X86InstrInfo.h revision 456fdaf0cea4bd195eacc9796fedb71b62290cfe
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86.h"
19#include "X86RegisterInfo.h"
20#include "llvm/ADT/DenseMap.h"
21
22namespace llvm {
23  class X86RegisterInfo;
24  class X86TargetMachine;
25
26namespace X86 {
27  // Enums for memory operand decoding.  Each memory operand is represented with
28  // a 5 operand sequence in the form:
29  //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30  // These enums help decode this.
31  enum {
32    AddrBaseReg = 0,
33    AddrScaleAmt = 1,
34    AddrIndexReg = 2,
35    AddrDisp = 3,
36
37    /// AddrSegmentReg - The operand # of the segment in the memory operand.
38    AddrSegmentReg = 4,
39
40    /// AddrNumOperands - Total number of operands in a memory reference.
41    AddrNumOperands = 5
42  };
43
44
45  // X86 specific condition code. These correspond to X86_*_COND in
46  // X86InstrInfo.td. They must be kept in synch.
47  enum CondCode {
48    COND_A  = 0,
49    COND_AE = 1,
50    COND_B  = 2,
51    COND_BE = 3,
52    COND_E  = 4,
53    COND_G  = 5,
54    COND_GE = 6,
55    COND_L  = 7,
56    COND_LE = 8,
57    COND_NE = 9,
58    COND_NO = 10,
59    COND_NP = 11,
60    COND_NS = 12,
61    COND_O  = 13,
62    COND_P  = 14,
63    COND_S  = 15,
64
65    // Artificial condition codes. These are used by AnalyzeBranch
66    // to indicate a block terminated with two conditional branches to
67    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
68    // which can't be represented on x86 with a single condition. These
69    // are never used in MachineInstrs.
70    COND_NE_OR_P,
71    COND_NP_OR_E,
72
73    COND_INVALID
74  };
75
76  // Turn condition code into conditional branch opcode.
77  unsigned GetCondBranchFromCond(CondCode CC);
78
79  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
80  /// e.g. turning COND_E to COND_NE.
81  CondCode GetOppositeBranchCondition(X86::CondCode CC);
82
83}
84
85/// X86II - This namespace holds all of the target specific flags that
86/// instruction info tracks.
87///
88namespace X86II {
89  /// Target Operand Flag enum.
90  enum TOF {
91    //===------------------------------------------------------------------===//
92    // X86 Specific MachineOperand flags.
93
94    MO_NO_FLAG,
95
96    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
97    /// relocation of:
98    ///    SYMBOL_LABEL + [. - PICBASELABEL]
99    MO_GOT_ABSOLUTE_ADDRESS,
100
101    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
102    /// immediate should get the value of the symbol minus the PIC base label:
103    ///    SYMBOL_LABEL - PICBASELABEL
104    MO_PIC_BASE_OFFSET,
105
106    /// MO_GOT - On a symbol operand this indicates that the immediate is the
107    /// offset to the GOT entry for the symbol name from the base of the GOT.
108    ///
109    /// See the X86-64 ELF ABI supplement for more details.
110    ///    SYMBOL_LABEL @GOT
111    MO_GOT,
112
113    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
114    /// the offset to the location of the symbol name from the base of the GOT.
115    ///
116    /// See the X86-64 ELF ABI supplement for more details.
117    ///    SYMBOL_LABEL @GOTOFF
118    MO_GOTOFF,
119
120    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
121    /// offset to the GOT entry for the symbol name from the current code
122    /// location.
123    ///
124    /// See the X86-64 ELF ABI supplement for more details.
125    ///    SYMBOL_LABEL @GOTPCREL
126    MO_GOTPCREL,
127
128    /// MO_PLT - On a symbol operand this indicates that the immediate is
129    /// offset to the PLT entry of symbol name from the current code location.
130    ///
131    /// See the X86-64 ELF ABI supplement for more details.
132    ///    SYMBOL_LABEL @PLT
133    MO_PLT,
134
135    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
136    /// some TLS offset.
137    ///
138    /// See 'ELF Handling for Thread-Local Storage' for more details.
139    ///    SYMBOL_LABEL @TLSGD
140    MO_TLSGD,
141
142    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
143    /// some TLS offset.
144    ///
145    /// See 'ELF Handling for Thread-Local Storage' for more details.
146    ///    SYMBOL_LABEL @GOTTPOFF
147    MO_GOTTPOFF,
148
149    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
150    /// some TLS offset.
151    ///
152    /// See 'ELF Handling for Thread-Local Storage' for more details.
153    ///    SYMBOL_LABEL @INDNTPOFF
154    MO_INDNTPOFF,
155
156    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
157    /// some TLS offset.
158    ///
159    /// See 'ELF Handling for Thread-Local Storage' for more details.
160    ///    SYMBOL_LABEL @TPOFF
161    MO_TPOFF,
162
163    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
164    /// some TLS offset.
165    ///
166    /// See 'ELF Handling for Thread-Local Storage' for more details.
167    ///    SYMBOL_LABEL @NTPOFF
168    MO_NTPOFF,
169
170    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
171    /// reference is actually to the "__imp_FOO" symbol.  This is used for
172    /// dllimport linkage on windows.
173    MO_DLLIMPORT,
174
175    /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
176    /// reference is actually to the "FOO$stub" symbol.  This is used for calls
177    /// and jumps to external functions on Tiger and before.
178    MO_DARWIN_STUB,
179
180    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
181    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
182    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
183    MO_DARWIN_NONLAZY,
184
185    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
186    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
187    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
188    MO_DARWIN_NONLAZY_PIC_BASE,
189
190    /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
191    /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
192    /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
193    /// stub.
194    MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
195
196    /// MO_TLVP - On a symbol operand this indicates that the immediate is
197    /// some TLS offset.
198    ///
199    /// This is the TLS offset for the Darwin TLS mechanism.
200    MO_TLVP,
201
202    /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
203    /// is some TLS offset from the picbase.
204    ///
205    /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
206    MO_TLVP_PIC_BASE
207  };
208}
209
210/// isGlobalStubReference - Return true if the specified TargetFlag operand is
211/// a reference to a stub for a global, not the global itself.
212inline static bool isGlobalStubReference(unsigned char TargetFlag) {
213  switch (TargetFlag) {
214  case X86II::MO_DLLIMPORT: // dllimport stub.
215  case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
216  case X86II::MO_GOT:       // normal GOT reference.
217  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
218  case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
219  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
220    return true;
221  default:
222    return false;
223  }
224}
225
226/// isGlobalRelativeToPICBase - Return true if the specified global value
227/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
228/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
229inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
230  switch (TargetFlag) {
231  case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
232  case X86II::MO_GOT:                            // isPICStyleGOT: other global.
233  case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
234  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
235  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
236  case X86II::MO_TLVP:                           // ??? Pretty sure..
237    return true;
238  default:
239    return false;
240  }
241}
242
243/// X86II - This namespace holds all of the target specific flags that
244/// instruction info tracks.
245///
246namespace X86II {
247  enum {
248    //===------------------------------------------------------------------===//
249    // Instruction encodings.  These are the standard/most common forms for X86
250    // instructions.
251    //
252
253    // PseudoFrm - This represents an instruction that is a pseudo instruction
254    // or one that has not been implemented yet.  It is illegal to code generate
255    // it, but tolerated for intermediate implementation stages.
256    Pseudo         = 0,
257
258    /// Raw - This form is for instructions that don't have any operands, so
259    /// they are just a fixed opcode value, like 'leave'.
260    RawFrm         = 1,
261
262    /// AddRegFrm - This form is used for instructions like 'push r32' that have
263    /// their one register operand added to their opcode.
264    AddRegFrm      = 2,
265
266    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
267    /// to specify a destination, which in this case is a register.
268    ///
269    MRMDestReg     = 3,
270
271    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
272    /// to specify a destination, which in this case is memory.
273    ///
274    MRMDestMem     = 4,
275
276    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
277    /// to specify a source, which in this case is a register.
278    ///
279    MRMSrcReg      = 5,
280
281    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
282    /// to specify a source, which in this case is memory.
283    ///
284    MRMSrcMem      = 6,
285
286    /// MRM[0-7][rm] - These forms are used to represent instructions that use
287    /// a Mod/RM byte, and use the middle field to hold extended opcode
288    /// information.  In the intel manual these are represented as /0, /1, ...
289    ///
290
291    // First, instructions that operate on a register r/m operand...
292    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
293    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
294
295    // Next, instructions that operate on a memory r/m operand...
296    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
297    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
298
299    // MRMInitReg - This form is used for instructions whose source and
300    // destinations are the same register.
301    MRMInitReg = 32,
302
303    //// MRM_C1 - A mod/rm byte of exactly 0xC1.
304    MRM_C1 = 33,
305    MRM_C2 = 34,
306    MRM_C3 = 35,
307    MRM_C4 = 36,
308    MRM_C8 = 37,
309    MRM_C9 = 38,
310    MRM_E8 = 39,
311    MRM_F0 = 40,
312    MRM_F8 = 41,
313    MRM_F9 = 42,
314
315    FormMask       = 63,
316
317    //===------------------------------------------------------------------===//
318    // Actual flags...
319
320    // OpSize - Set if this instruction requires an operand size prefix (0x66),
321    // which most often indicates that the instruction operates on 16 bit data
322    // instead of 32 bit data.
323    OpSize      = 1 << 6,
324
325    // AsSize - Set if this instruction requires an operand size prefix (0x67),
326    // which most often indicates that the instruction address 16 bit address
327    // instead of 32 bit address (or 32 bit address in 64 bit mode).
328    AdSize      = 1 << 7,
329
330    //===------------------------------------------------------------------===//
331    // Op0Mask - There are several prefix bytes that are used to form two byte
332    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
333    // used to obtain the setting of this field.  If no bits in this field is
334    // set, there is no prefix byte for obtaining a multibyte opcode.
335    //
336    Op0Shift    = 8,
337    Op0Mask     = 0xF << Op0Shift,
338
339    // TB - TwoByte - Set if this instruction has a two byte opcode, which
340    // starts with a 0x0F byte before the real opcode.
341    TB          = 1 << Op0Shift,
342
343    // REP - The 0xF3 prefix byte indicating repetition of the following
344    // instruction.
345    REP         = 2 << Op0Shift,
346
347    // D8-DF - These escape opcodes are used by the floating point unit.  These
348    // values must remain sequential.
349    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
350    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
351    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
352    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
353
354    // XS, XD - These prefix codes are for single and double precision scalar
355    // floating point operations performed in the SSE registers.
356    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
357
358    // T8, TA - Prefix after the 0x0F prefix.
359    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
360
361    // TF - Prefix before and after 0x0F
362    TF = 15 << Op0Shift,
363
364    //===------------------------------------------------------------------===//
365    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
366    // They are used to specify GPRs and SSE registers, 64-bit operand size,
367    // etc. We only cares about REX.W and REX.R bits and only the former is
368    // statically determined.
369    //
370    REXShift    = 12,
371    REX_W       = 1 << REXShift,
372
373    //===------------------------------------------------------------------===//
374    // This three-bit field describes the size of an immediate operand.  Zero is
375    // unused so that we can tell if we forgot to set a value.
376    ImmShift = 13,
377    ImmMask    = 7 << ImmShift,
378    Imm8       = 1 << ImmShift,
379    Imm8PCRel  = 2 << ImmShift,
380    Imm16      = 3 << ImmShift,
381    Imm16PCRel = 4 << ImmShift,
382    Imm32      = 5 << ImmShift,
383    Imm32PCRel = 6 << ImmShift,
384    Imm64      = 7 << ImmShift,
385
386    //===------------------------------------------------------------------===//
387    // FP Instruction Classification...  Zero is non-fp instruction.
388
389    // FPTypeMask - Mask for all of the FP types...
390    FPTypeShift = 16,
391    FPTypeMask  = 7 << FPTypeShift,
392
393    // NotFP - The default, set for instructions that do not use FP registers.
394    NotFP      = 0 << FPTypeShift,
395
396    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
397    ZeroArgFP  = 1 << FPTypeShift,
398
399    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
400    OneArgFP   = 2 << FPTypeShift,
401
402    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
403    // result back to ST(0).  For example, fcos, fsqrt, etc.
404    //
405    OneArgFPRW = 3 << FPTypeShift,
406
407    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
408    // explicit argument, storing the result to either ST(0) or the implicit
409    // argument.  For example: fadd, fsub, fmul, etc...
410    TwoArgFP   = 4 << FPTypeShift,
411
412    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
413    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
414    CompareFP  = 5 << FPTypeShift,
415
416    // CondMovFP - "2 operand" floating point conditional move instructions.
417    CondMovFP  = 6 << FPTypeShift,
418
419    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
420    SpecialFP  = 7 << FPTypeShift,
421
422    // Lock prefix
423    LOCKShift = 19,
424    LOCK = 1 << LOCKShift,
425
426    // Segment override prefixes. Currently we just need ability to address
427    // stuff in gs and fs segments.
428    SegOvrShift = 20,
429    SegOvrMask  = 3 << SegOvrShift,
430    FS          = 1 << SegOvrShift,
431    GS          = 2 << SegOvrShift,
432
433    // Execution domain for SSE instructions in bits 22, 23.
434    // 0 in bits 22-23 means normal, non-SSE instruction.
435    SSEDomainShift = 22,
436
437    OpcodeShift   = 24,
438    OpcodeMask    = 0xFF << OpcodeShift,
439
440    //===------------------------------------------------------------------===//
441    // VEX - The opcode prefix used by AVX instructions
442    VEX         = 1ULL << 32,
443
444    // VEX_W - Has a opcode specific functionality, but is used in the same
445    // way as REX_W is for regular SSE instructions.
446    VEX_W       = 1ULL << 33,
447
448    // VEX_4V - Used to specify an additional AVX/SSE register. Several 2
449    // address instructions in SSE are represented as 3 address ones in AVX
450    // and the additional register is encoded in VEX_VVVV prefix.
451    VEX_4V      = 1ULL << 34,
452
453    // VEX_I8IMM - Specifies that the last register used in a AVX instruction,
454    // must be encoded in the i8 immediate field. This usually happens in
455    // instructions with 4 operands.
456    VEX_I8IMM   = 1ULL << 35,
457
458    // VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
459    // instruction uses 256-bit wide registers. This is usually auto detected if
460    // a VR256 register is used, but some AVX instructions also have this field
461    // marked when using a f256 memory references.
462    VEX_L       = 1ULL << 36
463  };
464
465  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
466  // specified machine instruction.
467  //
468  static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
469    return TSFlags >> X86II::OpcodeShift;
470  }
471
472  static inline bool hasImm(uint64_t TSFlags) {
473    return (TSFlags & X86II::ImmMask) != 0;
474  }
475
476  /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
477  /// of the specified instruction.
478  static inline unsigned getSizeOfImm(uint64_t TSFlags) {
479    switch (TSFlags & X86II::ImmMask) {
480    default: assert(0 && "Unknown immediate size");
481    case X86II::Imm8:
482    case X86II::Imm8PCRel:  return 1;
483    case X86II::Imm16:
484    case X86II::Imm16PCRel: return 2;
485    case X86II::Imm32:
486    case X86II::Imm32PCRel: return 4;
487    case X86II::Imm64:      return 8;
488    }
489  }
490
491  /// isImmPCRel - Return true if the immediate of the specified instruction's
492  /// TSFlags indicates that it is pc relative.
493  static inline unsigned isImmPCRel(uint64_t TSFlags) {
494    switch (TSFlags & X86II::ImmMask) {
495    default: assert(0 && "Unknown immediate size");
496    case X86II::Imm8PCRel:
497    case X86II::Imm16PCRel:
498    case X86II::Imm32PCRel:
499      return true;
500    case X86II::Imm8:
501    case X86II::Imm16:
502    case X86II::Imm32:
503    case X86II::Imm64:
504      return false;
505    }
506  }
507
508  /// getMemoryOperandNo - The function returns the MCInst operand # for the
509  /// first field of the memory operand.  If the instruction doesn't have a
510  /// memory operand, this returns -1.
511  ///
512  /// Note that this ignores tied operands.  If there is a tied register which
513  /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
514  /// counted as one operand.
515  ///
516  static inline int getMemoryOperandNo(uint64_t TSFlags) {
517    switch (TSFlags & X86II::FormMask) {
518    case X86II::MRMInitReg:  assert(0 && "FIXME: Remove this form");
519    default: assert(0 && "Unknown FormMask value in getMemoryOperandNo!");
520    case X86II::Pseudo:
521    case X86II::RawFrm:
522    case X86II::AddRegFrm:
523    case X86II::MRMDestReg:
524    case X86II::MRMSrcReg:
525       return -1;
526    case X86II::MRMDestMem:
527      return 0;
528    case X86II::MRMSrcMem: {
529      bool HasVEX_4V = TSFlags & X86II::VEX_4V;
530      unsigned FirstMemOp = 1;
531      if (HasVEX_4V)
532        ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
533
534      // FIXME: Maybe lea should have its own form?  This is a horrible hack.
535      //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
536      //    Opcode == X86::LEA16r || Opcode == X86::LEA32r)
537      return FirstMemOp;
538    }
539    case X86II::MRM0r: case X86II::MRM1r:
540    case X86II::MRM2r: case X86II::MRM3r:
541    case X86II::MRM4r: case X86II::MRM5r:
542    case X86II::MRM6r: case X86II::MRM7r:
543      return -1;
544    case X86II::MRM0m: case X86II::MRM1m:
545    case X86II::MRM2m: case X86II::MRM3m:
546    case X86II::MRM4m: case X86II::MRM5m:
547    case X86II::MRM6m: case X86II::MRM7m:
548      return 0;
549    case X86II::MRM_C1:
550    case X86II::MRM_C2:
551    case X86II::MRM_C3:
552    case X86II::MRM_C4:
553    case X86II::MRM_C8:
554    case X86II::MRM_C9:
555    case X86II::MRM_E8:
556    case X86II::MRM_F0:
557    case X86II::MRM_F8:
558    case X86II::MRM_F9:
559      return -1;
560    }
561  }
562}
563
564inline static bool isScale(const MachineOperand &MO) {
565  return MO.isImm() &&
566    (MO.getImm() == 1 || MO.getImm() == 2 ||
567     MO.getImm() == 4 || MO.getImm() == 8);
568}
569
570inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
571  if (MI->getOperand(Op).isFI()) return true;
572  return Op+4 <= MI->getNumOperands() &&
573    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
574    MI->getOperand(Op+2).isReg() &&
575    (MI->getOperand(Op+3).isImm() ||
576     MI->getOperand(Op+3).isGlobal() ||
577     MI->getOperand(Op+3).isCPI() ||
578     MI->getOperand(Op+3).isJTI());
579}
580
581inline static bool isMem(const MachineInstr *MI, unsigned Op) {
582  if (MI->getOperand(Op).isFI()) return true;
583  return Op+5 <= MI->getNumOperands() &&
584    MI->getOperand(Op+4).isReg() &&
585    isLeaMem(MI, Op);
586}
587
588class X86InstrInfo : public TargetInstrInfoImpl {
589  X86TargetMachine &TM;
590  const X86RegisterInfo RI;
591
592  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
593  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
594  ///
595  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
596  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
597  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
598  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
599
600  /// MemOp2RegOpTable - Load / store unfolding opcode map.
601  ///
602  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
603
604public:
605  explicit X86InstrInfo(X86TargetMachine &tm);
606
607  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
608  /// such, whenever a client has an instance of instruction info, it should
609  /// always be able to get register info as well (through this method).
610  ///
611  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
612
613  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
614  /// extension instruction. That is, it's like a copy where it's legal for the
615  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
616  /// true, then it's expected the pre-extension value is available as a subreg
617  /// of the result register. This also returns the sub-register index in
618  /// SubIdx.
619  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
620                                     unsigned &SrcReg, unsigned &DstReg,
621                                     unsigned &SubIdx) const;
622
623  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
624  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
625  /// stack locations as well.  This uses a heuristic so it isn't
626  /// reliable for correctness.
627  unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
628                                     int &FrameIndex) const;
629
630  /// hasLoadFromStackSlot - If the specified machine instruction has
631  /// a load from a stack slot, return true along with the FrameIndex
632  /// of the loaded stack slot and the machine mem operand containing
633  /// the reference.  If not, return false.  Unlike
634  /// isLoadFromStackSlot, this returns true for any instructions that
635  /// loads from the stack.  This is a hint only and may not catch all
636  /// cases.
637  bool hasLoadFromStackSlot(const MachineInstr *MI,
638                            const MachineMemOperand *&MMO,
639                            int &FrameIndex) const;
640
641  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
642  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
643  /// stack locations as well.  This uses a heuristic so it isn't
644  /// reliable for correctness.
645  unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
646                                    int &FrameIndex) const;
647
648  /// hasStoreToStackSlot - If the specified machine instruction has a
649  /// store to a stack slot, return true along with the FrameIndex of
650  /// the loaded stack slot and the machine mem operand containing the
651  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
652  /// this returns true for any instructions that loads from the
653  /// stack.  This is a hint only and may not catch all cases.
654  bool hasStoreToStackSlot(const MachineInstr *MI,
655                           const MachineMemOperand *&MMO,
656                           int &FrameIndex) const;
657
658  bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
659                                         AliasAnalysis *AA) const;
660  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
661                     unsigned DestReg, unsigned SubIdx,
662                     const MachineInstr *Orig,
663                     const TargetRegisterInfo &TRI) const;
664
665  /// convertToThreeAddress - This method must be implemented by targets that
666  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
667  /// may be able to convert a two-address instruction into a true
668  /// three-address instruction on demand.  This allows the X86 target (for
669  /// example) to convert ADD and SHL instructions into LEA instructions if they
670  /// would require register copies due to two-addressness.
671  ///
672  /// This method returns a null pointer if the transformation cannot be
673  /// performed, otherwise it returns the new instruction.
674  ///
675  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
676                                              MachineBasicBlock::iterator &MBBI,
677                                              LiveVariables *LV) const;
678
679  /// commuteInstruction - We have a few instructions that must be hacked on to
680  /// commute them.
681  ///
682  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
683
684  // Branch analysis.
685  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
686  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
687                             MachineBasicBlock *&FBB,
688                             SmallVectorImpl<MachineOperand> &Cond,
689                             bool AllowModify) const;
690  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
691  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
692                                MachineBasicBlock *FBB,
693                                const SmallVectorImpl<MachineOperand> &Cond,
694                                DebugLoc DL) const;
695  virtual void copyPhysReg(MachineBasicBlock &MBB,
696                           MachineBasicBlock::iterator MI, DebugLoc DL,
697                           unsigned DestReg, unsigned SrcReg,
698                           bool KillSrc) const;
699  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
700                                   MachineBasicBlock::iterator MI,
701                                   unsigned SrcReg, bool isKill, int FrameIndex,
702                                   const TargetRegisterClass *RC,
703                                   const TargetRegisterInfo *TRI) const;
704
705  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
706                              SmallVectorImpl<MachineOperand> &Addr,
707                              const TargetRegisterClass *RC,
708                              MachineInstr::mmo_iterator MMOBegin,
709                              MachineInstr::mmo_iterator MMOEnd,
710                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
711
712  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
713                                    MachineBasicBlock::iterator MI,
714                                    unsigned DestReg, int FrameIndex,
715                                    const TargetRegisterClass *RC,
716                                    const TargetRegisterInfo *TRI) const;
717
718  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
719                               SmallVectorImpl<MachineOperand> &Addr,
720                               const TargetRegisterClass *RC,
721                               MachineInstr::mmo_iterator MMOBegin,
722                               MachineInstr::mmo_iterator MMOEnd,
723                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
724
725  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
726                                         MachineBasicBlock::iterator MI,
727                                        const std::vector<CalleeSavedInfo> &CSI,
728                                         const TargetRegisterInfo *TRI) const;
729
730  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
731                                           MachineBasicBlock::iterator MI,
732                                        const std::vector<CalleeSavedInfo> &CSI,
733                                           const TargetRegisterInfo *TRI) const;
734
735  virtual
736  MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
737                                         int FrameIx, uint64_t Offset,
738                                         const MDNode *MDPtr,
739                                         DebugLoc DL) const;
740
741  /// foldMemoryOperand - If this target supports it, fold a load or store of
742  /// the specified stack slot into the specified machine instruction for the
743  /// specified operand(s).  If this is possible, the target should perform the
744  /// folding and return true, otherwise it should return false.  If it folds
745  /// the instruction, it is likely that the MachineInstruction the iterator
746  /// references has been changed.
747  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
748                                              MachineInstr* MI,
749                                           const SmallVectorImpl<unsigned> &Ops,
750                                              int FrameIndex) const;
751
752  /// foldMemoryOperand - Same as the previous version except it allows folding
753  /// of any load and store from / to any address, not just from a specific
754  /// stack slot.
755  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
756                                              MachineInstr* MI,
757                                           const SmallVectorImpl<unsigned> &Ops,
758                                              MachineInstr* LoadMI) const;
759
760  /// canFoldMemoryOperand - Returns true if the specified load / store is
761  /// folding is possible.
762  virtual bool canFoldMemoryOperand(const MachineInstr*,
763                                    const SmallVectorImpl<unsigned> &) const;
764
765  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
766  /// a store or a load and a store into two or more instruction. If this is
767  /// possible, returns true as well as the new instructions by reference.
768  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
769                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
770                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
771
772  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
773                           SmallVectorImpl<SDNode*> &NewNodes) const;
774
775  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
776  /// instruction after load / store are unfolded from an instruction of the
777  /// specified opcode. It returns zero if the specified unfolding is not
778  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
779  /// index of the operand which will hold the register holding the loaded
780  /// value.
781  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
782                                      bool UnfoldLoad, bool UnfoldStore,
783                                      unsigned *LoadRegIndex = 0) const;
784
785  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
786  /// to determine if two loads are loading from the same base address. It
787  /// should only return true if the base pointers are the same and the
788  /// only differences between the two addresses are the offset. It also returns
789  /// the offsets by reference.
790  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
791                                       int64_t &Offset1, int64_t &Offset2) const;
792
793  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
794  /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
795  /// be scheduled togther. On some targets if two loads are loading from
796  /// addresses in the same cache line, it's better if they are scheduled
797  /// together. This function takes two integers that represent the load offsets
798  /// from the common base address. It returns true if it decides it's desirable
799  /// to schedule the two loads together. "NumLoads" is the number of loads that
800  /// have already been scheduled after Load1.
801  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
802                                       int64_t Offset1, int64_t Offset2,
803                                       unsigned NumLoads) const;
804
805  virtual void getNoopForMachoTarget(MCInst &NopInst) const;
806
807  virtual
808  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
809
810  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
811  /// instruction that defines the specified register class.
812  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
813
814  static bool isX86_64NonExtLowByteReg(unsigned reg) {
815    return (reg == X86::SPL || reg == X86::BPL ||
816          reg == X86::SIL || reg == X86::DIL);
817  }
818
819  static bool isX86_64ExtendedReg(const MachineOperand &MO) {
820    if (!MO.isReg()) return false;
821    return isX86_64ExtendedReg(MO.getReg());
822  }
823
824  /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
825  /// higher) register?  e.g. r8, xmm8, xmm13, etc.
826  static bool isX86_64ExtendedReg(unsigned RegNo);
827
828  /// GetInstSize - Returns the size of the specified MachineInstr.
829  ///
830  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
831
832  /// getGlobalBaseReg - Return a virtual register initialized with the
833  /// the global base register value. Output instructions required to
834  /// initialize the register in the function entry block, if necessary.
835  ///
836  unsigned getGlobalBaseReg(MachineFunction *MF) const;
837
838  /// GetSSEDomain - Return the SSE execution domain of MI as the first element,
839  /// and a bitmask of possible arguments to SetSSEDomain ase the second.
840  std::pair<uint16_t, uint16_t> GetSSEDomain(const MachineInstr *MI) const;
841
842  /// SetSSEDomain - Set the SSEDomain of MI.
843  void SetSSEDomain(MachineInstr *MI, unsigned Domain) const;
844
845private:
846  MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
847                                              MachineFunction::iterator &MFI,
848                                              MachineBasicBlock::iterator &MBBI,
849                                              LiveVariables *LV) const;
850
851  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
852                                     MachineInstr* MI,
853                                     unsigned OpNum,
854                                     const SmallVectorImpl<MachineOperand> &MOs,
855                                     unsigned Size, unsigned Alignment) const;
856
857  /// isFrameOperand - Return true and the FrameIndex if the specified
858  /// operand and follow operands form a reference to the stack frame.
859  bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
860                      int &FrameIndex) const;
861};
862
863} // End llvm namespace
864
865#endif
866