X86InstrInfo.h revision 4d46d0af583b95a5d4f7d490f542c4fb65b9e824
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86.h"
19#include "X86RegisterInfo.h"
20#include "llvm/ADT/IndexedMap.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22
23namespace llvm {
24  class X86RegisterInfo;
25  class X86TargetMachine;
26
27namespace X86 {
28  // X86 specific condition code. These correspond to X86_*_COND in
29  // X86InstrInfo.td. They must be kept in synch.
30  enum CondCode {
31    COND_A  = 0,
32    COND_AE = 1,
33    COND_B  = 2,
34    COND_BE = 3,
35    COND_E  = 4,
36    COND_G  = 5,
37    COND_GE = 6,
38    COND_L  = 7,
39    COND_LE = 8,
40    COND_NE = 9,
41    COND_NO = 10,
42    COND_NP = 11,
43    COND_NS = 12,
44    COND_O  = 13,
45    COND_P  = 14,
46    COND_S  = 15,
47    COND_INVALID
48  };
49
50  // Turn condition code into conditional branch opcode.
51  unsigned GetCondBranchFromCond(CondCode CC);
52
53  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
54  /// e.g. turning COND_E to COND_NE.
55  CondCode GetOppositeBranchCondition(X86::CondCode CC);
56
57  /// GetSwappedBranchCondition - Return the branch condition that would be
58  /// the result of exchanging the two operands of a comparison without
59  /// changing the result produced.
60  /// e.g. COND_E to COND_E, COND_G -> COND_L
61  CondCode GetSwappedBranchCondition(X86::CondCode CC);
62}
63
64/// X86II - This namespace holds all of the target specific flags that
65/// instruction info tracks.
66///
67namespace X86II {
68  enum {
69    //===------------------------------------------------------------------===//
70    // Instruction types.  These are the standard/most common forms for X86
71    // instructions.
72    //
73
74    // PseudoFrm - This represents an instruction that is a pseudo instruction
75    // or one that has not been implemented yet.  It is illegal to code generate
76    // it, but tolerated for intermediate implementation stages.
77    Pseudo         = 0,
78
79    /// Raw - This form is for instructions that don't have any operands, so
80    /// they are just a fixed opcode value, like 'leave'.
81    RawFrm         = 1,
82
83    /// AddRegFrm - This form is used for instructions like 'push r32' that have
84    /// their one register operand added to their opcode.
85    AddRegFrm      = 2,
86
87    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
88    /// to specify a destination, which in this case is a register.
89    ///
90    MRMDestReg     = 3,
91
92    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
93    /// to specify a destination, which in this case is memory.
94    ///
95    MRMDestMem     = 4,
96
97    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
98    /// to specify a source, which in this case is a register.
99    ///
100    MRMSrcReg      = 5,
101
102    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
103    /// to specify a source, which in this case is memory.
104    ///
105    MRMSrcMem      = 6,
106
107    /// MRM[0-7][rm] - These forms are used to represent instructions that use
108    /// a Mod/RM byte, and use the middle field to hold extended opcode
109    /// information.  In the intel manual these are represented as /0, /1, ...
110    ///
111
112    // First, instructions that operate on a register r/m operand...
113    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
114    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
115
116    // Next, instructions that operate on a memory r/m operand...
117    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
118    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
119
120    // MRMInitReg - This form is used for instructions whose source and
121    // destinations are the same register.
122    MRMInitReg = 32,
123
124    FormMask       = 63,
125
126    //===------------------------------------------------------------------===//
127    // Actual flags...
128
129    // OpSize - Set if this instruction requires an operand size prefix (0x66),
130    // which most often indicates that the instruction operates on 16 bit data
131    // instead of 32 bit data.
132    OpSize      = 1 << 6,
133
134    // AsSize - Set if this instruction requires an operand size prefix (0x67),
135    // which most often indicates that the instruction address 16 bit address
136    // instead of 32 bit address (or 32 bit address in 64 bit mode).
137    AdSize      = 1 << 7,
138
139    //===------------------------------------------------------------------===//
140    // Op0Mask - There are several prefix bytes that are used to form two byte
141    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
142    // used to obtain the setting of this field.  If no bits in this field is
143    // set, there is no prefix byte for obtaining a multibyte opcode.
144    //
145    Op0Shift    = 8,
146    Op0Mask     = 0xF << Op0Shift,
147
148    // TB - TwoByte - Set if this instruction has a two byte opcode, which
149    // starts with a 0x0F byte before the real opcode.
150    TB          = 1 << Op0Shift,
151
152    // REP - The 0xF3 prefix byte indicating repetition of the following
153    // instruction.
154    REP         = 2 << Op0Shift,
155
156    // D8-DF - These escape opcodes are used by the floating point unit.  These
157    // values must remain sequential.
158    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
159    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
160    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
161    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
162
163    // XS, XD - These prefix codes are for single and double precision scalar
164    // floating point operations performed in the SSE registers.
165    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
166
167    // T8, TA - Prefix after the 0x0F prefix.
168    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
169
170    //===------------------------------------------------------------------===//
171    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
172    // They are used to specify GPRs and SSE registers, 64-bit operand size,
173    // etc. We only cares about REX.W and REX.R bits and only the former is
174    // statically determined.
175    //
176    REXShift    = 12,
177    REX_W       = 1 << REXShift,
178
179    //===------------------------------------------------------------------===//
180    // This three-bit field describes the size of an immediate operand.  Zero is
181    // unused so that we can tell if we forgot to set a value.
182    ImmShift = 13,
183    ImmMask  = 7 << ImmShift,
184    Imm8     = 1 << ImmShift,
185    Imm16    = 2 << ImmShift,
186    Imm32    = 3 << ImmShift,
187    Imm64    = 4 << ImmShift,
188
189    //===------------------------------------------------------------------===//
190    // FP Instruction Classification...  Zero is non-fp instruction.
191
192    // FPTypeMask - Mask for all of the FP types...
193    FPTypeShift = 16,
194    FPTypeMask  = 7 << FPTypeShift,
195
196    // NotFP - The default, set for instructions that do not use FP registers.
197    NotFP      = 0 << FPTypeShift,
198
199    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
200    ZeroArgFP  = 1 << FPTypeShift,
201
202    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
203    OneArgFP   = 2 << FPTypeShift,
204
205    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
206    // result back to ST(0).  For example, fcos, fsqrt, etc.
207    //
208    OneArgFPRW = 3 << FPTypeShift,
209
210    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
211    // explicit argument, storing the result to either ST(0) or the implicit
212    // argument.  For example: fadd, fsub, fmul, etc...
213    TwoArgFP   = 4 << FPTypeShift,
214
215    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
216    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
217    CompareFP  = 5 << FPTypeShift,
218
219    // CondMovFP - "2 operand" floating point conditional move instructions.
220    CondMovFP  = 6 << FPTypeShift,
221
222    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
223    SpecialFP  = 7 << FPTypeShift,
224
225    // Lock prefix
226    LOCKShift = 19,
227    LOCK = 1 << LOCKShift,
228
229    // Bits 20 -> 23 are unused
230    OpcodeShift   = 24,
231    OpcodeMask    = 0xFF << OpcodeShift
232  };
233}
234
235inline static bool isScale(const MachineOperand &MO) {
236  return MO.isImmediate() &&
237    (MO.getImm() == 1 || MO.getImm() == 2 ||
238     MO.getImm() == 4 || MO.getImm() == 8);
239}
240
241inline static bool isMem(const MachineInstr *MI, unsigned Op) {
242  if (MI->getOperand(Op).isFrameIndex()) return true;
243  return Op+4 <= MI->getNumOperands() &&
244    MI->getOperand(Op  ).isRegister() && isScale(MI->getOperand(Op+1)) &&
245    MI->getOperand(Op+2).isRegister() &&
246    (MI->getOperand(Op+3).isImmediate() ||
247     MI->getOperand(Op+3).isGlobalAddress() ||
248     MI->getOperand(Op+3).isConstantPoolIndex() ||
249     MI->getOperand(Op+3).isJumpTableIndex());
250}
251
252class X86InstrInfo : public TargetInstrInfoImpl {
253  X86TargetMachine &TM;
254  const X86RegisterInfo RI;
255
256  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
257  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
258  ///
259  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
260  DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
261  DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
262  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
263
264  /// MemOp2RegOpTable - Load / store unfolding opcode map.
265  ///
266  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
267
268public:
269  explicit X86InstrInfo(X86TargetMachine &tm);
270
271  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
272  /// such, whenever a client has an instance of instruction info, it should
273  /// always be able to get register info as well (through this method).
274  ///
275  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
276
277  // Return true if the instruction is a register to register move and
278  // leave the source and dest operands in the passed parameters.
279  //
280  bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg,
281                   unsigned& destReg) const;
282  unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const;
283  unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const;
284
285  bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
286  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
287                     unsigned DestReg, const MachineInstr *Orig) const;
288
289  bool isInvariantLoad(MachineInstr *MI) const;
290
291  /// convertToThreeAddress - This method must be implemented by targets that
292  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
293  /// may be able to convert a two-address instruction into a true
294  /// three-address instruction on demand.  This allows the X86 target (for
295  /// example) to convert ADD and SHL instructions into LEA instructions if they
296  /// would require register copies due to two-addressness.
297  ///
298  /// This method returns a null pointer if the transformation cannot be
299  /// performed, otherwise it returns the new instruction.
300  ///
301  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
302                                              MachineBasicBlock::iterator &MBBI,
303                                              LiveVariables *LV) const;
304
305  /// commuteInstruction - We have a few instructions that must be hacked on to
306  /// commute them.
307  ///
308  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
309
310  // Branch analysis.
311  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
312  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
313                             MachineBasicBlock *&FBB,
314                             SmallVectorImpl<MachineOperand> &Cond) const;
315  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
316  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
317                                MachineBasicBlock *FBB,
318                            const SmallVectorImpl<MachineOperand> &Cond) const;
319  virtual bool copyRegToReg(MachineBasicBlock &MBB,
320                            MachineBasicBlock::iterator MI,
321                            unsigned DestReg, unsigned SrcReg,
322                            const TargetRegisterClass *DestRC,
323                            const TargetRegisterClass *SrcRC) const;
324  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
325                                   MachineBasicBlock::iterator MI,
326                                   unsigned SrcReg, bool isKill, int FrameIndex,
327                                   const TargetRegisterClass *RC) const;
328
329  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
330                              SmallVectorImpl<MachineOperand> &Addr,
331                              const TargetRegisterClass *RC,
332                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
333
334  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
335                                    MachineBasicBlock::iterator MI,
336                                    unsigned DestReg, int FrameIndex,
337                                    const TargetRegisterClass *RC) const;
338
339  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
340                               SmallVectorImpl<MachineOperand> &Addr,
341                               const TargetRegisterClass *RC,
342                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
343
344  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
345                                         MachineBasicBlock::iterator MI,
346                                 const std::vector<CalleeSavedInfo> &CSI) const;
347
348  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
349                                           MachineBasicBlock::iterator MI,
350                                 const std::vector<CalleeSavedInfo> &CSI) const;
351
352  /// foldMemoryOperand - If this target supports it, fold a load or store of
353  /// the specified stack slot into the specified machine instruction for the
354  /// specified operand(s).  If this is possible, the target should perform the
355  /// folding and return true, otherwise it should return false.  If it folds
356  /// the instruction, it is likely that the MachineInstruction the iterator
357  /// references has been changed.
358  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
359                                          MachineInstr* MI,
360                                          SmallVectorImpl<unsigned> &Ops,
361                                          int FrameIndex) const;
362
363  /// foldMemoryOperand - Same as the previous version except it allows folding
364  /// of any load and store from / to any address, not just from a specific
365  /// stack slot.
366  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
367                                          MachineInstr* MI,
368                                  SmallVectorImpl<unsigned> &Ops,
369                                  MachineInstr* LoadMI) const;
370
371  /// canFoldMemoryOperand - Returns true if the specified load / store is
372  /// folding is possible.
373  virtual bool canFoldMemoryOperand(MachineInstr*, SmallVectorImpl<unsigned> &) const;
374
375  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
376  /// a store or a load and a store into two or more instruction. If this is
377  /// possible, returns true as well as the new instructions by reference.
378  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
379                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
380                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
381
382  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
383                           SmallVectorImpl<SDNode*> &NewNodes) const;
384
385  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
386  /// instruction after load / store are unfolded from an instruction of the
387  /// specified opcode. It returns zero if the specified unfolding is not
388  /// possible.
389  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
390                                      bool UnfoldLoad, bool UnfoldStore) const;
391
392  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const;
393  virtual
394  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
395
396  const TargetRegisterClass *getPointerRegClass() const;
397
398  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
399  // specified machine instruction.
400  //
401  unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
402    return TID->TSFlags >> X86II::OpcodeShift;
403  }
404  unsigned char getBaseOpcodeFor(unsigned Opcode) const {
405    return getBaseOpcodeFor(&get(Opcode));
406  }
407
408  static bool isX86_64NonExtLowByteReg(unsigned reg) {
409    return (reg == X86::SPL || reg == X86::BPL ||
410          reg == X86::SIL || reg == X86::DIL);
411  }
412
413  static unsigned sizeOfImm(const TargetInstrDesc *Desc);
414  static unsigned getX86RegNum(unsigned RegNo);
415  static bool isX86_64ExtendedReg(const MachineOperand &MO);
416  static unsigned determineREX(const MachineInstr &MI);
417
418  /// GetInstSize - Returns the size of the specified MachineInstr.
419  ///
420  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
421
422private:
423  MachineInstr* foldMemoryOperand(MachineFunction &MF,
424                                  MachineInstr* MI,
425                                  unsigned OpNum,
426                                  SmallVector<MachineOperand,4> &MOs) const;
427};
428
429} // End llvm namespace
430
431#endif
432