X86InstrInfo.h revision 0187e7a9ba5c50b4559e0c2e0afceb6d5cd32190
1//===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "X86.h"
18#include "X86RegisterInfo.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/Target/TargetInstrInfo.h"
21
22#define GET_INSTRINFO_HEADER
23#include "X86GenInstrInfo.inc"
24
25namespace llvm {
26  class X86RegisterInfo;
27  class X86TargetMachine;
28
29namespace X86 {
30  // X86 specific condition code. These correspond to X86_*_COND in
31  // X86InstrInfo.td. They must be kept in synch.
32  enum CondCode {
33    COND_A  = 0,
34    COND_AE = 1,
35    COND_B  = 2,
36    COND_BE = 3,
37    COND_E  = 4,
38    COND_G  = 5,
39    COND_GE = 6,
40    COND_L  = 7,
41    COND_LE = 8,
42    COND_NE = 9,
43    COND_NO = 10,
44    COND_NP = 11,
45    COND_NS = 12,
46    COND_O  = 13,
47    COND_P  = 14,
48    COND_S  = 15,
49
50    // Artificial condition codes. These are used by AnalyzeBranch
51    // to indicate a block terminated with two conditional branches to
52    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
53    // which can't be represented on x86 with a single condition. These
54    // are never used in MachineInstrs.
55    COND_NE_OR_P,
56    COND_NP_OR_E,
57
58    COND_INVALID
59  };
60
61  // Turn condition code into conditional branch opcode.
62  unsigned GetCondBranchFromCond(CondCode CC);
63
64  // Turn CMov opcode into condition code.
65  CondCode getCondFromCMovOpc(unsigned Opc);
66
67  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
68  /// e.g. turning COND_E to COND_NE.
69  CondCode GetOppositeBranchCondition(X86::CondCode CC);
70}  // end namespace X86;
71
72
73/// isGlobalStubReference - Return true if the specified TargetFlag operand is
74/// a reference to a stub for a global, not the global itself.
75inline static bool isGlobalStubReference(unsigned char TargetFlag) {
76  switch (TargetFlag) {
77  case X86II::MO_DLLIMPORT: // dllimport stub.
78  case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
79  case X86II::MO_GOT:       // normal GOT reference.
80  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
81  case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
82  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
83    return true;
84  default:
85    return false;
86  }
87}
88
89/// isGlobalRelativeToPICBase - Return true if the specified global value
90/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
91/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
92inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
93  switch (TargetFlag) {
94  case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
95  case X86II::MO_GOT:                            // isPICStyleGOT: other global.
96  case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
97  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
98  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
99  case X86II::MO_TLVP:                           // ??? Pretty sure..
100    return true;
101  default:
102    return false;
103  }
104}
105
106inline static bool isScale(const MachineOperand &MO) {
107  return MO.isImm() &&
108    (MO.getImm() == 1 || MO.getImm() == 2 ||
109     MO.getImm() == 4 || MO.getImm() == 8);
110}
111
112inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
113  if (MI->getOperand(Op).isFI()) return true;
114  return Op+4 <= MI->getNumOperands() &&
115    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
116    MI->getOperand(Op+2).isReg() &&
117    (MI->getOperand(Op+3).isImm() ||
118     MI->getOperand(Op+3).isGlobal() ||
119     MI->getOperand(Op+3).isCPI() ||
120     MI->getOperand(Op+3).isJTI());
121}
122
123inline static bool isMem(const MachineInstr *MI, unsigned Op) {
124  if (MI->getOperand(Op).isFI()) return true;
125  return Op+5 <= MI->getNumOperands() &&
126    MI->getOperand(Op+4).isReg() &&
127    isLeaMem(MI, Op);
128}
129
130class X86InstrInfo : public X86GenInstrInfo {
131  X86TargetMachine &TM;
132  const X86RegisterInfo RI;
133
134  /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
135  /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps.
136  ///
137  typedef DenseMap<unsigned,
138                   std::pair<unsigned, unsigned> > RegOp2MemOpTableType;
139  RegOp2MemOpTableType RegOp2MemOpTable2Addr;
140  RegOp2MemOpTableType RegOp2MemOpTable0;
141  RegOp2MemOpTableType RegOp2MemOpTable1;
142  RegOp2MemOpTableType RegOp2MemOpTable2;
143  RegOp2MemOpTableType RegOp2MemOpTable3;
144
145  /// MemOp2RegOpTable - Load / store unfolding opcode map.
146  ///
147  typedef DenseMap<unsigned,
148                   std::pair<unsigned, unsigned> > MemOp2RegOpTableType;
149  MemOp2RegOpTableType MemOp2RegOpTable;
150
151  static void AddTableEntry(RegOp2MemOpTableType &R2MTable,
152                            MemOp2RegOpTableType &M2RTable,
153                            unsigned RegOp, unsigned MemOp, unsigned Flags);
154
155public:
156  explicit X86InstrInfo(X86TargetMachine &tm);
157
158  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
159  /// such, whenever a client has an instance of instruction info, it should
160  /// always be able to get register info as well (through this method).
161  ///
162  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
163
164  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
165  /// extension instruction. That is, it's like a copy where it's legal for the
166  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
167  /// true, then it's expected the pre-extension value is available as a subreg
168  /// of the result register. This also returns the sub-register index in
169  /// SubIdx.
170  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
171                                     unsigned &SrcReg, unsigned &DstReg,
172                                     unsigned &SubIdx) const;
173
174  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
175  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
176  /// stack locations as well.  This uses a heuristic so it isn't
177  /// reliable for correctness.
178  unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
179                                     int &FrameIndex) const;
180
181  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
182  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
183  /// stack locations as well.  This uses a heuristic so it isn't
184  /// reliable for correctness.
185  unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
186                                    int &FrameIndex) const;
187
188  bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
189                                         AliasAnalysis *AA) const;
190  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
191                     unsigned DestReg, unsigned SubIdx,
192                     const MachineInstr *Orig,
193                     const TargetRegisterInfo &TRI) const;
194
195  /// Given an operand within a MachineInstr, insert preceding code to put it
196  /// into the right format for a particular kind of LEA instruction. This may
197  /// involve using an appropriate super-register instead (with an implicit use
198  /// of the original) or creating a new virtual register and inserting COPY
199  /// instructions to get the data into the right class.
200  ///
201  /// Reference parameters are set to indicate how caller should add this
202  /// operand to the LEA instruction.
203  bool classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
204                      unsigned LEAOpcode, bool AllowSP,
205                      unsigned &NewSrc, bool &isKill,
206                      bool &isUndef, MachineOperand &ImplicitOp) const;
207
208  /// convertToThreeAddress - This method must be implemented by targets that
209  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
210  /// may be able to convert a two-address instruction into a true
211  /// three-address instruction on demand.  This allows the X86 target (for
212  /// example) to convert ADD and SHL instructions into LEA instructions if they
213  /// would require register copies due to two-addressness.
214  ///
215  /// This method returns a null pointer if the transformation cannot be
216  /// performed, otherwise it returns the new instruction.
217  ///
218  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
219                                              MachineBasicBlock::iterator &MBBI,
220                                              LiveVariables *LV) const;
221
222  /// commuteInstruction - We have a few instructions that must be hacked on to
223  /// commute them.
224  ///
225  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
226
227  // Branch analysis.
228  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
229  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
230                             MachineBasicBlock *&FBB,
231                             SmallVectorImpl<MachineOperand> &Cond,
232                             bool AllowModify) const;
233  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
234  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
235                                MachineBasicBlock *FBB,
236                                const SmallVectorImpl<MachineOperand> &Cond,
237                                DebugLoc DL) const;
238  virtual bool canInsertSelect(const MachineBasicBlock&,
239                               const SmallVectorImpl<MachineOperand> &Cond,
240                               unsigned, unsigned, int&, int&, int&) const;
241  virtual void insertSelect(MachineBasicBlock &MBB,
242                            MachineBasicBlock::iterator MI, DebugLoc DL,
243                            unsigned DstReg,
244                            const SmallVectorImpl<MachineOperand> &Cond,
245                            unsigned TrueReg, unsigned FalseReg) const;
246  virtual void copyPhysReg(MachineBasicBlock &MBB,
247                           MachineBasicBlock::iterator MI, DebugLoc DL,
248                           unsigned DestReg, unsigned SrcReg,
249                           bool KillSrc) const;
250  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
251                                   MachineBasicBlock::iterator MI,
252                                   unsigned SrcReg, bool isKill, int FrameIndex,
253                                   const TargetRegisterClass *RC,
254                                   const TargetRegisterInfo *TRI) const;
255
256  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
257                              SmallVectorImpl<MachineOperand> &Addr,
258                              const TargetRegisterClass *RC,
259                              MachineInstr::mmo_iterator MMOBegin,
260                              MachineInstr::mmo_iterator MMOEnd,
261                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
262
263  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
264                                    MachineBasicBlock::iterator MI,
265                                    unsigned DestReg, int FrameIndex,
266                                    const TargetRegisterClass *RC,
267                                    const TargetRegisterInfo *TRI) const;
268
269  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
270                               SmallVectorImpl<MachineOperand> &Addr,
271                               const TargetRegisterClass *RC,
272                               MachineInstr::mmo_iterator MMOBegin,
273                               MachineInstr::mmo_iterator MMOEnd,
274                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
275
276  virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const;
277
278  /// foldMemoryOperand - If this target supports it, fold a load or store of
279  /// the specified stack slot into the specified machine instruction for the
280  /// specified operand(s).  If this is possible, the target should perform the
281  /// folding and return true, otherwise it should return false.  If it folds
282  /// the instruction, it is likely that the MachineInstruction the iterator
283  /// references has been changed.
284  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
285                                              MachineInstr* MI,
286                                           const SmallVectorImpl<unsigned> &Ops,
287                                              int FrameIndex) const;
288
289  /// foldMemoryOperand - Same as the previous version except it allows folding
290  /// of any load and store from / to any address, not just from a specific
291  /// stack slot.
292  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
293                                              MachineInstr* MI,
294                                           const SmallVectorImpl<unsigned> &Ops,
295                                              MachineInstr* LoadMI) const;
296
297  /// canFoldMemoryOperand - Returns true if the specified load / store is
298  /// folding is possible.
299  virtual bool canFoldMemoryOperand(const MachineInstr*,
300                                    const SmallVectorImpl<unsigned> &) const;
301
302  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
303  /// a store or a load and a store into two or more instruction. If this is
304  /// possible, returns true as well as the new instructions by reference.
305  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
306                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
307                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
308
309  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
310                           SmallVectorImpl<SDNode*> &NewNodes) const;
311
312  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
313  /// instruction after load / store are unfolded from an instruction of the
314  /// specified opcode. It returns zero if the specified unfolding is not
315  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
316  /// index of the operand which will hold the register holding the loaded
317  /// value.
318  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
319                                      bool UnfoldLoad, bool UnfoldStore,
320                                      unsigned *LoadRegIndex = 0) const;
321
322  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
323  /// to determine if two loads are loading from the same base address. It
324  /// should only return true if the base pointers are the same and the
325  /// only differences between the two addresses are the offset. It also returns
326  /// the offsets by reference.
327  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
328                                       int64_t &Offset1, int64_t &Offset2) const;
329
330  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
331  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
332  /// be scheduled togther. On some targets if two loads are loading from
333  /// addresses in the same cache line, it's better if they are scheduled
334  /// together. This function takes two integers that represent the load offsets
335  /// from the common base address. It returns true if it decides it's desirable
336  /// to schedule the two loads together. "NumLoads" is the number of loads that
337  /// have already been scheduled after Load1.
338  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
339                                       int64_t Offset1, int64_t Offset2,
340                                       unsigned NumLoads) const;
341
342  virtual void getNoopForMachoTarget(MCInst &NopInst) const;
343
344  virtual
345  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
346
347  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
348  /// instruction that defines the specified register class.
349  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
350
351  static bool isX86_64ExtendedReg(const MachineOperand &MO) {
352    if (!MO.isReg()) return false;
353    return X86II::isX86_64ExtendedReg(MO.getReg());
354  }
355
356  /// getGlobalBaseReg - Return a virtual register initialized with the
357  /// the global base register value. Output instructions required to
358  /// initialize the register in the function entry block, if necessary.
359  ///
360  unsigned getGlobalBaseReg(MachineFunction *MF) const;
361
362  std::pair<uint16_t, uint16_t>
363  getExecutionDomain(const MachineInstr *MI) const;
364
365  void setExecutionDomain(MachineInstr *MI, unsigned Domain) const;
366
367  unsigned getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
368                                        const TargetRegisterInfo *TRI) const;
369  void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
370                                 const TargetRegisterInfo *TRI) const;
371
372  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
373                                      MachineInstr* MI,
374                                      unsigned OpNum,
375                                      const SmallVectorImpl<MachineOperand> &MOs,
376                                      unsigned Size, unsigned Alignment) const;
377
378  bool isHighLatencyDef(int opc) const;
379
380  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
381                             const MachineRegisterInfo *MRI,
382                             const MachineInstr *DefMI, unsigned DefIdx,
383                             const MachineInstr *UseMI, unsigned UseIdx) const;
384
385  /// analyzeCompare - For a comparison instruction, return the source registers
386  /// in SrcReg and SrcReg2 if having two register operands, and the value it
387  /// compares against in CmpValue. Return true if the comparison instruction
388  /// can be analyzed.
389  virtual bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
390                              unsigned &SrcReg2,
391                              int &CmpMask, int &CmpValue) const;
392
393  /// optimizeCompareInstr - Check if there exists an earlier instruction that
394  /// operates on the same source operands and sets flags in the same way as
395  /// Compare; remove Compare if possible.
396  virtual bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg,
397                                    unsigned SrcReg2, int CmpMask, int CmpValue,
398                                    const MachineRegisterInfo *MRI) const;
399
400  /// optimizeLoadInstr - Try to remove the load by folding it to a register
401  /// operand at the use. We fold the load instructions if and only if the
402  /// def and use are in the same BB. We only look at one load and see
403  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
404  /// defined by the load we are trying to fold. DefMI returns the machine
405  /// instruction that defines FoldAsLoadDefReg, and the function returns
406  /// the machine instruction generated due to folding.
407  virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
408                        const MachineRegisterInfo *MRI,
409                        unsigned &FoldAsLoadDefReg,
410                        MachineInstr *&DefMI) const;
411
412private:
413  MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
414                                              MachineFunction::iterator &MFI,
415                                              MachineBasicBlock::iterator &MBBI,
416                                              LiveVariables *LV) const;
417
418  /// isFrameOperand - Return true and the FrameIndex if the specified
419  /// operand and follow operands form a reference to the stack frame.
420  bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
421                      int &FrameIndex) const;
422};
423
424} // End llvm namespace
425
426#endif
427