X86InstrInfo.h revision 1087f54ddb70bd2a7ab62608161e4a3f0c345935
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86.h"
19#include "X86RegisterInfo.h"
20#include "llvm/ADT/DenseMap.h"
21
22namespace llvm {
23  class X86RegisterInfo;
24  class X86TargetMachine;
25
26namespace X86 {
27  // X86 specific condition code. These correspond to X86_*_COND in
28  // X86InstrInfo.td. They must be kept in synch.
29  enum CondCode {
30    COND_A  = 0,
31    COND_AE = 1,
32    COND_B  = 2,
33    COND_BE = 3,
34    COND_E  = 4,
35    COND_G  = 5,
36    COND_GE = 6,
37    COND_L  = 7,
38    COND_LE = 8,
39    COND_NE = 9,
40    COND_NO = 10,
41    COND_NP = 11,
42    COND_NS = 12,
43    COND_O  = 13,
44    COND_P  = 14,
45    COND_S  = 15,
46
47    // Artificial condition codes. These are used by AnalyzeBranch
48    // to indicate a block terminated with two conditional branches to
49    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
50    // which can't be represented on x86 with a single condition. These
51    // are never used in MachineInstrs.
52    COND_NE_OR_P,
53    COND_NP_OR_E,
54
55    COND_INVALID
56  };
57
58  // Turn condition code into conditional branch opcode.
59  unsigned GetCondBranchFromCond(CondCode CC);
60
61  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
62  /// e.g. turning COND_E to COND_NE.
63  CondCode GetOppositeBranchCondition(X86::CondCode CC);
64
65}
66
67/// X86II - This namespace holds all of the target specific flags that
68/// instruction info tracks.
69///
70namespace X86II {
71  /// Target Operand Flag enum.
72  enum TOF {
73    //===------------------------------------------------------------------===//
74    // X86 Specific MachineOperand flags.
75
76    MO_NO_FLAG,
77
78    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
79    /// relocation of:
80    ///    SYMBOL_LABEL + [. - PICBASELABEL]
81    MO_GOT_ABSOLUTE_ADDRESS,
82
83    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
84    /// immediate should get the value of the symbol minus the PIC base label:
85    ///    SYMBOL_LABEL - PICBASELABEL
86    MO_PIC_BASE_OFFSET,
87
88    /// MO_GOT - On a symbol operand this indicates that the immediate is the
89    /// offset to the GOT entry for the symbol name from the base of the GOT.
90    ///
91    /// See the X86-64 ELF ABI supplement for more details.
92    ///    SYMBOL_LABEL @GOT
93    MO_GOT,
94
95    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
96    /// the offset to the location of the symbol name from the base of the GOT.
97    ///
98    /// See the X86-64 ELF ABI supplement for more details.
99    ///    SYMBOL_LABEL @GOTOFF
100    MO_GOTOFF,
101
102    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
103    /// offset to the GOT entry for the symbol name from the current code
104    /// location.
105    ///
106    /// See the X86-64 ELF ABI supplement for more details.
107    ///    SYMBOL_LABEL @GOTPCREL
108    MO_GOTPCREL,
109
110    /// MO_PLT - On a symbol operand this indicates that the immediate is
111    /// offset to the PLT entry of symbol name from the current code location.
112    ///
113    /// See the X86-64 ELF ABI supplement for more details.
114    ///    SYMBOL_LABEL @PLT
115    MO_PLT,
116
117    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
118    /// some TLS offset.
119    ///
120    /// See 'ELF Handling for Thread-Local Storage' for more details.
121    ///    SYMBOL_LABEL @TLSGD
122    MO_TLSGD,
123
124    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
125    /// some TLS offset.
126    ///
127    /// See 'ELF Handling for Thread-Local Storage' for more details.
128    ///    SYMBOL_LABEL @GOTTPOFF
129    MO_GOTTPOFF,
130
131    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
132    /// some TLS offset.
133    ///
134    /// See 'ELF Handling for Thread-Local Storage' for more details.
135    ///    SYMBOL_LABEL @INDNTPOFF
136    MO_INDNTPOFF,
137
138    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
139    /// some TLS offset.
140    ///
141    /// See 'ELF Handling for Thread-Local Storage' for more details.
142    ///    SYMBOL_LABEL @TPOFF
143    MO_TPOFF,
144
145    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
146    /// some TLS offset.
147    ///
148    /// See 'ELF Handling for Thread-Local Storage' for more details.
149    ///    SYMBOL_LABEL @NTPOFF
150    MO_NTPOFF,
151
152    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
153    /// reference is actually to the "__imp_FOO" symbol.  This is used for
154    /// dllimport linkage on windows.
155    MO_DLLIMPORT,
156
157    /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
158    /// reference is actually to the "FOO$stub" symbol.  This is used for calls
159    /// and jumps to external functions on Tiger and before.
160    MO_DARWIN_STUB,
161
162    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
163    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
164    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
165    MO_DARWIN_NONLAZY,
166
167    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
168    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
169    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
170    MO_DARWIN_NONLAZY_PIC_BASE,
171
172    /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
173    /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
174    /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
175    /// stub.
176    MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
177
178    /// MO_TLVP - On a symbol operand this indicates that the immediate is
179    /// some TLS offset.
180    ///
181    /// This is the TLS offset for the Darwin TLS mechanism.
182    MO_TLVP,
183
184    /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
185    /// is some TLS offset from the picbase.
186    ///
187    /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
188    MO_TLVP_PIC_BASE
189  };
190}
191
192/// isGlobalStubReference - Return true if the specified TargetFlag operand is
193/// a reference to a stub for a global, not the global itself.
194inline static bool isGlobalStubReference(unsigned char TargetFlag) {
195  switch (TargetFlag) {
196  case X86II::MO_DLLIMPORT: // dllimport stub.
197  case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
198  case X86II::MO_GOT:       // normal GOT reference.
199  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
200  case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
201  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
202    return true;
203  default:
204    return false;
205  }
206}
207
208/// isGlobalRelativeToPICBase - Return true if the specified global value
209/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
210/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
211inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
212  switch (TargetFlag) {
213  case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
214  case X86II::MO_GOT:                            // isPICStyleGOT: other global.
215  case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
216  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
217  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
218  case X86II::MO_TLVP:                           // ??? Pretty sure..
219    return true;
220  default:
221    return false;
222  }
223}
224
225/// X86II - This namespace holds all of the target specific flags that
226/// instruction info tracks.
227///
228namespace X86II {
229  enum {
230    //===------------------------------------------------------------------===//
231    // Instruction encodings.  These are the standard/most common forms for X86
232    // instructions.
233    //
234
235    // PseudoFrm - This represents an instruction that is a pseudo instruction
236    // or one that has not been implemented yet.  It is illegal to code generate
237    // it, but tolerated for intermediate implementation stages.
238    Pseudo         = 0,
239
240    /// Raw - This form is for instructions that don't have any operands, so
241    /// they are just a fixed opcode value, like 'leave'.
242    RawFrm         = 1,
243
244    /// AddRegFrm - This form is used for instructions like 'push r32' that have
245    /// their one register operand added to their opcode.
246    AddRegFrm      = 2,
247
248    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
249    /// to specify a destination, which in this case is a register.
250    ///
251    MRMDestReg     = 3,
252
253    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
254    /// to specify a destination, which in this case is memory.
255    ///
256    MRMDestMem     = 4,
257
258    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
259    /// to specify a source, which in this case is a register.
260    ///
261    MRMSrcReg      = 5,
262
263    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
264    /// to specify a source, which in this case is memory.
265    ///
266    MRMSrcMem      = 6,
267
268    /// MRM[0-7][rm] - These forms are used to represent instructions that use
269    /// a Mod/RM byte, and use the middle field to hold extended opcode
270    /// information.  In the intel manual these are represented as /0, /1, ...
271    ///
272
273    // First, instructions that operate on a register r/m operand...
274    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
275    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
276
277    // Next, instructions that operate on a memory r/m operand...
278    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
279    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
280
281    // MRMInitReg - This form is used for instructions whose source and
282    // destinations are the same register.
283    MRMInitReg = 32,
284
285    //// MRM_C1 - A mod/rm byte of exactly 0xC1.
286    MRM_C1 = 33,
287    MRM_C2 = 34,
288    MRM_C3 = 35,
289    MRM_C4 = 36,
290    MRM_C8 = 37,
291    MRM_C9 = 38,
292    MRM_E8 = 39,
293    MRM_F0 = 40,
294    MRM_F8 = 41,
295    MRM_F9 = 42,
296
297    FormMask       = 63,
298
299    //===------------------------------------------------------------------===//
300    // Actual flags...
301
302    // OpSize - Set if this instruction requires an operand size prefix (0x66),
303    // which most often indicates that the instruction operates on 16 bit data
304    // instead of 32 bit data.
305    OpSize      = 1 << 6,
306
307    // AsSize - Set if this instruction requires an operand size prefix (0x67),
308    // which most often indicates that the instruction address 16 bit address
309    // instead of 32 bit address (or 32 bit address in 64 bit mode).
310    AdSize      = 1 << 7,
311
312    //===------------------------------------------------------------------===//
313    // Op0Mask - There are several prefix bytes that are used to form two byte
314    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
315    // used to obtain the setting of this field.  If no bits in this field is
316    // set, there is no prefix byte for obtaining a multibyte opcode.
317    //
318    Op0Shift    = 8,
319    Op0Mask     = 0xF << Op0Shift,
320
321    // TB - TwoByte - Set if this instruction has a two byte opcode, which
322    // starts with a 0x0F byte before the real opcode.
323    TB          = 1 << Op0Shift,
324
325    // REP - The 0xF3 prefix byte indicating repetition of the following
326    // instruction.
327    REP         = 2 << Op0Shift,
328
329    // D8-DF - These escape opcodes are used by the floating point unit.  These
330    // values must remain sequential.
331    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
332    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
333    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
334    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
335
336    // XS, XD - These prefix codes are for single and double precision scalar
337    // floating point operations performed in the SSE registers.
338    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
339
340    // T8, TA - Prefix after the 0x0F prefix.
341    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
342
343    // TF - Prefix before and after 0x0F
344    TF = 15 << Op0Shift,
345
346    //===------------------------------------------------------------------===//
347    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
348    // They are used to specify GPRs and SSE registers, 64-bit operand size,
349    // etc. We only cares about REX.W and REX.R bits and only the former is
350    // statically determined.
351    //
352    REXShift    = 12,
353    REX_W       = 1 << REXShift,
354
355    //===------------------------------------------------------------------===//
356    // This three-bit field describes the size of an immediate operand.  Zero is
357    // unused so that we can tell if we forgot to set a value.
358    ImmShift = 13,
359    ImmMask    = 7 << ImmShift,
360    Imm8       = 1 << ImmShift,
361    Imm8PCRel  = 2 << ImmShift,
362    Imm16      = 3 << ImmShift,
363    Imm32      = 4 << ImmShift,
364    Imm32PCRel = 5 << ImmShift,
365    Imm64      = 6 << ImmShift,
366
367    //===------------------------------------------------------------------===//
368    // FP Instruction Classification...  Zero is non-fp instruction.
369
370    // FPTypeMask - Mask for all of the FP types...
371    FPTypeShift = 16,
372    FPTypeMask  = 7 << FPTypeShift,
373
374    // NotFP - The default, set for instructions that do not use FP registers.
375    NotFP      = 0 << FPTypeShift,
376
377    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
378    ZeroArgFP  = 1 << FPTypeShift,
379
380    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
381    OneArgFP   = 2 << FPTypeShift,
382
383    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
384    // result back to ST(0).  For example, fcos, fsqrt, etc.
385    //
386    OneArgFPRW = 3 << FPTypeShift,
387
388    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
389    // explicit argument, storing the result to either ST(0) or the implicit
390    // argument.  For example: fadd, fsub, fmul, etc...
391    TwoArgFP   = 4 << FPTypeShift,
392
393    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
394    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
395    CompareFP  = 5 << FPTypeShift,
396
397    // CondMovFP - "2 operand" floating point conditional move instructions.
398    CondMovFP  = 6 << FPTypeShift,
399
400    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
401    SpecialFP  = 7 << FPTypeShift,
402
403    // Lock prefix
404    LOCKShift = 19,
405    LOCK = 1 << LOCKShift,
406
407    // Segment override prefixes. Currently we just need ability to address
408    // stuff in gs and fs segments.
409    SegOvrShift = 20,
410    SegOvrMask  = 3 << SegOvrShift,
411    FS          = 1 << SegOvrShift,
412    GS          = 2 << SegOvrShift,
413
414    // Execution domain for SSE instructions in bits 22, 23.
415    // 0 in bits 22-23 means normal, non-SSE instruction.
416    SSEDomainShift = 22,
417
418    OpcodeShift   = 24,
419    OpcodeMask    = 0xFF << OpcodeShift
420  };
421
422  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
423  // specified machine instruction.
424  //
425  static inline unsigned char getBaseOpcodeFor(unsigned TSFlags) {
426    return TSFlags >> X86II::OpcodeShift;
427  }
428
429  static inline bool hasImm(unsigned TSFlags) {
430    return (TSFlags & X86II::ImmMask) != 0;
431  }
432
433  /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
434  /// of the specified instruction.
435  static inline unsigned getSizeOfImm(unsigned TSFlags) {
436    switch (TSFlags & X86II::ImmMask) {
437    default: assert(0 && "Unknown immediate size");
438    case X86II::Imm8:
439    case X86II::Imm8PCRel:  return 1;
440    case X86II::Imm16:      return 2;
441    case X86II::Imm32:
442    case X86II::Imm32PCRel: return 4;
443    case X86II::Imm64:      return 8;
444    }
445  }
446
447  /// isImmPCRel - Return true if the immediate of the specified instruction's
448  /// TSFlags indicates that it is pc relative.
449  static inline unsigned isImmPCRel(unsigned TSFlags) {
450    switch (TSFlags & X86II::ImmMask) {
451      default: assert(0 && "Unknown immediate size");
452      case X86II::Imm8PCRel:
453      case X86II::Imm32PCRel:
454        return true;
455      case X86II::Imm8:
456      case X86II::Imm16:
457      case X86II::Imm32:
458      case X86II::Imm64:
459        return false;
460    }
461  }
462}
463
464const int X86AddrNumOperands = 5;
465
466inline static bool isScale(const MachineOperand &MO) {
467  return MO.isImm() &&
468    (MO.getImm() == 1 || MO.getImm() == 2 ||
469     MO.getImm() == 4 || MO.getImm() == 8);
470}
471
472inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
473  if (MI->getOperand(Op).isFI()) return true;
474  return Op+4 <= MI->getNumOperands() &&
475    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
476    MI->getOperand(Op+2).isReg() &&
477    (MI->getOperand(Op+3).isImm() ||
478     MI->getOperand(Op+3).isGlobal() ||
479     MI->getOperand(Op+3).isCPI() ||
480     MI->getOperand(Op+3).isJTI());
481}
482
483inline static bool isMem(const MachineInstr *MI, unsigned Op) {
484  if (MI->getOperand(Op).isFI()) return true;
485  return Op+5 <= MI->getNumOperands() &&
486    MI->getOperand(Op+4).isReg() &&
487    isLeaMem(MI, Op);
488}
489
490class X86InstrInfo : public TargetInstrInfoImpl {
491  X86TargetMachine &TM;
492  const X86RegisterInfo RI;
493
494  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
495  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
496  ///
497  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
498  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
499  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
500  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
501
502  /// MemOp2RegOpTable - Load / store unfolding opcode map.
503  ///
504  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
505
506public:
507  explicit X86InstrInfo(X86TargetMachine &tm);
508
509  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
510  /// such, whenever a client has an instance of instruction info, it should
511  /// always be able to get register info as well (through this method).
512  ///
513  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
514
515  /// Return true if the instruction is a register to register move and return
516  /// the source and dest operands and their sub-register indices by reference.
517  virtual bool isMoveInstr(const MachineInstr &MI,
518                           unsigned &SrcReg, unsigned &DstReg,
519                           unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
520
521  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
522  /// extension instruction. That is, it's like a copy where it's legal for the
523  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
524  /// true, then it's expected the pre-extension value is available as a subreg
525  /// of the result register. This also returns the sub-register index in
526  /// SubIdx.
527  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
528                                     unsigned &SrcReg, unsigned &DstReg,
529                                     unsigned &SubIdx) const;
530
531  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
532  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
533  /// stack locations as well.  This uses a heuristic so it isn't
534  /// reliable for correctness.
535  unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
536                                     int &FrameIndex) const;
537
538  /// hasLoadFromStackSlot - If the specified machine instruction has
539  /// a load from a stack slot, return true along with the FrameIndex
540  /// of the loaded stack slot and the machine mem operand containing
541  /// the reference.  If not, return false.  Unlike
542  /// isLoadFromStackSlot, this returns true for any instructions that
543  /// loads from the stack.  This is a hint only and may not catch all
544  /// cases.
545  bool hasLoadFromStackSlot(const MachineInstr *MI,
546                            const MachineMemOperand *&MMO,
547                            int &FrameIndex) const;
548
549  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
550  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
551  /// stack locations as well.  This uses a heuristic so it isn't
552  /// reliable for correctness.
553  unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
554                                    int &FrameIndex) const;
555
556  /// hasStoreToStackSlot - If the specified machine instruction has a
557  /// store to a stack slot, return true along with the FrameIndex of
558  /// the loaded stack slot and the machine mem operand containing the
559  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
560  /// this returns true for any instructions that loads from the
561  /// stack.  This is a hint only and may not catch all cases.
562  bool hasStoreToStackSlot(const MachineInstr *MI,
563                           const MachineMemOperand *&MMO,
564                           int &FrameIndex) const;
565
566  bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
567                                         AliasAnalysis *AA) const;
568  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
569                     unsigned DestReg, unsigned SubIdx,
570                     const MachineInstr *Orig,
571                     const TargetRegisterInfo &TRI) const;
572
573  /// convertToThreeAddress - This method must be implemented by targets that
574  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
575  /// may be able to convert a two-address instruction into a true
576  /// three-address instruction on demand.  This allows the X86 target (for
577  /// example) to convert ADD and SHL instructions into LEA instructions if they
578  /// would require register copies due to two-addressness.
579  ///
580  /// This method returns a null pointer if the transformation cannot be
581  /// performed, otherwise it returns the new instruction.
582  ///
583  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
584                                              MachineBasicBlock::iterator &MBBI,
585                                              LiveVariables *LV) const;
586
587  /// commuteInstruction - We have a few instructions that must be hacked on to
588  /// commute them.
589  ///
590  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
591
592  // Branch analysis.
593  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
594  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
595                             MachineBasicBlock *&FBB,
596                             SmallVectorImpl<MachineOperand> &Cond,
597                             bool AllowModify) const;
598  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
599  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
600                                MachineBasicBlock *FBB,
601                            const SmallVectorImpl<MachineOperand> &Cond) const;
602  virtual bool copyRegToReg(MachineBasicBlock &MBB,
603                            MachineBasicBlock::iterator MI,
604                            unsigned DestReg, unsigned SrcReg,
605                            const TargetRegisterClass *DestRC,
606                            const TargetRegisterClass *SrcRC,
607                            DebugLoc DL) const;
608  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
609                                   MachineBasicBlock::iterator MI,
610                                   unsigned SrcReg, bool isKill, int FrameIndex,
611                                   const TargetRegisterClass *RC,
612                                   const TargetRegisterInfo *TRI) const;
613
614  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
615                              SmallVectorImpl<MachineOperand> &Addr,
616                              const TargetRegisterClass *RC,
617                              MachineInstr::mmo_iterator MMOBegin,
618                              MachineInstr::mmo_iterator MMOEnd,
619                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
620
621  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
622                                    MachineBasicBlock::iterator MI,
623                                    unsigned DestReg, int FrameIndex,
624                                    const TargetRegisterClass *RC,
625                                    const TargetRegisterInfo *TRI) const;
626
627  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
628                               SmallVectorImpl<MachineOperand> &Addr,
629                               const TargetRegisterClass *RC,
630                               MachineInstr::mmo_iterator MMOBegin,
631                               MachineInstr::mmo_iterator MMOEnd,
632                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
633
634  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
635                                         MachineBasicBlock::iterator MI,
636                                        const std::vector<CalleeSavedInfo> &CSI,
637                                         const TargetRegisterInfo *TRI) const;
638
639  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
640                                           MachineBasicBlock::iterator MI,
641                                        const std::vector<CalleeSavedInfo> &CSI,
642                                           const TargetRegisterInfo *TRI) const;
643
644  virtual
645  MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
646                                         int FrameIx, uint64_t Offset,
647                                         const MDNode *MDPtr,
648                                         DebugLoc DL) const;
649
650  /// foldMemoryOperand - If this target supports it, fold a load or store of
651  /// the specified stack slot into the specified machine instruction for the
652  /// specified operand(s).  If this is possible, the target should perform the
653  /// folding and return true, otherwise it should return false.  If it folds
654  /// the instruction, it is likely that the MachineInstruction the iterator
655  /// references has been changed.
656  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
657                                              MachineInstr* MI,
658                                           const SmallVectorImpl<unsigned> &Ops,
659                                              int FrameIndex) const;
660
661  /// foldMemoryOperand - Same as the previous version except it allows folding
662  /// of any load and store from / to any address, not just from a specific
663  /// stack slot.
664  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
665                                              MachineInstr* MI,
666                                           const SmallVectorImpl<unsigned> &Ops,
667                                              MachineInstr* LoadMI) const;
668
669  /// canFoldMemoryOperand - Returns true if the specified load / store is
670  /// folding is possible.
671  virtual bool canFoldMemoryOperand(const MachineInstr*,
672                                    const SmallVectorImpl<unsigned> &) const;
673
674  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
675  /// a store or a load and a store into two or more instruction. If this is
676  /// possible, returns true as well as the new instructions by reference.
677  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
678                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
679                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
680
681  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
682                           SmallVectorImpl<SDNode*> &NewNodes) const;
683
684  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
685  /// instruction after load / store are unfolded from an instruction of the
686  /// specified opcode. It returns zero if the specified unfolding is not
687  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
688  /// index of the operand which will hold the register holding the loaded
689  /// value.
690  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
691                                      bool UnfoldLoad, bool UnfoldStore,
692                                      unsigned *LoadRegIndex = 0) const;
693
694  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
695  /// to determine if two loads are loading from the same base address. It
696  /// should only return true if the base pointers are the same and the
697  /// only differences between the two addresses are the offset. It also returns
698  /// the offsets by reference.
699  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
700                                       int64_t &Offset1, int64_t &Offset2) const;
701
702  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
703  /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
704  /// be scheduled togther. On some targets if two loads are loading from
705  /// addresses in the same cache line, it's better if they are scheduled
706  /// together. This function takes two integers that represent the load offsets
707  /// from the common base address. It returns true if it decides it's desirable
708  /// to schedule the two loads together. "NumLoads" is the number of loads that
709  /// have already been scheduled after Load1.
710  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
711                                       int64_t Offset1, int64_t Offset2,
712                                       unsigned NumLoads) const;
713
714  virtual void getNoopForMachoTarget(MCInst &NopInst) const;
715
716  virtual
717  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
718
719  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
720  /// instruction that defines the specified register class.
721  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
722
723  static bool isX86_64NonExtLowByteReg(unsigned reg) {
724    return (reg == X86::SPL || reg == X86::BPL ||
725          reg == X86::SIL || reg == X86::DIL);
726  }
727
728  static bool isX86_64ExtendedReg(const MachineOperand &MO) {
729    if (!MO.isReg()) return false;
730    return isX86_64ExtendedReg(MO.getReg());
731  }
732  static unsigned determineREX(const MachineInstr &MI);
733
734  /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
735  /// higher) register?  e.g. r8, xmm8, xmm13, etc.
736  static bool isX86_64ExtendedReg(unsigned RegNo);
737
738  /// GetInstSize - Returns the size of the specified MachineInstr.
739  ///
740  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
741
742  /// getGlobalBaseReg - Return a virtual register initialized with the
743  /// the global base register value. Output instructions required to
744  /// initialize the register in the function entry block, if necessary.
745  ///
746  unsigned getGlobalBaseReg(MachineFunction *MF) const;
747
748  /// GetSSEDomain - Return the SSE execution domain of MI as the first element,
749  /// and a bitmask of possible arguments to SetSSEDomain ase the second.
750  std::pair<uint16_t, uint16_t> GetSSEDomain(const MachineInstr *MI) const;
751
752  /// SetSSEDomain - Set the SSEDomain of MI.
753  void SetSSEDomain(MachineInstr *MI, unsigned Domain) const;
754
755private:
756  MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
757                                              MachineFunction::iterator &MFI,
758                                              MachineBasicBlock::iterator &MBBI,
759                                              LiveVariables *LV) const;
760
761  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
762                                     MachineInstr* MI,
763                                     unsigned OpNum,
764                                     const SmallVectorImpl<MachineOperand> &MOs,
765                                     unsigned Size, unsigned Alignment) const;
766
767  /// isFrameOperand - Return true and the FrameIndex if the specified
768  /// operand and follow operands form a reference to the stack frame.
769  bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
770                      int &FrameIndex) const;
771};
772
773} // End llvm namespace
774
775#endif
776