X86InstrInfo.h revision 39a612e6f9e63806af410a0ab0d81895391e4c79
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86.h"
19#include "X86RegisterInfo.h"
20#include "llvm/ADT/DenseMap.h"
21
22namespace llvm {
23  class X86RegisterInfo;
24  class X86TargetMachine;
25
26namespace X86 {
27  // X86 specific condition code. These correspond to X86_*_COND in
28  // X86InstrInfo.td. They must be kept in synch.
29  enum CondCode {
30    COND_A  = 0,
31    COND_AE = 1,
32    COND_B  = 2,
33    COND_BE = 3,
34    COND_E  = 4,
35    COND_G  = 5,
36    COND_GE = 6,
37    COND_L  = 7,
38    COND_LE = 8,
39    COND_NE = 9,
40    COND_NO = 10,
41    COND_NP = 11,
42    COND_NS = 12,
43    COND_O  = 13,
44    COND_P  = 14,
45    COND_S  = 15,
46
47    // Artificial condition codes. These are used by AnalyzeBranch
48    // to indicate a block terminated with two conditional branches to
49    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
50    // which can't be represented on x86 with a single condition. These
51    // are never used in MachineInstrs.
52    COND_NE_OR_P,
53    COND_NP_OR_E,
54
55    COND_INVALID
56  };
57
58  // Turn condition code into conditional branch opcode.
59  unsigned GetCondBranchFromCond(CondCode CC);
60
61  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
62  /// e.g. turning COND_E to COND_NE.
63  CondCode GetOppositeBranchCondition(X86::CondCode CC);
64
65}
66
67/// X86II - This namespace holds all of the target specific flags that
68/// instruction info tracks.
69///
70namespace X86II {
71  /// Target Operand Flag enum.
72  enum TOF {
73    //===------------------------------------------------------------------===//
74    // X86 Specific MachineOperand flags.
75
76    MO_NO_FLAG,
77
78    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
79    /// relocation of:
80    ///    SYMBOL_LABEL + [. - PICBASELABEL]
81    MO_GOT_ABSOLUTE_ADDRESS,
82
83    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
84    /// immediate should get the value of the symbol minus the PIC base label:
85    ///    SYMBOL_LABEL - PICBASELABEL
86    MO_PIC_BASE_OFFSET,
87
88    /// MO_GOT - On a symbol operand this indicates that the immediate is the
89    /// offset to the GOT entry for the symbol name from the base of the GOT.
90    ///
91    /// See the X86-64 ELF ABI supplement for more details.
92    ///    SYMBOL_LABEL @GOT
93    MO_GOT,
94
95    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
96    /// the offset to the location of the symbol name from the base of the GOT.
97    ///
98    /// See the X86-64 ELF ABI supplement for more details.
99    ///    SYMBOL_LABEL @GOTOFF
100    MO_GOTOFF,
101
102    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
103    /// offset to the GOT entry for the symbol name from the current code
104    /// location.
105    ///
106    /// See the X86-64 ELF ABI supplement for more details.
107    ///    SYMBOL_LABEL @GOTPCREL
108    MO_GOTPCREL,
109
110    /// MO_PLT - On a symbol operand this indicates that the immediate is
111    /// offset to the PLT entry of symbol name from the current code location.
112    ///
113    /// See the X86-64 ELF ABI supplement for more details.
114    ///    SYMBOL_LABEL @PLT
115    MO_PLT,
116
117    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
118    /// some TLS offset.
119    ///
120    /// See 'ELF Handling for Thread-Local Storage' for more details.
121    ///    SYMBOL_LABEL @TLSGD
122    MO_TLSGD,
123
124    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
125    /// some TLS offset.
126    ///
127    /// See 'ELF Handling for Thread-Local Storage' for more details.
128    ///    SYMBOL_LABEL @GOTTPOFF
129    MO_GOTTPOFF,
130
131    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
132    /// some TLS offset.
133    ///
134    /// See 'ELF Handling for Thread-Local Storage' for more details.
135    ///    SYMBOL_LABEL @INDNTPOFF
136    MO_INDNTPOFF,
137
138    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
139    /// some TLS offset.
140    ///
141    /// See 'ELF Handling for Thread-Local Storage' for more details.
142    ///    SYMBOL_LABEL @TPOFF
143    MO_TPOFF,
144
145    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
146    /// some TLS offset.
147    ///
148    /// See 'ELF Handling for Thread-Local Storage' for more details.
149    ///    SYMBOL_LABEL @NTPOFF
150    MO_NTPOFF,
151
152    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
153    /// reference is actually to the "__imp_FOO" symbol.  This is used for
154    /// dllimport linkage on windows.
155    MO_DLLIMPORT,
156
157    /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
158    /// reference is actually to the "FOO$stub" symbol.  This is used for calls
159    /// and jumps to external functions on Tiger and before.
160    MO_DARWIN_STUB,
161
162    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
163    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
164    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
165    MO_DARWIN_NONLAZY,
166
167    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
168    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
169    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
170    MO_DARWIN_NONLAZY_PIC_BASE,
171
172    /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
173    /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
174    /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
175    /// stub.
176    MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE
177  };
178}
179
180/// isGlobalStubReference - Return true if the specified TargetFlag operand is
181/// a reference to a stub for a global, not the global itself.
182inline static bool isGlobalStubReference(unsigned char TargetFlag) {
183  switch (TargetFlag) {
184  case X86II::MO_DLLIMPORT: // dllimport stub.
185  case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
186  case X86II::MO_GOT:       // normal GOT reference.
187  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
188  case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
189  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
190    return true;
191  default:
192    return false;
193  }
194}
195
196/// isGlobalRelativeToPICBase - Return true if the specified global value
197/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
198/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
199inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
200  switch (TargetFlag) {
201  case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
202  case X86II::MO_GOT:                            // isPICStyleGOT: other global.
203  case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
204  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
205  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
206    return true;
207  default:
208    return false;
209  }
210}
211
212/// X86II - This namespace holds all of the target specific flags that
213/// instruction info tracks.
214///
215namespace X86II {
216  enum {
217    //===------------------------------------------------------------------===//
218    // Instruction encodings.  These are the standard/most common forms for X86
219    // instructions.
220    //
221
222    // PseudoFrm - This represents an instruction that is a pseudo instruction
223    // or one that has not been implemented yet.  It is illegal to code generate
224    // it, but tolerated for intermediate implementation stages.
225    Pseudo         = 0,
226
227    /// Raw - This form is for instructions that don't have any operands, so
228    /// they are just a fixed opcode value, like 'leave'.
229    RawFrm         = 1,
230
231    /// AddRegFrm - This form is used for instructions like 'push r32' that have
232    /// their one register operand added to their opcode.
233    AddRegFrm      = 2,
234
235    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
236    /// to specify a destination, which in this case is a register.
237    ///
238    MRMDestReg     = 3,
239
240    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
241    /// to specify a destination, which in this case is memory.
242    ///
243    MRMDestMem     = 4,
244
245    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
246    /// to specify a source, which in this case is a register.
247    ///
248    MRMSrcReg      = 5,
249
250    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
251    /// to specify a source, which in this case is memory.
252    ///
253    MRMSrcMem      = 6,
254
255    /// MRM[0-7][rm] - These forms are used to represent instructions that use
256    /// a Mod/RM byte, and use the middle field to hold extended opcode
257    /// information.  In the intel manual these are represented as /0, /1, ...
258    ///
259
260    // First, instructions that operate on a register r/m operand...
261    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
262    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
263
264    // Next, instructions that operate on a memory r/m operand...
265    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
266    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
267
268    // MRMInitReg - This form is used for instructions whose source and
269    // destinations are the same register.
270    MRMInitReg = 32,
271
272    FormMask       = 63,
273
274    //===------------------------------------------------------------------===//
275    // Actual flags...
276
277    // OpSize - Set if this instruction requires an operand size prefix (0x66),
278    // which most often indicates that the instruction operates on 16 bit data
279    // instead of 32 bit data.
280    OpSize      = 1 << 6,
281
282    // AsSize - Set if this instruction requires an operand size prefix (0x67),
283    // which most often indicates that the instruction address 16 bit address
284    // instead of 32 bit address (or 32 bit address in 64 bit mode).
285    AdSize      = 1 << 7,
286
287    //===------------------------------------------------------------------===//
288    // Op0Mask - There are several prefix bytes that are used to form two byte
289    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
290    // used to obtain the setting of this field.  If no bits in this field is
291    // set, there is no prefix byte for obtaining a multibyte opcode.
292    //
293    Op0Shift    = 8,
294    Op0Mask     = 0xF << Op0Shift,
295
296    // TB - TwoByte - Set if this instruction has a two byte opcode, which
297    // starts with a 0x0F byte before the real opcode.
298    TB          = 1 << Op0Shift,
299
300    // REP - The 0xF3 prefix byte indicating repetition of the following
301    // instruction.
302    REP         = 2 << Op0Shift,
303
304    // D8-DF - These escape opcodes are used by the floating point unit.  These
305    // values must remain sequential.
306    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
307    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
308    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
309    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
310
311    // XS, XD - These prefix codes are for single and double precision scalar
312    // floating point operations performed in the SSE registers.
313    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
314
315    // T8, TA - Prefix after the 0x0F prefix.
316    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
317
318    // TF - Prefix before and after 0x0F
319    TF = 15 << Op0Shift,
320
321    //===------------------------------------------------------------------===//
322    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
323    // They are used to specify GPRs and SSE registers, 64-bit operand size,
324    // etc. We only cares about REX.W and REX.R bits and only the former is
325    // statically determined.
326    //
327    REXShift    = 12,
328    REX_W       = 1 << REXShift,
329
330    //===------------------------------------------------------------------===//
331    // This three-bit field describes the size of an immediate operand.  Zero is
332    // unused so that we can tell if we forgot to set a value.
333    ImmShift = 13,
334    ImmMask  = 7 << ImmShift,
335    Imm8     = 1 << ImmShift,
336    Imm16    = 2 << ImmShift,
337    Imm32    = 3 << ImmShift,
338    Imm64    = 4 << ImmShift,
339
340    //===------------------------------------------------------------------===//
341    // FP Instruction Classification...  Zero is non-fp instruction.
342
343    // FPTypeMask - Mask for all of the FP types...
344    FPTypeShift = 16,
345    FPTypeMask  = 7 << FPTypeShift,
346
347    // NotFP - The default, set for instructions that do not use FP registers.
348    NotFP      = 0 << FPTypeShift,
349
350    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
351    ZeroArgFP  = 1 << FPTypeShift,
352
353    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
354    OneArgFP   = 2 << FPTypeShift,
355
356    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
357    // result back to ST(0).  For example, fcos, fsqrt, etc.
358    //
359    OneArgFPRW = 3 << FPTypeShift,
360
361    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
362    // explicit argument, storing the result to either ST(0) or the implicit
363    // argument.  For example: fadd, fsub, fmul, etc...
364    TwoArgFP   = 4 << FPTypeShift,
365
366    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
367    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
368    CompareFP  = 5 << FPTypeShift,
369
370    // CondMovFP - "2 operand" floating point conditional move instructions.
371    CondMovFP  = 6 << FPTypeShift,
372
373    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
374    SpecialFP  = 7 << FPTypeShift,
375
376    // Lock prefix
377    LOCKShift = 19,
378    LOCK = 1 << LOCKShift,
379
380    // Segment override prefixes. Currently we just need ability to address
381    // stuff in gs and fs segments.
382    SegOvrShift = 20,
383    SegOvrMask  = 3 << SegOvrShift,
384    FS          = 1 << SegOvrShift,
385    GS          = 2 << SegOvrShift,
386
387    // Bits 22 -> 23 are unused
388    OpcodeShift   = 24,
389    OpcodeMask    = 0xFF << OpcodeShift
390  };
391
392  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
393  // specified machine instruction.
394  //
395  static inline unsigned char getBaseOpcodeFor(unsigned TSFlags) {
396    return TSFlags >> X86II::OpcodeShift;
397  }
398
399  /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
400  /// of the specified instruction.
401  static inline unsigned getSizeOfImm(unsigned TSFlags) {
402    switch (TSFlags & X86II::ImmMask) {
403    default: assert(0 && "Unknown immediate size");
404    case X86II::Imm8:   return 1;
405    case X86II::Imm16:  return 2;
406    case X86II::Imm32:  return 4;
407    case X86II::Imm64:  return 8;
408    }
409  }
410}
411
412const int X86AddrNumOperands = 5;
413
414inline static bool isScale(const MachineOperand &MO) {
415  return MO.isImm() &&
416    (MO.getImm() == 1 || MO.getImm() == 2 ||
417     MO.getImm() == 4 || MO.getImm() == 8);
418}
419
420inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
421  if (MI->getOperand(Op).isFI()) return true;
422  return Op+4 <= MI->getNumOperands() &&
423    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
424    MI->getOperand(Op+2).isReg() &&
425    (MI->getOperand(Op+3).isImm() ||
426     MI->getOperand(Op+3).isGlobal() ||
427     MI->getOperand(Op+3).isCPI() ||
428     MI->getOperand(Op+3).isJTI());
429}
430
431inline static bool isMem(const MachineInstr *MI, unsigned Op) {
432  if (MI->getOperand(Op).isFI()) return true;
433  return Op+5 <= MI->getNumOperands() &&
434    MI->getOperand(Op+4).isReg() &&
435    isLeaMem(MI, Op);
436}
437
438class X86InstrInfo : public TargetInstrInfoImpl {
439  X86TargetMachine &TM;
440  const X86RegisterInfo RI;
441
442  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
443  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
444  ///
445  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
446  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
447  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
448  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
449
450  /// MemOp2RegOpTable - Load / store unfolding opcode map.
451  ///
452  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
453
454public:
455  explicit X86InstrInfo(X86TargetMachine &tm);
456
457  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
458  /// such, whenever a client has an instance of instruction info, it should
459  /// always be able to get register info as well (through this method).
460  ///
461  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
462
463  /// Return true if the instruction is a register to register move and return
464  /// the source and dest operands and their sub-register indices by reference.
465  virtual bool isMoveInstr(const MachineInstr &MI,
466                           unsigned &SrcReg, unsigned &DstReg,
467                           unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
468
469  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
470  /// extension instruction. That is, it's like a copy where it's legal for the
471  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
472  /// true, then it's expected the pre-extension value is available as a subreg
473  /// of the result register. This also returns the sub-register index in
474  /// SubIdx.
475  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
476                                     unsigned &SrcReg, unsigned &DstReg,
477                                     unsigned &SubIdx) const;
478
479  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
480  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
481  /// stack locations as well.  This uses a heuristic so it isn't
482  /// reliable for correctness.
483  unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
484                                     int &FrameIndex) const;
485
486  /// hasLoadFromStackSlot - If the specified machine instruction has
487  /// a load from a stack slot, return true along with the FrameIndex
488  /// of the loaded stack slot and the machine mem operand containing
489  /// the reference.  If not, return false.  Unlike
490  /// isLoadFromStackSlot, this returns true for any instructions that
491  /// loads from the stack.  This is a hint only and may not catch all
492  /// cases.
493  bool hasLoadFromStackSlot(const MachineInstr *MI,
494                            const MachineMemOperand *&MMO,
495                            int &FrameIndex) const;
496
497  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
498  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
499  /// stack locations as well.  This uses a heuristic so it isn't
500  /// reliable for correctness.
501  unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
502                                    int &FrameIndex) const;
503
504  /// hasStoreToStackSlot - If the specified machine instruction has a
505  /// store to a stack slot, return true along with the FrameIndex of
506  /// the loaded stack slot and the machine mem operand containing the
507  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
508  /// this returns true for any instructions that loads from the
509  /// stack.  This is a hint only and may not catch all cases.
510  bool hasStoreToStackSlot(const MachineInstr *MI,
511                           const MachineMemOperand *&MMO,
512                           int &FrameIndex) const;
513
514  bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
515                                         AliasAnalysis *AA) const;
516  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
517                     unsigned DestReg, unsigned SubIdx,
518                     const MachineInstr *Orig,
519                     const TargetRegisterInfo *TRI) const;
520
521  /// convertToThreeAddress - This method must be implemented by targets that
522  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
523  /// may be able to convert a two-address instruction into a true
524  /// three-address instruction on demand.  This allows the X86 target (for
525  /// example) to convert ADD and SHL instructions into LEA instructions if they
526  /// would require register copies due to two-addressness.
527  ///
528  /// This method returns a null pointer if the transformation cannot be
529  /// performed, otherwise it returns the new instruction.
530  ///
531  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
532                                              MachineBasicBlock::iterator &MBBI,
533                                              LiveVariables *LV) const;
534
535  /// commuteInstruction - We have a few instructions that must be hacked on to
536  /// commute them.
537  ///
538  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
539
540  // Branch analysis.
541  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
542  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
543                             MachineBasicBlock *&FBB,
544                             SmallVectorImpl<MachineOperand> &Cond,
545                             bool AllowModify) const;
546  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
547  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
548                                MachineBasicBlock *FBB,
549                            const SmallVectorImpl<MachineOperand> &Cond) const;
550  virtual bool copyRegToReg(MachineBasicBlock &MBB,
551                            MachineBasicBlock::iterator MI,
552                            unsigned DestReg, unsigned SrcReg,
553                            const TargetRegisterClass *DestRC,
554                            const TargetRegisterClass *SrcRC) const;
555  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
556                                   MachineBasicBlock::iterator MI,
557                                   unsigned SrcReg, bool isKill, int FrameIndex,
558                                   const TargetRegisterClass *RC) const;
559
560  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
561                              SmallVectorImpl<MachineOperand> &Addr,
562                              const TargetRegisterClass *RC,
563                              MachineInstr::mmo_iterator MMOBegin,
564                              MachineInstr::mmo_iterator MMOEnd,
565                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
566
567  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
568                                    MachineBasicBlock::iterator MI,
569                                    unsigned DestReg, int FrameIndex,
570                                    const TargetRegisterClass *RC) const;
571
572  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
573                               SmallVectorImpl<MachineOperand> &Addr,
574                               const TargetRegisterClass *RC,
575                               MachineInstr::mmo_iterator MMOBegin,
576                               MachineInstr::mmo_iterator MMOEnd,
577                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
578
579  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
580                                         MachineBasicBlock::iterator MI,
581                                 const std::vector<CalleeSavedInfo> &CSI) const;
582
583  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
584                                           MachineBasicBlock::iterator MI,
585                                 const std::vector<CalleeSavedInfo> &CSI) const;
586
587  /// foldMemoryOperand - If this target supports it, fold a load or store of
588  /// the specified stack slot into the specified machine instruction for the
589  /// specified operand(s).  If this is possible, the target should perform the
590  /// folding and return true, otherwise it should return false.  If it folds
591  /// the instruction, it is likely that the MachineInstruction the iterator
592  /// references has been changed.
593  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
594                                              MachineInstr* MI,
595                                           const SmallVectorImpl<unsigned> &Ops,
596                                              int FrameIndex) const;
597
598  /// foldMemoryOperand - Same as the previous version except it allows folding
599  /// of any load and store from / to any address, not just from a specific
600  /// stack slot.
601  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
602                                              MachineInstr* MI,
603                                           const SmallVectorImpl<unsigned> &Ops,
604                                              MachineInstr* LoadMI) const;
605
606  /// canFoldMemoryOperand - Returns true if the specified load / store is
607  /// folding is possible.
608  virtual bool canFoldMemoryOperand(const MachineInstr*,
609                                    const SmallVectorImpl<unsigned> &) const;
610
611  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
612  /// a store or a load and a store into two or more instruction. If this is
613  /// possible, returns true as well as the new instructions by reference.
614  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
615                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
616                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
617
618  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
619                           SmallVectorImpl<SDNode*> &NewNodes) const;
620
621  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
622  /// instruction after load / store are unfolded from an instruction of the
623  /// specified opcode. It returns zero if the specified unfolding is not
624  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
625  /// index of the operand which will hold the register holding the loaded
626  /// value.
627  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
628                                      bool UnfoldLoad, bool UnfoldStore,
629                                      unsigned *LoadRegIndex = 0) const;
630
631  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
632  /// to determine if two loads are loading from the same base address. It
633  /// should only return true if the base pointers are the same and the
634  /// only differences between the two addresses are the offset. It also returns
635  /// the offsets by reference.
636  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
637                                       int64_t &Offset1, int64_t &Offset2) const;
638
639  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
640  /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
641  /// be scheduled togther. On some targets if two loads are loading from
642  /// addresses in the same cache line, it's better if they are scheduled
643  /// together. This function takes two integers that represent the load offsets
644  /// from the common base address. It returns true if it decides it's desirable
645  /// to schedule the two loads together. "NumLoads" is the number of loads that
646  /// have already been scheduled after Load1.
647  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
648                                       int64_t Offset1, int64_t Offset2,
649                                       unsigned NumLoads) const;
650
651  virtual
652  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
653
654  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
655  /// instruction that defines the specified register class.
656  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
657
658  static bool isX86_64NonExtLowByteReg(unsigned reg) {
659    return (reg == X86::SPL || reg == X86::BPL ||
660          reg == X86::SIL || reg == X86::DIL);
661  }
662
663  static bool isX86_64ExtendedReg(const MachineOperand &MO) {
664    if (!MO.isReg()) return false;
665    return isX86_64ExtendedReg(MO.getReg());
666  }
667  static unsigned determineREX(const MachineInstr &MI);
668
669  /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
670  /// higher) register?  e.g. r8, xmm8, xmm13, etc.
671  static bool isX86_64ExtendedReg(unsigned RegNo);
672
673  /// GetInstSize - Returns the size of the specified MachineInstr.
674  ///
675  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
676
677  /// getGlobalBaseReg - Return a virtual register initialized with the
678  /// the global base register value. Output instructions required to
679  /// initialize the register in the function entry block, if necessary.
680  ///
681  unsigned getGlobalBaseReg(MachineFunction *MF) const;
682
683private:
684  MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
685                                              MachineFunction::iterator &MFI,
686                                              MachineBasicBlock::iterator &MBBI,
687                                              LiveVariables *LV) const;
688
689  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
690                                     MachineInstr* MI,
691                                     unsigned OpNum,
692                                     const SmallVectorImpl<MachineOperand> &MOs,
693                                     unsigned Size, unsigned Alignment) const;
694
695  /// isFrameOperand - Return true and the FrameIndex if the specified
696  /// operand and follow operands form a reference to the stack frame.
697  bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
698                      int &FrameIndex) const;
699};
700
701} // End llvm namespace
702
703#endif
704