X86InstrInfo.h revision 1e80f403e225a72016581e34b05dca9b5ebd9445
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86.h"
19#include "X86RegisterInfo.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22
23namespace llvm {
24  class X86RegisterInfo;
25  class X86TargetMachine;
26
27namespace X86 {
28  // X86 specific condition code. These correspond to X86_*_COND in
29  // X86InstrInfo.td. They must be kept in synch.
30  enum CondCode {
31    COND_A  = 0,
32    COND_AE = 1,
33    COND_B  = 2,
34    COND_BE = 3,
35    COND_E  = 4,
36    COND_G  = 5,
37    COND_GE = 6,
38    COND_L  = 7,
39    COND_LE = 8,
40    COND_NE = 9,
41    COND_NO = 10,
42    COND_NP = 11,
43    COND_NS = 12,
44    COND_O  = 13,
45    COND_P  = 14,
46    COND_S  = 15,
47
48    // Artificial condition codes. These are used by AnalyzeBranch
49    // to indicate a block terminated with two conditional branches to
50    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
51    // which can't be represented on x86 with a single condition. These
52    // are never used in MachineInstrs.
53    COND_NE_OR_P,
54    COND_NP_OR_E,
55
56    COND_INVALID
57  };
58
59  // Turn condition code into conditional branch opcode.
60  unsigned GetCondBranchFromCond(CondCode CC);
61
62  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63  /// e.g. turning COND_E to COND_NE.
64  CondCode GetOppositeBranchCondition(X86::CondCode CC);
65
66}
67
68/// X86II - This namespace holds all of the target specific flags that
69/// instruction info tracks.
70///
71namespace X86II {
72  /// Target Operand Flag enum.
73  enum TOF {
74    //===------------------------------------------------------------------===//
75    // X86 Specific MachineOperand flags.
76
77    MO_NO_FLAG,
78
79    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
80    /// relocation of:
81    ///    SYMBOL_LABEL + [. - PICBASELABEL]
82    MO_GOT_ABSOLUTE_ADDRESS,
83
84    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
85    /// immediate should get the value of the symbol minus the PIC base label:
86    ///    SYMBOL_LABEL - PICBASELABEL
87    MO_PIC_BASE_OFFSET,
88
89    /// MO_GOT - On a symbol operand this indicates that the immediate is the
90    /// offset to the GOT entry for the symbol name from the base of the GOT.
91    ///
92    /// See the X86-64 ELF ABI supplement for more details.
93    ///    SYMBOL_LABEL @GOT
94    MO_GOT,
95
96    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
97    /// the offset to the location of the symbol name from the base of the GOT.
98    ///
99    /// See the X86-64 ELF ABI supplement for more details.
100    ///    SYMBOL_LABEL @GOTOFF
101    MO_GOTOFF,
102
103    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
104    /// offset to the GOT entry for the symbol name from the current code
105    /// location.
106    ///
107    /// See the X86-64 ELF ABI supplement for more details.
108    ///    SYMBOL_LABEL @GOTPCREL
109    MO_GOTPCREL,
110
111    /// MO_PLT - On a symbol operand this indicates that the immediate is
112    /// offset to the PLT entry of symbol name from the current code location.
113    ///
114    /// See the X86-64 ELF ABI supplement for more details.
115    ///    SYMBOL_LABEL @PLT
116    MO_PLT,
117
118    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
119    /// some TLS offset.
120    ///
121    /// See 'ELF Handling for Thread-Local Storage' for more details.
122    ///    SYMBOL_LABEL @TLSGD
123    MO_TLSGD,
124
125    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
126    /// some TLS offset.
127    ///
128    /// See 'ELF Handling for Thread-Local Storage' for more details.
129    ///    SYMBOL_LABEL @GOTTPOFF
130    MO_GOTTPOFF,
131
132    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
133    /// some TLS offset.
134    ///
135    /// See 'ELF Handling for Thread-Local Storage' for more details.
136    ///    SYMBOL_LABEL @INDNTPOFF
137    MO_INDNTPOFF,
138
139    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
140    /// some TLS offset.
141    ///
142    /// See 'ELF Handling for Thread-Local Storage' for more details.
143    ///    SYMBOL_LABEL @TPOFF
144    MO_TPOFF,
145
146    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
147    /// some TLS offset.
148    ///
149    /// See 'ELF Handling for Thread-Local Storage' for more details.
150    ///    SYMBOL_LABEL @NTPOFF
151    MO_NTPOFF,
152
153    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
154    /// reference is actually to the "__imp_FOO" symbol.  This is used for
155    /// dllimport linkage on windows.
156    MO_DLLIMPORT,
157
158    /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
159    /// reference is actually to the "FOO$stub" symbol.  This is used for calls
160    /// and jumps to external functions on Tiger and before.
161    MO_DARWIN_STUB,
162
163    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
164    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
165    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
166    MO_DARWIN_NONLAZY,
167
168    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
169    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
170    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
171    MO_DARWIN_NONLAZY_PIC_BASE,
172
173    /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
174    /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
175    /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
176    /// stub.
177    MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE
178  };
179}
180
181/// isGlobalStubReference - Return true if the specified TargetFlag operand is
182/// a reference to a stub for a global, not the global itself.
183inline static bool isGlobalStubReference(unsigned char TargetFlag) {
184  switch (TargetFlag) {
185  case X86II::MO_DLLIMPORT: // dllimport stub.
186  case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
187  case X86II::MO_GOT:       // normal GOT reference.
188  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
189  case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
190  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
191    return true;
192  default:
193    return false;
194  }
195}
196
197/// isGlobalRelativeToPICBase - Return true if the specified global value
198/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
199/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
200inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
201  switch (TargetFlag) {
202  case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
203  case X86II::MO_GOT:                            // isPICStyleGOT: other global.
204  case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
205  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
206  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
207    return true;
208  default:
209    return false;
210  }
211}
212
213/// X86II - This namespace holds all of the target specific flags that
214/// instruction info tracks.
215///
216namespace X86II {
217  enum {
218    //===------------------------------------------------------------------===//
219    // Instruction encodings.  These are the standard/most common forms for X86
220    // instructions.
221    //
222
223    // PseudoFrm - This represents an instruction that is a pseudo instruction
224    // or one that has not been implemented yet.  It is illegal to code generate
225    // it, but tolerated for intermediate implementation stages.
226    Pseudo         = 0,
227
228    /// Raw - This form is for instructions that don't have any operands, so
229    /// they are just a fixed opcode value, like 'leave'.
230    RawFrm         = 1,
231
232    /// AddRegFrm - This form is used for instructions like 'push r32' that have
233    /// their one register operand added to their opcode.
234    AddRegFrm      = 2,
235
236    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
237    /// to specify a destination, which in this case is a register.
238    ///
239    MRMDestReg     = 3,
240
241    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
242    /// to specify a destination, which in this case is memory.
243    ///
244    MRMDestMem     = 4,
245
246    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
247    /// to specify a source, which in this case is a register.
248    ///
249    MRMSrcReg      = 5,
250
251    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
252    /// to specify a source, which in this case is memory.
253    ///
254    MRMSrcMem      = 6,
255
256    /// MRM[0-7][rm] - These forms are used to represent instructions that use
257    /// a Mod/RM byte, and use the middle field to hold extended opcode
258    /// information.  In the intel manual these are represented as /0, /1, ...
259    ///
260
261    // First, instructions that operate on a register r/m operand...
262    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
263    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
264
265    // Next, instructions that operate on a memory r/m operand...
266    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
267    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
268
269    // MRMInitReg - This form is used for instructions whose source and
270    // destinations are the same register.
271    MRMInitReg = 32,
272
273    FormMask       = 63,
274
275    //===------------------------------------------------------------------===//
276    // Actual flags...
277
278    // OpSize - Set if this instruction requires an operand size prefix (0x66),
279    // which most often indicates that the instruction operates on 16 bit data
280    // instead of 32 bit data.
281    OpSize      = 1 << 6,
282
283    // AsSize - Set if this instruction requires an operand size prefix (0x67),
284    // which most often indicates that the instruction address 16 bit address
285    // instead of 32 bit address (or 32 bit address in 64 bit mode).
286    AdSize      = 1 << 7,
287
288    //===------------------------------------------------------------------===//
289    // Op0Mask - There are several prefix bytes that are used to form two byte
290    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
291    // used to obtain the setting of this field.  If no bits in this field is
292    // set, there is no prefix byte for obtaining a multibyte opcode.
293    //
294    Op0Shift    = 8,
295    Op0Mask     = 0xF << Op0Shift,
296
297    // TB - TwoByte - Set if this instruction has a two byte opcode, which
298    // starts with a 0x0F byte before the real opcode.
299    TB          = 1 << Op0Shift,
300
301    // REP - The 0xF3 prefix byte indicating repetition of the following
302    // instruction.
303    REP         = 2 << Op0Shift,
304
305    // D8-DF - These escape opcodes are used by the floating point unit.  These
306    // values must remain sequential.
307    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
308    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
309    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
310    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
311
312    // XS, XD - These prefix codes are for single and double precision scalar
313    // floating point operations performed in the SSE registers.
314    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
315
316    // T8, TA - Prefix after the 0x0F prefix.
317    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
318
319    // TF - Prefix before and after 0x0F
320    TF = 15 << Op0Shift,
321
322    //===------------------------------------------------------------------===//
323    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
324    // They are used to specify GPRs and SSE registers, 64-bit operand size,
325    // etc. We only cares about REX.W and REX.R bits and only the former is
326    // statically determined.
327    //
328    REXShift    = 12,
329    REX_W       = 1 << REXShift,
330
331    //===------------------------------------------------------------------===//
332    // This three-bit field describes the size of an immediate operand.  Zero is
333    // unused so that we can tell if we forgot to set a value.
334    ImmShift = 13,
335    ImmMask  = 7 << ImmShift,
336    Imm8     = 1 << ImmShift,
337    Imm16    = 2 << ImmShift,
338    Imm32    = 3 << ImmShift,
339    Imm64    = 4 << ImmShift,
340
341    //===------------------------------------------------------------------===//
342    // FP Instruction Classification...  Zero is non-fp instruction.
343
344    // FPTypeMask - Mask for all of the FP types...
345    FPTypeShift = 16,
346    FPTypeMask  = 7 << FPTypeShift,
347
348    // NotFP - The default, set for instructions that do not use FP registers.
349    NotFP      = 0 << FPTypeShift,
350
351    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
352    ZeroArgFP  = 1 << FPTypeShift,
353
354    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
355    OneArgFP   = 2 << FPTypeShift,
356
357    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
358    // result back to ST(0).  For example, fcos, fsqrt, etc.
359    //
360    OneArgFPRW = 3 << FPTypeShift,
361
362    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
363    // explicit argument, storing the result to either ST(0) or the implicit
364    // argument.  For example: fadd, fsub, fmul, etc...
365    TwoArgFP   = 4 << FPTypeShift,
366
367    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
368    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
369    CompareFP  = 5 << FPTypeShift,
370
371    // CondMovFP - "2 operand" floating point conditional move instructions.
372    CondMovFP  = 6 << FPTypeShift,
373
374    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
375    SpecialFP  = 7 << FPTypeShift,
376
377    // Lock prefix
378    LOCKShift = 19,
379    LOCK = 1 << LOCKShift,
380
381    // Segment override prefixes. Currently we just need ability to address
382    // stuff in gs and fs segments.
383    SegOvrShift = 20,
384    SegOvrMask  = 3 << SegOvrShift,
385    FS          = 1 << SegOvrShift,
386    GS          = 2 << SegOvrShift,
387
388    // Bits 22 -> 23 are unused
389    OpcodeShift   = 24,
390    OpcodeMask    = 0xFF << OpcodeShift
391  };
392}
393
394const int X86AddrNumOperands = 5;
395
396inline static bool isScale(const MachineOperand &MO) {
397  return MO.isImm() &&
398    (MO.getImm() == 1 || MO.getImm() == 2 ||
399     MO.getImm() == 4 || MO.getImm() == 8);
400}
401
402inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
403  if (MI->getOperand(Op).isFI()) return true;
404  return Op+4 <= MI->getNumOperands() &&
405    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
406    MI->getOperand(Op+2).isReg() &&
407    (MI->getOperand(Op+3).isImm() ||
408     MI->getOperand(Op+3).isGlobal() ||
409     MI->getOperand(Op+3).isCPI() ||
410     MI->getOperand(Op+3).isJTI());
411}
412
413inline static bool isMem(const MachineInstr *MI, unsigned Op) {
414  if (MI->getOperand(Op).isFI()) return true;
415  return Op+5 <= MI->getNumOperands() &&
416    MI->getOperand(Op+4).isReg() &&
417    isLeaMem(MI, Op);
418}
419
420class X86InstrInfo : public TargetInstrInfoImpl {
421  X86TargetMachine &TM;
422  const X86RegisterInfo RI;
423
424  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
425  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
426  ///
427  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
428  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
429  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
430  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
431
432  /// MemOp2RegOpTable - Load / store unfolding opcode map.
433  ///
434  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
435
436public:
437  explicit X86InstrInfo(X86TargetMachine &tm);
438
439  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
440  /// such, whenever a client has an instance of instruction info, it should
441  /// always be able to get register info as well (through this method).
442  ///
443  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
444
445  /// Return true if the instruction is a register to register move and return
446  /// the source and dest operands and their sub-register indices by reference.
447  virtual bool isMoveInstr(const MachineInstr &MI,
448                           unsigned &SrcReg, unsigned &DstReg,
449                           unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
450
451  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
452  /// extension instruction. That is, it's like a copy where it's legal for the
453  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
454  /// true, then it's expected the pre-extension value is available as a subreg
455  /// of the result register. This also returns the sub-register index in
456  /// SubIdx.
457  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
458                                     unsigned &SrcReg, unsigned &DstReg,
459                                     unsigned &SubIdx) const;
460
461  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
462  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
463  /// stack locations as well.  This uses a heuristic so it isn't
464  /// reliable for correctness.
465  unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
466                                     int &FrameIndex) const;
467
468  /// hasLoadFromStackSlot - If the specified machine instruction has
469  /// a load from a stack slot, return true along with the FrameIndex
470  /// of the loaded stack slot and the machine mem operand containing
471  /// the reference.  If not, return false.  Unlike
472  /// isLoadFromStackSlot, this returns true for any instructions that
473  /// loads from the stack.  This is a hint only and may not catch all
474  /// cases.
475  bool hasLoadFromStackSlot(const MachineInstr *MI,
476                            const MachineMemOperand *&MMO,
477                            int &FrameIndex) const;
478
479  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
480  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
481  /// stack locations as well.  This uses a heuristic so it isn't
482  /// reliable for correctness.
483  unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
484                                    int &FrameIndex) const;
485
486  /// hasStoreToStackSlot - If the specified machine instruction has a
487  /// store to a stack slot, return true along with the FrameIndex of
488  /// the loaded stack slot and the machine mem operand containing the
489  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
490  /// this returns true for any instructions that loads from the
491  /// stack.  This is a hint only and may not catch all cases.
492  bool hasStoreToStackSlot(const MachineInstr *MI,
493                           const MachineMemOperand *&MMO,
494                           int &FrameIndex) const;
495
496  bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
497                                         AliasAnalysis *AA) const;
498  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
499                     unsigned DestReg, unsigned SubIdx,
500                     const MachineInstr *Orig,
501                     const TargetRegisterInfo *TRI) const;
502
503  /// convertToThreeAddress - This method must be implemented by targets that
504  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
505  /// may be able to convert a two-address instruction into a true
506  /// three-address instruction on demand.  This allows the X86 target (for
507  /// example) to convert ADD and SHL instructions into LEA instructions if they
508  /// would require register copies due to two-addressness.
509  ///
510  /// This method returns a null pointer if the transformation cannot be
511  /// performed, otherwise it returns the new instruction.
512  ///
513  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
514                                              MachineBasicBlock::iterator &MBBI,
515                                              LiveVariables *LV) const;
516
517  /// commuteInstruction - We have a few instructions that must be hacked on to
518  /// commute them.
519  ///
520  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
521
522  // Branch analysis.
523  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
524  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
525                             MachineBasicBlock *&FBB,
526                             SmallVectorImpl<MachineOperand> &Cond,
527                             bool AllowModify) const;
528  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
529  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
530                                MachineBasicBlock *FBB,
531                            const SmallVectorImpl<MachineOperand> &Cond) const;
532  virtual bool copyRegToReg(MachineBasicBlock &MBB,
533                            MachineBasicBlock::iterator MI,
534                            unsigned DestReg, unsigned SrcReg,
535                            const TargetRegisterClass *DestRC,
536                            const TargetRegisterClass *SrcRC) const;
537  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
538                                   MachineBasicBlock::iterator MI,
539                                   unsigned SrcReg, bool isKill, int FrameIndex,
540                                   const TargetRegisterClass *RC) const;
541
542  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
543                              SmallVectorImpl<MachineOperand> &Addr,
544                              const TargetRegisterClass *RC,
545                              MachineInstr::mmo_iterator MMOBegin,
546                              MachineInstr::mmo_iterator MMOEnd,
547                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
548
549  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
550                                    MachineBasicBlock::iterator MI,
551                                    unsigned DestReg, int FrameIndex,
552                                    const TargetRegisterClass *RC) const;
553
554  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
555                               SmallVectorImpl<MachineOperand> &Addr,
556                               const TargetRegisterClass *RC,
557                               MachineInstr::mmo_iterator MMOBegin,
558                               MachineInstr::mmo_iterator MMOEnd,
559                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
560
561  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
562                                         MachineBasicBlock::iterator MI,
563                                 const std::vector<CalleeSavedInfo> &CSI) const;
564
565  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
566                                           MachineBasicBlock::iterator MI,
567                                 const std::vector<CalleeSavedInfo> &CSI) const;
568
569  /// foldMemoryOperand - If this target supports it, fold a load or store of
570  /// the specified stack slot into the specified machine instruction for the
571  /// specified operand(s).  If this is possible, the target should perform the
572  /// folding and return true, otherwise it should return false.  If it folds
573  /// the instruction, it is likely that the MachineInstruction the iterator
574  /// references has been changed.
575  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
576                                              MachineInstr* MI,
577                                           const SmallVectorImpl<unsigned> &Ops,
578                                              int FrameIndex) const;
579
580  /// foldMemoryOperand - Same as the previous version except it allows folding
581  /// of any load and store from / to any address, not just from a specific
582  /// stack slot.
583  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
584                                              MachineInstr* MI,
585                                           const SmallVectorImpl<unsigned> &Ops,
586                                              MachineInstr* LoadMI) const;
587
588  /// canFoldMemoryOperand - Returns true if the specified load / store is
589  /// folding is possible.
590  virtual bool canFoldMemoryOperand(const MachineInstr*,
591                                    const SmallVectorImpl<unsigned> &) const;
592
593  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
594  /// a store or a load and a store into two or more instruction. If this is
595  /// possible, returns true as well as the new instructions by reference.
596  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
597                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
598                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
599
600  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
601                           SmallVectorImpl<SDNode*> &NewNodes) const;
602
603  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
604  /// instruction after load / store are unfolded from an instruction of the
605  /// specified opcode. It returns zero if the specified unfolding is not
606  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
607  /// index of the operand which will hold the register holding the loaded
608  /// value.
609  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
610                                      bool UnfoldLoad, bool UnfoldStore,
611                                      unsigned *LoadRegIndex = 0) const;
612
613  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
614  /// to determine if two loads are loading from the same base address. It
615  /// should only return true if the base pointers are the same and the
616  /// only differences between the two addresses are the offset. It also returns
617  /// the offsets by reference.
618  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
619                                       int64_t &Offset1, int64_t &Offset2) const;
620
621  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
622  /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
623  /// be scheduled togther. On some targets if two loads are loading from
624  /// addresses in the same cache line, it's better if they are scheduled
625  /// together. This function takes two integers that represent the load offsets
626  /// from the common base address. It returns true if it decides it's desirable
627  /// to schedule the two loads together. "NumLoads" is the number of loads that
628  /// have already been scheduled after Load1.
629  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
630                                       int64_t Offset1, int64_t Offset2,
631                                       unsigned NumLoads) const;
632
633  virtual
634  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
635
636  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
637  /// instruction that defines the specified register class.
638  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
639
640  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
641  // specified machine instruction.
642  //
643  static unsigned char getBaseOpcodeFor(const TargetInstrDesc &TID) {
644    return TID.TSFlags >> X86II::OpcodeShift;
645  }
646  unsigned char getBaseOpcodeFor(unsigned Opcode) const {
647    return getBaseOpcodeFor(get(Opcode));
648  }
649
650  static bool isX86_64NonExtLowByteReg(unsigned reg) {
651    return (reg == X86::SPL || reg == X86::BPL ||
652          reg == X86::SIL || reg == X86::DIL);
653  }
654
655  static unsigned sizeOfImm(const TargetInstrDesc *Desc);
656  static bool isX86_64ExtendedReg(const MachineOperand &MO);
657  static unsigned determineREX(const MachineInstr &MI);
658
659  /// GetInstSize - Returns the size of the specified MachineInstr.
660  ///
661  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
662
663  /// getGlobalBaseReg - Return a virtual register initialized with the
664  /// the global base register value. Output instructions required to
665  /// initialize the register in the function entry block, if necessary.
666  ///
667  unsigned getGlobalBaseReg(MachineFunction *MF) const;
668
669private:
670  MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
671                                              MachineFunction::iterator &MFI,
672                                              MachineBasicBlock::iterator &MBBI,
673                                              LiveVariables *LV) const;
674
675  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
676                                     MachineInstr* MI,
677                                     unsigned OpNum,
678                                     const SmallVectorImpl<MachineOperand> &MOs,
679                                     unsigned Size, unsigned Alignment) const;
680
681  /// isFrameOperand - Return true and the FrameIndex if the specified
682  /// operand and follow operands form a reference to the stack frame.
683  bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
684                      int &FrameIndex) const;
685};
686
687} // End llvm namespace
688
689#endif
690