X86InstrInfo.h revision 3feb0170a8d65984ce5c01a85e7dfd4005f8bb35
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86RegisterInfo.h"
19#include "llvm/ADT/IndexedMap.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21
22namespace llvm {
23  class X86RegisterInfo;
24  class X86TargetMachine;
25
26namespace X86 {
27  // X86 specific condition code. These correspond to X86_*_COND in
28  // X86InstrInfo.td. They must be kept in synch.
29  enum CondCode {
30    COND_A  = 0,
31    COND_AE = 1,
32    COND_B  = 2,
33    COND_BE = 3,
34    COND_E  = 4,
35    COND_G  = 5,
36    COND_GE = 6,
37    COND_L  = 7,
38    COND_LE = 8,
39    COND_NE = 9,
40    COND_NO = 10,
41    COND_NP = 11,
42    COND_NS = 12,
43    COND_O  = 13,
44    COND_P  = 14,
45    COND_S  = 15,
46    COND_INVALID
47  };
48
49  // X86 specific implict values used for subregister inserts.
50  // This can be used to model the fact that x86-64 by default
51  // inserts 32-bit values into 64-bit registers implicitly containing zeros.
52  enum ImplicitVal {
53    IMPL_VAL_UNDEF = 0,
54    IMPL_VAL_ZERO  = 1
55  };
56
57  // Turn condition code into conditional branch opcode.
58  unsigned GetCondBranchFromCond(CondCode CC);
59
60  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
61  /// e.g. turning COND_E to COND_NE.
62  CondCode GetOppositeBranchCondition(X86::CondCode CC);
63
64}
65
66/// X86II - This namespace holds all of the target specific flags that
67/// instruction info tracks.
68///
69namespace X86II {
70  enum {
71    //===------------------------------------------------------------------===//
72    // Instruction types.  These are the standard/most common forms for X86
73    // instructions.
74    //
75
76    // PseudoFrm - This represents an instruction that is a pseudo instruction
77    // or one that has not been implemented yet.  It is illegal to code generate
78    // it, but tolerated for intermediate implementation stages.
79    Pseudo         = 0,
80
81    /// Raw - This form is for instructions that don't have any operands, so
82    /// they are just a fixed opcode value, like 'leave'.
83    RawFrm         = 1,
84
85    /// AddRegFrm - This form is used for instructions like 'push r32' that have
86    /// their one register operand added to their opcode.
87    AddRegFrm      = 2,
88
89    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
90    /// to specify a destination, which in this case is a register.
91    ///
92    MRMDestReg     = 3,
93
94    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
95    /// to specify a destination, which in this case is memory.
96    ///
97    MRMDestMem     = 4,
98
99    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
100    /// to specify a source, which in this case is a register.
101    ///
102    MRMSrcReg      = 5,
103
104    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
105    /// to specify a source, which in this case is memory.
106    ///
107    MRMSrcMem      = 6,
108
109    /// MRM[0-7][rm] - These forms are used to represent instructions that use
110    /// a Mod/RM byte, and use the middle field to hold extended opcode
111    /// information.  In the intel manual these are represented as /0, /1, ...
112    ///
113
114    // First, instructions that operate on a register r/m operand...
115    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
116    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
117
118    // Next, instructions that operate on a memory r/m operand...
119    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
120    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
121
122    // MRMInitReg - This form is used for instructions whose source and
123    // destinations are the same register.
124    MRMInitReg = 32,
125
126    FormMask       = 63,
127
128    //===------------------------------------------------------------------===//
129    // Actual flags...
130
131    // OpSize - Set if this instruction requires an operand size prefix (0x66),
132    // which most often indicates that the instruction operates on 16 bit data
133    // instead of 32 bit data.
134    OpSize      = 1 << 6,
135
136    // AsSize - Set if this instruction requires an operand size prefix (0x67),
137    // which most often indicates that the instruction address 16 bit address
138    // instead of 32 bit address (or 32 bit address in 64 bit mode).
139    AdSize      = 1 << 7,
140
141    //===------------------------------------------------------------------===//
142    // Op0Mask - There are several prefix bytes that are used to form two byte
143    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
144    // used to obtain the setting of this field.  If no bits in this field is
145    // set, there is no prefix byte for obtaining a multibyte opcode.
146    //
147    Op0Shift    = 8,
148    Op0Mask     = 0xF << Op0Shift,
149
150    // TB - TwoByte - Set if this instruction has a two byte opcode, which
151    // starts with a 0x0F byte before the real opcode.
152    TB          = 1 << Op0Shift,
153
154    // REP - The 0xF3 prefix byte indicating repetition of the following
155    // instruction.
156    REP         = 2 << Op0Shift,
157
158    // D8-DF - These escape opcodes are used by the floating point unit.  These
159    // values must remain sequential.
160    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
161    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
162    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
163    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
164
165    // XS, XD - These prefix codes are for single and double precision scalar
166    // floating point operations performed in the SSE registers.
167    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
168
169    // T8, TA - Prefix after the 0x0F prefix.
170    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
171
172    //===------------------------------------------------------------------===//
173    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
174    // They are used to specify GPRs and SSE registers, 64-bit operand size,
175    // etc. We only cares about REX.W and REX.R bits and only the former is
176    // statically determined.
177    //
178    REXShift    = 12,
179    REX_W       = 1 << REXShift,
180
181    //===------------------------------------------------------------------===//
182    // This three-bit field describes the size of an immediate operand.  Zero is
183    // unused so that we can tell if we forgot to set a value.
184    ImmShift = 13,
185    ImmMask  = 7 << ImmShift,
186    Imm8     = 1 << ImmShift,
187    Imm16    = 2 << ImmShift,
188    Imm32    = 3 << ImmShift,
189    Imm64    = 4 << ImmShift,
190
191    //===------------------------------------------------------------------===//
192    // FP Instruction Classification...  Zero is non-fp instruction.
193
194    // FPTypeMask - Mask for all of the FP types...
195    FPTypeShift = 16,
196    FPTypeMask  = 7 << FPTypeShift,
197
198    // NotFP - The default, set for instructions that do not use FP registers.
199    NotFP      = 0 << FPTypeShift,
200
201    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
202    ZeroArgFP  = 1 << FPTypeShift,
203
204    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
205    OneArgFP   = 2 << FPTypeShift,
206
207    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
208    // result back to ST(0).  For example, fcos, fsqrt, etc.
209    //
210    OneArgFPRW = 3 << FPTypeShift,
211
212    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
213    // explicit argument, storing the result to either ST(0) or the implicit
214    // argument.  For example: fadd, fsub, fmul, etc...
215    TwoArgFP   = 4 << FPTypeShift,
216
217    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
218    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
219    CompareFP  = 5 << FPTypeShift,
220
221    // CondMovFP - "2 operand" floating point conditional move instructions.
222    CondMovFP  = 6 << FPTypeShift,
223
224    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
225    SpecialFP  = 7 << FPTypeShift,
226
227    // Lock prefix
228    LOCKShift = 19,
229    LOCK = 1 << LOCKShift,
230
231    // Bits 20 -> 23 are unused
232    OpcodeShift   = 24,
233    OpcodeMask    = 0xFF << OpcodeShift
234  };
235}
236
237class X86InstrInfo : public TargetInstrInfoImpl {
238  X86TargetMachine &TM;
239  const X86RegisterInfo RI;
240
241  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
242  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
243  ///
244  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
245  DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
246  DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
247  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
248
249  /// MemOp2RegOpTable - Load / store unfolding opcode map.
250  ///
251  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
252
253public:
254  X86InstrInfo(X86TargetMachine &tm);
255
256  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
257  /// such, whenever a client has an instance of instruction info, it should
258  /// always be able to get register info as well (through this method).
259  ///
260  virtual const TargetRegisterInfo &getRegisterInfo() const { return RI; }
261
262  // Return true if the instruction is a register to register move and
263  // leave the source and dest operands in the passed parameters.
264  //
265  bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg,
266                   unsigned& destReg) const;
267  unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const;
268  unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const;
269  bool isReallyTriviallyReMaterializable(MachineInstr *MI) const;
270  bool isInvariantLoad(MachineInstr *MI) const;
271
272  /// convertToThreeAddress - This method must be implemented by targets that
273  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
274  /// may be able to convert a two-address instruction into a true
275  /// three-address instruction on demand.  This allows the X86 target (for
276  /// example) to convert ADD and SHL instructions into LEA instructions if they
277  /// would require register copies due to two-addressness.
278  ///
279  /// This method returns a null pointer if the transformation cannot be
280  /// performed, otherwise it returns the new instruction.
281  ///
282  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
283                                              MachineBasicBlock::iterator &MBBI,
284                                              LiveVariables &LV) const;
285
286  /// commuteInstruction - We have a few instructions that must be hacked on to
287  /// commute them.
288  ///
289  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
290
291  // Branch analysis.
292  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
293  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
294                             MachineBasicBlock *&FBB,
295                             std::vector<MachineOperand> &Cond) const;
296  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
297  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
298                                MachineBasicBlock *FBB,
299                                const std::vector<MachineOperand> &Cond) const;
300  virtual void copyRegToReg(MachineBasicBlock &MBB,
301                            MachineBasicBlock::iterator MI,
302                            unsigned DestReg, unsigned SrcReg,
303                            const TargetRegisterClass *DestRC,
304                            const TargetRegisterClass *SrcRC) const;
305  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
306                                   MachineBasicBlock::iterator MI,
307                                   unsigned SrcReg, bool isKill, int FrameIndex,
308                                   const TargetRegisterClass *RC) const;
309
310  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
311                              SmallVectorImpl<MachineOperand> &Addr,
312                              const TargetRegisterClass *RC,
313                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
314
315  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
316                                    MachineBasicBlock::iterator MI,
317                                    unsigned DestReg, int FrameIndex,
318                                    const TargetRegisterClass *RC) const;
319
320  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
321                               SmallVectorImpl<MachineOperand> &Addr,
322                               const TargetRegisterClass *RC,
323                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
324
325  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
326                                         MachineBasicBlock::iterator MI,
327                                 const std::vector<CalleeSavedInfo> &CSI) const;
328
329  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
330                                           MachineBasicBlock::iterator MI,
331                                 const std::vector<CalleeSavedInfo> &CSI) const;
332
333  /// foldMemoryOperand - If this target supports it, fold a load or store of
334  /// the specified stack slot into the specified machine instruction for the
335  /// specified operand(s).  If this is possible, the target should perform the
336  /// folding and return true, otherwise it should return false.  If it folds
337  /// the instruction, it is likely that the MachineInstruction the iterator
338  /// references has been changed.
339  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
340                                          MachineInstr* MI,
341                                          SmallVectorImpl<unsigned> &Ops,
342                                          int FrameIndex) const;
343
344  /// foldMemoryOperand - Same as the previous version except it allows folding
345  /// of any load and store from / to any address, not just from a specific
346  /// stack slot.
347  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
348                                          MachineInstr* MI,
349                                  SmallVectorImpl<unsigned> &Ops,
350                                  MachineInstr* LoadMI) const;
351
352  /// canFoldMemoryOperand - Returns true if the specified load / store is
353  /// folding is possible.
354  virtual bool canFoldMemoryOperand(MachineInstr*, SmallVectorImpl<unsigned> &) const;
355
356  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
357  /// a store or a load and a store into two or more instruction. If this is
358  /// possible, returns true as well as the new instructions by reference.
359  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
360                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
361                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
362
363  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
364                           SmallVectorImpl<SDNode*> &NewNodes) const;
365
366  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
367  /// instruction after load / store are unfolded from an instruction of the
368  /// specified opcode. It returns zero if the specified unfolding is not
369  /// possible.
370  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
371                                      bool UnfoldLoad, bool UnfoldStore) const;
372
373  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const;
374  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const;
375
376  const TargetRegisterClass *getPointerRegClass() const;
377
378  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
379  // specified machine instruction.
380  //
381  unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
382    return TID->TSFlags >> X86II::OpcodeShift;
383  }
384  unsigned char getBaseOpcodeFor(unsigned Opcode) const {
385    return getBaseOpcodeFor(&get(Opcode));
386  }
387
388private:
389  MachineInstr* foldMemoryOperand(MachineInstr* MI,
390                                    unsigned OpNum,
391                                    SmallVector<MachineOperand,4> &MOs) const;
392};
393
394} // End llvm namespace
395
396#endif
397