X86InstrInfo.h revision 7fbe9723e32ff35c4ad765c88209ef9321475a1b
11e60a9165dc4d6ce5650dacc026f2942696af920Chris Lattner//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
20e0a7a45d3d0a8c865a078459d2e1c6d8967a100Misha Brukman//
3856ba76200ec2302f2fe500bc507f426c7d566c8John Criswell//                     The LLVM Compiler Infrastructure
4856ba76200ec2302f2fe500bc507f426c7d566c8John Criswell//
5856ba76200ec2302f2fe500bc507f426c7d566c8John Criswell// This file was developed by the LLVM research group and is distributed under
6856ba76200ec2302f2fe500bc507f426c7d566c8John Criswell// the University of Illinois Open Source License. See LICENSE.TXT for details.
70e0a7a45d3d0a8c865a078459d2e1c6d8967a100Misha Brukman//
8856ba76200ec2302f2fe500bc507f426c7d566c8John Criswell//===----------------------------------------------------------------------===//
9726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner//
103501feab811c86c9659248a4875fc31a3165f84dChris Lattner// This file contains the X86 implementation of the TargetInstrInfo class.
11726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner//
12726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner//===----------------------------------------------------------------------===//
13726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner
14726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner#ifndef X86INSTRUCTIONINFO_H
15726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner#define X86INSTRUCTIONINFO_H
16726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner
173501feab811c86c9659248a4875fc31a3165f84dChris Lattner#include "llvm/Target/TargetInstrInfo.h"
18726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner#include "X86RegisterInfo.h"
19726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner
20d0fde30ce850b78371fd1386338350591f9ff494Brian Gaekenamespace llvm {
2125ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng  class X86RegisterInfo;
22aa3c1410b427909da350f2b5e8d4ec3db62a3618Evan Cheng  class X86TargetMachine;
23d0fde30ce850b78371fd1386338350591f9ff494Brian Gaeke
247fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattnernamespace X86 {
257fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner  // X86 specific condition code. These correspond to X86_*_COND in
267fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner  // X86InstrInfo.td. They must be kept in synch.
277fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner  enum CondCode {
287fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner    COND_A  = 0,
297fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner    COND_AE = 1,
307fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner    COND_B  = 2,
317fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner    COND_BE = 3,
327fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner    COND_E  = 4,
337fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner    COND_G  = 5,
347fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner    COND_GE = 6,
357fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner    COND_L  = 7,
367fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner    COND_LE = 8,
377fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner    COND_NE = 9,
387fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner    COND_NO = 10,
397fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner    COND_NP = 11,
407fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner    COND_NS = 12,
417fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner    COND_O  = 13,
427fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner    COND_P  = 14,
437fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner    COND_S  = 15,
447fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner    COND_INVALID
457fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner  };
467fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner
477fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner  // Turn condition code into conditional branch opcode.
487fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner  unsigned GetCondBranchFromCond(CondCode CC);
497fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner}
507fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner
519d17740295838f94120646ef619b2e187f2d71bdChris Lattner/// X86II - This namespace holds all of the target specific flags that
529d17740295838f94120646ef619b2e187f2d71bdChris Lattner/// instruction info tracks.
539d17740295838f94120646ef619b2e187f2d71bdChris Lattner///
549d17740295838f94120646ef619b2e187f2d71bdChris Lattnernamespace X86II {
559d17740295838f94120646ef619b2e187f2d71bdChris Lattner  enum {
566aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    //===------------------------------------------------------------------===//
576aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    // Instruction types.  These are the standard/most common forms for X86
586aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    // instructions.
596aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    //
606aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner
614c299f5da1013cd36563a82f188c731b2758074dChris Lattner    // PseudoFrm - This represents an instruction that is a pseudo instruction
624c299f5da1013cd36563a82f188c731b2758074dChris Lattner    // or one that has not been implemented yet.  It is illegal to code generate
634c299f5da1013cd36563a82f188c731b2758074dChris Lattner    // it, but tolerated for intermediate implementation stages.
644c299f5da1013cd36563a82f188c731b2758074dChris Lattner    Pseudo         = 0,
654c299f5da1013cd36563a82f188c731b2758074dChris Lattner
666aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    /// Raw - This form is for instructions that don't have any operands, so
676aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    /// they are just a fixed opcode value, like 'leave'.
684c299f5da1013cd36563a82f188c731b2758074dChris Lattner    RawFrm         = 1,
690e0a7a45d3d0a8c865a078459d2e1c6d8967a100Misha Brukman
706aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    /// AddRegFrm - This form is used for instructions like 'push r32' that have
716aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    /// their one register operand added to their opcode.
724c299f5da1013cd36563a82f188c731b2758074dChris Lattner    AddRegFrm      = 2,
736aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner
746aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
756aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    /// to specify a destination, which in this case is a register.
766aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    ///
774c299f5da1013cd36563a82f188c731b2758074dChris Lattner    MRMDestReg     = 3,
786aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner
796aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
806aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    /// to specify a destination, which in this case is memory.
816aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    ///
824c299f5da1013cd36563a82f188c731b2758074dChris Lattner    MRMDestMem     = 4,
836aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner
846aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
856aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    /// to specify a source, which in this case is a register.
866aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    ///
874c299f5da1013cd36563a82f188c731b2758074dChris Lattner    MRMSrcReg      = 5,
886aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner
896aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
906aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    /// to specify a source, which in this case is memory.
916aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    ///
924c299f5da1013cd36563a82f188c731b2758074dChris Lattner    MRMSrcMem      = 6,
930e0a7a45d3d0a8c865a078459d2e1c6d8967a100Misha Brukman
94169584ed45f62f91599bed3d019640e168d815eaAlkis Evlogimenos    /// MRM[0-7][rm] - These forms are used to represent instructions that use
9585b39f229f3146e57d059f1c774400e4bde23987Chris Lattner    /// a Mod/RM byte, and use the middle field to hold extended opcode
9685b39f229f3146e57d059f1c774400e4bde23987Chris Lattner    /// information.  In the intel manual these are represented as /0, /1, ...
9785b39f229f3146e57d059f1c774400e4bde23987Chris Lattner    ///
9885b39f229f3146e57d059f1c774400e4bde23987Chris Lattner
9985b39f229f3146e57d059f1c774400e4bde23987Chris Lattner    // First, instructions that operate on a register r/m operand...
100169584ed45f62f91599bed3d019640e168d815eaAlkis Evlogimenos    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
101169584ed45f62f91599bed3d019640e168d815eaAlkis Evlogimenos    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
10285b39f229f3146e57d059f1c774400e4bde23987Chris Lattner
10385b39f229f3146e57d059f1c774400e4bde23987Chris Lattner    // Next, instructions that operate on a memory r/m operand...
104169584ed45f62f91599bed3d019640e168d815eaAlkis Evlogimenos    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
105169584ed45f62f91599bed3d019640e168d815eaAlkis Evlogimenos    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
1066aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner
1073c55c54a877b3e5a79053df8f6080f505c9d1ff4Evan Cheng    // MRMInitReg - This form is used for instructions whose source and
1083c55c54a877b3e5a79053df8f6080f505c9d1ff4Evan Cheng    // destinations are the same register.
1093c55c54a877b3e5a79053df8f6080f505c9d1ff4Evan Cheng    MRMInitReg = 32,
1103c55c54a877b3e5a79053df8f6080f505c9d1ff4Evan Cheng
1113c55c54a877b3e5a79053df8f6080f505c9d1ff4Evan Cheng    FormMask       = 63,
1126aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner
1136aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    //===------------------------------------------------------------------===//
1146aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner    // Actual flags...
1156aab9cf65cd1e96f9d0fa99f8453da454648bba1Chris Lattner
11611e53e3c384e9e25f53a0aec3acf0a725efafeabChris Lattner    // OpSize - Set if this instruction requires an operand size prefix (0x66),
11711e53e3c384e9e25f53a0aec3acf0a725efafeabChris Lattner    // which most often indicates that the instruction operates on 16 bit data
11811e53e3c384e9e25f53a0aec3acf0a725efafeabChris Lattner    // instead of 32 bit data.
1193c55c54a877b3e5a79053df8f6080f505c9d1ff4Evan Cheng    OpSize      = 1 << 6,
1204c299f5da1013cd36563a82f188c731b2758074dChris Lattner
12125ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    // AsSize - Set if this instruction requires an operand size prefix (0x67),
12225ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    // which most often indicates that the instruction address 16 bit address
12325ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    // instead of 32 bit address (or 32 bit address in 64 bit mode).
12425ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    AdSize      = 1 << 7,
12525ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng
12625ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    //===------------------------------------------------------------------===//
1274c299f5da1013cd36563a82f188c731b2758074dChris Lattner    // Op0Mask - There are several prefix bytes that are used to form two byte
128915e5e56d7cc8e140d33202eed6244ed0356ed1fChris Lattner    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
129915e5e56d7cc8e140d33202eed6244ed0356ed1fChris Lattner    // used to obtain the setting of this field.  If no bits in this field is
130915e5e56d7cc8e140d33202eed6244ed0356ed1fChris Lattner    // set, there is no prefix byte for obtaining a multibyte opcode.
1314c299f5da1013cd36563a82f188c731b2758074dChris Lattner    //
13225ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    Op0Shift    = 8,
1332959b6ec49be09096cf0a5e7504d2a1ec15ef2b3Chris Lattner    Op0Mask     = 0xF << Op0Shift,
1344c299f5da1013cd36563a82f188c731b2758074dChris Lattner
1354c299f5da1013cd36563a82f188c731b2758074dChris Lattner    // TB - TwoByte - Set if this instruction has a two byte opcode, which
1364c299f5da1013cd36563a82f188c731b2758074dChris Lattner    // starts with a 0x0F byte before the real opcode.
1372959b6ec49be09096cf0a5e7504d2a1ec15ef2b3Chris Lattner    TB          = 1 << Op0Shift,
1384c299f5da1013cd36563a82f188c731b2758074dChris Lattner
139915e5e56d7cc8e140d33202eed6244ed0356ed1fChris Lattner    // REP - The 0xF3 prefix byte indicating repetition of the following
140915e5e56d7cc8e140d33202eed6244ed0356ed1fChris Lattner    // instruction.
141915e5e56d7cc8e140d33202eed6244ed0356ed1fChris Lattner    REP         = 2 << Op0Shift,
142915e5e56d7cc8e140d33202eed6244ed0356ed1fChris Lattner
1434c299f5da1013cd36563a82f188c731b2758074dChris Lattner    // D8-DF - These escape opcodes are used by the floating point unit.  These
1444c299f5da1013cd36563a82f188c731b2758074dChris Lattner    // values must remain sequential.
145915e5e56d7cc8e140d33202eed6244ed0356ed1fChris Lattner    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
146915e5e56d7cc8e140d33202eed6244ed0356ed1fChris Lattner    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
147915e5e56d7cc8e140d33202eed6244ed0356ed1fChris Lattner    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
148915e5e56d7cc8e140d33202eed6244ed0356ed1fChris Lattner    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
1499eb59ec548b861d6ede05b4e6dc22aabf645e665Jeff Cohen
150f63be7d3959939b2ffaf0bba5519b71216ec9ee6Nate Begeman    // XS, XD - These prefix codes are for single and double precision scalar
151f63be7d3959939b2ffaf0bba5519b71216ec9ee6Nate Begeman    // floating point operations performed in the SSE registers.
152f63be7d3959939b2ffaf0bba5519b71216ec9ee6Nate Begeman    XD = 11 << Op0Shift,   XS = 12 << Op0Shift,
1534c299f5da1013cd36563a82f188c731b2758074dChris Lattner
1540c514f4e2711ab57bf75f26806f7b8584dfbee6fChris Lattner    //===------------------------------------------------------------------===//
15525ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
15625ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    // They are used to specify GPRs and SSE registers, 64-bit operand size,
15725ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    // etc. We only cares about REX.W and REX.R bits and only the former is
15825ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    // statically determined.
15925ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    //
16025ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    REXShift    = 12,
16125ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    REX_W       = 1 << REXShift,
16225ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng
16325ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    //===------------------------------------------------------------------===//
16425ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    // This three-bit field describes the size of an immediate operand.  Zero is
1655ab29b504d49d3fa84d76f79e73704260f900682Alkis Evlogimenos    // unused so that we can tell if we forgot to set a value.
16625ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    ImmShift = 13,
16725ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    ImmMask  = 7 << ImmShift,
1685ab29b504d49d3fa84d76f79e73704260f900682Alkis Evlogimenos    Imm8     = 1 << ImmShift,
1695ab29b504d49d3fa84d76f79e73704260f900682Alkis Evlogimenos    Imm16    = 2 << ImmShift,
1705ab29b504d49d3fa84d76f79e73704260f900682Alkis Evlogimenos    Imm32    = 3 << ImmShift,
17125ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    Imm64    = 4 << ImmShift,
1724c299f5da1013cd36563a82f188c731b2758074dChris Lattner
1730c514f4e2711ab57bf75f26806f7b8584dfbee6fChris Lattner    //===------------------------------------------------------------------===//
1740c514f4e2711ab57bf75f26806f7b8584dfbee6fChris Lattner    // FP Instruction Classification...  Zero is non-fp instruction.
1750c514f4e2711ab57bf75f26806f7b8584dfbee6fChris Lattner
1762959b6ec49be09096cf0a5e7504d2a1ec15ef2b3Chris Lattner    // FPTypeMask - Mask for all of the FP types...
17725ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    FPTypeShift = 16,
1782959b6ec49be09096cf0a5e7504d2a1ec15ef2b3Chris Lattner    FPTypeMask  = 7 << FPTypeShift,
1792959b6ec49be09096cf0a5e7504d2a1ec15ef2b3Chris Lattner
18079b13735adcc034a6869f1fd5670051c6dd0a28aChris Lattner    // NotFP - The default, set for instructions that do not use FP registers.
18179b13735adcc034a6869f1fd5670051c6dd0a28aChris Lattner    NotFP      = 0 << FPTypeShift,
18279b13735adcc034a6869f1fd5670051c6dd0a28aChris Lattner
1830c514f4e2711ab57bf75f26806f7b8584dfbee6fChris Lattner    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
1842959b6ec49be09096cf0a5e7504d2a1ec15ef2b3Chris Lattner    ZeroArgFP  = 1 << FPTypeShift,
1850c514f4e2711ab57bf75f26806f7b8584dfbee6fChris Lattner
1860c514f4e2711ab57bf75f26806f7b8584dfbee6fChris Lattner    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
1872959b6ec49be09096cf0a5e7504d2a1ec15ef2b3Chris Lattner    OneArgFP   = 2 << FPTypeShift,
1880c514f4e2711ab57bf75f26806f7b8584dfbee6fChris Lattner
1890c514f4e2711ab57bf75f26806f7b8584dfbee6fChris Lattner    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
1900c514f4e2711ab57bf75f26806f7b8584dfbee6fChris Lattner    // result back to ST(0).  For example, fcos, fsqrt, etc.
1910c514f4e2711ab57bf75f26806f7b8584dfbee6fChris Lattner    //
1922959b6ec49be09096cf0a5e7504d2a1ec15ef2b3Chris Lattner    OneArgFPRW = 3 << FPTypeShift,
1930c514f4e2711ab57bf75f26806f7b8584dfbee6fChris Lattner
1940c514f4e2711ab57bf75f26806f7b8584dfbee6fChris Lattner    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
1950c514f4e2711ab57bf75f26806f7b8584dfbee6fChris Lattner    // explicit argument, storing the result to either ST(0) or the implicit
1960c514f4e2711ab57bf75f26806f7b8584dfbee6fChris Lattner    // argument.  For example: fadd, fsub, fmul, etc...
1972959b6ec49be09096cf0a5e7504d2a1ec15ef2b3Chris Lattner    TwoArgFP   = 4 << FPTypeShift,
1980c514f4e2711ab57bf75f26806f7b8584dfbee6fChris Lattner
199ab8deccb82460527562d1c36a787537e4edaa9ddChris Lattner    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
200ab8deccb82460527562d1c36a787537e4edaa9ddChris Lattner    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
201ab8deccb82460527562d1c36a787537e4edaa9ddChris Lattner    CompareFP  = 5 << FPTypeShift,
202ab8deccb82460527562d1c36a787537e4edaa9ddChris Lattner
2031c54a8544788156d6864430182a3a79b8839b7daChris Lattner    // CondMovFP - "2 operand" floating point conditional move instructions.
204ab8deccb82460527562d1c36a787537e4edaa9ddChris Lattner    CondMovFP  = 6 << FPTypeShift,
2051c54a8544788156d6864430182a3a79b8839b7daChris Lattner
2060c514f4e2711ab57bf75f26806f7b8584dfbee6fChris Lattner    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
207ab8deccb82460527562d1c36a787537e4edaa9ddChris Lattner    SpecialFP  = 7 << FPTypeShift,
2081c54a8544788156d6864430182a3a79b8839b7daChris Lattner
20925ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    // Bits 19 -> 23 are unused
21025ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng    OpcodeShift   = 24,
211d74ea2bbd8bb630331f35ead42d385249bd42af8Chris Lattner    OpcodeMask    = 0xFF << OpcodeShift
2129d17740295838f94120646ef619b2e187f2d71bdChris Lattner  };
2139d17740295838f94120646ef619b2e187f2d71bdChris Lattner}
2149d17740295838f94120646ef619b2e187f2d71bdChris Lattner
2153501feab811c86c9659248a4875fc31a3165f84dChris Lattnerclass X86InstrInfo : public TargetInstrInfo {
216aa3c1410b427909da350f2b5e8d4ec3db62a3618Evan Cheng  X86TargetMachine &TM;
217726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner  const X86RegisterInfo RI;
218726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattnerpublic:
219aa3c1410b427909da350f2b5e8d4ec3db62a3618Evan Cheng  X86InstrInfo(X86TargetMachine &tm);
220726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner
2213501feab811c86c9659248a4875fc31a3165f84dChris Lattner  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
222726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner  /// such, whenever a client has an instance of instruction info, it should
223726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner  /// always be able to get register info as well (through this method).
224726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner  ///
225726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner  virtual const MRegisterInfo &getRegisterInfo() const { return RI; }
226726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner
2275e30002af70ef09a42cac155d9196f7f0f3b1695Alkis Evlogimenos  // Return true if the instruction is a register to register move and
2285e30002af70ef09a42cac155d9196f7f0f3b1695Alkis Evlogimenos  // leave the source and dest operands in the passed parameters.
2295e30002af70ef09a42cac155d9196f7f0f3b1695Alkis Evlogimenos  //
230408396014742a05cad1c91949d2226169e3f9d80Chris Lattner  bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg,
231408396014742a05cad1c91949d2226169e3f9d80Chris Lattner                   unsigned& destReg) const;
232408396014742a05cad1c91949d2226169e3f9d80Chris Lattner  unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const;
233408396014742a05cad1c91949d2226169e3f9d80Chris Lattner  unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const;
234408396014742a05cad1c91949d2226169e3f9d80Chris Lattner
235ae1dc403274d3a64bcee31f15e2d25e4b7178811Chris Lattner  /// getDWARF_LABELOpcode - Return the opcode of the target's DWARF_LABEL
236ae1dc403274d3a64bcee31f15e2d25e4b7178811Chris Lattner  /// instruction if it has one.  This is used by codegen passes that update
237ae1dc403274d3a64bcee31f15e2d25e4b7178811Chris Lattner  /// DWARF line number info as they modify the code.
238ae1dc403274d3a64bcee31f15e2d25e4b7178811Chris Lattner  virtual unsigned getDWARF_LABELOpcode() const;
239ae1dc403274d3a64bcee31f15e2d25e4b7178811Chris Lattner
240bcea4d6f283a5ae6f93dc8e10898311fe53d23a3Chris Lattner  /// convertToThreeAddress - This method must be implemented by targets that
241bcea4d6f283a5ae6f93dc8e10898311fe53d23a3Chris Lattner  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
242bcea4d6f283a5ae6f93dc8e10898311fe53d23a3Chris Lattner  /// may be able to convert a two-address instruction into a true
243bcea4d6f283a5ae6f93dc8e10898311fe53d23a3Chris Lattner  /// three-address instruction on demand.  This allows the X86 target (for
244bcea4d6f283a5ae6f93dc8e10898311fe53d23a3Chris Lattner  /// example) to convert ADD and SHL instructions into LEA instructions if they
245bcea4d6f283a5ae6f93dc8e10898311fe53d23a3Chris Lattner  /// would require register copies due to two-addressness.
246bcea4d6f283a5ae6f93dc8e10898311fe53d23a3Chris Lattner  ///
247bcea4d6f283a5ae6f93dc8e10898311fe53d23a3Chris Lattner  /// This method returns a null pointer if the transformation cannot be
248bcea4d6f283a5ae6f93dc8e10898311fe53d23a3Chris Lattner  /// performed, otherwise it returns the new instruction.
249bcea4d6f283a5ae6f93dc8e10898311fe53d23a3Chris Lattner  ///
250bcea4d6f283a5ae6f93dc8e10898311fe53d23a3Chris Lattner  virtual MachineInstr *convertToThreeAddress(MachineInstr *TA) const;
251bcea4d6f283a5ae6f93dc8e10898311fe53d23a3Chris Lattner
25241e431ba045eb317ebf0ec45b563a5d96c212f5cChris Lattner  /// commuteInstruction - We have a few instructions that must be hacked on to
25341e431ba045eb317ebf0ec45b563a5d96c212f5cChris Lattner  /// commute them.
25441e431ba045eb317ebf0ec45b563a5d96c212f5cChris Lattner  ///
25541e431ba045eb317ebf0ec45b563a5d96c212f5cChris Lattner  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
25641e431ba045eb317ebf0ec45b563a5d96c212f5cChris Lattner
2577fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner  // Branch analysis.
2587fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
2597fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner                             MachineBasicBlock *&FBB,
2607fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner                             std::vector<MachineOperand> &Cond) const;
2617fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner  virtual void RemoveBranch(MachineBasicBlock &MBB) const;
2627fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner  virtual void InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
2637fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner                            MachineBasicBlock *FBB,
2647fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner                            const std::vector<MachineOperand> &Cond) const;
2657fbe9723e32ff35c4ad765c88209ef9321475a1bChris Lattner  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const;
26641e431ba045eb317ebf0ec45b563a5d96c212f5cChris Lattner
26725ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng  const TargetRegisterClass *getPointerRegClass() const;
26825ab690a43cbbb591b76d49e3595b019c32f4b3fEvan Cheng
269f21dfcddcf199444440004bfa74bb222e2d3ce9eChris Lattner  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
270f21dfcddcf199444440004bfa74bb222e2d3ce9eChris Lattner  // specified opcode number.
271f21dfcddcf199444440004bfa74bb222e2d3ce9eChris Lattner  //
2724d18d5ce1e62779e7736ca0811e2e1cb06e4ea36Chris Lattner  unsigned char getBaseOpcodeFor(unsigned Opcode) const {
2734d18d5ce1e62779e7736ca0811e2e1cb06e4ea36Chris Lattner    return get(Opcode).TSFlags >> X86II::OpcodeShift;
2744d18d5ce1e62779e7736ca0811e2e1cb06e4ea36Chris Lattner  }
275726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner};
276726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner
277d0fde30ce850b78371fd1386338350591f9ff494Brian Gaeke} // End llvm namespace
278d0fde30ce850b78371fd1386338350591f9ff494Brian Gaeke
279726140821f96e3472a8eccef0c67c0b5ad65a1d9Chris Lattner#endif
280