X86InstrInfo.h revision 0d8db8e0a8492ab2d4bef725ec61b519471b97ec
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86.h"
19#include "X86RegisterInfo.h"
20#include "llvm/ADT/DenseMap.h"
21
22namespace llvm {
23  class X86RegisterInfo;
24  class X86TargetMachine;
25
26namespace X86 {
27  // X86 specific condition code. These correspond to X86_*_COND in
28  // X86InstrInfo.td. They must be kept in synch.
29  enum CondCode {
30    COND_A  = 0,
31    COND_AE = 1,
32    COND_B  = 2,
33    COND_BE = 3,
34    COND_E  = 4,
35    COND_G  = 5,
36    COND_GE = 6,
37    COND_L  = 7,
38    COND_LE = 8,
39    COND_NE = 9,
40    COND_NO = 10,
41    COND_NP = 11,
42    COND_NS = 12,
43    COND_O  = 13,
44    COND_P  = 14,
45    COND_S  = 15,
46
47    // Artificial condition codes. These are used by AnalyzeBranch
48    // to indicate a block terminated with two conditional branches to
49    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
50    // which can't be represented on x86 with a single condition. These
51    // are never used in MachineInstrs.
52    COND_NE_OR_P,
53    COND_NP_OR_E,
54
55    COND_INVALID
56  };
57
58  // Turn condition code into conditional branch opcode.
59  unsigned GetCondBranchFromCond(CondCode CC);
60
61  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
62  /// e.g. turning COND_E to COND_NE.
63  CondCode GetOppositeBranchCondition(X86::CondCode CC);
64
65}
66
67/// X86II - This namespace holds all of the target specific flags that
68/// instruction info tracks.
69///
70namespace X86II {
71  /// Target Operand Flag enum.
72  enum TOF {
73    //===------------------------------------------------------------------===//
74    // X86 Specific MachineOperand flags.
75
76    MO_NO_FLAG,
77
78    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
79    /// relocation of:
80    ///    SYMBOL_LABEL + [. - PICBASELABEL]
81    MO_GOT_ABSOLUTE_ADDRESS,
82
83    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
84    /// immediate should get the value of the symbol minus the PIC base label:
85    ///    SYMBOL_LABEL - PICBASELABEL
86    MO_PIC_BASE_OFFSET,
87
88    /// MO_GOT - On a symbol operand this indicates that the immediate is the
89    /// offset to the GOT entry for the symbol name from the base of the GOT.
90    ///
91    /// See the X86-64 ELF ABI supplement for more details.
92    ///    SYMBOL_LABEL @GOT
93    MO_GOT,
94
95    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
96    /// the offset to the location of the symbol name from the base of the GOT.
97    ///
98    /// See the X86-64 ELF ABI supplement for more details.
99    ///    SYMBOL_LABEL @GOTOFF
100    MO_GOTOFF,
101
102    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
103    /// offset to the GOT entry for the symbol name from the current code
104    /// location.
105    ///
106    /// See the X86-64 ELF ABI supplement for more details.
107    ///    SYMBOL_LABEL @GOTPCREL
108    MO_GOTPCREL,
109
110    /// MO_PLT - On a symbol operand this indicates that the immediate is
111    /// offset to the PLT entry of symbol name from the current code location.
112    ///
113    /// See the X86-64 ELF ABI supplement for more details.
114    ///    SYMBOL_LABEL @PLT
115    MO_PLT,
116
117    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
118    /// some TLS offset.
119    ///
120    /// See 'ELF Handling for Thread-Local Storage' for more details.
121    ///    SYMBOL_LABEL @TLSGD
122    MO_TLSGD,
123
124    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
125    /// some TLS offset.
126    ///
127    /// See 'ELF Handling for Thread-Local Storage' for more details.
128    ///    SYMBOL_LABEL @GOTTPOFF
129    MO_GOTTPOFF,
130
131    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
132    /// some TLS offset.
133    ///
134    /// See 'ELF Handling for Thread-Local Storage' for more details.
135    ///    SYMBOL_LABEL @INDNTPOFF
136    MO_INDNTPOFF,
137
138    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
139    /// some TLS offset.
140    ///
141    /// See 'ELF Handling for Thread-Local Storage' for more details.
142    ///    SYMBOL_LABEL @TPOFF
143    MO_TPOFF,
144
145    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
146    /// some TLS offset.
147    ///
148    /// See 'ELF Handling for Thread-Local Storage' for more details.
149    ///    SYMBOL_LABEL @NTPOFF
150    MO_NTPOFF,
151
152    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
153    /// reference is actually to the "__imp_FOO" symbol.  This is used for
154    /// dllimport linkage on windows.
155    MO_DLLIMPORT,
156
157    /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
158    /// reference is actually to the "FOO$stub" symbol.  This is used for calls
159    /// and jumps to external functions on Tiger and before.
160    MO_DARWIN_STUB,
161
162    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
163    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
164    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
165    MO_DARWIN_NONLAZY,
166
167    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
168    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
169    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
170    MO_DARWIN_NONLAZY_PIC_BASE,
171
172    /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
173    /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
174    /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
175    /// stub.
176    MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE
177  };
178}
179
180/// isGlobalStubReference - Return true if the specified TargetFlag operand is
181/// a reference to a stub for a global, not the global itself.
182inline static bool isGlobalStubReference(unsigned char TargetFlag) {
183  switch (TargetFlag) {
184  case X86II::MO_DLLIMPORT: // dllimport stub.
185  case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
186  case X86II::MO_GOT:       // normal GOT reference.
187  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
188  case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
189  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
190    return true;
191  default:
192    return false;
193  }
194}
195
196/// isGlobalRelativeToPICBase - Return true if the specified global value
197/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
198/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
199inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
200  switch (TargetFlag) {
201  case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
202  case X86II::MO_GOT:                            // isPICStyleGOT: other global.
203  case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
204  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
205  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
206    return true;
207  default:
208    return false;
209  }
210}
211
212/// X86II - This namespace holds all of the target specific flags that
213/// instruction info tracks.
214///
215namespace X86II {
216  enum {
217    //===------------------------------------------------------------------===//
218    // Instruction encodings.  These are the standard/most common forms for X86
219    // instructions.
220    //
221
222    // PseudoFrm - This represents an instruction that is a pseudo instruction
223    // or one that has not been implemented yet.  It is illegal to code generate
224    // it, but tolerated for intermediate implementation stages.
225    Pseudo         = 0,
226
227    /// Raw - This form is for instructions that don't have any operands, so
228    /// they are just a fixed opcode value, like 'leave'.
229    RawFrm         = 1,
230
231    /// AddRegFrm - This form is used for instructions like 'push r32' that have
232    /// their one register operand added to their opcode.
233    AddRegFrm      = 2,
234
235    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
236    /// to specify a destination, which in this case is a register.
237    ///
238    MRMDestReg     = 3,
239
240    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
241    /// to specify a destination, which in this case is memory.
242    ///
243    MRMDestMem     = 4,
244
245    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
246    /// to specify a source, which in this case is a register.
247    ///
248    MRMSrcReg      = 5,
249
250    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
251    /// to specify a source, which in this case is memory.
252    ///
253    MRMSrcMem      = 6,
254
255    /// MRM[0-7][rm] - These forms are used to represent instructions that use
256    /// a Mod/RM byte, and use the middle field to hold extended opcode
257    /// information.  In the intel manual these are represented as /0, /1, ...
258    ///
259
260    // First, instructions that operate on a register r/m operand...
261    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
262    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
263
264    // Next, instructions that operate on a memory r/m operand...
265    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
266    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
267
268    // MRMInitReg - This form is used for instructions whose source and
269    // destinations are the same register.
270    MRMInitReg = 32,
271
272    //// MRM_C1 - A mod/rm byte of exactly 0xC1.
273    MRM_C1 = 33,
274    MRM_C8 = 34,
275    MRM_C9 = 35,
276    MRM_E8 = 36,
277    MRM_F0 = 37,
278
279    FormMask       = 63,
280
281    //===------------------------------------------------------------------===//
282    // Actual flags...
283
284    // OpSize - Set if this instruction requires an operand size prefix (0x66),
285    // which most often indicates that the instruction operates on 16 bit data
286    // instead of 32 bit data.
287    OpSize      = 1 << 6,
288
289    // AsSize - Set if this instruction requires an operand size prefix (0x67),
290    // which most often indicates that the instruction address 16 bit address
291    // instead of 32 bit address (or 32 bit address in 64 bit mode).
292    AdSize      = 1 << 7,
293
294    //===------------------------------------------------------------------===//
295    // Op0Mask - There are several prefix bytes that are used to form two byte
296    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
297    // used to obtain the setting of this field.  If no bits in this field is
298    // set, there is no prefix byte for obtaining a multibyte opcode.
299    //
300    Op0Shift    = 8,
301    Op0Mask     = 0xF << Op0Shift,
302
303    // TB - TwoByte - Set if this instruction has a two byte opcode, which
304    // starts with a 0x0F byte before the real opcode.
305    TB          = 1 << Op0Shift,
306
307    // REP - The 0xF3 prefix byte indicating repetition of the following
308    // instruction.
309    REP         = 2 << Op0Shift,
310
311    // D8-DF - These escape opcodes are used by the floating point unit.  These
312    // values must remain sequential.
313    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
314    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
315    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
316    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
317
318    // XS, XD - These prefix codes are for single and double precision scalar
319    // floating point operations performed in the SSE registers.
320    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
321
322    // T8, TA - Prefix after the 0x0F prefix.
323    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
324
325    // TF - Prefix before and after 0x0F
326    TF = 15 << Op0Shift,
327
328    //===------------------------------------------------------------------===//
329    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
330    // They are used to specify GPRs and SSE registers, 64-bit operand size,
331    // etc. We only cares about REX.W and REX.R bits and only the former is
332    // statically determined.
333    //
334    REXShift    = 12,
335    REX_W       = 1 << REXShift,
336
337    //===------------------------------------------------------------------===//
338    // This three-bit field describes the size of an immediate operand.  Zero is
339    // unused so that we can tell if we forgot to set a value.
340    ImmShift = 13,
341    ImmMask  = 7 << ImmShift,
342    Imm8     = 1 << ImmShift,
343    Imm16    = 2 << ImmShift,
344    Imm32    = 3 << ImmShift,
345    Imm64    = 4 << ImmShift,
346
347    //===------------------------------------------------------------------===//
348    // FP Instruction Classification...  Zero is non-fp instruction.
349
350    // FPTypeMask - Mask for all of the FP types...
351    FPTypeShift = 16,
352    FPTypeMask  = 7 << FPTypeShift,
353
354    // NotFP - The default, set for instructions that do not use FP registers.
355    NotFP      = 0 << FPTypeShift,
356
357    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
358    ZeroArgFP  = 1 << FPTypeShift,
359
360    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
361    OneArgFP   = 2 << FPTypeShift,
362
363    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
364    // result back to ST(0).  For example, fcos, fsqrt, etc.
365    //
366    OneArgFPRW = 3 << FPTypeShift,
367
368    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
369    // explicit argument, storing the result to either ST(0) or the implicit
370    // argument.  For example: fadd, fsub, fmul, etc...
371    TwoArgFP   = 4 << FPTypeShift,
372
373    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
374    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
375    CompareFP  = 5 << FPTypeShift,
376
377    // CondMovFP - "2 operand" floating point conditional move instructions.
378    CondMovFP  = 6 << FPTypeShift,
379
380    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
381    SpecialFP  = 7 << FPTypeShift,
382
383    // Lock prefix
384    LOCKShift = 19,
385    LOCK = 1 << LOCKShift,
386
387    // Segment override prefixes. Currently we just need ability to address
388    // stuff in gs and fs segments.
389    SegOvrShift = 20,
390    SegOvrMask  = 3 << SegOvrShift,
391    FS          = 1 << SegOvrShift,
392    GS          = 2 << SegOvrShift,
393
394    // Bits 22 -> 23 are unused
395    OpcodeShift   = 24,
396    OpcodeMask    = 0xFF << OpcodeShift
397  };
398
399  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
400  // specified machine instruction.
401  //
402  static inline unsigned char getBaseOpcodeFor(unsigned TSFlags) {
403    return TSFlags >> X86II::OpcodeShift;
404  }
405
406  /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
407  /// of the specified instruction.
408  static inline unsigned getSizeOfImm(unsigned TSFlags) {
409    switch (TSFlags & X86II::ImmMask) {
410    default: assert(0 && "Unknown immediate size");
411    case X86II::Imm8:   return 1;
412    case X86II::Imm16:  return 2;
413    case X86II::Imm32:  return 4;
414    case X86II::Imm64:  return 8;
415    }
416  }
417}
418
419const int X86AddrNumOperands = 5;
420
421inline static bool isScale(const MachineOperand &MO) {
422  return MO.isImm() &&
423    (MO.getImm() == 1 || MO.getImm() == 2 ||
424     MO.getImm() == 4 || MO.getImm() == 8);
425}
426
427inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
428  if (MI->getOperand(Op).isFI()) return true;
429  return Op+4 <= MI->getNumOperands() &&
430    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
431    MI->getOperand(Op+2).isReg() &&
432    (MI->getOperand(Op+3).isImm() ||
433     MI->getOperand(Op+3).isGlobal() ||
434     MI->getOperand(Op+3).isCPI() ||
435     MI->getOperand(Op+3).isJTI());
436}
437
438inline static bool isMem(const MachineInstr *MI, unsigned Op) {
439  if (MI->getOperand(Op).isFI()) return true;
440  return Op+5 <= MI->getNumOperands() &&
441    MI->getOperand(Op+4).isReg() &&
442    isLeaMem(MI, Op);
443}
444
445class X86InstrInfo : public TargetInstrInfoImpl {
446  X86TargetMachine &TM;
447  const X86RegisterInfo RI;
448
449  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
450  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
451  ///
452  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
453  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
454  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
455  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
456
457  /// MemOp2RegOpTable - Load / store unfolding opcode map.
458  ///
459  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
460
461public:
462  explicit X86InstrInfo(X86TargetMachine &tm);
463
464  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
465  /// such, whenever a client has an instance of instruction info, it should
466  /// always be able to get register info as well (through this method).
467  ///
468  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
469
470  /// Return true if the instruction is a register to register move and return
471  /// the source and dest operands and their sub-register indices by reference.
472  virtual bool isMoveInstr(const MachineInstr &MI,
473                           unsigned &SrcReg, unsigned &DstReg,
474                           unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
475
476  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
477  /// extension instruction. That is, it's like a copy where it's legal for the
478  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
479  /// true, then it's expected the pre-extension value is available as a subreg
480  /// of the result register. This also returns the sub-register index in
481  /// SubIdx.
482  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
483                                     unsigned &SrcReg, unsigned &DstReg,
484                                     unsigned &SubIdx) const;
485
486  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
487  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
488  /// stack locations as well.  This uses a heuristic so it isn't
489  /// reliable for correctness.
490  unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
491                                     int &FrameIndex) const;
492
493  /// hasLoadFromStackSlot - If the specified machine instruction has
494  /// a load from a stack slot, return true along with the FrameIndex
495  /// of the loaded stack slot and the machine mem operand containing
496  /// the reference.  If not, return false.  Unlike
497  /// isLoadFromStackSlot, this returns true for any instructions that
498  /// loads from the stack.  This is a hint only and may not catch all
499  /// cases.
500  bool hasLoadFromStackSlot(const MachineInstr *MI,
501                            const MachineMemOperand *&MMO,
502                            int &FrameIndex) const;
503
504  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
505  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
506  /// stack locations as well.  This uses a heuristic so it isn't
507  /// reliable for correctness.
508  unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
509                                    int &FrameIndex) const;
510
511  /// hasStoreToStackSlot - If the specified machine instruction has a
512  /// store to a stack slot, return true along with the FrameIndex of
513  /// the loaded stack slot and the machine mem operand containing the
514  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
515  /// this returns true for any instructions that loads from the
516  /// stack.  This is a hint only and may not catch all cases.
517  bool hasStoreToStackSlot(const MachineInstr *MI,
518                           const MachineMemOperand *&MMO,
519                           int &FrameIndex) const;
520
521  bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
522                                         AliasAnalysis *AA) const;
523  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
524                     unsigned DestReg, unsigned SubIdx,
525                     const MachineInstr *Orig,
526                     const TargetRegisterInfo *TRI) const;
527
528  /// convertToThreeAddress - This method must be implemented by targets that
529  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
530  /// may be able to convert a two-address instruction into a true
531  /// three-address instruction on demand.  This allows the X86 target (for
532  /// example) to convert ADD and SHL instructions into LEA instructions if they
533  /// would require register copies due to two-addressness.
534  ///
535  /// This method returns a null pointer if the transformation cannot be
536  /// performed, otherwise it returns the new instruction.
537  ///
538  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
539                                              MachineBasicBlock::iterator &MBBI,
540                                              LiveVariables *LV) const;
541
542  /// commuteInstruction - We have a few instructions that must be hacked on to
543  /// commute them.
544  ///
545  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
546
547  // Branch analysis.
548  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
549  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
550                             MachineBasicBlock *&FBB,
551                             SmallVectorImpl<MachineOperand> &Cond,
552                             bool AllowModify) const;
553  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
554  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
555                                MachineBasicBlock *FBB,
556                            const SmallVectorImpl<MachineOperand> &Cond) const;
557  virtual bool copyRegToReg(MachineBasicBlock &MBB,
558                            MachineBasicBlock::iterator MI,
559                            unsigned DestReg, unsigned SrcReg,
560                            const TargetRegisterClass *DestRC,
561                            const TargetRegisterClass *SrcRC) const;
562  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
563                                   MachineBasicBlock::iterator MI,
564                                   unsigned SrcReg, bool isKill, int FrameIndex,
565                                   const TargetRegisterClass *RC) const;
566
567  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
568                              SmallVectorImpl<MachineOperand> &Addr,
569                              const TargetRegisterClass *RC,
570                              MachineInstr::mmo_iterator MMOBegin,
571                              MachineInstr::mmo_iterator MMOEnd,
572                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
573
574  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
575                                    MachineBasicBlock::iterator MI,
576                                    unsigned DestReg, int FrameIndex,
577                                    const TargetRegisterClass *RC) const;
578
579  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
580                               SmallVectorImpl<MachineOperand> &Addr,
581                               const TargetRegisterClass *RC,
582                               MachineInstr::mmo_iterator MMOBegin,
583                               MachineInstr::mmo_iterator MMOEnd,
584                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
585
586  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
587                                         MachineBasicBlock::iterator MI,
588                                 const std::vector<CalleeSavedInfo> &CSI) const;
589
590  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
591                                           MachineBasicBlock::iterator MI,
592                                 const std::vector<CalleeSavedInfo> &CSI) const;
593
594  /// foldMemoryOperand - If this target supports it, fold a load or store of
595  /// the specified stack slot into the specified machine instruction for the
596  /// specified operand(s).  If this is possible, the target should perform the
597  /// folding and return true, otherwise it should return false.  If it folds
598  /// the instruction, it is likely that the MachineInstruction the iterator
599  /// references has been changed.
600  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
601                                              MachineInstr* MI,
602                                           const SmallVectorImpl<unsigned> &Ops,
603                                              int FrameIndex) const;
604
605  /// foldMemoryOperand - Same as the previous version except it allows folding
606  /// of any load and store from / to any address, not just from a specific
607  /// stack slot.
608  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
609                                              MachineInstr* MI,
610                                           const SmallVectorImpl<unsigned> &Ops,
611                                              MachineInstr* LoadMI) const;
612
613  /// canFoldMemoryOperand - Returns true if the specified load / store is
614  /// folding is possible.
615  virtual bool canFoldMemoryOperand(const MachineInstr*,
616                                    const SmallVectorImpl<unsigned> &) const;
617
618  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
619  /// a store or a load and a store into two or more instruction. If this is
620  /// possible, returns true as well as the new instructions by reference.
621  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
622                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
623                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
624
625  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
626                           SmallVectorImpl<SDNode*> &NewNodes) const;
627
628  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
629  /// instruction after load / store are unfolded from an instruction of the
630  /// specified opcode. It returns zero if the specified unfolding is not
631  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
632  /// index of the operand which will hold the register holding the loaded
633  /// value.
634  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
635                                      bool UnfoldLoad, bool UnfoldStore,
636                                      unsigned *LoadRegIndex = 0) const;
637
638  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
639  /// to determine if two loads are loading from the same base address. It
640  /// should only return true if the base pointers are the same and the
641  /// only differences between the two addresses are the offset. It also returns
642  /// the offsets by reference.
643  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
644                                       int64_t &Offset1, int64_t &Offset2) const;
645
646  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
647  /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
648  /// be scheduled togther. On some targets if two loads are loading from
649  /// addresses in the same cache line, it's better if they are scheduled
650  /// together. This function takes two integers that represent the load offsets
651  /// from the common base address. It returns true if it decides it's desirable
652  /// to schedule the two loads together. "NumLoads" is the number of loads that
653  /// have already been scheduled after Load1.
654  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
655                                       int64_t Offset1, int64_t Offset2,
656                                       unsigned NumLoads) const;
657
658  virtual
659  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
660
661  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
662  /// instruction that defines the specified register class.
663  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
664
665  static bool isX86_64NonExtLowByteReg(unsigned reg) {
666    return (reg == X86::SPL || reg == X86::BPL ||
667          reg == X86::SIL || reg == X86::DIL);
668  }
669
670  static bool isX86_64ExtendedReg(const MachineOperand &MO) {
671    if (!MO.isReg()) return false;
672    return isX86_64ExtendedReg(MO.getReg());
673  }
674  static unsigned determineREX(const MachineInstr &MI);
675
676  /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
677  /// higher) register?  e.g. r8, xmm8, xmm13, etc.
678  static bool isX86_64ExtendedReg(unsigned RegNo);
679
680  /// GetInstSize - Returns the size of the specified MachineInstr.
681  ///
682  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
683
684  /// getGlobalBaseReg - Return a virtual register initialized with the
685  /// the global base register value. Output instructions required to
686  /// initialize the register in the function entry block, if necessary.
687  ///
688  unsigned getGlobalBaseReg(MachineFunction *MF) const;
689
690private:
691  MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
692                                              MachineFunction::iterator &MFI,
693                                              MachineBasicBlock::iterator &MBBI,
694                                              LiveVariables *LV) const;
695
696  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
697                                     MachineInstr* MI,
698                                     unsigned OpNum,
699                                     const SmallVectorImpl<MachineOperand> &MOs,
700                                     unsigned Size, unsigned Alignment) const;
701
702  /// isFrameOperand - Return true and the FrameIndex if the specified
703  /// operand and follow operands form a reference to the stack frame.
704  bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
705                      int &FrameIndex) const;
706};
707
708} // End llvm namespace
709
710#endif
711