X86InstrInfo.h revision 74e726e3270c99169cc90fb3c676eeaae273f48c
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86.h"
19#include "X86RegisterInfo.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22
23namespace llvm {
24  class X86RegisterInfo;
25  class X86TargetMachine;
26
27namespace X86 {
28  // X86 specific condition code. These correspond to X86_*_COND in
29  // X86InstrInfo.td. They must be kept in synch.
30  enum CondCode {
31    COND_A  = 0,
32    COND_AE = 1,
33    COND_B  = 2,
34    COND_BE = 3,
35    COND_E  = 4,
36    COND_G  = 5,
37    COND_GE = 6,
38    COND_L  = 7,
39    COND_LE = 8,
40    COND_NE = 9,
41    COND_NO = 10,
42    COND_NP = 11,
43    COND_NS = 12,
44    COND_O  = 13,
45    COND_P  = 14,
46    COND_S  = 15,
47
48    // Artificial condition codes. These are used by AnalyzeBranch
49    // to indicate a block terminated with two conditional branches to
50    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
51    // which can't be represented on x86 with a single condition. These
52    // are never used in MachineInstrs.
53    COND_NE_OR_P,
54    COND_NP_OR_E,
55
56    COND_INVALID
57  };
58
59  // Turn condition code into conditional branch opcode.
60  unsigned GetCondBranchFromCond(CondCode CC);
61
62  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63  /// e.g. turning COND_E to COND_NE.
64  CondCode GetOppositeBranchCondition(X86::CondCode CC);
65
66}
67
68/// X86II - This namespace holds all of the target specific flags that
69/// instruction info tracks.
70///
71namespace X86II {
72  enum {
73    //===------------------------------------------------------------------===//
74    // X86 Specific MachineOperand flags.
75
76    MO_NO_FLAG = 0,
77
78    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
79    /// relocation of:
80    ///    SYMBOL_LABEL + [. - PICBASELABEL]
81    MO_GOT_ABSOLUTE_ADDRESS = 1,
82
83    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
84    /// immediate should get the value of the symbol minus the PIC base label:
85    ///    SYMBOL_LABEL - PICBASELABEL
86    MO_PIC_BASE_OFFSET = 2,
87
88    /// MO_GOT - On a symbol operand this indicates that the immediate is the
89    /// offset to the GOT entry for the symbol name from the base of the GOT.
90    ///
91    /// See the X86-64 ELF ABI supplement for more details.
92    ///    SYMBOL_LABEL @GOT
93    MO_GOT = 3,
94
95    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
96    /// the offset to the location of the symbol name from the base of the GOT.
97    ///
98    /// See the X86-64 ELF ABI supplement for more details.
99    ///    SYMBOL_LABEL @GOTOFF
100    MO_GOTOFF = 4,
101
102    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
103    /// offset to the GOT entry for the symbol name from the current code
104    /// location.
105    ///
106    /// See the X86-64 ELF ABI supplement for more details.
107    ///    SYMBOL_LABEL @GOTPCREL
108    MO_GOTPCREL = 5,
109
110    /// MO_PLT - On a symbol operand this indicates that the immediate is
111    /// offset to the PLT entry of symbol name from the current code location.
112    ///
113    /// See the X86-64 ELF ABI supplement for more details.
114    ///    SYMBOL_LABEL @PLT
115    MO_PLT = 6,
116
117    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
118    /// some TLS offset.
119    ///
120    /// See 'ELF Handling for Thread-Local Storage' for more details.
121    ///    SYMBOL_LABEL @TLSGD
122    MO_TLSGD = 7,
123
124    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
125    /// some TLS offset.
126    ///
127    /// See 'ELF Handling for Thread-Local Storage' for more details.
128    ///    SYMBOL_LABEL @GOTTPOFF
129    MO_GOTTPOFF = 8,
130
131    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
132    /// some TLS offset.
133    ///
134    /// See 'ELF Handling for Thread-Local Storage' for more details.
135    ///    SYMBOL_LABEL @INDNTPOFF
136    MO_INDNTPOFF = 9,
137
138    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
139    /// some TLS offset.
140    ///
141    /// See 'ELF Handling for Thread-Local Storage' for more details.
142    ///    SYMBOL_LABEL @TPOFF
143    MO_TPOFF = 10,
144
145    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
146    /// some TLS offset.
147    ///
148    /// See 'ELF Handling for Thread-Local Storage' for more details.
149    ///    SYMBOL_LABEL @NTPOFF
150    MO_NTPOFF = 11,
151
152    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
153    /// reference is actually to the "__imp_FOO" symbol.  This is used for
154    /// dllimport linkage on windows.
155    MO_DLLIMPORT = 12,
156
157    /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
158    /// reference is actually to the "FOO$stub" symbol.  This is used for calls
159    /// and jumps to external functions on Tiger and before.
160    MO_DARWIN_STUB = 13,
161
162
163    //===------------------------------------------------------------------===//
164    // Instruction encodings.  These are the standard/most common forms for X86
165    // instructions.
166    //
167
168    // PseudoFrm - This represents an instruction that is a pseudo instruction
169    // or one that has not been implemented yet.  It is illegal to code generate
170    // it, but tolerated for intermediate implementation stages.
171    Pseudo         = 0,
172
173    /// Raw - This form is for instructions that don't have any operands, so
174    /// they are just a fixed opcode value, like 'leave'.
175    RawFrm         = 1,
176
177    /// AddRegFrm - This form is used for instructions like 'push r32' that have
178    /// their one register operand added to their opcode.
179    AddRegFrm      = 2,
180
181    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
182    /// to specify a destination, which in this case is a register.
183    ///
184    MRMDestReg     = 3,
185
186    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
187    /// to specify a destination, which in this case is memory.
188    ///
189    MRMDestMem     = 4,
190
191    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
192    /// to specify a source, which in this case is a register.
193    ///
194    MRMSrcReg      = 5,
195
196    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
197    /// to specify a source, which in this case is memory.
198    ///
199    MRMSrcMem      = 6,
200
201    /// MRM[0-7][rm] - These forms are used to represent instructions that use
202    /// a Mod/RM byte, and use the middle field to hold extended opcode
203    /// information.  In the intel manual these are represented as /0, /1, ...
204    ///
205
206    // First, instructions that operate on a register r/m operand...
207    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
208    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
209
210    // Next, instructions that operate on a memory r/m operand...
211    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
212    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
213
214    // MRMInitReg - This form is used for instructions whose source and
215    // destinations are the same register.
216    MRMInitReg = 32,
217
218    FormMask       = 63,
219
220    //===------------------------------------------------------------------===//
221    // Actual flags...
222
223    // OpSize - Set if this instruction requires an operand size prefix (0x66),
224    // which most often indicates that the instruction operates on 16 bit data
225    // instead of 32 bit data.
226    OpSize      = 1 << 6,
227
228    // AsSize - Set if this instruction requires an operand size prefix (0x67),
229    // which most often indicates that the instruction address 16 bit address
230    // instead of 32 bit address (or 32 bit address in 64 bit mode).
231    AdSize      = 1 << 7,
232
233    //===------------------------------------------------------------------===//
234    // Op0Mask - There are several prefix bytes that are used to form two byte
235    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
236    // used to obtain the setting of this field.  If no bits in this field is
237    // set, there is no prefix byte for obtaining a multibyte opcode.
238    //
239    Op0Shift    = 8,
240    Op0Mask     = 0xF << Op0Shift,
241
242    // TB - TwoByte - Set if this instruction has a two byte opcode, which
243    // starts with a 0x0F byte before the real opcode.
244    TB          = 1 << Op0Shift,
245
246    // REP - The 0xF3 prefix byte indicating repetition of the following
247    // instruction.
248    REP         = 2 << Op0Shift,
249
250    // D8-DF - These escape opcodes are used by the floating point unit.  These
251    // values must remain sequential.
252    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
253    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
254    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
255    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
256
257    // XS, XD - These prefix codes are for single and double precision scalar
258    // floating point operations performed in the SSE registers.
259    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
260
261    // T8, TA - Prefix after the 0x0F prefix.
262    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
263
264    //===------------------------------------------------------------------===//
265    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
266    // They are used to specify GPRs and SSE registers, 64-bit operand size,
267    // etc. We only cares about REX.W and REX.R bits and only the former is
268    // statically determined.
269    //
270    REXShift    = 12,
271    REX_W       = 1 << REXShift,
272
273    //===------------------------------------------------------------------===//
274    // This three-bit field describes the size of an immediate operand.  Zero is
275    // unused so that we can tell if we forgot to set a value.
276    ImmShift = 13,
277    ImmMask  = 7 << ImmShift,
278    Imm8     = 1 << ImmShift,
279    Imm16    = 2 << ImmShift,
280    Imm32    = 3 << ImmShift,
281    Imm64    = 4 << ImmShift,
282
283    //===------------------------------------------------------------------===//
284    // FP Instruction Classification...  Zero is non-fp instruction.
285
286    // FPTypeMask - Mask for all of the FP types...
287    FPTypeShift = 16,
288    FPTypeMask  = 7 << FPTypeShift,
289
290    // NotFP - The default, set for instructions that do not use FP registers.
291    NotFP      = 0 << FPTypeShift,
292
293    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
294    ZeroArgFP  = 1 << FPTypeShift,
295
296    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
297    OneArgFP   = 2 << FPTypeShift,
298
299    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
300    // result back to ST(0).  For example, fcos, fsqrt, etc.
301    //
302    OneArgFPRW = 3 << FPTypeShift,
303
304    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
305    // explicit argument, storing the result to either ST(0) or the implicit
306    // argument.  For example: fadd, fsub, fmul, etc...
307    TwoArgFP   = 4 << FPTypeShift,
308
309    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
310    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
311    CompareFP  = 5 << FPTypeShift,
312
313    // CondMovFP - "2 operand" floating point conditional move instructions.
314    CondMovFP  = 6 << FPTypeShift,
315
316    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
317    SpecialFP  = 7 << FPTypeShift,
318
319    // Lock prefix
320    LOCKShift = 19,
321    LOCK = 1 << LOCKShift,
322
323    // Segment override prefixes. Currently we just need ability to address
324    // stuff in gs and fs segments.
325    SegOvrShift = 20,
326    SegOvrMask  = 3 << SegOvrShift,
327    FS          = 1 << SegOvrShift,
328    GS          = 2 << SegOvrShift,
329
330    // Bits 22 -> 23 are unused
331    OpcodeShift   = 24,
332    OpcodeMask    = 0xFF << OpcodeShift
333  };
334}
335
336const int X86AddrNumOperands = 5;
337
338inline static bool isScale(const MachineOperand &MO) {
339  return MO.isImm() &&
340    (MO.getImm() == 1 || MO.getImm() == 2 ||
341     MO.getImm() == 4 || MO.getImm() == 8);
342}
343
344inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
345  if (MI->getOperand(Op).isFI()) return true;
346  return Op+4 <= MI->getNumOperands() &&
347    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
348    MI->getOperand(Op+2).isReg() &&
349    (MI->getOperand(Op+3).isImm() ||
350     MI->getOperand(Op+3).isGlobal() ||
351     MI->getOperand(Op+3).isCPI() ||
352     MI->getOperand(Op+3).isJTI());
353}
354
355inline static bool isMem(const MachineInstr *MI, unsigned Op) {
356  if (MI->getOperand(Op).isFI()) return true;
357  return Op+5 <= MI->getNumOperands() &&
358    MI->getOperand(Op+4).isReg() &&
359    isLeaMem(MI, Op);
360}
361
362class X86InstrInfo : public TargetInstrInfoImpl {
363  X86TargetMachine &TM;
364  const X86RegisterInfo RI;
365
366  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
367  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
368  ///
369  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
370  DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
371  DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
372  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
373
374  /// MemOp2RegOpTable - Load / store unfolding opcode map.
375  ///
376  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
377
378public:
379  explicit X86InstrInfo(X86TargetMachine &tm);
380
381  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
382  /// such, whenever a client has an instance of instruction info, it should
383  /// always be able to get register info as well (through this method).
384  ///
385  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
386
387  /// Return true if the instruction is a register to register move and return
388  /// the source and dest operands and their sub-register indices by reference.
389  virtual bool isMoveInstr(const MachineInstr &MI,
390                           unsigned &SrcReg, unsigned &DstReg,
391                           unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
392
393  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
394  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
395
396  bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
397  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
398                     unsigned DestReg, const MachineInstr *Orig) const;
399
400  bool isInvariantLoad(const MachineInstr *MI) const;
401
402  /// convertToThreeAddress - This method must be implemented by targets that
403  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
404  /// may be able to convert a two-address instruction into a true
405  /// three-address instruction on demand.  This allows the X86 target (for
406  /// example) to convert ADD and SHL instructions into LEA instructions if they
407  /// would require register copies due to two-addressness.
408  ///
409  /// This method returns a null pointer if the transformation cannot be
410  /// performed, otherwise it returns the new instruction.
411  ///
412  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
413                                              MachineBasicBlock::iterator &MBBI,
414                                              LiveVariables *LV) const;
415
416  /// commuteInstruction - We have a few instructions that must be hacked on to
417  /// commute them.
418  ///
419  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
420
421  // Branch analysis.
422  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
423  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
424                             MachineBasicBlock *&FBB,
425                             SmallVectorImpl<MachineOperand> &Cond,
426                             bool AllowModify) const;
427  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
428  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
429                                MachineBasicBlock *FBB,
430                            const SmallVectorImpl<MachineOperand> &Cond) const;
431  virtual bool copyRegToReg(MachineBasicBlock &MBB,
432                            MachineBasicBlock::iterator MI,
433                            unsigned DestReg, unsigned SrcReg,
434                            const TargetRegisterClass *DestRC,
435                            const TargetRegisterClass *SrcRC) const;
436  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
437                                   MachineBasicBlock::iterator MI,
438                                   unsigned SrcReg, bool isKill, int FrameIndex,
439                                   const TargetRegisterClass *RC) const;
440
441  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
442                              SmallVectorImpl<MachineOperand> &Addr,
443                              const TargetRegisterClass *RC,
444                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
445
446  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
447                                    MachineBasicBlock::iterator MI,
448                                    unsigned DestReg, int FrameIndex,
449                                    const TargetRegisterClass *RC) const;
450
451  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
452                               SmallVectorImpl<MachineOperand> &Addr,
453                               const TargetRegisterClass *RC,
454                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
455
456  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
457                                         MachineBasicBlock::iterator MI,
458                                 const std::vector<CalleeSavedInfo> &CSI) const;
459
460  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
461                                           MachineBasicBlock::iterator MI,
462                                 const std::vector<CalleeSavedInfo> &CSI) const;
463
464  /// foldMemoryOperand - If this target supports it, fold a load or store of
465  /// the specified stack slot into the specified machine instruction for the
466  /// specified operand(s).  If this is possible, the target should perform the
467  /// folding and return true, otherwise it should return false.  If it folds
468  /// the instruction, it is likely that the MachineInstruction the iterator
469  /// references has been changed.
470  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
471                                              MachineInstr* MI,
472                                           const SmallVectorImpl<unsigned> &Ops,
473                                              int FrameIndex) const;
474
475  /// foldMemoryOperand - Same as the previous version except it allows folding
476  /// of any load and store from / to any address, not just from a specific
477  /// stack slot.
478  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
479                                              MachineInstr* MI,
480                                           const SmallVectorImpl<unsigned> &Ops,
481                                              MachineInstr* LoadMI) const;
482
483  /// canFoldMemoryOperand - Returns true if the specified load / store is
484  /// folding is possible.
485  virtual bool canFoldMemoryOperand(const MachineInstr*,
486                                    const SmallVectorImpl<unsigned> &) const;
487
488  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
489  /// a store or a load and a store into two or more instruction. If this is
490  /// possible, returns true as well as the new instructions by reference.
491  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
492                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
493                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
494
495  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
496                           SmallVectorImpl<SDNode*> &NewNodes) const;
497
498  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
499  /// instruction after load / store are unfolded from an instruction of the
500  /// specified opcode. It returns zero if the specified unfolding is not
501  /// possible.
502  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
503                                      bool UnfoldLoad, bool UnfoldStore) const;
504
505  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
506  virtual
507  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
508
509  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
510  /// instruction that defines the specified register class.
511  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
512
513  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
514  // specified machine instruction.
515  //
516  unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
517    return TID->TSFlags >> X86II::OpcodeShift;
518  }
519  unsigned char getBaseOpcodeFor(unsigned Opcode) const {
520    return getBaseOpcodeFor(&get(Opcode));
521  }
522
523  static bool isX86_64NonExtLowByteReg(unsigned reg) {
524    return (reg == X86::SPL || reg == X86::BPL ||
525          reg == X86::SIL || reg == X86::DIL);
526  }
527
528  static unsigned sizeOfImm(const TargetInstrDesc *Desc);
529  static bool isX86_64ExtendedReg(const MachineOperand &MO);
530  static unsigned determineREX(const MachineInstr &MI);
531
532  /// GetInstSize - Returns the size of the specified MachineInstr.
533  ///
534  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
535
536  /// getGlobalBaseReg - Return a virtual register initialized with the
537  /// the global base register value. Output instructions required to
538  /// initialize the register in the function entry block, if necessary.
539  ///
540  unsigned getGlobalBaseReg(MachineFunction *MF) const;
541
542private:
543  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
544                                      MachineInstr* MI,
545                                      unsigned OpNum,
546                                      const SmallVectorImpl<MachineOperand> &MOs) const;
547};
548
549} // End llvm namespace
550
551#endif
552