X86InstrInfo.h revision 25ab690a43cbbb591b76d49e3595b019c32f4b3f
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86RegisterInfo.h"
19
20namespace llvm {
21  class X86RegisterInfo;
22  class X86TargetMachine;
23
24/// X86II - This namespace holds all of the target specific flags that
25/// instruction info tracks.
26///
27namespace X86II {
28  enum {
29    //===------------------------------------------------------------------===//
30    // Instruction types.  These are the standard/most common forms for X86
31    // instructions.
32    //
33
34    // PseudoFrm - This represents an instruction that is a pseudo instruction
35    // or one that has not been implemented yet.  It is illegal to code generate
36    // it, but tolerated for intermediate implementation stages.
37    Pseudo         = 0,
38
39    /// Raw - This form is for instructions that don't have any operands, so
40    /// they are just a fixed opcode value, like 'leave'.
41    RawFrm         = 1,
42
43    /// AddRegFrm - This form is used for instructions like 'push r32' that have
44    /// their one register operand added to their opcode.
45    AddRegFrm      = 2,
46
47    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
48    /// to specify a destination, which in this case is a register.
49    ///
50    MRMDestReg     = 3,
51
52    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
53    /// to specify a destination, which in this case is memory.
54    ///
55    MRMDestMem     = 4,
56
57    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
58    /// to specify a source, which in this case is a register.
59    ///
60    MRMSrcReg      = 5,
61
62    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
63    /// to specify a source, which in this case is memory.
64    ///
65    MRMSrcMem      = 6,
66
67    /// MRM[0-7][rm] - These forms are used to represent instructions that use
68    /// a Mod/RM byte, and use the middle field to hold extended opcode
69    /// information.  In the intel manual these are represented as /0, /1, ...
70    ///
71
72    // First, instructions that operate on a register r/m operand...
73    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
74    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
75
76    // Next, instructions that operate on a memory r/m operand...
77    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
78    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
79
80    // MRMInitReg - This form is used for instructions whose source and
81    // destinations are the same register.
82    MRMInitReg = 32,
83
84    FormMask       = 63,
85
86    //===------------------------------------------------------------------===//
87    // Actual flags...
88
89    // OpSize - Set if this instruction requires an operand size prefix (0x66),
90    // which most often indicates that the instruction operates on 16 bit data
91    // instead of 32 bit data.
92    OpSize      = 1 << 6,
93
94    // AsSize - Set if this instruction requires an operand size prefix (0x67),
95    // which most often indicates that the instruction address 16 bit address
96    // instead of 32 bit address (or 32 bit address in 64 bit mode).
97    AdSize      = 1 << 7,
98
99    //===------------------------------------------------------------------===//
100    // Op0Mask - There are several prefix bytes that are used to form two byte
101    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
102    // used to obtain the setting of this field.  If no bits in this field is
103    // set, there is no prefix byte for obtaining a multibyte opcode.
104    //
105    Op0Shift    = 8,
106    Op0Mask     = 0xF << Op0Shift,
107
108    // TB - TwoByte - Set if this instruction has a two byte opcode, which
109    // starts with a 0x0F byte before the real opcode.
110    TB          = 1 << Op0Shift,
111
112    // REP - The 0xF3 prefix byte indicating repetition of the following
113    // instruction.
114    REP         = 2 << Op0Shift,
115
116    // D8-DF - These escape opcodes are used by the floating point unit.  These
117    // values must remain sequential.
118    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
119    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
120    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
121    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
122
123    // XS, XD - These prefix codes are for single and double precision scalar
124    // floating point operations performed in the SSE registers.
125    XD = 11 << Op0Shift,   XS = 12 << Op0Shift,
126
127    //===------------------------------------------------------------------===//
128    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
129    // They are used to specify GPRs and SSE registers, 64-bit operand size,
130    // etc. We only cares about REX.W and REX.R bits and only the former is
131    // statically determined.
132    //
133    REXShift    = 12,
134    REX_W       = 1 << REXShift,
135
136    //===------------------------------------------------------------------===//
137    // This three-bit field describes the size of an immediate operand.  Zero is
138    // unused so that we can tell if we forgot to set a value.
139    ImmShift = 13,
140    ImmMask  = 7 << ImmShift,
141    Imm8     = 1 << ImmShift,
142    Imm16    = 2 << ImmShift,
143    Imm32    = 3 << ImmShift,
144    Imm64    = 4 << ImmShift,
145
146    //===------------------------------------------------------------------===//
147    // FP Instruction Classification...  Zero is non-fp instruction.
148
149    // FPTypeMask - Mask for all of the FP types...
150    FPTypeShift = 16,
151    FPTypeMask  = 7 << FPTypeShift,
152
153    // NotFP - The default, set for instructions that do not use FP registers.
154    NotFP      = 0 << FPTypeShift,
155
156    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
157    ZeroArgFP  = 1 << FPTypeShift,
158
159    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
160    OneArgFP   = 2 << FPTypeShift,
161
162    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
163    // result back to ST(0).  For example, fcos, fsqrt, etc.
164    //
165    OneArgFPRW = 3 << FPTypeShift,
166
167    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
168    // explicit argument, storing the result to either ST(0) or the implicit
169    // argument.  For example: fadd, fsub, fmul, etc...
170    TwoArgFP   = 4 << FPTypeShift,
171
172    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
173    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
174    CompareFP  = 5 << FPTypeShift,
175
176    // CondMovFP - "2 operand" floating point conditional move instructions.
177    CondMovFP  = 6 << FPTypeShift,
178
179    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
180    SpecialFP  = 7 << FPTypeShift,
181
182    // Bits 19 -> 23 are unused
183    OpcodeShift   = 24,
184    OpcodeMask    = 0xFF << OpcodeShift
185  };
186}
187
188class X86InstrInfo : public TargetInstrInfo {
189  X86TargetMachine &TM;
190  const X86RegisterInfo RI;
191public:
192  X86InstrInfo(X86TargetMachine &tm);
193
194  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
195  /// such, whenever a client has an instance of instruction info, it should
196  /// always be able to get register info as well (through this method).
197  ///
198  virtual const MRegisterInfo &getRegisterInfo() const { return RI; }
199
200  // Return true if the instruction is a register to register move and
201  // leave the source and dest operands in the passed parameters.
202  //
203  bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg,
204                   unsigned& destReg) const;
205  unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const;
206  unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const;
207
208  /// convertToThreeAddress - This method must be implemented by targets that
209  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
210  /// may be able to convert a two-address instruction into a true
211  /// three-address instruction on demand.  This allows the X86 target (for
212  /// example) to convert ADD and SHL instructions into LEA instructions if they
213  /// would require register copies due to two-addressness.
214  ///
215  /// This method returns a null pointer if the transformation cannot be
216  /// performed, otherwise it returns the new instruction.
217  ///
218  virtual MachineInstr *convertToThreeAddress(MachineInstr *TA) const;
219
220  /// commuteInstruction - We have a few instructions that must be hacked on to
221  /// commute them.
222  ///
223  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
224
225
226  /// Insert a goto (unconditional branch) sequence to TMBB, at the
227  /// end of MBB
228  virtual void insertGoto(MachineBasicBlock& MBB,
229                          MachineBasicBlock& TMBB) const;
230
231  /// Reverses the branch condition of the MachineInstr pointed by
232  /// MI. The instruction is replaced and the new MI is returned.
233  virtual MachineBasicBlock::iterator
234  reverseBranchCondition(MachineBasicBlock::iterator MI) const;
235
236  const TargetRegisterClass *getPointerRegClass() const;
237
238  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
239  // specified opcode number.
240  //
241  unsigned char getBaseOpcodeFor(unsigned Opcode) const {
242    return get(Opcode).TSFlags >> X86II::OpcodeShift;
243  }
244};
245
246} // End llvm namespace
247
248#endif
249