X86InstrInfo.h revision 229e4523f2f12929defa09ac4ef9f3652f21f1ec
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86.h"
19#include "X86RegisterInfo.h"
20#include "llvm/ADT/DenseMap.h"
21
22namespace llvm {
23  class X86RegisterInfo;
24  class X86TargetMachine;
25
26namespace X86 {
27  // Enums for memory operand decoding.  Each memory operand is represented with
28  // a 5 operand sequence in the form:
29  //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30  // These enums help decode this.
31  enum {
32    AddrBaseReg = 0,
33    AddrScaleAmt = 1,
34    AddrIndexReg = 2,
35    AddrDisp = 3,
36
37    /// AddrSegmentReg - The operand # of the segment in the memory operand.
38    AddrSegmentReg = 4,
39
40    /// AddrNumOperands - Total number of operands in a memory reference.
41    AddrNumOperands = 5
42  };
43
44
45  // X86 specific condition code. These correspond to X86_*_COND in
46  // X86InstrInfo.td. They must be kept in synch.
47  enum CondCode {
48    COND_A  = 0,
49    COND_AE = 1,
50    COND_B  = 2,
51    COND_BE = 3,
52    COND_E  = 4,
53    COND_G  = 5,
54    COND_GE = 6,
55    COND_L  = 7,
56    COND_LE = 8,
57    COND_NE = 9,
58    COND_NO = 10,
59    COND_NP = 11,
60    COND_NS = 12,
61    COND_O  = 13,
62    COND_P  = 14,
63    COND_S  = 15,
64
65    // Artificial condition codes. These are used by AnalyzeBranch
66    // to indicate a block terminated with two conditional branches to
67    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
68    // which can't be represented on x86 with a single condition. These
69    // are never used in MachineInstrs.
70    COND_NE_OR_P,
71    COND_NP_OR_E,
72
73    COND_INVALID
74  };
75
76  // Turn condition code into conditional branch opcode.
77  unsigned GetCondBranchFromCond(CondCode CC);
78
79  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
80  /// e.g. turning COND_E to COND_NE.
81  CondCode GetOppositeBranchCondition(X86::CondCode CC);
82
83}
84
85/// X86II - This namespace holds all of the target specific flags that
86/// instruction info tracks.
87///
88namespace X86II {
89  /// Target Operand Flag enum.
90  enum TOF {
91    //===------------------------------------------------------------------===//
92    // X86 Specific MachineOperand flags.
93
94    MO_NO_FLAG,
95
96    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
97    /// relocation of:
98    ///    SYMBOL_LABEL + [. - PICBASELABEL]
99    MO_GOT_ABSOLUTE_ADDRESS,
100
101    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
102    /// immediate should get the value of the symbol minus the PIC base label:
103    ///    SYMBOL_LABEL - PICBASELABEL
104    MO_PIC_BASE_OFFSET,
105
106    /// MO_GOT - On a symbol operand this indicates that the immediate is the
107    /// offset to the GOT entry for the symbol name from the base of the GOT.
108    ///
109    /// See the X86-64 ELF ABI supplement for more details.
110    ///    SYMBOL_LABEL @GOT
111    MO_GOT,
112
113    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
114    /// the offset to the location of the symbol name from the base of the GOT.
115    ///
116    /// See the X86-64 ELF ABI supplement for more details.
117    ///    SYMBOL_LABEL @GOTOFF
118    MO_GOTOFF,
119
120    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
121    /// offset to the GOT entry for the symbol name from the current code
122    /// location.
123    ///
124    /// See the X86-64 ELF ABI supplement for more details.
125    ///    SYMBOL_LABEL @GOTPCREL
126    MO_GOTPCREL,
127
128    /// MO_PLT - On a symbol operand this indicates that the immediate is
129    /// offset to the PLT entry of symbol name from the current code location.
130    ///
131    /// See the X86-64 ELF ABI supplement for more details.
132    ///    SYMBOL_LABEL @PLT
133    MO_PLT,
134
135    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
136    /// some TLS offset.
137    ///
138    /// See 'ELF Handling for Thread-Local Storage' for more details.
139    ///    SYMBOL_LABEL @TLSGD
140    MO_TLSGD,
141
142    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
143    /// some TLS offset.
144    ///
145    /// See 'ELF Handling for Thread-Local Storage' for more details.
146    ///    SYMBOL_LABEL @GOTTPOFF
147    MO_GOTTPOFF,
148
149    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
150    /// some TLS offset.
151    ///
152    /// See 'ELF Handling for Thread-Local Storage' for more details.
153    ///    SYMBOL_LABEL @INDNTPOFF
154    MO_INDNTPOFF,
155
156    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
157    /// some TLS offset.
158    ///
159    /// See 'ELF Handling for Thread-Local Storage' for more details.
160    ///    SYMBOL_LABEL @TPOFF
161    MO_TPOFF,
162
163    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
164    /// some TLS offset.
165    ///
166    /// See 'ELF Handling for Thread-Local Storage' for more details.
167    ///    SYMBOL_LABEL @NTPOFF
168    MO_NTPOFF,
169
170    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
171    /// reference is actually to the "__imp_FOO" symbol.  This is used for
172    /// dllimport linkage on windows.
173    MO_DLLIMPORT,
174
175    /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
176    /// reference is actually to the "FOO$stub" symbol.  This is used for calls
177    /// and jumps to external functions on Tiger and earlier.
178    MO_DARWIN_STUB,
179
180    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
181    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
182    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
183    MO_DARWIN_NONLAZY,
184
185    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
186    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
187    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
188    MO_DARWIN_NONLAZY_PIC_BASE,
189
190    /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
191    /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
192    /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
193    /// stub.
194    MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
195
196    /// MO_TLVP - On a symbol operand this indicates that the immediate is
197    /// some TLS offset.
198    ///
199    /// This is the TLS offset for the Darwin TLS mechanism.
200    MO_TLVP,
201
202    /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
203    /// is some TLS offset from the picbase.
204    ///
205    /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
206    MO_TLVP_PIC_BASE
207  };
208}
209
210/// isGlobalStubReference - Return true if the specified TargetFlag operand is
211/// a reference to a stub for a global, not the global itself.
212inline static bool isGlobalStubReference(unsigned char TargetFlag) {
213  switch (TargetFlag) {
214  case X86II::MO_DLLIMPORT: // dllimport stub.
215  case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
216  case X86II::MO_GOT:       // normal GOT reference.
217  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
218  case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
219  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
220    return true;
221  default:
222    return false;
223  }
224}
225
226/// isGlobalRelativeToPICBase - Return true if the specified global value
227/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
228/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
229inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
230  switch (TargetFlag) {
231  case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
232  case X86II::MO_GOT:                            // isPICStyleGOT: other global.
233  case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
234  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
235  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
236  case X86II::MO_TLVP:                           // ??? Pretty sure..
237    return true;
238  default:
239    return false;
240  }
241}
242
243/// X86II - This namespace holds all of the target specific flags that
244/// instruction info tracks.
245///
246namespace X86II {
247  enum {
248    //===------------------------------------------------------------------===//
249    // Instruction encodings.  These are the standard/most common forms for X86
250    // instructions.
251    //
252
253    // PseudoFrm - This represents an instruction that is a pseudo instruction
254    // or one that has not been implemented yet.  It is illegal to code generate
255    // it, but tolerated for intermediate implementation stages.
256    Pseudo         = 0,
257
258    /// Raw - This form is for instructions that don't have any operands, so
259    /// they are just a fixed opcode value, like 'leave'.
260    RawFrm         = 1,
261
262    /// AddRegFrm - This form is used for instructions like 'push r32' that have
263    /// their one register operand added to their opcode.
264    AddRegFrm      = 2,
265
266    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
267    /// to specify a destination, which in this case is a register.
268    ///
269    MRMDestReg     = 3,
270
271    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
272    /// to specify a destination, which in this case is memory.
273    ///
274    MRMDestMem     = 4,
275
276    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
277    /// to specify a source, which in this case is a register.
278    ///
279    MRMSrcReg      = 5,
280
281    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
282    /// to specify a source, which in this case is memory.
283    ///
284    MRMSrcMem      = 6,
285
286    /// MRM[0-7][rm] - These forms are used to represent instructions that use
287    /// a Mod/RM byte, and use the middle field to hold extended opcode
288    /// information.  In the intel manual these are represented as /0, /1, ...
289    ///
290
291    // First, instructions that operate on a register r/m operand...
292    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
293    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
294
295    // Next, instructions that operate on a memory r/m operand...
296    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
297    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
298
299    // MRMInitReg - This form is used for instructions whose source and
300    // destinations are the same register.
301    MRMInitReg = 32,
302
303    //// MRM_C1 - A mod/rm byte of exactly 0xC1.
304    MRM_C1 = 33,
305    MRM_C2 = 34,
306    MRM_C3 = 35,
307    MRM_C4 = 36,
308    MRM_C8 = 37,
309    MRM_C9 = 38,
310    MRM_E8 = 39,
311    MRM_F0 = 40,
312    MRM_F8 = 41,
313    MRM_F9 = 42,
314    MRM_D0 = 45,
315    MRM_D1 = 46,
316
317    /// RawFrmImm8 - This is used for the ENTER instruction, which has two
318    /// immediates, the first of which is a 16-bit immediate (specified by
319    /// the imm encoding) and the second is a 8-bit fixed value.
320    RawFrmImm8 = 43,
321
322    /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
323    /// immediates, the first of which is a 16 or 32-bit immediate (specified by
324    /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
325    /// manual, this operand is described as pntr16:32 and pntr16:16
326    RawFrmImm16 = 44,
327
328    FormMask       = 63,
329
330    //===------------------------------------------------------------------===//
331    // Actual flags...
332
333    // OpSize - Set if this instruction requires an operand size prefix (0x66),
334    // which most often indicates that the instruction operates on 16 bit data
335    // instead of 32 bit data.
336    OpSize      = 1 << 6,
337
338    // AsSize - Set if this instruction requires an operand size prefix (0x67),
339    // which most often indicates that the instruction address 16 bit address
340    // instead of 32 bit address (or 32 bit address in 64 bit mode).
341    AdSize      = 1 << 7,
342
343    //===------------------------------------------------------------------===//
344    // Op0Mask - There are several prefix bytes that are used to form two byte
345    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
346    // used to obtain the setting of this field.  If no bits in this field is
347    // set, there is no prefix byte for obtaining a multibyte opcode.
348    //
349    Op0Shift    = 8,
350    Op0Mask     = 0x1F << Op0Shift,
351
352    // TB - TwoByte - Set if this instruction has a two byte opcode, which
353    // starts with a 0x0F byte before the real opcode.
354    TB          = 1 << Op0Shift,
355
356    // REP - The 0xF3 prefix byte indicating repetition of the following
357    // instruction.
358    REP         = 2 << Op0Shift,
359
360    // D8-DF - These escape opcodes are used by the floating point unit.  These
361    // values must remain sequential.
362    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
363    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
364    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
365    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
366
367    // XS, XD - These prefix codes are for single and double precision scalar
368    // floating point operations performed in the SSE registers.
369    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
370
371    // T8, TA - Prefix after the 0x0F prefix.
372    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
373
374    // TF - Prefix before and after 0x0F
375    TF = 15 << Op0Shift,
376
377    //===------------------------------------------------------------------===//
378    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
379    // They are used to specify GPRs and SSE registers, 64-bit operand size,
380    // etc. We only cares about REX.W and REX.R bits and only the former is
381    // statically determined.
382    //
383    REXShift    = Op0Shift + 5,
384    REX_W       = 1 << REXShift,
385
386    //===------------------------------------------------------------------===//
387    // This three-bit field describes the size of an immediate operand.  Zero is
388    // unused so that we can tell if we forgot to set a value.
389    ImmShift = REXShift + 1,
390    ImmMask    = 7 << ImmShift,
391    Imm8       = 1 << ImmShift,
392    Imm8PCRel  = 2 << ImmShift,
393    Imm16      = 3 << ImmShift,
394    Imm16PCRel = 4 << ImmShift,
395    Imm32      = 5 << ImmShift,
396    Imm32PCRel = 6 << ImmShift,
397    Imm64      = 7 << ImmShift,
398
399    //===------------------------------------------------------------------===//
400    // FP Instruction Classification...  Zero is non-fp instruction.
401
402    // FPTypeMask - Mask for all of the FP types...
403    FPTypeShift = ImmShift + 3,
404    FPTypeMask  = 7 << FPTypeShift,
405
406    // NotFP - The default, set for instructions that do not use FP registers.
407    NotFP      = 0 << FPTypeShift,
408
409    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
410    ZeroArgFP  = 1 << FPTypeShift,
411
412    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
413    OneArgFP   = 2 << FPTypeShift,
414
415    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
416    // result back to ST(0).  For example, fcos, fsqrt, etc.
417    //
418    OneArgFPRW = 3 << FPTypeShift,
419
420    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
421    // explicit argument, storing the result to either ST(0) or the implicit
422    // argument.  For example: fadd, fsub, fmul, etc...
423    TwoArgFP   = 4 << FPTypeShift,
424
425    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
426    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
427    CompareFP  = 5 << FPTypeShift,
428
429    // CondMovFP - "2 operand" floating point conditional move instructions.
430    CondMovFP  = 6 << FPTypeShift,
431
432    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
433    SpecialFP  = 7 << FPTypeShift,
434
435    // Lock prefix
436    LOCKShift = FPTypeShift + 3,
437    LOCK = 1 << LOCKShift,
438
439    // Segment override prefixes. Currently we just need ability to address
440    // stuff in gs and fs segments.
441    SegOvrShift = LOCKShift + 1,
442    SegOvrMask  = 3 << SegOvrShift,
443    FS          = 1 << SegOvrShift,
444    GS          = 2 << SegOvrShift,
445
446    // Execution domain for SSE instructions in bits 23, 24.
447    // 0 in bits 23-24 means normal, non-SSE instruction.
448    SSEDomainShift = SegOvrShift + 2,
449
450    OpcodeShift   = SSEDomainShift + 2,
451    OpcodeMask    = 0xFF << OpcodeShift,
452
453    //===------------------------------------------------------------------===//
454    /// VEX - The opcode prefix used by AVX instructions
455    VEXShift = OpcodeShift + 8,
456    VEX         = 1U << 0,
457
458    /// VEX_W - Has a opcode specific functionality, but is used in the same
459    /// way as REX_W is for regular SSE instructions.
460    VEX_W       = 1U << 1,
461
462    /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
463    /// address instructions in SSE are represented as 3 address ones in AVX
464    /// and the additional register is encoded in VEX_VVVV prefix.
465    VEX_4V      = 1U << 2,
466
467    /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
468    /// must be encoded in the i8 immediate field. This usually happens in
469    /// instructions with 4 operands.
470    VEX_I8IMM   = 1U << 3,
471
472    /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
473    /// instruction uses 256-bit wide registers. This is usually auto detected
474    /// if a VR256 register is used, but some AVX instructions also have this
475    /// field marked when using a f256 memory references.
476    VEX_L       = 1U << 4,
477
478    /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
479    /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
480    /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
481    /// storing a classifier in the imm8 field.  To simplify our implementation,
482    /// we handle this by storeing the classifier in the opcode field and using
483    /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
484    Has3DNow0F0FOpcode = 1U << 5
485  };
486
487  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
488  // specified machine instruction.
489  //
490  static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
491    return TSFlags >> X86II::OpcodeShift;
492  }
493
494  static inline bool hasImm(uint64_t TSFlags) {
495    return (TSFlags & X86II::ImmMask) != 0;
496  }
497
498  /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
499  /// of the specified instruction.
500  static inline unsigned getSizeOfImm(uint64_t TSFlags) {
501    switch (TSFlags & X86II::ImmMask) {
502    default: assert(0 && "Unknown immediate size");
503    case X86II::Imm8:
504    case X86II::Imm8PCRel:  return 1;
505    case X86II::Imm16:
506    case X86II::Imm16PCRel: return 2;
507    case X86II::Imm32:
508    case X86II::Imm32PCRel: return 4;
509    case X86II::Imm64:      return 8;
510    }
511  }
512
513  /// isImmPCRel - Return true if the immediate of the specified instruction's
514  /// TSFlags indicates that it is pc relative.
515  static inline unsigned isImmPCRel(uint64_t TSFlags) {
516    switch (TSFlags & X86II::ImmMask) {
517    default: assert(0 && "Unknown immediate size");
518    case X86II::Imm8PCRel:
519    case X86II::Imm16PCRel:
520    case X86II::Imm32PCRel:
521      return true;
522    case X86II::Imm8:
523    case X86II::Imm16:
524    case X86II::Imm32:
525    case X86II::Imm64:
526      return false;
527    }
528  }
529
530  /// getMemoryOperandNo - The function returns the MCInst operand # for the
531  /// first field of the memory operand.  If the instruction doesn't have a
532  /// memory operand, this returns -1.
533  ///
534  /// Note that this ignores tied operands.  If there is a tied register which
535  /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
536  /// counted as one operand.
537  ///
538  static inline int getMemoryOperandNo(uint64_t TSFlags) {
539    switch (TSFlags & X86II::FormMask) {
540    case X86II::MRMInitReg:  assert(0 && "FIXME: Remove this form");
541    default: assert(0 && "Unknown FormMask value in getMemoryOperandNo!");
542    case X86II::Pseudo:
543    case X86II::RawFrm:
544    case X86II::AddRegFrm:
545    case X86II::MRMDestReg:
546    case X86II::MRMSrcReg:
547    case X86II::RawFrmImm8:
548    case X86II::RawFrmImm16:
549       return -1;
550    case X86II::MRMDestMem:
551      return 0;
552    case X86II::MRMSrcMem: {
553      bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
554      unsigned FirstMemOp = 1;
555      if (HasVEX_4V)
556        ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
557
558      // FIXME: Maybe lea should have its own form?  This is a horrible hack.
559      //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
560      //    Opcode == X86::LEA16r || Opcode == X86::LEA32r)
561      return FirstMemOp;
562    }
563    case X86II::MRM0r: case X86II::MRM1r:
564    case X86II::MRM2r: case X86II::MRM3r:
565    case X86II::MRM4r: case X86II::MRM5r:
566    case X86II::MRM6r: case X86II::MRM7r:
567      return -1;
568    case X86II::MRM0m: case X86II::MRM1m:
569    case X86II::MRM2m: case X86II::MRM3m:
570    case X86II::MRM4m: case X86II::MRM5m:
571    case X86II::MRM6m: case X86II::MRM7m:
572      return 0;
573    case X86II::MRM_C1:
574    case X86II::MRM_C2:
575    case X86II::MRM_C3:
576    case X86II::MRM_C4:
577    case X86II::MRM_C8:
578    case X86II::MRM_C9:
579    case X86II::MRM_E8:
580    case X86II::MRM_F0:
581    case X86II::MRM_F8:
582    case X86II::MRM_F9:
583    case X86II::MRM_D0:
584    case X86II::MRM_D1:
585      return -1;
586    }
587  }
588}
589
590inline static bool isScale(const MachineOperand &MO) {
591  return MO.isImm() &&
592    (MO.getImm() == 1 || MO.getImm() == 2 ||
593     MO.getImm() == 4 || MO.getImm() == 8);
594}
595
596inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
597  if (MI->getOperand(Op).isFI()) return true;
598  return Op+4 <= MI->getNumOperands() &&
599    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
600    MI->getOperand(Op+2).isReg() &&
601    (MI->getOperand(Op+3).isImm() ||
602     MI->getOperand(Op+3).isGlobal() ||
603     MI->getOperand(Op+3).isCPI() ||
604     MI->getOperand(Op+3).isJTI());
605}
606
607inline static bool isMem(const MachineInstr *MI, unsigned Op) {
608  if (MI->getOperand(Op).isFI()) return true;
609  return Op+5 <= MI->getNumOperands() &&
610    MI->getOperand(Op+4).isReg() &&
611    isLeaMem(MI, Op);
612}
613
614class X86InstrInfo : public TargetInstrInfoImpl {
615  X86TargetMachine &TM;
616  const X86RegisterInfo RI;
617
618  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
619  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
620  ///
621  DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
622  DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
623  DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
624  DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
625
626  /// MemOp2RegOpTable - Load / store unfolding opcode map.
627  ///
628  DenseMap<unsigned, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
629
630public:
631  explicit X86InstrInfo(X86TargetMachine &tm);
632
633  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
634  /// such, whenever a client has an instance of instruction info, it should
635  /// always be able to get register info as well (through this method).
636  ///
637  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
638
639  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
640  /// extension instruction. That is, it's like a copy where it's legal for the
641  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
642  /// true, then it's expected the pre-extension value is available as a subreg
643  /// of the result register. This also returns the sub-register index in
644  /// SubIdx.
645  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
646                                     unsigned &SrcReg, unsigned &DstReg,
647                                     unsigned &SubIdx) const;
648
649  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
650  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
651  /// stack locations as well.  This uses a heuristic so it isn't
652  /// reliable for correctness.
653  unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
654                                     int &FrameIndex) const;
655
656  /// hasLoadFromStackSlot - If the specified machine instruction has
657  /// a load from a stack slot, return true along with the FrameIndex
658  /// of the loaded stack slot and the machine mem operand containing
659  /// the reference.  If not, return false.  Unlike
660  /// isLoadFromStackSlot, this returns true for any instructions that
661  /// loads from the stack.  This is a hint only and may not catch all
662  /// cases.
663  bool hasLoadFromStackSlot(const MachineInstr *MI,
664                            const MachineMemOperand *&MMO,
665                            int &FrameIndex) const;
666
667  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
668  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
669  /// stack locations as well.  This uses a heuristic so it isn't
670  /// reliable for correctness.
671  unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
672                                    int &FrameIndex) const;
673
674  /// hasStoreToStackSlot - If the specified machine instruction has a
675  /// store to a stack slot, return true along with the FrameIndex of
676  /// the loaded stack slot and the machine mem operand containing the
677  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
678  /// this returns true for any instructions that loads from the
679  /// stack.  This is a hint only and may not catch all cases.
680  bool hasStoreToStackSlot(const MachineInstr *MI,
681                           const MachineMemOperand *&MMO,
682                           int &FrameIndex) const;
683
684  bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
685                                         AliasAnalysis *AA) const;
686  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
687                     unsigned DestReg, unsigned SubIdx,
688                     const MachineInstr *Orig,
689                     const TargetRegisterInfo &TRI) const;
690
691  /// convertToThreeAddress - This method must be implemented by targets that
692  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
693  /// may be able to convert a two-address instruction into a true
694  /// three-address instruction on demand.  This allows the X86 target (for
695  /// example) to convert ADD and SHL instructions into LEA instructions if they
696  /// would require register copies due to two-addressness.
697  ///
698  /// This method returns a null pointer if the transformation cannot be
699  /// performed, otherwise it returns the new instruction.
700  ///
701  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
702                                              MachineBasicBlock::iterator &MBBI,
703                                              LiveVariables *LV) const;
704
705  /// commuteInstruction - We have a few instructions that must be hacked on to
706  /// commute them.
707  ///
708  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
709
710  // Branch analysis.
711  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
712  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
713                             MachineBasicBlock *&FBB,
714                             SmallVectorImpl<MachineOperand> &Cond,
715                             bool AllowModify) const;
716  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
717  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
718                                MachineBasicBlock *FBB,
719                                const SmallVectorImpl<MachineOperand> &Cond,
720                                DebugLoc DL) const;
721  virtual void copyPhysReg(MachineBasicBlock &MBB,
722                           MachineBasicBlock::iterator MI, DebugLoc DL,
723                           unsigned DestReg, unsigned SrcReg,
724                           bool KillSrc) const;
725  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
726                                   MachineBasicBlock::iterator MI,
727                                   unsigned SrcReg, bool isKill, int FrameIndex,
728                                   const TargetRegisterClass *RC,
729                                   const TargetRegisterInfo *TRI) const;
730
731  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
732                              SmallVectorImpl<MachineOperand> &Addr,
733                              const TargetRegisterClass *RC,
734                              MachineInstr::mmo_iterator MMOBegin,
735                              MachineInstr::mmo_iterator MMOEnd,
736                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
737
738  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
739                                    MachineBasicBlock::iterator MI,
740                                    unsigned DestReg, int FrameIndex,
741                                    const TargetRegisterClass *RC,
742                                    const TargetRegisterInfo *TRI) const;
743
744  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
745                               SmallVectorImpl<MachineOperand> &Addr,
746                               const TargetRegisterClass *RC,
747                               MachineInstr::mmo_iterator MMOBegin,
748                               MachineInstr::mmo_iterator MMOEnd,
749                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
750  virtual
751  MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
752                                         int FrameIx, uint64_t Offset,
753                                         const MDNode *MDPtr,
754                                         DebugLoc DL) const;
755
756  /// foldMemoryOperand - If this target supports it, fold a load or store of
757  /// the specified stack slot into the specified machine instruction for the
758  /// specified operand(s).  If this is possible, the target should perform the
759  /// folding and return true, otherwise it should return false.  If it folds
760  /// the instruction, it is likely that the MachineInstruction the iterator
761  /// references has been changed.
762  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
763                                              MachineInstr* MI,
764                                           const SmallVectorImpl<unsigned> &Ops,
765                                              int FrameIndex) const;
766
767  /// foldMemoryOperand - Same as the previous version except it allows folding
768  /// of any load and store from / to any address, not just from a specific
769  /// stack slot.
770  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
771                                              MachineInstr* MI,
772                                           const SmallVectorImpl<unsigned> &Ops,
773                                              MachineInstr* LoadMI) const;
774
775  /// canFoldMemoryOperand - Returns true if the specified load / store is
776  /// folding is possible.
777  virtual bool canFoldMemoryOperand(const MachineInstr*,
778                                    const SmallVectorImpl<unsigned> &) const;
779
780  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
781  /// a store or a load and a store into two or more instruction. If this is
782  /// possible, returns true as well as the new instructions by reference.
783  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
784                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
785                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
786
787  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
788                           SmallVectorImpl<SDNode*> &NewNodes) const;
789
790  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
791  /// instruction after load / store are unfolded from an instruction of the
792  /// specified opcode. It returns zero if the specified unfolding is not
793  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
794  /// index of the operand which will hold the register holding the loaded
795  /// value.
796  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
797                                      bool UnfoldLoad, bool UnfoldStore,
798                                      unsigned *LoadRegIndex = 0) const;
799
800  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
801  /// to determine if two loads are loading from the same base address. It
802  /// should only return true if the base pointers are the same and the
803  /// only differences between the two addresses are the offset. It also returns
804  /// the offsets by reference.
805  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
806                                       int64_t &Offset1, int64_t &Offset2) const;
807
808  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
809  /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
810  /// be scheduled togther. On some targets if two loads are loading from
811  /// addresses in the same cache line, it's better if they are scheduled
812  /// together. This function takes two integers that represent the load offsets
813  /// from the common base address. It returns true if it decides it's desirable
814  /// to schedule the two loads together. "NumLoads" is the number of loads that
815  /// have already been scheduled after Load1.
816  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
817                                       int64_t Offset1, int64_t Offset2,
818                                       unsigned NumLoads) const;
819
820  virtual void getNoopForMachoTarget(MCInst &NopInst) const;
821
822  virtual
823  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
824
825  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
826  /// instruction that defines the specified register class.
827  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
828
829  static bool isX86_64NonExtLowByteReg(unsigned reg) {
830    return (reg == X86::SPL || reg == X86::BPL ||
831          reg == X86::SIL || reg == X86::DIL);
832  }
833
834  static bool isX86_64ExtendedReg(const MachineOperand &MO) {
835    if (!MO.isReg()) return false;
836    return isX86_64ExtendedReg(MO.getReg());
837  }
838
839  /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
840  /// higher) register?  e.g. r8, xmm8, xmm13, etc.
841  static bool isX86_64ExtendedReg(unsigned RegNo);
842
843  /// getGlobalBaseReg - Return a virtual register initialized with the
844  /// the global base register value. Output instructions required to
845  /// initialize the register in the function entry block, if necessary.
846  ///
847  unsigned getGlobalBaseReg(MachineFunction *MF) const;
848
849  /// GetSSEDomain - Return the SSE execution domain of MI as the first element,
850  /// and a bitmask of possible arguments to SetSSEDomain ase the second.
851  std::pair<uint16_t, uint16_t> GetSSEDomain(const MachineInstr *MI) const;
852
853  /// SetSSEDomain - Set the SSEDomain of MI.
854  void SetSSEDomain(MachineInstr *MI, unsigned Domain) const;
855
856  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
857                                      MachineInstr* MI,
858                                      unsigned OpNum,
859                                      const SmallVectorImpl<MachineOperand> &MOs,
860                                      unsigned Size, unsigned Alignment) const;
861
862  bool isHighLatencyDef(int opc) const;
863
864  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
865                             const MachineRegisterInfo *MRI,
866                             const MachineInstr *DefMI, unsigned DefIdx,
867                             const MachineInstr *UseMI, unsigned UseIdx) const;
868
869private:
870  MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
871                                              MachineFunction::iterator &MFI,
872                                              MachineBasicBlock::iterator &MBBI,
873                                              LiveVariables *LV) const;
874
875  /// isFrameOperand - Return true and the FrameIndex if the specified
876  /// operand and follow operands form a reference to the stack frame.
877  bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
878                      int &FrameIndex) const;
879};
880
881} // End llvm namespace
882
883#endif
884