X86InstrInfo.h revision 4db3cffe94a5285239cc0056f939c6b74a5ca0b6
19db7f57c1e3db8a2d06a833a4e0341f0fe310640Richard Smith//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
29db7f57c1e3db8a2d06a833a4e0341f0fe310640Richard Smith//
3acd954bd8f28383e7538c4d0fd989763744f5e99Richard Smith//                     The LLVM Compiler Infrastructure
4acd954bd8f28383e7538c4d0fd989763744f5e99Richard Smith//
5acd954bd8f28383e7538c4d0fd989763744f5e99Richard Smith// This file is distributed under the University of Illinois Open Source
6acd954bd8f28383e7538c4d0fd989763744f5e99Richard Smith// License. See LICENSE.TXT for details.
7acd954bd8f28383e7538c4d0fd989763744f5e99Richard Smith//
8acd954bd8f28383e7538c4d0fd989763744f5e99Richard Smith//===----------------------------------------------------------------------===//
998f0723ca24c604d72a10047b10b60743ac71f27Richard Smith//
1098f0723ca24c604d72a10047b10b60743ac71f27Richard Smith// This file contains the X86 implementation of the TargetInstrInfo class.
1198f0723ca24c604d72a10047b10b60743ac71f27Richard Smith//
1298f0723ca24c604d72a10047b10b60743ac71f27Richard Smith//===----------------------------------------------------------------------===//
139db7f57c1e3db8a2d06a833a4e0341f0fe310640Richard Smith
149db7f57c1e3db8a2d06a833a4e0341f0fe310640Richard Smith#ifndef X86INSTRUCTIONINFO_H
159db7f57c1e3db8a2d06a833a4e0341f0fe310640Richard Smith#define X86INSTRUCTIONINFO_H
169db7f57c1e3db8a2d06a833a4e0341f0fe310640Richard Smith
17b775100fea6d8955149897dae1adca50ca471d17Richard Smith#include "llvm/Target/TargetInstrInfo.h"
18b775100fea6d8955149897dae1adca50ca471d17Richard Smith#include "X86.h"
19b775100fea6d8955149897dae1adca50ca471d17Richard Smith#include "X86RegisterInfo.h"
208bfc1e118169229960b90a4ef8761ee0eb296755Richard Smith#include "llvm/ADT/DenseMap.h"
218bfc1e118169229960b90a4ef8761ee0eb296755Richard Smith
228bfc1e118169229960b90a4ef8761ee0eb296755Richard Smith#define GET_INSTRINFO_HEADER
23b775100fea6d8955149897dae1adca50ca471d17Richard Smith#include "X86GenInstrInfo.inc"
24b775100fea6d8955149897dae1adca50ca471d17Richard Smith
25b775100fea6d8955149897dae1adca50ca471d17Richard Smithnamespace llvm {
26b775100fea6d8955149897dae1adca50ca471d17Richard Smith  class X86RegisterInfo;
27b775100fea6d8955149897dae1adca50ca471d17Richard Smith  class X86TargetMachine;
28b775100fea6d8955149897dae1adca50ca471d17Richard Smith
29b775100fea6d8955149897dae1adca50ca471d17Richard Smithnamespace X86 {
30b775100fea6d8955149897dae1adca50ca471d17Richard Smith  // Enums for memory operand decoding.  Each memory operand is represented with
31b775100fea6d8955149897dae1adca50ca471d17Richard Smith  // a 5 operand sequence in the form:
32b775100fea6d8955149897dae1adca50ca471d17Richard Smith  //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
33b775100fea6d8955149897dae1adca50ca471d17Richard Smith  // These enums help decode this.
34b775100fea6d8955149897dae1adca50ca471d17Richard Smith  enum {
351888b910a5512262228e785cc9caf90296c06a45Richard Smith    AddrBaseReg = 0,
361888b910a5512262228e785cc9caf90296c06a45Richard Smith    AddrScaleAmt = 1,
371888b910a5512262228e785cc9caf90296c06a45Richard Smith    AddrIndexReg = 2,
381888b910a5512262228e785cc9caf90296c06a45Richard Smith    AddrDisp = 3,
391888b910a5512262228e785cc9caf90296c06a45Richard Smith
401888b910a5512262228e785cc9caf90296c06a45Richard Smith    /// AddrSegmentReg - The operand # of the segment in the memory operand.
41b60fae50d38a0291e1c5731b2fb22849d26ca342Richard Smith    AddrSegmentReg = 4,
42b60fae50d38a0291e1c5731b2fb22849d26ca342Richard Smith
43b60fae50d38a0291e1c5731b2fb22849d26ca342Richard Smith    /// AddrNumOperands - Total number of operands in a memory reference.
44b60fae50d38a0291e1c5731b2fb22849d26ca342Richard Smith    AddrNumOperands = 5
45b60fae50d38a0291e1c5731b2fb22849d26ca342Richard Smith  };
46b60fae50d38a0291e1c5731b2fb22849d26ca342Richard Smith
47d692a84e18fb48e6442bee83364f1d301f5b8404Richard Smith
48d692a84e18fb48e6442bee83364f1d301f5b8404Richard Smith  // X86 specific condition code. These correspond to X86_*_COND in
49d692a84e18fb48e6442bee83364f1d301f5b8404Richard Smith  // X86InstrInfo.td. They must be kept in synch.
50d692a84e18fb48e6442bee83364f1d301f5b8404Richard Smith  enum CondCode {
51d692a84e18fb48e6442bee83364f1d301f5b8404Richard Smith    COND_A  = 0,
52d692a84e18fb48e6442bee83364f1d301f5b8404Richard Smith    COND_AE = 1,
53d692a84e18fb48e6442bee83364f1d301f5b8404Richard Smith    COND_B  = 2,
547a3dfcdfb32c08f2f6f4a90a097bb240fdc1a94cRichard Smith    COND_BE = 3,
557a3dfcdfb32c08f2f6f4a90a097bb240fdc1a94cRichard Smith    COND_E  = 4,
567a3dfcdfb32c08f2f6f4a90a097bb240fdc1a94cRichard Smith    COND_G  = 5,
577a3dfcdfb32c08f2f6f4a90a097bb240fdc1a94cRichard Smith    COND_GE = 6,
587a3dfcdfb32c08f2f6f4a90a097bb240fdc1a94cRichard Smith    COND_L  = 7,
597a3dfcdfb32c08f2f6f4a90a097bb240fdc1a94cRichard Smith    COND_LE = 8,
607a3dfcdfb32c08f2f6f4a90a097bb240fdc1a94cRichard Smith    COND_NE = 9,
617a3dfcdfb32c08f2f6f4a90a097bb240fdc1a94cRichard Smith    COND_NO = 10,
62b775100fea6d8955149897dae1adca50ca471d17Richard Smith    COND_NP = 11,
63b775100fea6d8955149897dae1adca50ca471d17Richard Smith    COND_NS = 12,
64b775100fea6d8955149897dae1adca50ca471d17Richard Smith    COND_O  = 13,
65b775100fea6d8955149897dae1adca50ca471d17Richard Smith    COND_P  = 14,
66b775100fea6d8955149897dae1adca50ca471d17Richard Smith    COND_S  = 15,
67b775100fea6d8955149897dae1adca50ca471d17Richard Smith
68b775100fea6d8955149897dae1adca50ca471d17Richard Smith    // Artificial condition codes. These are used by AnalyzeBranch
69651f13cea278ec967336033dd032faef0e9fc2ecStephen Hines    // to indicate a block terminated with two conditional branches to
70b775100fea6d8955149897dae1adca50ca471d17Richard Smith    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
71    // which can't be represented on x86 with a single condition. These
72    // are never used in MachineInstrs.
73    COND_NE_OR_P,
74    COND_NP_OR_E,
75
76    COND_INVALID
77  };
78
79  // Turn condition code into conditional branch opcode.
80  unsigned GetCondBranchFromCond(CondCode CC);
81
82  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
83  /// e.g. turning COND_E to COND_NE.
84  CondCode GetOppositeBranchCondition(X86::CondCode CC);
85
86}
87
88/// X86II - This namespace holds all of the target specific flags that
89/// instruction info tracks.
90///
91namespace X86II {
92  /// Target Operand Flag enum.
93  enum TOF {
94    //===------------------------------------------------------------------===//
95    // X86 Specific MachineOperand flags.
96
97    MO_NO_FLAG,
98
99    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
100    /// relocation of:
101    ///    SYMBOL_LABEL + [. - PICBASELABEL]
102    MO_GOT_ABSOLUTE_ADDRESS,
103
104    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
105    /// immediate should get the value of the symbol minus the PIC base label:
106    ///    SYMBOL_LABEL - PICBASELABEL
107    MO_PIC_BASE_OFFSET,
108
109    /// MO_GOT - On a symbol operand this indicates that the immediate is the
110    /// offset to the GOT entry for the symbol name from the base of the GOT.
111    ///
112    /// See the X86-64 ELF ABI supplement for more details.
113    ///    SYMBOL_LABEL @GOT
114    MO_GOT,
115
116    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
117    /// the offset to the location of the symbol name from the base of the GOT.
118    ///
119    /// See the X86-64 ELF ABI supplement for more details.
120    ///    SYMBOL_LABEL @GOTOFF
121    MO_GOTOFF,
122
123    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
124    /// offset to the GOT entry for the symbol name from the current code
125    /// location.
126    ///
127    /// See the X86-64 ELF ABI supplement for more details.
128    ///    SYMBOL_LABEL @GOTPCREL
129    MO_GOTPCREL,
130
131    /// MO_PLT - On a symbol operand this indicates that the immediate is
132    /// offset to the PLT entry of symbol name from the current code location.
133    ///
134    /// See the X86-64 ELF ABI supplement for more details.
135    ///    SYMBOL_LABEL @PLT
136    MO_PLT,
137
138    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
139    /// some TLS offset.
140    ///
141    /// See 'ELF Handling for Thread-Local Storage' for more details.
142    ///    SYMBOL_LABEL @TLSGD
143    MO_TLSGD,
144
145    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
146    /// some TLS offset.
147    ///
148    /// See 'ELF Handling for Thread-Local Storage' for more details.
149    ///    SYMBOL_LABEL @GOTTPOFF
150    MO_GOTTPOFF,
151
152    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
153    /// some TLS offset.
154    ///
155    /// See 'ELF Handling for Thread-Local Storage' for more details.
156    ///    SYMBOL_LABEL @INDNTPOFF
157    MO_INDNTPOFF,
158
159    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
160    /// some TLS offset.
161    ///
162    /// See 'ELF Handling for Thread-Local Storage' for more details.
163    ///    SYMBOL_LABEL @TPOFF
164    MO_TPOFF,
165
166    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
167    /// some TLS offset.
168    ///
169    /// See 'ELF Handling for Thread-Local Storage' for more details.
170    ///    SYMBOL_LABEL @NTPOFF
171    MO_NTPOFF,
172
173    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
174    /// reference is actually to the "__imp_FOO" symbol.  This is used for
175    /// dllimport linkage on windows.
176    MO_DLLIMPORT,
177
178    /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
179    /// reference is actually to the "FOO$stub" symbol.  This is used for calls
180    /// and jumps to external functions on Tiger and earlier.
181    MO_DARWIN_STUB,
182
183    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
184    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
185    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
186    MO_DARWIN_NONLAZY,
187
188    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
189    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
190    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
191    MO_DARWIN_NONLAZY_PIC_BASE,
192
193    /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
194    /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
195    /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
196    /// stub.
197    MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
198
199    /// MO_TLVP - On a symbol operand this indicates that the immediate is
200    /// some TLS offset.
201    ///
202    /// This is the TLS offset for the Darwin TLS mechanism.
203    MO_TLVP,
204
205    /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
206    /// is some TLS offset from the picbase.
207    ///
208    /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
209    MO_TLVP_PIC_BASE
210  };
211}
212
213/// isGlobalStubReference - Return true if the specified TargetFlag operand is
214/// a reference to a stub for a global, not the global itself.
215inline static bool isGlobalStubReference(unsigned char TargetFlag) {
216  switch (TargetFlag) {
217  case X86II::MO_DLLIMPORT: // dllimport stub.
218  case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
219  case X86II::MO_GOT:       // normal GOT reference.
220  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
221  case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
222  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
223    return true;
224  default:
225    return false;
226  }
227}
228
229/// isGlobalRelativeToPICBase - Return true if the specified global value
230/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
231/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
232inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
233  switch (TargetFlag) {
234  case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
235  case X86II::MO_GOT:                            // isPICStyleGOT: other global.
236  case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
237  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
238  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
239  case X86II::MO_TLVP:                           // ??? Pretty sure..
240    return true;
241  default:
242    return false;
243  }
244}
245
246/// X86II - This namespace holds all of the target specific flags that
247/// instruction info tracks.
248///
249namespace X86II {
250  enum {
251    //===------------------------------------------------------------------===//
252    // Instruction encodings.  These are the standard/most common forms for X86
253    // instructions.
254    //
255
256    // PseudoFrm - This represents an instruction that is a pseudo instruction
257    // or one that has not been implemented yet.  It is illegal to code generate
258    // it, but tolerated for intermediate implementation stages.
259    Pseudo         = 0,
260
261    /// Raw - This form is for instructions that don't have any operands, so
262    /// they are just a fixed opcode value, like 'leave'.
263    RawFrm         = 1,
264
265    /// AddRegFrm - This form is used for instructions like 'push r32' that have
266    /// their one register operand added to their opcode.
267    AddRegFrm      = 2,
268
269    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
270    /// to specify a destination, which in this case is a register.
271    ///
272    MRMDestReg     = 3,
273
274    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
275    /// to specify a destination, which in this case is memory.
276    ///
277    MRMDestMem     = 4,
278
279    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
280    /// to specify a source, which in this case is a register.
281    ///
282    MRMSrcReg      = 5,
283
284    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
285    /// to specify a source, which in this case is memory.
286    ///
287    MRMSrcMem      = 6,
288
289    /// MRM[0-7][rm] - These forms are used to represent instructions that use
290    /// a Mod/RM byte, and use the middle field to hold extended opcode
291    /// information.  In the intel manual these are represented as /0, /1, ...
292    ///
293
294    // First, instructions that operate on a register r/m operand...
295    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
296    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
297
298    // Next, instructions that operate on a memory r/m operand...
299    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
300    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
301
302    // MRMInitReg - This form is used for instructions whose source and
303    // destinations are the same register.
304    MRMInitReg = 32,
305
306    //// MRM_C1 - A mod/rm byte of exactly 0xC1.
307    MRM_C1 = 33,
308    MRM_C2 = 34,
309    MRM_C3 = 35,
310    MRM_C4 = 36,
311    MRM_C8 = 37,
312    MRM_C9 = 38,
313    MRM_E8 = 39,
314    MRM_F0 = 40,
315    MRM_F8 = 41,
316    MRM_F9 = 42,
317    MRM_D0 = 45,
318    MRM_D1 = 46,
319
320    /// RawFrmImm8 - This is used for the ENTER instruction, which has two
321    /// immediates, the first of which is a 16-bit immediate (specified by
322    /// the imm encoding) and the second is a 8-bit fixed value.
323    RawFrmImm8 = 43,
324
325    /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
326    /// immediates, the first of which is a 16 or 32-bit immediate (specified by
327    /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
328    /// manual, this operand is described as pntr16:32 and pntr16:16
329    RawFrmImm16 = 44,
330
331    FormMask       = 63,
332
333    //===------------------------------------------------------------------===//
334    // Actual flags...
335
336    // OpSize - Set if this instruction requires an operand size prefix (0x66),
337    // which most often indicates that the instruction operates on 16 bit data
338    // instead of 32 bit data.
339    OpSize      = 1 << 6,
340
341    // AsSize - Set if this instruction requires an operand size prefix (0x67),
342    // which most often indicates that the instruction address 16 bit address
343    // instead of 32 bit address (or 32 bit address in 64 bit mode).
344    AdSize      = 1 << 7,
345
346    //===------------------------------------------------------------------===//
347    // Op0Mask - There are several prefix bytes that are used to form two byte
348    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
349    // used to obtain the setting of this field.  If no bits in this field is
350    // set, there is no prefix byte for obtaining a multibyte opcode.
351    //
352    Op0Shift    = 8,
353    Op0Mask     = 0x1F << Op0Shift,
354
355    // TB - TwoByte - Set if this instruction has a two byte opcode, which
356    // starts with a 0x0F byte before the real opcode.
357    TB          = 1 << Op0Shift,
358
359    // REP - The 0xF3 prefix byte indicating repetition of the following
360    // instruction.
361    REP         = 2 << Op0Shift,
362
363    // D8-DF - These escape opcodes are used by the floating point unit.  These
364    // values must remain sequential.
365    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
366    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
367    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
368    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
369
370    // XS, XD - These prefix codes are for single and double precision scalar
371    // floating point operations performed in the SSE registers.
372    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
373
374    // T8, TA, A6, A7 - Prefix after the 0x0F prefix.
375    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
376    A6 = 15 << Op0Shift,  A7 = 16 << Op0Shift,
377
378    // TF - Prefix before and after 0x0F
379    TF = 17 << Op0Shift,
380
381    //===------------------------------------------------------------------===//
382    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
383    // They are used to specify GPRs and SSE registers, 64-bit operand size,
384    // etc. We only cares about REX.W and REX.R bits and only the former is
385    // statically determined.
386    //
387    REXShift    = Op0Shift + 5,
388    REX_W       = 1 << REXShift,
389
390    //===------------------------------------------------------------------===//
391    // This three-bit field describes the size of an immediate operand.  Zero is
392    // unused so that we can tell if we forgot to set a value.
393    ImmShift = REXShift + 1,
394    ImmMask    = 7 << ImmShift,
395    Imm8       = 1 << ImmShift,
396    Imm8PCRel  = 2 << ImmShift,
397    Imm16      = 3 << ImmShift,
398    Imm16PCRel = 4 << ImmShift,
399    Imm32      = 5 << ImmShift,
400    Imm32PCRel = 6 << ImmShift,
401    Imm64      = 7 << ImmShift,
402
403    //===------------------------------------------------------------------===//
404    // FP Instruction Classification...  Zero is non-fp instruction.
405
406    // FPTypeMask - Mask for all of the FP types...
407    FPTypeShift = ImmShift + 3,
408    FPTypeMask  = 7 << FPTypeShift,
409
410    // NotFP - The default, set for instructions that do not use FP registers.
411    NotFP      = 0 << FPTypeShift,
412
413    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
414    ZeroArgFP  = 1 << FPTypeShift,
415
416    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
417    OneArgFP   = 2 << FPTypeShift,
418
419    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
420    // result back to ST(0).  For example, fcos, fsqrt, etc.
421    //
422    OneArgFPRW = 3 << FPTypeShift,
423
424    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
425    // explicit argument, storing the result to either ST(0) or the implicit
426    // argument.  For example: fadd, fsub, fmul, etc...
427    TwoArgFP   = 4 << FPTypeShift,
428
429    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
430    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
431    CompareFP  = 5 << FPTypeShift,
432
433    // CondMovFP - "2 operand" floating point conditional move instructions.
434    CondMovFP  = 6 << FPTypeShift,
435
436    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
437    SpecialFP  = 7 << FPTypeShift,
438
439    // Lock prefix
440    LOCKShift = FPTypeShift + 3,
441    LOCK = 1 << LOCKShift,
442
443    // Segment override prefixes. Currently we just need ability to address
444    // stuff in gs and fs segments.
445    SegOvrShift = LOCKShift + 1,
446    SegOvrMask  = 3 << SegOvrShift,
447    FS          = 1 << SegOvrShift,
448    GS          = 2 << SegOvrShift,
449
450    // Execution domain for SSE instructions in bits 23, 24.
451    // 0 in bits 23-24 means normal, non-SSE instruction.
452    SSEDomainShift = SegOvrShift + 2,
453
454    OpcodeShift   = SSEDomainShift + 2,
455
456    //===------------------------------------------------------------------===//
457    /// VEX - The opcode prefix used by AVX instructions
458    VEXShift = OpcodeShift + 8,
459    VEX         = 1U << 0,
460
461    /// VEX_W - Has a opcode specific functionality, but is used in the same
462    /// way as REX_W is for regular SSE instructions.
463    VEX_W       = 1U << 1,
464
465    /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
466    /// address instructions in SSE are represented as 3 address ones in AVX
467    /// and the additional register is encoded in VEX_VVVV prefix.
468    VEX_4V      = 1U << 2,
469
470    /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
471    /// must be encoded in the i8 immediate field. This usually happens in
472    /// instructions with 4 operands.
473    VEX_I8IMM   = 1U << 3,
474
475    /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
476    /// instruction uses 256-bit wide registers. This is usually auto detected
477    /// if a VR256 register is used, but some AVX instructions also have this
478    /// field marked when using a f256 memory references.
479    VEX_L       = 1U << 4,
480
481    /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
482    /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
483    /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
484    /// storing a classifier in the imm8 field.  To simplify our implementation,
485    /// we handle this by storeing the classifier in the opcode field and using
486    /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
487    Has3DNow0F0FOpcode = 1U << 5
488  };
489
490  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
491  // specified machine instruction.
492  //
493  static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
494    return TSFlags >> X86II::OpcodeShift;
495  }
496
497  static inline bool hasImm(uint64_t TSFlags) {
498    return (TSFlags & X86II::ImmMask) != 0;
499  }
500
501  /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
502  /// of the specified instruction.
503  static inline unsigned getSizeOfImm(uint64_t TSFlags) {
504    switch (TSFlags & X86II::ImmMask) {
505    default: assert(0 && "Unknown immediate size");
506    case X86II::Imm8:
507    case X86II::Imm8PCRel:  return 1;
508    case X86II::Imm16:
509    case X86II::Imm16PCRel: return 2;
510    case X86II::Imm32:
511    case X86II::Imm32PCRel: return 4;
512    case X86II::Imm64:      return 8;
513    }
514  }
515
516  /// isImmPCRel - Return true if the immediate of the specified instruction's
517  /// TSFlags indicates that it is pc relative.
518  static inline unsigned isImmPCRel(uint64_t TSFlags) {
519    switch (TSFlags & X86II::ImmMask) {
520    default: assert(0 && "Unknown immediate size");
521    case X86II::Imm8PCRel:
522    case X86II::Imm16PCRel:
523    case X86II::Imm32PCRel:
524      return true;
525    case X86II::Imm8:
526    case X86II::Imm16:
527    case X86II::Imm32:
528    case X86II::Imm64:
529      return false;
530    }
531  }
532
533  /// getMemoryOperandNo - The function returns the MCInst operand # for the
534  /// first field of the memory operand.  If the instruction doesn't have a
535  /// memory operand, this returns -1.
536  ///
537  /// Note that this ignores tied operands.  If there is a tied register which
538  /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
539  /// counted as one operand.
540  ///
541  static inline int getMemoryOperandNo(uint64_t TSFlags) {
542    switch (TSFlags & X86II::FormMask) {
543    case X86II::MRMInitReg:  assert(0 && "FIXME: Remove this form");
544    default: assert(0 && "Unknown FormMask value in getMemoryOperandNo!");
545    case X86II::Pseudo:
546    case X86II::RawFrm:
547    case X86II::AddRegFrm:
548    case X86II::MRMDestReg:
549    case X86II::MRMSrcReg:
550    case X86II::RawFrmImm8:
551    case X86II::RawFrmImm16:
552       return -1;
553    case X86II::MRMDestMem:
554      return 0;
555    case X86II::MRMSrcMem: {
556      bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
557      unsigned FirstMemOp = 1;
558      if (HasVEX_4V)
559        ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
560
561      // FIXME: Maybe lea should have its own form?  This is a horrible hack.
562      //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
563      //    Opcode == X86::LEA16r || Opcode == X86::LEA32r)
564      return FirstMemOp;
565    }
566    case X86II::MRM0r: case X86II::MRM1r:
567    case X86II::MRM2r: case X86II::MRM3r:
568    case X86II::MRM4r: case X86II::MRM5r:
569    case X86II::MRM6r: case X86II::MRM7r:
570      return -1;
571    case X86II::MRM0m: case X86II::MRM1m:
572    case X86II::MRM2m: case X86II::MRM3m:
573    case X86II::MRM4m: case X86II::MRM5m:
574    case X86II::MRM6m: case X86II::MRM7m:
575      return 0;
576    case X86II::MRM_C1:
577    case X86II::MRM_C2:
578    case X86II::MRM_C3:
579    case X86II::MRM_C4:
580    case X86II::MRM_C8:
581    case X86II::MRM_C9:
582    case X86II::MRM_E8:
583    case X86II::MRM_F0:
584    case X86II::MRM_F8:
585    case X86II::MRM_F9:
586    case X86II::MRM_D0:
587    case X86II::MRM_D1:
588      return -1;
589    }
590  }
591}
592
593inline static bool isScale(const MachineOperand &MO) {
594  return MO.isImm() &&
595    (MO.getImm() == 1 || MO.getImm() == 2 ||
596     MO.getImm() == 4 || MO.getImm() == 8);
597}
598
599inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
600  if (MI->getOperand(Op).isFI()) return true;
601  return Op+4 <= MI->getNumOperands() &&
602    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
603    MI->getOperand(Op+2).isReg() &&
604    (MI->getOperand(Op+3).isImm() ||
605     MI->getOperand(Op+3).isGlobal() ||
606     MI->getOperand(Op+3).isCPI() ||
607     MI->getOperand(Op+3).isJTI());
608}
609
610inline static bool isMem(const MachineInstr *MI, unsigned Op) {
611  if (MI->getOperand(Op).isFI()) return true;
612  return Op+5 <= MI->getNumOperands() &&
613    MI->getOperand(Op+4).isReg() &&
614    isLeaMem(MI, Op);
615}
616
617class X86InstrInfo : public X86GenInstrInfo {
618  X86TargetMachine &TM;
619  const X86RegisterInfo RI;
620
621  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
622  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
623  ///
624  DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
625  DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
626  DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
627  DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
628
629  /// MemOp2RegOpTable - Load / store unfolding opcode map.
630  ///
631  DenseMap<unsigned, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
632
633public:
634  explicit X86InstrInfo(X86TargetMachine &tm);
635
636  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
637  /// such, whenever a client has an instance of instruction info, it should
638  /// always be able to get register info as well (through this method).
639  ///
640  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
641
642  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
643  /// extension instruction. That is, it's like a copy where it's legal for the
644  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
645  /// true, then it's expected the pre-extension value is available as a subreg
646  /// of the result register. This also returns the sub-register index in
647  /// SubIdx.
648  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
649                                     unsigned &SrcReg, unsigned &DstReg,
650                                     unsigned &SubIdx) const;
651
652  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
653  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
654  /// stack locations as well.  This uses a heuristic so it isn't
655  /// reliable for correctness.
656  unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
657                                     int &FrameIndex) const;
658
659  /// hasLoadFromStackSlot - If the specified machine instruction has
660  /// a load from a stack slot, return true along with the FrameIndex
661  /// of the loaded stack slot and the machine mem operand containing
662  /// the reference.  If not, return false.  Unlike
663  /// isLoadFromStackSlot, this returns true for any instructions that
664  /// loads from the stack.  This is a hint only and may not catch all
665  /// cases.
666  bool hasLoadFromStackSlot(const MachineInstr *MI,
667                            const MachineMemOperand *&MMO,
668                            int &FrameIndex) const;
669
670  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
671  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
672  /// stack locations as well.  This uses a heuristic so it isn't
673  /// reliable for correctness.
674  unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
675                                    int &FrameIndex) const;
676
677  /// hasStoreToStackSlot - If the specified machine instruction has a
678  /// store to a stack slot, return true along with the FrameIndex of
679  /// the loaded stack slot and the machine mem operand containing the
680  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
681  /// this returns true for any instructions that loads from the
682  /// stack.  This is a hint only and may not catch all cases.
683  bool hasStoreToStackSlot(const MachineInstr *MI,
684                           const MachineMemOperand *&MMO,
685                           int &FrameIndex) const;
686
687  bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
688                                         AliasAnalysis *AA) const;
689  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
690                     unsigned DestReg, unsigned SubIdx,
691                     const MachineInstr *Orig,
692                     const TargetRegisterInfo &TRI) const;
693
694  /// convertToThreeAddress - This method must be implemented by targets that
695  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
696  /// may be able to convert a two-address instruction into a true
697  /// three-address instruction on demand.  This allows the X86 target (for
698  /// example) to convert ADD and SHL instructions into LEA instructions if they
699  /// would require register copies due to two-addressness.
700  ///
701  /// This method returns a null pointer if the transformation cannot be
702  /// performed, otherwise it returns the new instruction.
703  ///
704  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
705                                              MachineBasicBlock::iterator &MBBI,
706                                              LiveVariables *LV) const;
707
708  /// commuteInstruction - We have a few instructions that must be hacked on to
709  /// commute them.
710  ///
711  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
712
713  // Branch analysis.
714  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
715  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
716                             MachineBasicBlock *&FBB,
717                             SmallVectorImpl<MachineOperand> &Cond,
718                             bool AllowModify) const;
719  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
720  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
721                                MachineBasicBlock *FBB,
722                                const SmallVectorImpl<MachineOperand> &Cond,
723                                DebugLoc DL) const;
724  virtual void copyPhysReg(MachineBasicBlock &MBB,
725                           MachineBasicBlock::iterator MI, DebugLoc DL,
726                           unsigned DestReg, unsigned SrcReg,
727                           bool KillSrc) const;
728  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
729                                   MachineBasicBlock::iterator MI,
730                                   unsigned SrcReg, bool isKill, int FrameIndex,
731                                   const TargetRegisterClass *RC,
732                                   const TargetRegisterInfo *TRI) const;
733
734  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
735                              SmallVectorImpl<MachineOperand> &Addr,
736                              const TargetRegisterClass *RC,
737                              MachineInstr::mmo_iterator MMOBegin,
738                              MachineInstr::mmo_iterator MMOEnd,
739                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
740
741  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
742                                    MachineBasicBlock::iterator MI,
743                                    unsigned DestReg, int FrameIndex,
744                                    const TargetRegisterClass *RC,
745                                    const TargetRegisterInfo *TRI) const;
746
747  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
748                               SmallVectorImpl<MachineOperand> &Addr,
749                               const TargetRegisterClass *RC,
750                               MachineInstr::mmo_iterator MMOBegin,
751                               MachineInstr::mmo_iterator MMOEnd,
752                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
753  virtual
754  MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
755                                         int FrameIx, uint64_t Offset,
756                                         const MDNode *MDPtr,
757                                         DebugLoc DL) const;
758
759  /// foldMemoryOperand - If this target supports it, fold a load or store of
760  /// the specified stack slot into the specified machine instruction for the
761  /// specified operand(s).  If this is possible, the target should perform the
762  /// folding and return true, otherwise it should return false.  If it folds
763  /// the instruction, it is likely that the MachineInstruction the iterator
764  /// references has been changed.
765  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
766                                              MachineInstr* MI,
767                                           const SmallVectorImpl<unsigned> &Ops,
768                                              int FrameIndex) const;
769
770  /// foldMemoryOperand - Same as the previous version except it allows folding
771  /// of any load and store from / to any address, not just from a specific
772  /// stack slot.
773  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
774                                              MachineInstr* MI,
775                                           const SmallVectorImpl<unsigned> &Ops,
776                                              MachineInstr* LoadMI) const;
777
778  /// canFoldMemoryOperand - Returns true if the specified load / store is
779  /// folding is possible.
780  virtual bool canFoldMemoryOperand(const MachineInstr*,
781                                    const SmallVectorImpl<unsigned> &) const;
782
783  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
784  /// a store or a load and a store into two or more instruction. If this is
785  /// possible, returns true as well as the new instructions by reference.
786  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
787                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
788                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
789
790  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
791                           SmallVectorImpl<SDNode*> &NewNodes) const;
792
793  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
794  /// instruction after load / store are unfolded from an instruction of the
795  /// specified opcode. It returns zero if the specified unfolding is not
796  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
797  /// index of the operand which will hold the register holding the loaded
798  /// value.
799  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
800                                      bool UnfoldLoad, bool UnfoldStore,
801                                      unsigned *LoadRegIndex = 0) const;
802
803  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
804  /// to determine if two loads are loading from the same base address. It
805  /// should only return true if the base pointers are the same and the
806  /// only differences between the two addresses are the offset. It also returns
807  /// the offsets by reference.
808  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
809                                       int64_t &Offset1, int64_t &Offset2) const;
810
811  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
812  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
813  /// be scheduled togther. On some targets if two loads are loading from
814  /// addresses in the same cache line, it's better if they are scheduled
815  /// together. This function takes two integers that represent the load offsets
816  /// from the common base address. It returns true if it decides it's desirable
817  /// to schedule the two loads together. "NumLoads" is the number of loads that
818  /// have already been scheduled after Load1.
819  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
820                                       int64_t Offset1, int64_t Offset2,
821                                       unsigned NumLoads) const;
822
823  virtual void getNoopForMachoTarget(MCInst &NopInst) const;
824
825  virtual
826  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
827
828  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
829  /// instruction that defines the specified register class.
830  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
831
832  static bool isX86_64NonExtLowByteReg(unsigned reg) {
833    return (reg == X86::SPL || reg == X86::BPL ||
834          reg == X86::SIL || reg == X86::DIL);
835  }
836
837  static bool isX86_64ExtendedReg(const MachineOperand &MO) {
838    if (!MO.isReg()) return false;
839    return isX86_64ExtendedReg(MO.getReg());
840  }
841
842  /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
843  /// higher) register?  e.g. r8, xmm8, xmm13, etc.
844  static bool isX86_64ExtendedReg(unsigned RegNo);
845
846  /// getGlobalBaseReg - Return a virtual register initialized with the
847  /// the global base register value. Output instructions required to
848  /// initialize the register in the function entry block, if necessary.
849  ///
850  unsigned getGlobalBaseReg(MachineFunction *MF) const;
851
852  /// GetSSEDomain - Return the SSE execution domain of MI as the first element,
853  /// and a bitmask of possible arguments to SetSSEDomain ase the second.
854  std::pair<uint16_t, uint16_t> GetSSEDomain(const MachineInstr *MI) const;
855
856  /// SetSSEDomain - Set the SSEDomain of MI.
857  void SetSSEDomain(MachineInstr *MI, unsigned Domain) const;
858
859  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
860                                      MachineInstr* MI,
861                                      unsigned OpNum,
862                                      const SmallVectorImpl<MachineOperand> &MOs,
863                                      unsigned Size, unsigned Alignment) const;
864
865  bool isHighLatencyDef(int opc) const;
866
867  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
868                             const MachineRegisterInfo *MRI,
869                             const MachineInstr *DefMI, unsigned DefIdx,
870                             const MachineInstr *UseMI, unsigned UseIdx) const;
871
872private:
873  MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
874                                              MachineFunction::iterator &MFI,
875                                              MachineBasicBlock::iterator &MBBI,
876                                              LiveVariables *LV) const;
877
878  /// isFrameOperand - Return true and the FrameIndex if the specified
879  /// operand and follow operands form a reference to the stack frame.
880  bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
881                      int &FrameIndex) const;
882};
883
884} // End llvm namespace
885
886#endif
887