X86InstrInfo.h revision 55e7c827301da0e5e03b26835bff259c320b3bf7
1a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)//
3a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)//                     The LLVM Compiler Infrastructure
4a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)//
5a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)// This file is distributed under the University of Illinois Open Source
6a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)// License. See LICENSE.TXT for details.
7a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)//
8a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)//===----------------------------------------------------------------------===//
9a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)//
10a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)// This file contains the X86 implementation of the TargetInstrInfo class.
11a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)//
12a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)//===----------------------------------------------------------------------===//
13a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
14a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)#ifndef X86INSTRUCTIONINFO_H
15a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)#define X86INSTRUCTIONINFO_H
16a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
17a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)#include "llvm/Target/TargetInstrInfo.h"
18a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)#include "X86.h"
19a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)#include "X86RegisterInfo.h"
20a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)#include "llvm/ADT/DenseMap.h"
21a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)#include "llvm/Target/TargetRegisterInfo.h"
22a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
23a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)namespace llvm {
24a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)  class X86RegisterInfo;
25a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)  class X86TargetMachine;
26a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
27a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)namespace X86 {
28a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)  // X86 specific condition code. These correspond to X86_*_COND in
29a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)  // X86InstrInfo.td. They must be kept in synch.
30a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)  enum CondCode {
31a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_A  = 0,
32a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_AE = 1,
33a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_B  = 2,
34a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_BE = 3,
35a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_E  = 4,
36a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_G  = 5,
37a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_GE = 6,
38a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_L  = 7,
39a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_LE = 8,
40a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_NE = 9,
41a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_NO = 10,
42a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_NP = 11,
43a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_NS = 12,
44a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_O  = 13,
45a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_P  = 14,
46a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_S  = 15,
47a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
48a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    // Artificial condition codes. These are used by AnalyzeBranch
49a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    // to indicate a block terminated with two conditional branches to
50a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
51a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    // which can't be represented on x86 with a single condition. These
52a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    // are never used in MachineInstrs.
53a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_NE_OR_P,
54a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_NP_OR_E,
55a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
56a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    COND_INVALID
57a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)  };
58a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
59a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)  // Turn condition code into conditional branch opcode.
60a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)  unsigned GetCondBranchFromCond(CondCode CC);
61a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
62a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)  /// e.g. turning COND_E to COND_NE.
64a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)  CondCode GetOppositeBranchCondition(X86::CondCode CC);
65a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
66a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)}
67a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
68a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)/// X86II - This namespace holds all of the target specific flags that
69a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)/// instruction info tracks.
70a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)///
71a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)namespace X86II {
72a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)  enum {
73a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    //===------------------------------------------------------------------===//
74a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    // X86 Specific MachineOperand flags.
75a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
76a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    MO_NO_FLAG = 0,
77a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
78a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
79a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    /// relocation of:
80a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    ///    SYMBOL_LABEL + [. - PICBASELABEL]
81a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    MO_GOT_ABSOLUTE_ADDRESS = 1,
82a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
83a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
84a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    /// immediate should get the value of the symbol minus the PIC base label:
85a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    ///    SYMBOL_LABEL - PICBASELABEL
86a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    MO_PIC_BASE_OFFSET = 2,
87a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
88a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    /// MO_GOTOFF - On a symbol operand this indicates that the immediate should
89a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    /// the offset to the location of the symbol name from the base of the GOT.
90a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    ///    SYMBOL_LABEL @GOTOFF
91a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    MO_GOTOFF = 3,
92a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
93a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
94a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    //===------------------------------------------------------------------===//
95a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    // Instruction encodings.  These are the standard/most common forms for X86
96a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    // instructions.
97a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    //
98a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
99a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    // PseudoFrm - This represents an instruction that is a pseudo instruction
100a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    // or one that has not been implemented yet.  It is illegal to code generate
101a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    // it, but tolerated for intermediate implementation stages.
102a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    Pseudo         = 0,
103a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
104a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    /// Raw - This form is for instructions that don't have any operands, so
105a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    /// they are just a fixed opcode value, like 'leave'.
106a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    RawFrm         = 1,
107a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
108a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    /// AddRegFrm - This form is used for instructions like 'push r32' that have
109a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    /// their one register operand added to their opcode.
110a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    AddRegFrm      = 2,
111a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
112a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
113a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    /// to specify a destination, which in this case is a register.
114a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    ///
115a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    MRMDestReg     = 3,
116a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
117a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
118a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    /// to specify a destination, which in this case is memory.
119a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    ///
120a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    MRMDestMem     = 4,
121a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)
122a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
123a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    /// to specify a source, which in this case is a register.
124a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    ///
125a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    MRMSrcReg      = 5,
126
127    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
128    /// to specify a source, which in this case is memory.
129    ///
130    MRMSrcMem      = 6,
131
132    /// MRM[0-7][rm] - These forms are used to represent instructions that use
133    /// a Mod/RM byte, and use the middle field to hold extended opcode
134    /// information.  In the intel manual these are represented as /0, /1, ...
135    ///
136
137    // First, instructions that operate on a register r/m operand...
138    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
139    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
140
141    // Next, instructions that operate on a memory r/m operand...
142    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
143    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
144
145    // MRMInitReg - This form is used for instructions whose source and
146    // destinations are the same register.
147    MRMInitReg = 32,
148
149    FormMask       = 63,
150
151    //===------------------------------------------------------------------===//
152    // Actual flags...
153
154    // OpSize - Set if this instruction requires an operand size prefix (0x66),
155    // which most often indicates that the instruction operates on 16 bit data
156    // instead of 32 bit data.
157    OpSize      = 1 << 6,
158
159    // AsSize - Set if this instruction requires an operand size prefix (0x67),
160    // which most often indicates that the instruction address 16 bit address
161    // instead of 32 bit address (or 32 bit address in 64 bit mode).
162    AdSize      = 1 << 7,
163
164    //===------------------------------------------------------------------===//
165    // Op0Mask - There are several prefix bytes that are used to form two byte
166    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
167    // used to obtain the setting of this field.  If no bits in this field is
168    // set, there is no prefix byte for obtaining a multibyte opcode.
169    //
170    Op0Shift    = 8,
171    Op0Mask     = 0xF << Op0Shift,
172
173    // TB - TwoByte - Set if this instruction has a two byte opcode, which
174    // starts with a 0x0F byte before the real opcode.
175    TB          = 1 << Op0Shift,
176
177    // REP - The 0xF3 prefix byte indicating repetition of the following
178    // instruction.
179    REP         = 2 << Op0Shift,
180
181    // D8-DF - These escape opcodes are used by the floating point unit.  These
182    // values must remain sequential.
183    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
184    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
185    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
186    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
187
188    // XS, XD - These prefix codes are for single and double precision scalar
189    // floating point operations performed in the SSE registers.
190    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
191
192    // T8, TA - Prefix after the 0x0F prefix.
193    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
194
195    //===------------------------------------------------------------------===//
196    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
197    // They are used to specify GPRs and SSE registers, 64-bit operand size,
198    // etc. We only cares about REX.W and REX.R bits and only the former is
199    // statically determined.
200    //
201    REXShift    = 12,
202    REX_W       = 1 << REXShift,
203
204    //===------------------------------------------------------------------===//
205    // This three-bit field describes the size of an immediate operand.  Zero is
206    // unused so that we can tell if we forgot to set a value.
207    ImmShift = 13,
208    ImmMask  = 7 << ImmShift,
209    Imm8     = 1 << ImmShift,
210    Imm16    = 2 << ImmShift,
211    Imm32    = 3 << ImmShift,
212    Imm64    = 4 << ImmShift,
213
214    //===------------------------------------------------------------------===//
215    // FP Instruction Classification...  Zero is non-fp instruction.
216
217    // FPTypeMask - Mask for all of the FP types...
218    FPTypeShift = 16,
219    FPTypeMask  = 7 << FPTypeShift,
220
221    // NotFP - The default, set for instructions that do not use FP registers.
222    NotFP      = 0 << FPTypeShift,
223
224    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
225    ZeroArgFP  = 1 << FPTypeShift,
226
227    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
228    OneArgFP   = 2 << FPTypeShift,
229
230    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
231    // result back to ST(0).  For example, fcos, fsqrt, etc.
232    //
233    OneArgFPRW = 3 << FPTypeShift,
234
235    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
236    // explicit argument, storing the result to either ST(0) or the implicit
237    // argument.  For example: fadd, fsub, fmul, etc...
238    TwoArgFP   = 4 << FPTypeShift,
239
240    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
241    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
242    CompareFP  = 5 << FPTypeShift,
243
244    // CondMovFP - "2 operand" floating point conditional move instructions.
245    CondMovFP  = 6 << FPTypeShift,
246
247    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
248    SpecialFP  = 7 << FPTypeShift,
249
250    // Lock prefix
251    LOCKShift = 19,
252    LOCK = 1 << LOCKShift,
253
254    // Segment override prefixes. Currently we just need ability to address
255    // stuff in gs and fs segments.
256    SegOvrShift = 20,
257    SegOvrMask  = 3 << SegOvrShift,
258    FS          = 1 << SegOvrShift,
259    GS          = 2 << SegOvrShift,
260
261    // Bits 22 -> 23 are unused
262    OpcodeShift   = 24,
263    OpcodeMask    = 0xFF << OpcodeShift
264  };
265}
266
267const int X86AddrNumOperands = 5;
268
269inline static bool isScale(const MachineOperand &MO) {
270  return MO.isImm() &&
271    (MO.getImm() == 1 || MO.getImm() == 2 ||
272     MO.getImm() == 4 || MO.getImm() == 8);
273}
274
275inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
276  if (MI->getOperand(Op).isFI()) return true;
277  return Op+4 <= MI->getNumOperands() &&
278    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
279    MI->getOperand(Op+2).isReg() &&
280    (MI->getOperand(Op+3).isImm() ||
281     MI->getOperand(Op+3).isGlobal() ||
282     MI->getOperand(Op+3).isCPI() ||
283     MI->getOperand(Op+3).isJTI());
284}
285
286inline static bool isMem(const MachineInstr *MI, unsigned Op) {
287  if (MI->getOperand(Op).isFI()) return true;
288  return Op+5 <= MI->getNumOperands() &&
289    MI->getOperand(Op+4).isReg() &&
290    isLeaMem(MI, Op);
291}
292
293class X86InstrInfo : public TargetInstrInfoImpl {
294  X86TargetMachine &TM;
295  const X86RegisterInfo RI;
296
297  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
298  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
299  ///
300  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
301  DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
302  DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
303  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
304
305  /// MemOp2RegOpTable - Load / store unfolding opcode map.
306  ///
307  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
308
309public:
310  explicit X86InstrInfo(X86TargetMachine &tm);
311
312  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
313  /// such, whenever a client has an instance of instruction info, it should
314  /// always be able to get register info as well (through this method).
315  ///
316  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
317
318  /// Return true if the instruction is a register to register move and return
319  /// the source and dest operands and their sub-register indices by reference.
320  virtual bool isMoveInstr(const MachineInstr &MI,
321                           unsigned &SrcReg, unsigned &DstReg,
322                           unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
323
324  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
325  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
326
327  bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
328  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
329                     unsigned DestReg, const MachineInstr *Orig) const;
330
331  bool isInvariantLoad(const MachineInstr *MI) const;
332
333  /// convertToThreeAddress - This method must be implemented by targets that
334  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
335  /// may be able to convert a two-address instruction into a true
336  /// three-address instruction on demand.  This allows the X86 target (for
337  /// example) to convert ADD and SHL instructions into LEA instructions if they
338  /// would require register copies due to two-addressness.
339  ///
340  /// This method returns a null pointer if the transformation cannot be
341  /// performed, otherwise it returns the new instruction.
342  ///
343  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
344                                              MachineBasicBlock::iterator &MBBI,
345                                              LiveVariables *LV) const;
346
347  /// commuteInstruction - We have a few instructions that must be hacked on to
348  /// commute them.
349  ///
350  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
351
352  // Branch analysis.
353  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
354  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
355                             MachineBasicBlock *&FBB,
356                             SmallVectorImpl<MachineOperand> &Cond,
357                             bool AllowModify) const;
358  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
359  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
360                                MachineBasicBlock *FBB,
361                            const SmallVectorImpl<MachineOperand> &Cond) const;
362  virtual bool copyRegToReg(MachineBasicBlock &MBB,
363                            MachineBasicBlock::iterator MI,
364                            unsigned DestReg, unsigned SrcReg,
365                            const TargetRegisterClass *DestRC,
366                            const TargetRegisterClass *SrcRC) const;
367  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
368                                   MachineBasicBlock::iterator MI,
369                                   unsigned SrcReg, bool isKill, int FrameIndex,
370                                   const TargetRegisterClass *RC) const;
371
372  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
373                              SmallVectorImpl<MachineOperand> &Addr,
374                              const TargetRegisterClass *RC,
375                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
376
377  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
378                                    MachineBasicBlock::iterator MI,
379                                    unsigned DestReg, int FrameIndex,
380                                    const TargetRegisterClass *RC) const;
381
382  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
383                               SmallVectorImpl<MachineOperand> &Addr,
384                               const TargetRegisterClass *RC,
385                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
386
387  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
388                                         MachineBasicBlock::iterator MI,
389                                 const std::vector<CalleeSavedInfo> &CSI) const;
390
391  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
392                                           MachineBasicBlock::iterator MI,
393                                 const std::vector<CalleeSavedInfo> &CSI) const;
394
395  /// foldMemoryOperand - If this target supports it, fold a load or store of
396  /// the specified stack slot into the specified machine instruction for the
397  /// specified operand(s).  If this is possible, the target should perform the
398  /// folding and return true, otherwise it should return false.  If it folds
399  /// the instruction, it is likely that the MachineInstruction the iterator
400  /// references has been changed.
401  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
402                                              MachineInstr* MI,
403                                           const SmallVectorImpl<unsigned> &Ops,
404                                              int FrameIndex) const;
405
406  /// foldMemoryOperand - Same as the previous version except it allows folding
407  /// of any load and store from / to any address, not just from a specific
408  /// stack slot.
409  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
410                                              MachineInstr* MI,
411                                           const SmallVectorImpl<unsigned> &Ops,
412                                              MachineInstr* LoadMI) const;
413
414  /// canFoldMemoryOperand - Returns true if the specified load / store is
415  /// folding is possible.
416  virtual bool canFoldMemoryOperand(const MachineInstr*,
417                                    const SmallVectorImpl<unsigned> &) const;
418
419  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
420  /// a store or a load and a store into two or more instruction. If this is
421  /// possible, returns true as well as the new instructions by reference.
422  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
423                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
424                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
425
426  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
427                           SmallVectorImpl<SDNode*> &NewNodes) const;
428
429  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
430  /// instruction after load / store are unfolded from an instruction of the
431  /// specified opcode. It returns zero if the specified unfolding is not
432  /// possible.
433  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
434                                      bool UnfoldLoad, bool UnfoldStore) const;
435
436  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
437  virtual
438  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
439
440  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
441  /// instruction that defines the specified register class.
442  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
443
444  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
445  // specified machine instruction.
446  //
447  unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
448    return TID->TSFlags >> X86II::OpcodeShift;
449  }
450  unsigned char getBaseOpcodeFor(unsigned Opcode) const {
451    return getBaseOpcodeFor(&get(Opcode));
452  }
453
454  static bool isX86_64NonExtLowByteReg(unsigned reg) {
455    return (reg == X86::SPL || reg == X86::BPL ||
456          reg == X86::SIL || reg == X86::DIL);
457  }
458
459  static unsigned sizeOfImm(const TargetInstrDesc *Desc);
460  static bool isX86_64ExtendedReg(const MachineOperand &MO);
461  static unsigned determineREX(const MachineInstr &MI);
462
463  /// GetInstSize - Returns the size of the specified MachineInstr.
464  ///
465  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
466
467  /// getGlobalBaseReg - Return a virtual register initialized with the
468  /// the global base register value. Output instructions required to
469  /// initialize the register in the function entry block, if necessary.
470  ///
471  unsigned getGlobalBaseReg(MachineFunction *MF) const;
472
473private:
474  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
475                                      MachineInstr* MI,
476                                      unsigned OpNum,
477                                      const SmallVectorImpl<MachineOperand> &MOs) const;
478};
479
480} // End llvm namespace
481
482#endif
483