X86InstrInfo.h revision 3fafd935607844085a23c012e2a8778fa97206a0
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86.h"
19#include "X86RegisterInfo.h"
20#include "llvm/ADT/IndexedMap.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22
23namespace llvm {
24  class X86RegisterInfo;
25  class X86TargetMachine;
26
27namespace X86 {
28  // X86 specific condition code. These correspond to X86_*_COND in
29  // X86InstrInfo.td. They must be kept in synch.
30  enum CondCode {
31    COND_A  = 0,
32    COND_AE = 1,
33    COND_B  = 2,
34    COND_BE = 3,
35    COND_E  = 4,
36    COND_G  = 5,
37    COND_GE = 6,
38    COND_L  = 7,
39    COND_LE = 8,
40    COND_NE = 9,
41    COND_NO = 10,
42    COND_NP = 11,
43    COND_NS = 12,
44    COND_NC = 13,
45    COND_O  = 14,
46    COND_P  = 15,
47    COND_S  = 16,
48    COND_C  = 17,
49
50    // Artificial condition codes. These are used by AnalyzeBranch
51    // to indicate a block terminated with two conditional branches to
52    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
53    // which can't be represented on x86 with a single condition. These
54    // are never used in MachineInstrs.
55    COND_NE_OR_P,
56    COND_NP_OR_E,
57
58    COND_INVALID
59  };
60
61  // Turn condition code into conditional branch opcode.
62  unsigned GetCondBranchFromCond(CondCode CC);
63
64  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
65  /// e.g. turning COND_E to COND_NE.
66  CondCode GetOppositeBranchCondition(X86::CondCode CC);
67
68}
69
70/// X86II - This namespace holds all of the target specific flags that
71/// instruction info tracks.
72///
73namespace X86II {
74  enum {
75    //===------------------------------------------------------------------===//
76    // Instruction types.  These are the standard/most common forms for X86
77    // instructions.
78    //
79
80    // PseudoFrm - This represents an instruction that is a pseudo instruction
81    // or one that has not been implemented yet.  It is illegal to code generate
82    // it, but tolerated for intermediate implementation stages.
83    Pseudo         = 0,
84
85    /// Raw - This form is for instructions that don't have any operands, so
86    /// they are just a fixed opcode value, like 'leave'.
87    RawFrm         = 1,
88
89    /// AddRegFrm - This form is used for instructions like 'push r32' that have
90    /// their one register operand added to their opcode.
91    AddRegFrm      = 2,
92
93    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
94    /// to specify a destination, which in this case is a register.
95    ///
96    MRMDestReg     = 3,
97
98    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
99    /// to specify a destination, which in this case is memory.
100    ///
101    MRMDestMem     = 4,
102
103    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
104    /// to specify a source, which in this case is a register.
105    ///
106    MRMSrcReg      = 5,
107
108    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
109    /// to specify a source, which in this case is memory.
110    ///
111    MRMSrcMem      = 6,
112
113    /// MRM[0-7][rm] - These forms are used to represent instructions that use
114    /// a Mod/RM byte, and use the middle field to hold extended opcode
115    /// information.  In the intel manual these are represented as /0, /1, ...
116    ///
117
118    // First, instructions that operate on a register r/m operand...
119    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
120    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
121
122    // Next, instructions that operate on a memory r/m operand...
123    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
124    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
125
126    // MRMInitReg - This form is used for instructions whose source and
127    // destinations are the same register.
128    MRMInitReg = 32,
129
130    FormMask       = 63,
131
132    //===------------------------------------------------------------------===//
133    // Actual flags...
134
135    // OpSize - Set if this instruction requires an operand size prefix (0x66),
136    // which most often indicates that the instruction operates on 16 bit data
137    // instead of 32 bit data.
138    OpSize      = 1 << 6,
139
140    // AsSize - Set if this instruction requires an operand size prefix (0x67),
141    // which most often indicates that the instruction address 16 bit address
142    // instead of 32 bit address (or 32 bit address in 64 bit mode).
143    AdSize      = 1 << 7,
144
145    //===------------------------------------------------------------------===//
146    // Op0Mask - There are several prefix bytes that are used to form two byte
147    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
148    // used to obtain the setting of this field.  If no bits in this field is
149    // set, there is no prefix byte for obtaining a multibyte opcode.
150    //
151    Op0Shift    = 8,
152    Op0Mask     = 0xF << Op0Shift,
153
154    // TB - TwoByte - Set if this instruction has a two byte opcode, which
155    // starts with a 0x0F byte before the real opcode.
156    TB          = 1 << Op0Shift,
157
158    // REP - The 0xF3 prefix byte indicating repetition of the following
159    // instruction.
160    REP         = 2 << Op0Shift,
161
162    // D8-DF - These escape opcodes are used by the floating point unit.  These
163    // values must remain sequential.
164    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
165    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
166    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
167    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
168
169    // XS, XD - These prefix codes are for single and double precision scalar
170    // floating point operations performed in the SSE registers.
171    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
172
173    // T8, TA - Prefix after the 0x0F prefix.
174    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
175
176    //===------------------------------------------------------------------===//
177    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
178    // They are used to specify GPRs and SSE registers, 64-bit operand size,
179    // etc. We only cares about REX.W and REX.R bits and only the former is
180    // statically determined.
181    //
182    REXShift    = 12,
183    REX_W       = 1 << REXShift,
184
185    //===------------------------------------------------------------------===//
186    // This three-bit field describes the size of an immediate operand.  Zero is
187    // unused so that we can tell if we forgot to set a value.
188    ImmShift = 13,
189    ImmMask  = 7 << ImmShift,
190    Imm8     = 1 << ImmShift,
191    Imm16    = 2 << ImmShift,
192    Imm32    = 3 << ImmShift,
193    Imm64    = 4 << ImmShift,
194
195    //===------------------------------------------------------------------===//
196    // FP Instruction Classification...  Zero is non-fp instruction.
197
198    // FPTypeMask - Mask for all of the FP types...
199    FPTypeShift = 16,
200    FPTypeMask  = 7 << FPTypeShift,
201
202    // NotFP - The default, set for instructions that do not use FP registers.
203    NotFP      = 0 << FPTypeShift,
204
205    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
206    ZeroArgFP  = 1 << FPTypeShift,
207
208    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
209    OneArgFP   = 2 << FPTypeShift,
210
211    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
212    // result back to ST(0).  For example, fcos, fsqrt, etc.
213    //
214    OneArgFPRW = 3 << FPTypeShift,
215
216    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
217    // explicit argument, storing the result to either ST(0) or the implicit
218    // argument.  For example: fadd, fsub, fmul, etc...
219    TwoArgFP   = 4 << FPTypeShift,
220
221    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
222    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
223    CompareFP  = 5 << FPTypeShift,
224
225    // CondMovFP - "2 operand" floating point conditional move instructions.
226    CondMovFP  = 6 << FPTypeShift,
227
228    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
229    SpecialFP  = 7 << FPTypeShift,
230
231    // Lock prefix
232    LOCKShift = 19,
233    LOCK = 1 << LOCKShift,
234
235    // Segment override prefixes. Currently we just need ability to address
236    // stuff in gs and fs segments.
237    SegOvrShift = 20,
238    SegOvrMask  = 3 << SegOvrShift,
239    FS          = 1 << SegOvrShift,
240    GS          = 2 << SegOvrShift,
241
242    // Bits 22 -> 23 are unused
243    OpcodeShift   = 24,
244    OpcodeMask    = 0xFF << OpcodeShift
245  };
246}
247
248inline static bool isScale(const MachineOperand &MO) {
249  return MO.isImm() &&
250    (MO.getImm() == 1 || MO.getImm() == 2 ||
251     MO.getImm() == 4 || MO.getImm() == 8);
252}
253
254inline static bool isMem(const MachineInstr *MI, unsigned Op) {
255  if (MI->getOperand(Op).isFI()) return true;
256  return Op+4 <= MI->getNumOperands() &&
257    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
258    MI->getOperand(Op+2).isReg() &&
259    (MI->getOperand(Op+3).isImm() ||
260     MI->getOperand(Op+3).isGlobal() ||
261     MI->getOperand(Op+3).isCPI() ||
262     MI->getOperand(Op+3).isJTI());
263}
264
265class X86InstrInfo : public TargetInstrInfoImpl {
266  X86TargetMachine &TM;
267  const X86RegisterInfo RI;
268
269  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
270  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
271  ///
272  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
273  DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
274  DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
275  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
276
277  /// MemOp2RegOpTable - Load / store unfolding opcode map.
278  ///
279  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
280
281public:
282  explicit X86InstrInfo(X86TargetMachine &tm);
283
284  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
285  /// such, whenever a client has an instance of instruction info, it should
286  /// always be able to get register info as well (through this method).
287  ///
288  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
289
290  // Return true if the instruction is a register to register move and
291  // leave the source and dest operands in the passed parameters.
292  //
293  bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg,
294                   unsigned& destReg) const;
295  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
296  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
297
298  bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
299  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
300                     unsigned DestReg, const MachineInstr *Orig) const;
301
302  bool isInvariantLoad(const MachineInstr *MI) const;
303
304  /// convertToThreeAddress - This method must be implemented by targets that
305  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
306  /// may be able to convert a two-address instruction into a true
307  /// three-address instruction on demand.  This allows the X86 target (for
308  /// example) to convert ADD and SHL instructions into LEA instructions if they
309  /// would require register copies due to two-addressness.
310  ///
311  /// This method returns a null pointer if the transformation cannot be
312  /// performed, otherwise it returns the new instruction.
313  ///
314  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
315                                              MachineBasicBlock::iterator &MBBI,
316                                              LiveVariables *LV) const;
317
318  /// commuteInstruction - We have a few instructions that must be hacked on to
319  /// commute them.
320  ///
321  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
322
323  // Branch analysis.
324  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
325  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
326                             MachineBasicBlock *&FBB,
327                             SmallVectorImpl<MachineOperand> &Cond) const;
328  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
329  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
330                                MachineBasicBlock *FBB,
331                            const SmallVectorImpl<MachineOperand> &Cond) const;
332  virtual bool copyRegToReg(MachineBasicBlock &MBB,
333                            MachineBasicBlock::iterator MI,
334                            unsigned DestReg, unsigned SrcReg,
335                            const TargetRegisterClass *DestRC,
336                            const TargetRegisterClass *SrcRC) const;
337  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
338                                   MachineBasicBlock::iterator MI,
339                                   unsigned SrcReg, bool isKill, int FrameIndex,
340                                   const TargetRegisterClass *RC) const;
341
342  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
343                              SmallVectorImpl<MachineOperand> &Addr,
344                              const TargetRegisterClass *RC,
345                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
346
347  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
348                                    MachineBasicBlock::iterator MI,
349                                    unsigned DestReg, int FrameIndex,
350                                    const TargetRegisterClass *RC) const;
351
352  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
353                               SmallVectorImpl<MachineOperand> &Addr,
354                               const TargetRegisterClass *RC,
355                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
356
357  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
358                                         MachineBasicBlock::iterator MI,
359                                 const std::vector<CalleeSavedInfo> &CSI) const;
360
361  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
362                                           MachineBasicBlock::iterator MI,
363                                 const std::vector<CalleeSavedInfo> &CSI) const;
364
365  /// foldMemoryOperand - If this target supports it, fold a load or store of
366  /// the specified stack slot into the specified machine instruction for the
367  /// specified operand(s).  If this is possible, the target should perform the
368  /// folding and return true, otherwise it should return false.  If it folds
369  /// the instruction, it is likely that the MachineInstruction the iterator
370  /// references has been changed.
371  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
372                                          MachineInstr* MI,
373                                          const SmallVectorImpl<unsigned> &Ops,
374                                          int FrameIndex) const;
375
376  /// foldMemoryOperand - Same as the previous version except it allows folding
377  /// of any load and store from / to any address, not just from a specific
378  /// stack slot.
379  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
380                                          MachineInstr* MI,
381                                  const SmallVectorImpl<unsigned> &Ops,
382                                  MachineInstr* LoadMI) const;
383
384  /// canFoldMemoryOperand - Returns true if the specified load / store is
385  /// folding is possible.
386  virtual bool canFoldMemoryOperand(const MachineInstr*,
387                                    const SmallVectorImpl<unsigned> &) const;
388
389  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
390  /// a store or a load and a store into two or more instruction. If this is
391  /// possible, returns true as well as the new instructions by reference.
392  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
393                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
394                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
395
396  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
397                           SmallVectorImpl<SDNode*> &NewNodes) const;
398
399  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
400  /// instruction after load / store are unfolded from an instruction of the
401  /// specified opcode. It returns zero if the specified unfolding is not
402  /// possible.
403  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
404                                      bool UnfoldLoad, bool UnfoldStore) const;
405
406  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
407  virtual
408  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
409
410  /// IgnoreRegisterClassBarriers - Returns true if pre-register allocation
411  /// live interval splitting pass should ignore barriers of the specified
412  /// register class.
413  bool IgnoreRegisterClassBarriers(const TargetRegisterClass *RC) const;
414
415  const TargetRegisterClass *getPointerRegClass() const;
416
417  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
418  // specified machine instruction.
419  //
420  unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
421    return TID->TSFlags >> X86II::OpcodeShift;
422  }
423  unsigned char getBaseOpcodeFor(unsigned Opcode) const {
424    return getBaseOpcodeFor(&get(Opcode));
425  }
426
427  static bool isX86_64NonExtLowByteReg(unsigned reg) {
428    return (reg == X86::SPL || reg == X86::BPL ||
429          reg == X86::SIL || reg == X86::DIL);
430  }
431
432  static unsigned sizeOfImm(const TargetInstrDesc *Desc);
433  static bool isX86_64ExtendedReg(const MachineOperand &MO);
434  static unsigned determineREX(const MachineInstr &MI);
435
436  /// GetInstSize - Returns the size of the specified MachineInstr.
437  ///
438  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
439
440  /// getGlobalBaseReg - Return a virtual register initialized with the
441  /// the global base register value. Output instructions required to
442  /// initialize the register in the function entry block, if necessary.
443  ///
444  unsigned getGlobalBaseReg(MachineFunction *MF) const;
445
446private:
447  MachineInstr* foldMemoryOperand(MachineFunction &MF,
448                                  MachineInstr* MI,
449                                  unsigned OpNum,
450                                const SmallVector<MachineOperand,4> &MOs) const;
451};
452
453} // End llvm namespace
454
455#endif
456