X86InstrInfo.h revision 2959b6ec49be09096cf0a5e7504d2a1ec15ef2b3
1//===- X86InstructionInfo.h - X86 Instruction Information ---------*-C++-*-===//
2//
3// This file contains the X86 implementation of the TargetInstrInfo class.
4//
5//===----------------------------------------------------------------------===//
6
7#ifndef X86INSTRUCTIONINFO_H
8#define X86INSTRUCTIONINFO_H
9
10#include "llvm/Target/TargetInstrInfo.h"
11#include "X86RegisterInfo.h"
12
13/// X86II - This namespace holds all of the target specific flags that
14/// instruction info tracks.
15///
16namespace X86II {
17  enum {
18    //===------------------------------------------------------------------===//
19    // Instruction types.  These are the standard/most common forms for X86
20    // instructions.
21    //
22
23    // PseudoFrm - This represents an instruction that is a pseudo instruction
24    // or one that has not been implemented yet.  It is illegal to code generate
25    // it, but tolerated for intermediate implementation stages.
26    Pseudo         = 0,
27
28    /// Raw - This form is for instructions that don't have any operands, so
29    /// they are just a fixed opcode value, like 'leave'.
30    RawFrm         = 1,
31
32    /// AddRegFrm - This form is used for instructions like 'push r32' that have
33    /// their one register operand added to their opcode.
34    AddRegFrm      = 2,
35
36    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
37    /// to specify a destination, which in this case is a register.
38    ///
39    MRMDestReg     = 3,
40
41    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
42    /// to specify a destination, which in this case is memory.
43    ///
44    MRMDestMem     = 4,
45
46    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
47    /// to specify a source, which in this case is a register.
48    ///
49    MRMSrcReg      = 5,
50
51    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
52    /// to specify a source, which in this case is memory.
53    ///
54    MRMSrcMem      = 6,
55
56    /// MRMS[0-7][rm] - These forms are used to represent instructions that use
57    /// a Mod/RM byte, and use the middle field to hold extended opcode
58    /// information.  In the intel manual these are represented as /0, /1, ...
59    ///
60
61    // First, instructions that operate on a register r/m operand...
62    MRMS0r = 16,  MRMS1r = 17,  MRMS2r = 18,  MRMS3r = 19, // Format /0 /1 /2 /3
63    MRMS4r = 20,  MRMS5r = 21,  MRMS6r = 22,  MRMS7r = 23, // Format /4 /5 /6 /7
64
65    // Next, instructions that operate on a memory r/m operand...
66    MRMS0m = 24,  MRMS1m = 25,  MRMS2m = 26,  MRMS3m = 27, // Format /0 /1 /2 /3
67    MRMS4m = 28,  MRMS5m = 29,  MRMS6m = 30,  MRMS7m = 31, // Format /4 /5 /6 /7
68
69    FormMask       = 31,
70
71    //===------------------------------------------------------------------===//
72    // Actual flags...
73
74    // OpSize - Set if this instruction requires an operand size prefix (0x66),
75    // which most often indicates that the instruction operates on 16 bit data
76    // instead of 32 bit data.
77    OpSize      = 1 << 5,
78
79    // Op0Mask - There are several prefix bytes that are used to form two byte
80    // opcodes.  These are currently 0x0F, and 0xD8-0xDF.  This mask is used to
81    // obtain the setting of this field.  If no bits in this field is set, there
82    // is no prefix byte for obtaining a multibyte opcode.
83    //
84    Op0Shift    = 6,
85    Op0Mask     = 0xF << Op0Shift,
86
87    // TB - TwoByte - Set if this instruction has a two byte opcode, which
88    // starts with a 0x0F byte before the real opcode.
89    TB          = 1 << Op0Shift,
90
91    // D8-DF - These escape opcodes are used by the floating point unit.  These
92    // values must remain sequential.
93    D8 = 2 << Op0Shift,   D9 = 3 << Op0Shift,
94    DA = 4 << Op0Shift,   DB = 5 << Op0Shift,
95    DC = 6 << Op0Shift,   DD = 7 << Op0Shift,
96    DE = 8 << Op0Shift,   DF = 9 << Op0Shift,
97
98    //===------------------------------------------------------------------===//
99    // This three-bit field describes the size of a memory operand.  Zero is
100    // unused so that we can tell if we forgot to set a value.
101    ArgShift = 10,
102    ArgMask  = 7 << ArgShift,
103    Arg8     = 1 << ArgShift,
104    Arg16    = 2 << ArgShift,
105    Arg32    = 3 << ArgShift,
106    Arg64    = 4 << ArgShift,  // 64 bit int argument for FILD64
107    ArgF32   = 5 << ArgShift,
108    ArgF64   = 6 << ArgShift,
109    ArgF80   = 7 << ArgShift,
110
111    //===------------------------------------------------------------------===//
112    // FP Instruction Classification...  Zero is non-fp instruction.
113
114    // FPTypeMask - Mask for all of the FP types...
115    FPTypeShift = 13,
116    FPTypeMask  = 7 << FPTypeShift,
117
118    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
119    ZeroArgFP  = 1 << FPTypeShift,
120
121    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
122    OneArgFP   = 2 << FPTypeShift,
123
124    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
125    // result back to ST(0).  For example, fcos, fsqrt, etc.
126    //
127    OneArgFPRW = 3 << FPTypeShift,
128
129    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
130    // explicit argument, storing the result to either ST(0) or the implicit
131    // argument.  For example: fadd, fsub, fmul, etc...
132    TwoArgFP   = 4 << FPTypeShift,
133
134    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
135    SpecialFP  = 5 << FPTypeShift,
136
137    // PrintImplUses - Print out implicit uses in the assembly output.
138    PrintImplUses = 1 << 16,
139
140    OpcodeShift   = 17,
141    OpcodeMask    = 0xFF << OpcodeShift,
142    // Bits 25 -> 31 are unused
143  };
144}
145
146class X86InstrInfo : public TargetInstrInfo {
147  const X86RegisterInfo RI;
148public:
149  X86InstrInfo();
150
151  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
152  /// such, whenever a client has an instance of instruction info, it should
153  /// always be able to get register info as well (through this method).
154  ///
155  virtual const MRegisterInfo &getRegisterInfo() const { return RI; }
156
157  /// createNOPinstr - returns the target's implementation of NOP, which is
158  /// usually a pseudo-instruction, implemented by a degenerate version of
159  /// another instruction, e.g. X86: `xchg ax, ax'; SparcV9: `sethi r0, r0, r0'
160  ///
161  MachineInstr* createNOPinstr() const;
162
163  /// isNOPinstr - not having a special NOP opcode, we need to know if a given
164  /// instruction is interpreted as an `official' NOP instr, i.e., there may be
165  /// more than one way to `do nothing' but only one canonical way to slack off.
166  ///
167  bool isNOPinstr(const MachineInstr &MI) const;
168
169  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
170  // specified opcode number.
171  //
172  unsigned char getBaseOpcodeFor(unsigned Opcode) const {
173    return get(Opcode).TSFlags >> X86II::OpcodeShift;
174  }
175};
176
177#endif
178