X86InstrInfo.h revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "MCTargetDesc/X86BaseInfo.h"
18#include "X86RegisterInfo.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/Target/TargetInstrInfo.h"
21
22#define GET_INSTRINFO_HEADER
23#include "X86GenInstrInfo.inc"
24
25namespace llvm {
26  class X86RegisterInfo;
27  class X86TargetMachine;
28
29namespace X86 {
30  // X86 specific condition code. These correspond to X86_*_COND in
31  // X86InstrInfo.td. They must be kept in synch.
32  enum CondCode {
33    COND_A  = 0,
34    COND_AE = 1,
35    COND_B  = 2,
36    COND_BE = 3,
37    COND_E  = 4,
38    COND_G  = 5,
39    COND_GE = 6,
40    COND_L  = 7,
41    COND_LE = 8,
42    COND_NE = 9,
43    COND_NO = 10,
44    COND_NP = 11,
45    COND_NS = 12,
46    COND_O  = 13,
47    COND_P  = 14,
48    COND_S  = 15,
49
50    // Artificial condition codes. These are used by AnalyzeBranch
51    // to indicate a block terminated with two conditional branches to
52    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
53    // which can't be represented on x86 with a single condition. These
54    // are never used in MachineInstrs.
55    COND_NE_OR_P,
56    COND_NP_OR_E,
57
58    COND_INVALID
59  };
60
61  // Turn condition code into conditional branch opcode.
62  unsigned GetCondBranchFromCond(CondCode CC);
63
64  // Turn CMov opcode into condition code.
65  CondCode getCondFromCMovOpc(unsigned Opc);
66
67  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
68  /// e.g. turning COND_E to COND_NE.
69  CondCode GetOppositeBranchCondition(X86::CondCode CC);
70}  // end namespace X86;
71
72
73/// isGlobalStubReference - Return true if the specified TargetFlag operand is
74/// a reference to a stub for a global, not the global itself.
75inline static bool isGlobalStubReference(unsigned char TargetFlag) {
76  switch (TargetFlag) {
77  case X86II::MO_DLLIMPORT: // dllimport stub.
78  case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
79  case X86II::MO_GOT:       // normal GOT reference.
80  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
81  case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
82  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
83    return true;
84  default:
85    return false;
86  }
87}
88
89/// isGlobalRelativeToPICBase - Return true if the specified global value
90/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
91/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
92inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
93  switch (TargetFlag) {
94  case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
95  case X86II::MO_GOT:                            // isPICStyleGOT: other global.
96  case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
97  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
98  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
99  case X86II::MO_TLVP:                           // ??? Pretty sure..
100    return true;
101  default:
102    return false;
103  }
104}
105
106inline static bool isScale(const MachineOperand &MO) {
107  return MO.isImm() &&
108    (MO.getImm() == 1 || MO.getImm() == 2 ||
109     MO.getImm() == 4 || MO.getImm() == 8);
110}
111
112inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
113  if (MI->getOperand(Op).isFI()) return true;
114  return Op+X86::AddrSegmentReg <= MI->getNumOperands() &&
115    MI->getOperand(Op+X86::AddrBaseReg).isReg() &&
116    isScale(MI->getOperand(Op+X86::AddrScaleAmt)) &&
117    MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
118    (MI->getOperand(Op+X86::AddrDisp).isImm() ||
119     MI->getOperand(Op+X86::AddrDisp).isGlobal() ||
120     MI->getOperand(Op+X86::AddrDisp).isCPI() ||
121     MI->getOperand(Op+X86::AddrDisp).isJTI());
122}
123
124inline static bool isMem(const MachineInstr *MI, unsigned Op) {
125  if (MI->getOperand(Op).isFI()) return true;
126  return Op+X86::AddrNumOperands <= MI->getNumOperands() &&
127    MI->getOperand(Op+X86::AddrSegmentReg).isReg() &&
128    isLeaMem(MI, Op);
129}
130
131class X86InstrInfo final : public X86GenInstrInfo {
132  X86TargetMachine &TM;
133  const X86RegisterInfo RI;
134
135  /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
136  /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps.
137  ///
138  typedef DenseMap<unsigned,
139                   std::pair<unsigned, unsigned> > RegOp2MemOpTableType;
140  RegOp2MemOpTableType RegOp2MemOpTable2Addr;
141  RegOp2MemOpTableType RegOp2MemOpTable0;
142  RegOp2MemOpTableType RegOp2MemOpTable1;
143  RegOp2MemOpTableType RegOp2MemOpTable2;
144  RegOp2MemOpTableType RegOp2MemOpTable3;
145
146  /// MemOp2RegOpTable - Load / store unfolding opcode map.
147  ///
148  typedef DenseMap<unsigned,
149                   std::pair<unsigned, unsigned> > MemOp2RegOpTableType;
150  MemOp2RegOpTableType MemOp2RegOpTable;
151
152  static void AddTableEntry(RegOp2MemOpTableType &R2MTable,
153                            MemOp2RegOpTableType &M2RTable,
154                            unsigned RegOp, unsigned MemOp, unsigned Flags);
155
156  virtual void anchor();
157
158public:
159  explicit X86InstrInfo(X86TargetMachine &tm);
160
161  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
162  /// such, whenever a client has an instance of instruction info, it should
163  /// always be able to get register info as well (through this method).
164  ///
165  const X86RegisterInfo &getRegisterInfo() const { return RI; }
166
167  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
168  /// extension instruction. That is, it's like a copy where it's legal for the
169  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
170  /// true, then it's expected the pre-extension value is available as a subreg
171  /// of the result register. This also returns the sub-register index in
172  /// SubIdx.
173  bool isCoalescableExtInstr(const MachineInstr &MI,
174                             unsigned &SrcReg, unsigned &DstReg,
175                             unsigned &SubIdx) const override;
176
177  unsigned isLoadFromStackSlot(const MachineInstr *MI,
178                               int &FrameIndex) const override;
179  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
180  /// stack locations as well.  This uses a heuristic so it isn't
181  /// reliable for correctness.
182  unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
183                                     int &FrameIndex) const override;
184
185  unsigned isStoreToStackSlot(const MachineInstr *MI,
186                              int &FrameIndex) const override;
187  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
188  /// stack locations as well.  This uses a heuristic so it isn't
189  /// reliable for correctness.
190  unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
191                                    int &FrameIndex) const override;
192
193  bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
194                                         AliasAnalysis *AA) const override;
195  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
196                     unsigned DestReg, unsigned SubIdx,
197                     const MachineInstr *Orig,
198                     const TargetRegisterInfo &TRI) const override;
199
200  /// Given an operand within a MachineInstr, insert preceding code to put it
201  /// into the right format for a particular kind of LEA instruction. This may
202  /// involve using an appropriate super-register instead (with an implicit use
203  /// of the original) or creating a new virtual register and inserting COPY
204  /// instructions to get the data into the right class.
205  ///
206  /// Reference parameters are set to indicate how caller should add this
207  /// operand to the LEA instruction.
208  bool classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
209                      unsigned LEAOpcode, bool AllowSP,
210                      unsigned &NewSrc, bool &isKill,
211                      bool &isUndef, MachineOperand &ImplicitOp) const;
212
213  /// convertToThreeAddress - This method must be implemented by targets that
214  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
215  /// may be able to convert a two-address instruction into a true
216  /// three-address instruction on demand.  This allows the X86 target (for
217  /// example) to convert ADD and SHL instructions into LEA instructions if they
218  /// would require register copies due to two-addressness.
219  ///
220  /// This method returns a null pointer if the transformation cannot be
221  /// performed, otherwise it returns the new instruction.
222  ///
223  MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
224                                      MachineBasicBlock::iterator &MBBI,
225                                      LiveVariables *LV) const override;
226
227  /// commuteInstruction - We have a few instructions that must be hacked on to
228  /// commute them.
229  ///
230  MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const override;
231
232  bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
233                             unsigned &SrcOpIdx2) const override;
234
235  // Branch analysis.
236  bool isUnpredicatedTerminator(const MachineInstr* MI) const override;
237  bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
238                     MachineBasicBlock *&FBB,
239                     SmallVectorImpl<MachineOperand> &Cond,
240                     bool AllowModify) const override;
241  unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
242  unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
243                        MachineBasicBlock *FBB,
244                        const SmallVectorImpl<MachineOperand> &Cond,
245                        DebugLoc DL) const override;
246  bool canInsertSelect(const MachineBasicBlock&,
247                       const SmallVectorImpl<MachineOperand> &Cond,
248                       unsigned, unsigned, int&, int&, int&) const override;
249  void insertSelect(MachineBasicBlock &MBB,
250                    MachineBasicBlock::iterator MI, DebugLoc DL,
251                    unsigned DstReg,
252                    const SmallVectorImpl<MachineOperand> &Cond,
253                    unsigned TrueReg, unsigned FalseReg) const override;
254  void copyPhysReg(MachineBasicBlock &MBB,
255                   MachineBasicBlock::iterator MI, DebugLoc DL,
256                   unsigned DestReg, unsigned SrcReg,
257                   bool KillSrc) const override;
258  void storeRegToStackSlot(MachineBasicBlock &MBB,
259                           MachineBasicBlock::iterator MI,
260                           unsigned SrcReg, bool isKill, int FrameIndex,
261                           const TargetRegisterClass *RC,
262                           const TargetRegisterInfo *TRI) const override;
263
264  void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
265                      SmallVectorImpl<MachineOperand> &Addr,
266                      const TargetRegisterClass *RC,
267                      MachineInstr::mmo_iterator MMOBegin,
268                      MachineInstr::mmo_iterator MMOEnd,
269                      SmallVectorImpl<MachineInstr*> &NewMIs) const;
270
271  void loadRegFromStackSlot(MachineBasicBlock &MBB,
272                            MachineBasicBlock::iterator MI,
273                            unsigned DestReg, int FrameIndex,
274                            const TargetRegisterClass *RC,
275                            const TargetRegisterInfo *TRI) const override;
276
277  void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
278                       SmallVectorImpl<MachineOperand> &Addr,
279                       const TargetRegisterClass *RC,
280                       MachineInstr::mmo_iterator MMOBegin,
281                       MachineInstr::mmo_iterator MMOEnd,
282                       SmallVectorImpl<MachineInstr*> &NewMIs) const;
283
284  bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override;
285
286  /// foldMemoryOperand - If this target supports it, fold a load or store of
287  /// the specified stack slot into the specified machine instruction for the
288  /// specified operand(s).  If this is possible, the target should perform the
289  /// folding and return true, otherwise it should return false.  If it folds
290  /// the instruction, it is likely that the MachineInstruction the iterator
291  /// references has been changed.
292  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
293                                      MachineInstr* MI,
294                                      const SmallVectorImpl<unsigned> &Ops,
295                                      int FrameIndex) const override;
296
297  /// foldMemoryOperand - Same as the previous version except it allows folding
298  /// of any load and store from / to any address, not just from a specific
299  /// stack slot.
300  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
301                                      MachineInstr* MI,
302                                      const SmallVectorImpl<unsigned> &Ops,
303                                      MachineInstr* LoadMI) const override;
304
305  /// canFoldMemoryOperand - Returns true if the specified load / store is
306  /// folding is possible.
307  bool canFoldMemoryOperand(const MachineInstr*,
308                            const SmallVectorImpl<unsigned> &) const override;
309
310  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
311  /// a store or a load and a store into two or more instruction. If this is
312  /// possible, returns true as well as the new instructions by reference.
313  bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
314                         unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
315                         SmallVectorImpl<MachineInstr*> &NewMIs) const override;
316
317  bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
318                           SmallVectorImpl<SDNode*> &NewNodes) const override;
319
320  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
321  /// instruction after load / store are unfolded from an instruction of the
322  /// specified opcode. It returns zero if the specified unfolding is not
323  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
324  /// index of the operand which will hold the register holding the loaded
325  /// value.
326  unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
327                              bool UnfoldLoad, bool UnfoldStore,
328                              unsigned *LoadRegIndex = 0) const override;
329
330  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
331  /// to determine if two loads are loading from the same base address. It
332  /// should only return true if the base pointers are the same and the
333  /// only differences between the two addresses are the offset. It also returns
334  /// the offsets by reference.
335  bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
336                               int64_t &Offset2) const override;
337
338  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
339  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
340  /// be scheduled togther. On some targets if two loads are loading from
341  /// addresses in the same cache line, it's better if they are scheduled
342  /// together. This function takes two integers that represent the load offsets
343  /// from the common base address. It returns true if it decides it's desirable
344  /// to schedule the two loads together. "NumLoads" is the number of loads that
345  /// have already been scheduled after Load1.
346  bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
347                               int64_t Offset1, int64_t Offset2,
348                               unsigned NumLoads) const override;
349
350  bool shouldScheduleAdjacent(MachineInstr* First,
351                              MachineInstr *Second) const override;
352
353  void getNoopForMachoTarget(MCInst &NopInst) const override;
354
355  bool
356  ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
357
358  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
359  /// instruction that defines the specified register class.
360  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
361
362  static bool isX86_64ExtendedReg(const MachineOperand &MO) {
363    if (!MO.isReg()) return false;
364    return X86II::isX86_64ExtendedReg(MO.getReg());
365  }
366
367  /// getGlobalBaseReg - Return a virtual register initialized with the
368  /// the global base register value. Output instructions required to
369  /// initialize the register in the function entry block, if necessary.
370  ///
371  unsigned getGlobalBaseReg(MachineFunction *MF) const;
372
373  std::pair<uint16_t, uint16_t>
374  getExecutionDomain(const MachineInstr *MI) const override;
375
376  void setExecutionDomain(MachineInstr *MI, unsigned Domain) const override;
377
378  unsigned
379    getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
380                                 const TargetRegisterInfo *TRI) const override;
381  unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
382                                const TargetRegisterInfo *TRI) const override;
383  void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
384                                 const TargetRegisterInfo *TRI) const override;
385
386  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
387                                      MachineInstr* MI,
388                                      unsigned OpNum,
389                                      const SmallVectorImpl<MachineOperand> &MOs,
390                                      unsigned Size, unsigned Alignment) const;
391
392  bool isHighLatencyDef(int opc) const override;
393
394  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
395                             const MachineRegisterInfo *MRI,
396                             const MachineInstr *DefMI, unsigned DefIdx,
397                             const MachineInstr *UseMI,
398                             unsigned UseIdx) const override;
399
400  /// analyzeCompare - For a comparison instruction, return the source registers
401  /// in SrcReg and SrcReg2 if having two register operands, and the value it
402  /// compares against in CmpValue. Return true if the comparison instruction
403  /// can be analyzed.
404  bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
405                      unsigned &SrcReg2, int &CmpMask,
406                      int &CmpValue) const override;
407
408  /// optimizeCompareInstr - Check if there exists an earlier instruction that
409  /// operates on the same source operands and sets flags in the same way as
410  /// Compare; remove Compare if possible.
411  bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg,
412                            unsigned SrcReg2, int CmpMask, int CmpValue,
413                            const MachineRegisterInfo *MRI) const override;
414
415  /// optimizeLoadInstr - Try to remove the load by folding it to a register
416  /// operand at the use. We fold the load instructions if and only if the
417  /// def and use are in the same BB. We only look at one load and see
418  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
419  /// defined by the load we are trying to fold. DefMI returns the machine
420  /// instruction that defines FoldAsLoadDefReg, and the function returns
421  /// the machine instruction generated due to folding.
422  MachineInstr* optimizeLoadInstr(MachineInstr *MI,
423                                  const MachineRegisterInfo *MRI,
424                                  unsigned &FoldAsLoadDefReg,
425                                  MachineInstr *&DefMI) const override;
426
427private:
428  MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
429                                              MachineFunction::iterator &MFI,
430                                              MachineBasicBlock::iterator &MBBI,
431                                              LiveVariables *LV) const;
432
433  /// isFrameOperand - Return true and the FrameIndex if the specified
434  /// operand and follow operands form a reference to the stack frame.
435  bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
436                      int &FrameIndex) const;
437};
438
439} // End llvm namespace
440
441#endif
442