI2SS64rr:
4251  case X86::VCVTSI2SDrr:
4252  case X86::Int_VCVTSI2SDrr:
4253  case X86::VCVTSI2SD64rr:
4254  case X86::Int_VCVTSI2SD64rr:
4255  case X86::VCVTSD2SSrr:
4256  case X86::Int_VCVTSD2SSrr:
4257  case X86::VCVTSS2SDrr:
4258  case X86::Int_VCVTSS2SDrr:
4259  case X86::VRCPSSr:
4260  case X86::VROUNDSDr:
4261  case X86::VROUNDSDr_Int:
4262  case X86::VROUNDSSr:
4263  case X86::VROUNDSSr_Int:
4264  case X86::VRSQRTSSr:
4265  case X86::VSQRTSSr:
4266
4267  // AVX-512
4268  case X86::VCVTSD2SSZrr:
4269  case X86::VCVTSS2SDZrr:
4270    return true;
4271  }
4272
4273  return false;
4274}
4275
4276/// Inform the ExeDepsFix pass how many idle instructions we would like before
4277/// certain undef register reads.
4278///
4279/// This catches the VCVTSI2SD family of instructions:
4280///
4281/// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
4282///
4283/// We should to be careful *not* to catch VXOR idioms which are presumably
4284/// handled specially in the pipeline:
4285///
4286/// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1
4287///
4288/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
4289/// high bits that are passed-through are not live.
4290unsigned X86InstrInfo::
4291getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
4292                     const TargetRegisterInfo *TRI) const {
4293  if (!hasUndefRegUpdate(MI->getOpcode()))
4294    return 0;
4295
4296  // Set the OpNum parameter to the first source operand.
4297  OpNum = 1;
4298
4299  const MachineOperand &MO = MI->getOperand(OpNum);
4300  if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
4301    // Use the same magic number as getPartialRegUpdateClearance.
4302    return 16;
4303  }
4304  return 0;
4305}
4306
4307void X86InstrInfo::
4308breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
4309                          const TargetRegisterInfo *TRI) const {
4310  unsigned Reg = MI->getOperand(OpNum).getReg();
4311  // If MI kills this register, the false dependence is already broken.
4312  if (MI->killsRegister(Reg, TRI))
4313    return;
4314  if (X86::VR128RegClass.contains(Reg)) {
4315    // These instructions are all floating point domain, so xorps is the best
4316    // choice.
4317    bool HasAVX = Subtarget.hasAVX();
4318    unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
4319    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
4320      .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4321  } else if (X86::VR256RegClass.contains(Reg)) {
4322    // Use vxorps to clear the full ymm register.
4323    // It wants to read and write the xmm sub-register.
4324    unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
4325    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
4326      .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
4327      .addReg(Reg, RegState::ImplicitDefine);
4328  } else
4329    return;
4330  MI->addRegisterKilled(Reg, TRI, true);
4331}
4332
4333MachineInstr*
4334X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
4335                                    const SmallVectorImpl<unsigned> &Ops,
4336                                    int FrameIndex) const {
4337  // Check switch flag
4338  if (NoFusing) return nullptr;
4339
4340  // Unless optimizing for size, don't fold to avoid partial
4341  // register update stalls
4342  if (!MF.getFunction()->getAttributes().
4343        hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
4344      hasPartialRegUpdate(MI->getOpcode()))
4345    return nullptr;
4346
4347  const MachineFrameInfo *MFI = MF.getFrameInfo();
4348  unsigned Size = MFI->getObjectSize(FrameIndex);
4349  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
4350  // If the function stack isn't realigned we don't want to fold instructions
4351  // that need increased alignment.
4352  if (!RI.needsStackRealignment(MF))
4353    Alignment = std::min(
4354        Alignment, MF.getTarget().getFrameLowering()->getStackAlignment());
4355  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
4356    unsigned NewOpc = 0;
4357    unsigned RCSize = 0;
4358    switch (MI->getOpcode()) {
4359    default: return nullptr;
4360    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
4361    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
4362    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
4363    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
4364    }
4365    // Check if it's safe to fold the load. If the size of the object is
4366    // narrower than the load width, then it's not.
4367    if (Size < RCSize)
4368      return nullptr;
4369    // Change to CMPXXri r, 0 first.
4370    MI->setDesc(get(NewOpc));
4371    MI->getOperand(1).ChangeToImmediate(0);
4372  } else if (Ops.size() != 1)
4373    return nullptr;
4374
4375  SmallVector<MachineOperand,4> MOs;
4376  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
4377  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
4378}
4379
4380MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
4381                                                  MachineInstr *MI,
4382                                           const SmallVectorImpl<unsigned> &Ops,
4383                                                  MachineInstr *LoadMI) const {
4384  // If loading from a FrameIndex, fold directly from the FrameIndex.
4385  unsigned NumOps = LoadMI->getDesc().getNumOperands();
4386  int FrameIndex;
4387  if (isLoadFromStackSlot(LoadMI, FrameIndex))
4388    return foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
4389
4390  // Check switch flag
4391  if (NoFusing) return nullptr;
4392
4393  // Unless optimizing for size, don't fold to avoid partial
4394  // register update stalls
4395  if (!MF.getFunction()->getAttributes().
4396        hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
4397      hasPartialRegUpdate(MI->getOpcode()))
4398    return nullptr;
4399
4400  // Determine the alignment of the load.
4401  unsigned Alignment = 0;
4402  if (LoadMI->hasOneMemOperand())
4403    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
4404  else
4405    switch (LoadMI->getOpcode()) {
4406    case X86::AVX2_SETALLONES:
4407    case X86::AVX_SET0:
4408      Alignment = 32;
4409      break;
4410    case X86::V_SET0:
4411    case X86::V_SETALLONES:
4412      Alignment = 16;
4413      break;
4414    case X86::FsFLD0SD:
4415      Alignment = 8;
4416      break;
4417    case X86::FsFLD0SS:
4418      Alignment = 4;
4419      break;
4420    default:
4421      return nullptr;
4422    }
4423  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
4424    unsigned NewOpc = 0;
4425    switch (MI->getOpcode()) {
4426    default: return nullptr;
4427    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
4428    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
4429    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
4430    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
4431    }
4432    // Change to CMPXXri r, 0 first.
4433    MI->setDesc(get(NewOpc));
4434    MI->getOperand(1).ChangeToImmediate(0);
4435  } else if (Ops.size() != 1)
4436    return nullptr;
4437
4438  // Make sure the subregisters match.
4439  // Otherwise we risk changing the size of the load.
4440  if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
4441    return nullptr;
4442
4443  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
4444  switch (LoadMI->getOpcode()) {
4445  case X86::V_SET0:
4446  case X86::V_SETALLONES:
4447  case X86::AVX2_SETALLONES:
4448  case X86::AVX_SET0:
4449  case X86::FsFLD0SD:
4450  case X86::FsFLD0SS: {
4451    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
4452    // Create a constant-pool entry and operands to load from it.
4453
4454    // Medium and large mode can't fold loads this way.
4455    if (MF.getTarget().getCodeModel() != CodeModel::Small &&
4456        MF.getTarget().getCodeModel() != CodeModel::Kernel)
4457      return nullptr;
4458
4459    // x86-32 PIC requires a PIC base register for constant pools.
4460    unsigned PICBase = 0;
4461    if (MF.getTarget().getRelocationModel() == Reloc::PIC_) {
4462      if (Subtarget.is64Bit())
4463        PICBase = X86::RIP;
4464      else
4465        // FIXME: PICBase = getGlobalBaseReg(&MF);
4466        // This doesn't work for several reasons.
4467        // 1. GlobalBaseReg may have been spilled.
4468        // 2. It may not be live at MI.
4469        return nullptr;
4470    }
4471
4472    // Create a constant-pool entry.
4473    MachineConstantPool &MCP = *MF.getConstantPool();
4474    Type *Ty;
4475    unsigned Opc = LoadMI->getOpcode();
4476    if (Opc == X86::FsFLD0SS)
4477      Ty = Type::getFloatTy(MF.getFunction()->getContext());
4478    else if (Opc == X86::FsFLD0SD)
4479      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
4480    else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0)
4481      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
4482    else
4483      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
4484
4485    bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES);
4486    const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
4487                                    Constant::getNullValue(Ty);
4488    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
4489
4490    // Create operands to load from the constant pool entry.
4491    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
4492    MOs.push_back(MachineOperand::CreateImm(1));
4493    MOs.push_back(MachineOperand::CreateReg(0, false));
4494    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
4495    MOs.push_back(MachineOperand::CreateReg(0, false));
4496    break;
4497  }
4498  default: {
4499    if ((LoadMI->getOpcode() == X86::MOVSSrm ||
4500         LoadMI->getOpcode() == X86::VMOVSSrm) &&
4501        MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
4502          > 4)
4503      // These instructions only load 32 bits, we can't fold them if the
4504      // destination register is wider than 32 bits (4 bytes).
4505      return nullptr;
4506    if ((LoadMI->getOpcode() == X86::MOVSDrm ||
4507         LoadMI->getOpcode() == X86::VMOVSDrm) &&
4508        MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
4509          > 8)
4510      // These instructions only load 64 bits, we can't fold them if the
4511      // destination register is wider than 64 bits (8 bytes).
4512      return nullptr;
4513
4514    // Folding a normal load. Just copy the load's address operands.
4515    for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
4516      MOs.push_back(LoadMI->getOperand(i));
4517    break;
4518  }
4519  }
4520  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
4521}
4522
4523
4524bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
4525                                  const SmallVectorImpl<unsigned> &Ops) const {
4526  // Check switch flag
4527  if (NoFusing) return 0;
4528
4529  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
4530    switch (MI->getOpcode()) {
4531    default: return false;
4532    case X86::TEST8rr:
4533    case X86::TEST16rr:
4534    case X86::TEST32rr:
4535    case X86::TEST64rr:
4536      return true;
4537    case X86::ADD32ri:
4538      // FIXME: AsmPrinter doesn't know how to handle
4539      // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4540      if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4541        return false;
4542      break;
4543    }
4544  }
4545
4546  if (Ops.size() != 1)
4547    return false;
4548
4549  unsigned OpNum = Ops[0];
4550  unsigned Opc = MI->getOpcode();
4551  unsigned NumOps = MI->getDesc().getNumOperands();
4552  bool isTwoAddr = NumOps > 1 &&
4553    MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
4554
4555  // Folding a memory location into the two-address part of a two-address
4556  // instruction is different than folding it other places.  It requires
4557  // replacing the *two* registers with the memory location.
4558  const DenseMap<unsigned,
4559                 std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
4560  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
4561    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
4562  } else if (OpNum == 0) { // If operand 0
4563    if (Opc == X86::MOV32r0)
4564      return true;
4565
4566    OpcodeTablePtr = &RegOp2MemOpTable0;
4567  } else if (OpNum == 1) {
4568    OpcodeTablePtr = &RegOp2MemOpTable1;
4569  } else if (OpNum == 2) {
4570    OpcodeTablePtr = &RegOp2MemOpTable2;
4571  } else if (OpNum == 3) {
4572    OpcodeTablePtr = &RegOp2MemOpTable3;
4573  }
4574
4575  if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
4576    return true;
4577  return TargetInstrInfo::canFoldMemoryOperand(MI, Ops);
4578}
4579
4580bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
4581                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
4582                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
4583  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4584    MemOp2RegOpTable.find(MI->getOpcode());
4585  if (I == MemOp2RegOpTable.end())
4586    return false;
4587  unsigned Opc = I->second.first;
4588  unsigned Index = I->second.second & TB_INDEX_MASK;
4589  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4590  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
4591  if (UnfoldLoad && !FoldedLoad)
4592    return false;
4593  UnfoldLoad &= FoldedLoad;
4594  if (UnfoldStore && !FoldedStore)
4595    return false;
4596  UnfoldStore &= FoldedStore;
4597
4598  const MCInstrDesc &MCID = get(Opc);
4599  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
4600  if (!MI->hasOneMemOperand() &&
4601      RC == &X86::VR128RegClass &&
4602      !Subtarget.isUnalignedMemAccessFast())
4603    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
4604    // conservatively assume the address is unaligned. That's bad for
4605    // performance.
4606    return false;
4607  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
4608  SmallVector<MachineOperand,2> BeforeOps;
4609  SmallVector<MachineOperand,2> AfterOps;
4610  SmallVector<MachineOperand,4> ImpOps;
4611  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
4612    MachineOperand &Op = MI->getOperand(i);
4613    if (i >= Index && i < Index + X86::AddrNumOperands)
4614      AddrOps.push_back(Op);
4615    else if (Op.isReg() && Op.isImplicit())
4616      ImpOps.push_back(Op);
4617    else if (i < Index)
4618      BeforeOps.push_back(Op);
4619    else if (i > Index)
4620      AfterOps.push_back(Op);
4621  }
4622
4623  // Emit the load instruction.
4624  if (UnfoldLoad) {
4625    std::pair<MachineInstr::mmo_iterator,
4626              MachineInstr::mmo_iterator> MMOs =
4627      MF.extractLoadMemRefs(MI->memoperands_begin(),
4628                            MI->memoperands_end());
4629    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
4630    if (UnfoldStore) {
4631      // Address operands cannot be marked isKill.
4632      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
4633        MachineOperand &MO = NewMIs[0]->getOperand(i);
4634        if (MO.isReg())
4635          MO.setIsKill(false);
4636      }
4637    }
4638  }
4639
4640  // Emit the data processing instruction.
4641  MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
4642  MachineInstrBuilder MIB(MF, DataMI);
4643
4644  if (FoldedStore)
4645    MIB.addReg(Reg, RegState::Define);
4646  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
4647    MIB.addOperand(BeforeOps[i]);
4648  if (FoldedLoad)
4649    MIB.addReg(Reg);
4650  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
4651    MIB.addOperand(AfterOps[i]);
4652  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
4653    MachineOperand &MO = ImpOps[i];
4654    MIB.addReg(MO.getReg(),
4655               getDefRegState(MO.isDef()) |
4656               RegState::Implicit |
4657               getKillRegState(MO.isKill()) |
4658               getDeadRegState(MO.isDead()) |
4659               getUndefRegState(MO.isUndef()));
4660  }
4661  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
4662  switch (DataMI->getOpcode()) {
4663  default: break;
4664  case X86::CMP64ri32:
4665  case X86::CMP64ri8:
4666  case X86::CMP32ri:
4667  case X86::CMP32ri8:
4668  case X86::CMP16ri:
4669  case X86::CMP16ri8:
4670  case X86::CMP8ri: {
4671    MachineOperand &MO0 = DataMI->getOperand(0);
4672    MachineOperand &MO1 = DataMI->getOperand(1);
4673    if (MO1.getImm() == 0) {
4674      unsigned NewOpc;
4675      switch (DataMI->getOpcode()) {
4676      default: llvm_unreachable("Unreachable!");
4677      case X86::CMP64ri8:
4678      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
4679      case X86::CMP32ri8:
4680      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
4681      case X86::CMP16ri8:
4682      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
4683      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
4684      }
4685      DataMI->setDesc(get(NewOpc));
4686      MO1.ChangeToRegister(MO0.getReg(), false);
4687    }
4688  }
4689  }
4690  NewMIs.push_back(DataMI);
4691
4692  // Emit the store instruction.
4693  if (UnfoldStore) {
4694    const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
4695    std::pair<MachineInstr::mmo_iterator,
4696              MachineInstr::mmo_iterator> MMOs =
4697      MF.extractStoreMemRefs(MI->memoperands_begin(),
4698                             MI->memoperands_end());
4699    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
4700  }
4701
4702  return true;
4703}
4704
4705bool
4706X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
4707                                  SmallVectorImpl<SDNode*> &NewNodes) const {
4708  if (!N->isMachineOpcode())
4709    return false;
4710
4711  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4712    MemOp2RegOpTable.find(N->getMachineOpcode());
4713  if (I == MemOp2RegOpTable.end())
4714    return false;
4715  unsigned Opc = I->second.first;
4716  unsigned Index = I->second.second & TB_INDEX_MASK;
4717  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4718  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
4719  const MCInstrDesc &MCID = get(Opc);
4720  MachineFunction &MF = DAG.getMachineFunction();
4721  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
4722  unsigned NumDefs = MCID.NumDefs;
4723  std::vector<SDValue> AddrOps;
4724  std::vector<SDValue> BeforeOps;
4725  std::vector<SDValue> AfterOps;
4726  SDLoc dl(N);
4727  unsigned NumOps = N->getNumOperands();
4728  for (unsigned i = 0; i != NumOps-1; ++i) {
4729    SDValue Op = N->getOperand(i);
4730    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
4731      AddrOps.push_back(Op);
4732    else if (i < Index-NumDefs)
4733      BeforeOps.push_back(Op);
4734    else if (i > Index-NumDefs)
4735      AfterOps.push_back(Op);
4736  }
4737  SDValue Chain = N->getOperand(NumOps-1);
4738  AddrOps.push_back(Chain);
4739
4740  // Emit the load instruction.
4741  SDNode *Load = nullptr;
4742  if (FoldedLoad) {
4743    EVT VT = *RC->vt_begin();
4744    std::pair<MachineInstr::mmo_iterator,
4745              MachineInstr::mmo_iterator> MMOs =
4746      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
4747                            cast<MachineSDNode>(N)->memoperands_end());
4748    if (!(*MMOs.first) &&
4749        RC == &X86::VR128RegClass &&
4750        !Subtarget.isUnalignedMemAccessFast())
4751      // Do not introduce a slow unaligned load.
4752      return false;
4753    unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
4754    bool isAligned = (*MMOs.first) &&
4755                     (*MMOs.first)->getAlignment() >= Alignment;
4756    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
4757                              VT, MVT::Other, AddrOps);
4758    NewNodes.push_back(Load);
4759
4760    // Preserve memory reference information.
4761    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
4762  }
4763
4764  // Emit the data processing instruction.
4765  std::vector<EVT> VTs;
4766  const TargetRegisterClass *DstRC = nullptr;
4767  if (MCID.getNumDefs() > 0) {
4768    DstRC = getRegClass(MCID, 0, &RI, MF);
4769    VTs.push_back(*DstRC->vt_begin());
4770  }
4771  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
4772    EVT VT = N->getValueType(i);
4773    if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
4774      VTs.push_back(VT);
4775  }
4776  if (Load)
4777    BeforeOps.push_back(SDValue(Load, 0));
4778  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
4779  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
4780  NewNodes.push_back(NewNode);
4781
4782  // Emit the store instruction.
4783  if (FoldedStore) {
4784    AddrOps.pop_back();
4785    AddrOps.push_back(SDValue(NewNode, 0));
4786    AddrOps.push_back(Chain);
4787    std::pair<MachineInstr::mmo_iterator,
4788              MachineInstr::mmo_iterator> MMOs =
4789      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
4790                             cast<MachineSDNode>(N)->memoperands_end());
4791    if (!(*MMOs.first) &&
4792        RC == &X86::VR128RegClass &&
4793        !Subtarget.isUnalignedMemAccessFast())
4794      // Do not introduce a slow unaligned store.
4795      return false;
4796    unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
4797    bool isAligned = (*MMOs.first) &&
4798                     (*MMOs.first)->getAlignment() >= Alignment;
4799    SDNode *Store =
4800        DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
4801                           dl, MVT::Other, AddrOps);
4802    NewNodes.push_back(Store);
4803
4804    // Preserve memory reference information.
4805    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
4806  }
4807
4808  return true;
4809}
4810
4811unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
4812                                      bool UnfoldLoad, bool UnfoldStore,
4813                                      unsigned *LoadRegIndex) const {
4814  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4815    MemOp2RegOpTable.find(Opc);
4816  if (I == MemOp2RegOpTable.end())
4817    return 0;
4818  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4819  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
4820  if (UnfoldLoad && !FoldedLoad)
4821    return 0;
4822  if (UnfoldStore && !FoldedStore)
4823    return 0;
4824  if (LoadRegIndex)
4825    *LoadRegIndex = I->second.second & TB_INDEX_MASK;
4826  return I->second.first;
4827}
4828
4829bool
4830X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
4831                                     int64_t &Offset1, int64_t &Offset2) const {
4832  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
4833    return false;
4834  unsigned Opc1 = Load1->getMachineOpcode();
4835  unsigned Opc2 = Load2->getMachineOpcode();
4836  switch (Opc1) {
4837  default: return false;
4838  case X86::MOV8rm:
4839  case X86::MOV16rm:
4840  case X86::MOV32rm:
4841  case X86::MOV64rm:
4842  case X86::LD_Fp32m:
4843  case X86::LD_Fp64m:
4844  case X86::LD_Fp80m:
4845  case X86::MOVSSrm:
4846  case X86::MOVSDrm:
4847  case X86::MMX_MOVD64rm:
4848  case X86::MMX_MOVQ64rm:
4849  case X86::FsMOVAPSrm:
4850  case X86::FsMOVAPDrm:
4851  case X86::MOVAPSrm:
4852  case X86::MOVUPSrm:
4853  case X86::MOVAPDrm:
4854  case X86::MOVDQArm:
4855  case X86::MOVDQUrm:
4856  // AVX load instructions
4857  case X86::VMOVSSrm:
4858  case X86::VMOVSDrm:
4859  case X86::FsVMOVAPSrm:
4860  case X86::FsVMOVAPDrm:
4861  case X86::VMOVAPSrm:
4862  case X86::VMOVUPSrm:
4863  case X86::VMOVAPDrm:
4864  case X86::VMOVDQArm:
4865  case X86::VMOVDQUrm:
4866  case X86::VMOVAPSYrm:
4867  case X86::VMOVUPSYrm:
4868  case X86::VMOVAPDYrm:
4869  case X86::VMOVDQAYrm:
4870  case X86::VMOVDQUYrm:
4871    break;
4872  }
4873  switch (Opc2) {
4874  default: return false;
4875  case X86::MOV8rm:
4876  case X86::MOV16rm:
4877  case X86::MOV32rm:
4878  case X86::MOV64rm:
4879  case X86::LD_Fp32m:
4880  case X86::LD_Fp64m:
4881  case X86::LD_Fp80m:
4882  case X86::MOVSSrm:
4883  case X86::MOVSDrm:
4884  case X86::MMX_MOVD64rm:
4885  case X86::MMX_MOVQ64rm:
4886  case X86::FsMOVAPSrm:
4887  case X86::FsMOVAPDrm:
4888  case X86::MOVAPSrm:
4889  case X86::MOVUPSrm:
4890  case X86::MOVAPDrm:
4891  case X86::MOVDQArm:
4892  case X86::MOVDQUrm:
4893  // AVX load instructions
4894  case X86::VMOVSSrm:
4895  case X86::VMOVSDrm:
4896  case X86::FsVMOVAPSrm:
4897  case X86::FsVMOVAPDrm:
4898  case X86::VMOVAPSrm:
4899  case X86::VMOVUPSrm:
4900  case X86::VMOVAPDrm:
4901  case X86::VMOVDQArm:
4902  case X86::VMOVDQUrm:
4903  case X86::VMOVAPSYrm:
4904  case X86::VMOVUPSYrm:
4905  case X86::VMOVAPDYrm:
4906  case X86::VMOVDQAYrm:
4907  case X86::VMOVDQUYrm:
4908    break;
4909  }
4910
4911  // Check if chain operands and base addresses match.
4912  if (Load1->getOperand(0) != Load2->getOperand(0) ||
4913      Load1->getOperand(5) != Load2->getOperand(5))
4914    return false;
4915  // Segment operands should match as well.
4916  if (Load1->getOperand(4) != Load2->getOperand(4))
4917    return false;
4918  // Scale should be 1, Index should be Reg0.
4919  if (Load1->getOperand(1) == Load2->getOperand(1) &&
4920      Load1->getOperand(2) == Load2->getOperand(2)) {
4921    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
4922      return false;
4923
4924    // Now let's examine the displacements.
4925    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
4926        isa<ConstantSDNode>(Load2->getOperand(3))) {
4927      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
4928      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
4929      return true;
4930    }
4931  }
4932  return false;
4933}
4934
4935bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
4936                                           int64_t Offset1, int64_t Offset2,
4937                                           unsigned NumLoads) const {
4938  assert(Offset2 > Offset1);
4939  if ((Offset2 - Offset1) / 8 > 64)
4940    return false;
4941
4942  unsigned Opc1 = Load1->getMachineOpcode();
4943  unsigned Opc2 = Load2->getMachineOpcode();
4944  if (Opc1 != Opc2)
4945    return false;  // FIXME: overly conservative?
4946
4947  switch (Opc1) {
4948  default: break;
4949  case X86::LD_Fp32m:
4950  case X86::LD_Fp64m:
4951  case X86::LD_Fp80m:
4952  case X86::MMX_MOVD64rm:
4953  case X86::MMX_MOVQ64rm:
4954    return false;
4955  }
4956
4957  EVT VT = Load1->getValueType(0);
4958  switch (VT.getSimpleVT().SimpleTy) {
4959  default:
4960    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
4961    // have 16 of them to play with.
4962    if (Subtarget.is64Bit()) {
4963      if (NumLoads >= 3)
4964        return false;
4965    } else if (NumLoads) {
4966      return false;
4967    }
4968    break;
4969  case MVT::i8:
4970  case MVT::i16:
4971  case MVT::i32:
4972  case MVT::i64:
4973  case MVT::f32:
4974  case MVT::f64:
4975    if (NumLoads)
4976      return false;
4977    break;
4978  }
4979
4980  return true;
4981}
4982
4983bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
4984                                          MachineInstr *Second) const {
4985  // Check if this processor supports macro-fusion. Since this is a minor
4986  // heuristic, we haven't specifically reserved a feature. hasAVX is a decent
4987  // proxy for SandyBridge+.
4988  if (!Subtarget.hasAVX())
4989    return false;
4990
4991  enum {
4992    FuseTest,
4993    FuseCmp,
4994    FuseInc
4995  } FuseKind;
4996
4997  switch(Second->getOpcode()) {
4998  default:
4999    return false;
5000  case X86::JE_4:
5001  case X86::JNE_4:
5002  case X86::JL_4:
5003  case X86::JLE_4:
5004  case X86::JG_4:
5005  case X86::JGE_4:
5006    FuseKind = FuseInc;
5007    break;
5008  case X86::JB_4:
5009  case X86::JBE_4:
5010  case X86::JA_4:
5011  case X86::JAE_4:
5012    FuseKind = FuseCmp;
5013    break;
5014  case X86::JS_4:
5015  case X86::JNS_4:
5016  case X86::JP_4:
5017  case X86::JNP_4:
5018  case X86::JO_4:
5019  case X86::JNO_4:
5020    FuseKind = FuseTest;
5021    break;
5022  }
5023  switch (First->getOpcode()) {
5024  default:
5025    return false;
5026  case X86::TEST8rr:
5027  case X86::TEST16rr:
5028  case X86::TEST32rr:
5029  case X86::TEST64rr:
5030  case X86::TEST8ri:
5031  case X86::TEST16ri:
5032  case X86::TEST32ri:
5033  case X86::TEST32i32:
5034  case X86::TEST64i32:
5035  case X86::TEST64ri32:
5036  case X86::TEST8rm:
5037  case X86::TEST16rm:
5038  case X86::TEST32rm:
5039  case X86::TEST64rm:
5040  case X86::TEST8ri_NOREX:
5041  case X86::AND16i16:
5042  case X86::AND16ri:
5043  case X86::AND16ri8:
5044  case X86::AND16rm:
5045  case X86::AND16rr:
5046  case X86::AND32i32:
5047  case X86::AND32ri:
5048  case X86::AND32ri8:
5049  case X86::AND32rm:
5050  case X86::AND32rr:
5051  case X86::AND64i32:
5052  case X86::AND64ri32:
5053  case X86::AND64ri8:
5054  case X86::AND64rm:
5055  case X86::AND64rr:
5056  case X86::AND8i8:
5057  case X86::AND8ri:
5058  case X86::AND8rm:
5059  case X86::AND8rr:
5060    return true;
5061  case X86::CMP16i16:
5062  case X86::CMP16ri:
5063  case X86::CMP16ri8:
5064  case X86::CMP16rm:
5065  case X86::CMP16rr:
5066  case X86::CMP32i32:
5067  case X86::CMP32ri:
5068  case X86::CMP32ri8:
5069  case X86::CMP32rm:
5070  case X86::CMP32rr:
5071  case X86::CMP64i32:
5072  case X86::CMP64ri32:
5073  case X86::CMP64ri8:
5074  case X86::CMP64rm:
5075  case X86::CMP64rr:
5076  case X86::CMP8i8:
5077  case X86::CMP8ri:
5078  case X86::CMP8rm:
5079  case X86::CMP8rr:
5080  case X86::ADD16i16:
5081  case X86::ADD16ri:
5082  case X86::ADD16ri8:
5083  case X86::ADD16ri8_DB:
5084  case X86::ADD16ri_DB:
5085  case X86::ADD16rm:
5086  case X86::ADD16rr:
5087  case X86::ADD16rr_DB:
5088  case X86::ADD32i32:
5089  case X86::ADD32ri:
5090  case X86::ADD32ri8:
5091  case X86::ADD32ri8_DB:
5092  case X86::ADD32ri_DB:
5093  case X86::ADD32rm:
5094  case X86::ADD32rr:
5095  case X86::ADD32rr_DB:
5096  case X86::ADD64i32:
5097  case X86::ADD64ri32:
5098  case X86::ADD64ri32_DB:
5099  case X86::ADD64ri8:
5100  case X86::ADD64ri8_DB:
5101  case X86::ADD64rm:
5102  case X86::ADD64rr:
5103  case X86::ADD64rr_DB:
5104  case X86::ADD8i8:
5105  case X86::ADD8mi:
5106  case X86::ADD8mr:
5107  case X86::ADD8ri:
5108  case X86::ADD8rm:
5109  case X86::ADD8rr:
5110  case X86::SUB16i16:
5111  case X86::SUB16ri:
5112  case X86::SUB16ri8:
5113  case X86::SUB16rm:
5114  case X86::SUB16rr:
5115  case X86::SUB32i32:
5116  case X86::SUB32ri:
5117  case X86::SUB32ri8:
5118  case X86::SUB32rm:
5119  case X86::SUB32rr:
5120  case X86::SUB64i32:
5121  case X86::SUB64ri32:
5122  case X86::SUB64ri8:
5123  case X86::SUB64rm:
5124  case X86::SUB64rr:
5125  case X86::SUB8i8:
5126  case X86::SUB8ri:
5127  case X86::SUB8rm:
5128  case X86::SUB8rr:
5129    return FuseKind == FuseCmp || FuseKind == FuseInc;
5130  case X86::INC16r:
5131  case X86::INC32r:
5132  case X86::INC64_16r:
5133  case X86::INC64_32r:
5134  case X86::INC64r:
5135  case X86::INC8r:
5136  case X86::DEC16r:
5137  case X86::DEC32r:
5138  case X86::DEC64_16r:
5139  case X86::DEC64_32r:
5140  case X86::DEC64r:
5141  case X86::DEC8r:
5142    return FuseKind == FuseInc;
5143  }
5144}
5145
5146bool X86InstrInfo::
5147ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
5148  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
5149  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
5150  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
5151    return true;
5152  Cond[0].setImm(GetOppositeBranchCondition(CC));
5153  return false;
5154}
5155
5156bool X86InstrInfo::
5157isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
5158  // FIXME: Return false for x87 stack register classes for now. We can't
5159  // allow any loads of these registers before FpGet_ST0_80.
5160  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
5161           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
5162}
5163
5164/// getGlobalBaseReg - Return a virtual register initialized with the
5165/// the global base register value. Output instructions required to
5166/// initialize the register in the function entry block, if necessary.
5167///
5168/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
5169///
5170unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
5171  assert(!Subtarget.is64Bit() &&
5172         "X86-64 PIC uses RIP relative addressing");
5173
5174  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
5175  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
5176  if (GlobalBaseReg != 0)
5177    return GlobalBaseReg;
5178
5179  // Create the register. The code to initialize it is inserted
5180  // later, by the CGBR pass (below).
5181  MachineRegisterInfo &RegInfo = MF->getRegInfo();
5182  GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
5183  X86FI->setGlobalBaseReg(GlobalBaseReg);
5184  return GlobalBaseReg;
5185}
5186
5187// These are the replaceable SSE instructions. Some of these have Int variants
5188// that we don't include here. We don't want to replace instructions selected
5189// by intrinsics.
5190static const uint16_t ReplaceableInstrs[][3] = {
5191  //PackedSingle     PackedDouble    PackedInt
5192  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
5193  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
5194  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
5195  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
5196  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
5197  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
5198  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
5199  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
5200  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
5201  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
5202  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
5203  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
5204  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
5205  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
5206  // AVX 128-bit support
5207  { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
5208  { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
5209  { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
5210  { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
5211  { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
5212  { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
5213  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
5214  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
5215  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
5216  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
5217  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
5218  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
5219  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
5220  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
5221  // AVX 256-bit support
5222  { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
5223  { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
5224  { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
5225  { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
5226  { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
5227  { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr }
5228};
5229
5230static const uint16_t ReplaceableInstrsAVX2[][3] = {
5231  //PackedSingle       PackedDouble       PackedInt
5232  { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
5233  { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
5234  { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
5235  { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
5236  { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
5237  { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
5238  { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
5239  { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
5240  { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
5241  { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
5242  { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
5243  { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
5244  { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
5245  { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
5246  { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
5247  { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
5248  { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
5249  { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
5250  { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
5251  { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}
5252};
5253
5254// FIXME: Some shuffle and unpack instructions have equivalents in different
5255// domains, but they require a bit more work than just switching opcodes.
5256
5257static const uint16_t *lookup(unsigned opcode, unsigned domain) {
5258  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
5259    if (ReplaceableInstrs[i][domain-1] == opcode)
5260      return ReplaceableInstrs[i];
5261  return nullptr;
5262}
5263
5264static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
5265  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
5266    if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
5267      return ReplaceableInstrsAVX2[i];
5268  return nullptr;
5269}
5270
5271std::pair<uint16_t, uint16_t>
5272X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
5273  uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
5274  bool hasAVX2 = Subtarget.hasAVX2();
5275  uint16_t validDomains = 0;
5276  if (domain && lookup(MI->getOpcode(), domain))
5277    validDomains = 0xe;
5278  else if (domain && lookupAVX2(MI->getOpcode(), domain))
5279    validDomains = hasAVX2 ? 0xe : 0x6;
5280  return std::make_pair(domain, validDomains);
5281}
5282
5283void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
5284  assert(Domain>0 && Domain<4 && "Invalid execution domain");
5285  uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
5286  assert(dom && "Not an SSE instruction");
5287  const uint16_t *table = lookup(MI->getOpcode(), dom);
5288  if (!table) { // try the other table
5289    assert((Subtarget.hasAVX2() || Domain < 3) &&
5290           "256-bit vector operations only available in AVX2");
5291    table = lookupAVX2(MI->getOpcode(), dom);
5292  }
5293  assert(table && "Cannot change domain");
5294  MI->setDesc(get(table[Domain-1]));
5295}
5296
5297/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
5298void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
5299  NopInst.setOpcode(X86::NOOP);
5300}
5301
5302void X86InstrInfo::getUnconditionalBranch(
5303    MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const {
5304  Branch.setOpcode(X86::JMP_4);
5305  Branch.addOperand(MCOperand::CreateExpr(BranchTarget));
5306}
5307
5308void X86InstrInfo::getTrap(MCInst &MI) const {
5309  MI.setOpcode(X86::TRAP);
5310}
5311
5312bool X86InstrInfo::isHighLatencyDef(int opc) const {
5313  switch (opc) {
5314  default: return false;
5315  case X86::DIVSDrm:
5316  case X86::DIVSDrm_Int:
5317  case X86::DIVSDrr:
5318  case X86::DIVSDrr_Int:
5319  case X86::DIVSSrm:
5320  case X86::DIVSSrm_Int:
5321  case X86::DIVSSrr:
5322  case X86::DIVSSrr_Int:
5323  case X86::SQRTPDm:
5324  case X86::SQRTPDr:
5325  case X86::SQRTPSm:
5326  case X86::SQRTPSr:
5327  case X86::SQRTSDm:
5328  case X86::SQRTSDm_Int:
5329  case X86::SQRTSDr:
5330  case X86::SQRTSDr_Int:
5331  case X86::SQRTSSm:
5332  case X86::SQRTSSm_Int:
5333  case X86::SQRTSSr:
5334  case X86::SQRTSSr_Int:
5335  // AVX instructions with high latency
5336  case X86::VDIVSDrm:
5337  case X86::VDIVSDrm_Int:
5338  case X86::VDIVSDrr:
5339  case X86::VDIVSDrr_Int:
5340  case X86::VDIVSSrm:
5341  case X86::VDIVSSrm_Int:
5342  case X86::VDIVSSrr:
5343  case X86::VDIVSSrr_Int:
5344  case X86::VSQRTPDm:
5345  case X86::VSQRTPDr:
5346  case X86::VSQRTPSm:
5347  case X86::VSQRTPSr:
5348  case X86::VSQRTSDm:
5349  case X86::VSQRTSDm_Int:
5350  case X86::VSQRTSDr:
5351  case X86::VSQRTSSm:
5352  case X86::VSQRTSSm_Int:
5353  case X86::VSQRTSSr:
5354  case X86::VSQRTPDZrm:
5355  case X86::VSQRTPDZrr:
5356  case X86::VSQRTPSZrm:
5357  case X86::VSQRTPSZrr:
5358  case X86::VSQRTSDZm:
5359  case X86::VSQRTSDZm_Int:
5360  case X86::VSQRTSDZr:
5361  case X86::VSQRTSSZm_Int:
5362  case X86::VSQRTSSZr:
5363  case X86::VSQRTSSZm:
5364  case X86::VDIVSDZrm:
5365  case X86::VDIVSDZrr:
5366  case X86::VDIVSSZrm:
5367  case X86::VDIVSSZrr:
5368
5369  case X86::VGATHERQPSZrm:
5370  case X86::VGATHERQPDZrm:
5371  case X86::VGATHERDPDZrm:
5372  case X86::VGATHERDPSZrm:
5373  case X86::VPGATHERQDZrm:
5374  case X86::VPGATHERQQZrm:
5375  case X86::VPGATHERDDZrm:
5376  case X86::VPGATHERDQZrm:
5377  case X86::VSCATTERQPDZmr:
5378  case X86::VSCATTERQPSZmr:
5379  case X86::VSCATTERDPDZmr:
5380  case X86::VSCATTERDPSZmr:
5381  case X86::VPSCATTERQDZmr:
5382  case X86::VPSCATTERQQZmr:
5383  case X86::VPSCATTERDDZmr:
5384  case X86::VPSCATTERDQZmr:
5385    return true;
5386  }
5387}
5388
5389bool X86InstrInfo::
5390hasHighOperandLatency(const InstrItineraryData *ItinData,
5391                      const MachineRegisterInfo *MRI,
5392                      const MachineInstr *DefMI, unsigned DefIdx,
5393                      const MachineInstr *UseMI, unsigned UseIdx) const {
5394  return isHighLatencyDef(DefMI->getOpcode());
5395}
5396
5397namespace {
5398  /// CGBR - Create Global Base Reg pass. This initializes the PIC
5399  /// global base register for x86-32.
5400  struct CGBR : public MachineFunctionPass {
5401    static char ID;
5402    CGBR() : MachineFunctionPass(ID) {}
5403
5404    bool runOnMachineFunction(MachineFunction &MF) override {
5405      const X86TargetMachine *TM =
5406        static_cast<const X86TargetMachine *>(&MF.getTarget());
5407
5408      // Don't do anything if this is 64-bit as 64-bit PIC
5409      // uses RIP relative addressing.
5410      if (TM->getSubtarget<X86Subtarget>().is64Bit())
5411        return false;
5412
5413      // Only emit a global base reg in PIC mode.
5414      if (TM->getRelocationModel() != Reloc::PIC_)
5415        return false;
5416
5417      X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
5418      unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
5419
5420      // If we didn't need a GlobalBaseReg, don't insert code.
5421      if (GlobalBaseReg == 0)
5422        return false;
5423
5424      // Insert the set of GlobalBaseReg into the first MBB of the function
5425      MachineBasicBlock &FirstMBB = MF.front();
5426      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
5427      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
5428      MachineRegisterInfo &RegInfo = MF.getRegInfo();
5429      const X86InstrInfo *TII = TM->getInstrInfo();
5430
5431      unsigned PC;
5432      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
5433        PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
5434      else
5435        PC = GlobalBaseReg;
5436
5437      // Operand of MovePCtoStack is completely ignored by asm printer. It's
5438      // only used in JIT code emission as displacement to pc.
5439      BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
5440
5441      // If we're using vanilla 'GOT' PIC style, we should use relative addressing
5442      // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
5443      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
5444        // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
5445        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
5446          .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
5447                                        X86II::MO_GOT_ABSOLUTE_ADDRESS);
5448      }
5449
5450      return true;
5451    }
5452
5453    const char *getPassName() const override {
5454      return "X86 PIC Global Base Reg Initialization";
5455    }
5456
5457    void getAnalysisUsage(AnalysisUsage &AU) const override {
5458      AU.setPreservesCFG();
5459      MachineFunctionPass::getAnalysisUsage(AU);
5460    }
5461  };
5462}
5463
5464char CGBR::ID = 0;
5465FunctionPass*
5466llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
5467
5468namespace {
5469  struct LDTLSCleanup : public MachineFunctionPass {
5470    static char ID;
5471    LDTLSCleanup() : MachineFunctionPass(ID) {}
5472
5473    bool runOnMachineFunction(MachineFunction &MF) override {
5474      X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
5475      if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
5476        // No point folding accesses if there isn't at least two.
5477        return false;
5478      }
5479
5480      MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
5481      return VisitNode(DT->getRootNode(), 0);
5482    }
5483
5484    // Visit the dominator subtree rooted at Node in pre-order.
5485    // If TLSBaseAddrReg is non-null, then use that to replace any
5486    // TLS_base_addr instructions. Otherwise, create the register
5487    // when the first such instruction is seen, and then use it
5488    // as we encounter more instructions.
5489    bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
5490      MachineBasicBlock *BB = Node->getBlock();
5491      bool Changed = false;
5492
5493      // Traverse the current block.
5494      for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
5495           ++I) {
5496        switch (I->getOpcode()) {
5497          case X86::TLS_base_addr32:
5498          case X86::TLS_base_addr64:
5499            if (TLSBaseAddrReg)
5500              I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
5501            else
5502              I = SetRegister(I, &TLSBaseAddrReg);
5503            Changed = true;
5504            break;
5505          default:
5506            break;
5507        }
5508      }
5509
5510      // Visit the children of this block in the dominator tree.
5511      for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
5512           I != E; ++I) {
5513        Changed |= VisitNode(*I, TLSBaseAddrReg);
5514      }
5515
5516      return Changed;
5517    }
5518
5519    // Replace the TLS_base_addr instruction I with a copy from
5520    // TLSBaseAddrReg, returning the new instruction.
5521    MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
5522                                         unsigned TLSBaseAddrReg) {
5523      MachineFunction *MF = I->getParent()->getParent();
5524      const X86TargetMachine *TM =
5525          static_cast<const X86TargetMachine *>(&MF->getTarget());
5526      const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
5527      const X86InstrInfo *TII = TM->getInstrInfo();
5528
5529      // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
5530      MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
5531                                   TII->get(TargetOpcode::COPY),
5532                                   is64Bit ? X86::RAX : X86::EAX)
5533                                   .addReg(TLSBaseAddrReg);
5534
5535      // Erase the TLS_base_addr instruction.
5536      I->eraseFromParent();
5537
5538      return Copy;
5539    }
5540
5541    // Create a virtal register in *TLSBaseAddrReg, and populate it by
5542    // inserting a copy instruction after I. Returns the new instruction.
5543    MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
5544      MachineFunction *MF = I->getParent()->getParent();
5545      const X86TargetMachine *TM =
5546          static_cast<const X86TargetMachine *>(&MF->getTarget());
5547      const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
5548      const X86InstrInfo *TII = TM->getInstrInfo();
5549
5550      // Create a virtual register for the TLS base address.
5551      MachineRegisterInfo &RegInfo = MF->getRegInfo();
5552      *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
5553                                                      ? &X86::GR64RegClass
5554                                                      : &X86::GR32RegClass);
5555
5556      // Insert a copy from RAX/EAX to TLSBaseAddrReg.
5557      MachineInstr *Next = I->getNextNode();
5558      MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
5559                                   TII->get(TargetOpcode::COPY),
5560                                   *TLSBaseAddrReg)
5561                                   .addReg(is64Bit ? X86::RAX : X86::EAX);
5562
5563      return Copy;
5564    }
5565
5566    const char *getPassName() const override {
5567      return "Local Dynamic TLS Access Clean-up";
5568    }
5569
5570    void getAnalysisUsage(AnalysisUsage &AU) const override {
5571      AU.setPreservesCFG();
5572      AU.addRequired<MachineDominatorTree>();
5573      MachineFunctionPass::getAnalysisUsage(AU);
5574    }
5575  };
5576}
5577
5578char LDTLSCleanup::ID = 0;
5579FunctionPass*
5580llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
5581