X86InstrInfo.h revision 75cdf27f48f0b81f778b6aa50efcefa0497a9dae
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86.h"
19#include "X86RegisterInfo.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22
23namespace llvm {
24  class X86RegisterInfo;
25  class X86TargetMachine;
26
27namespace X86 {
28  // X86 specific condition code. These correspond to X86_*_COND in
29  // X86InstrInfo.td. They must be kept in synch.
30  enum CondCode {
31    COND_A  = 0,
32    COND_AE = 1,
33    COND_B  = 2,
34    COND_BE = 3,
35    COND_E  = 4,
36    COND_G  = 5,
37    COND_GE = 6,
38    COND_L  = 7,
39    COND_LE = 8,
40    COND_NE = 9,
41    COND_NO = 10,
42    COND_NP = 11,
43    COND_NS = 12,
44    COND_O  = 13,
45    COND_P  = 14,
46    COND_S  = 15,
47
48    // Artificial condition codes. These are used by AnalyzeBranch
49    // to indicate a block terminated with two conditional branches to
50    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
51    // which can't be represented on x86 with a single condition. These
52    // are never used in MachineInstrs.
53    COND_NE_OR_P,
54    COND_NP_OR_E,
55
56    COND_INVALID
57  };
58
59  // Turn condition code into conditional branch opcode.
60  unsigned GetCondBranchFromCond(CondCode CC);
61
62  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63  /// e.g. turning COND_E to COND_NE.
64  CondCode GetOppositeBranchCondition(X86::CondCode CC);
65
66}
67
68/// X86II - This namespace holds all of the target specific flags that
69/// instruction info tracks.
70///
71namespace X86II {
72  enum {
73    //===------------------------------------------------------------------===//
74    // X86 Specific MachineOperand flags.
75
76    MO_NO_FLAG = 0,
77
78    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
79    /// relocation of:
80    ///    SYMBOL_LABEL + [. - PICBASELABEL]
81    MO_GOT_ABSOLUTE_ADDRESS = 1,
82
83    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
84    /// immediate should get the value of the symbol minus the PIC base label:
85    ///    SYMBOL_LABEL - PICBASELABEL
86    MO_PIC_BASE_OFFSET = 2,
87
88    /// MO_GOT - On a symbol operand this indicates that the immediate is the
89    /// offset to the GOT entry for the symbol name from the base of the GOT.
90    ///
91    /// See the X86-64 ELF ABI supplement for more details.
92    ///    SYMBOL_LABEL @GOT
93    MO_GOT = 3,
94
95    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
96    /// the offset to the location of the symbol name from the base of the GOT.
97    ///
98    /// See the X86-64 ELF ABI supplement for more details.
99    ///    SYMBOL_LABEL @GOTOFF
100    MO_GOTOFF = 4,
101
102    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
103    /// offset to the GOT entry for the symbol name from the current code
104    /// location.
105    ///
106    /// See the X86-64 ELF ABI supplement for more details.
107    ///    SYMBOL_LABEL @GOTPCREL
108    MO_GOTPCREL = 5,
109
110    /// MO_PLT - On a symbol operand this indicates that the immediate is
111    /// offset to the PLT entry of symbol name from the current code location.
112    ///
113    /// See the X86-64 ELF ABI supplement for more details.
114    ///    SYMBOL_LABEL @PLT
115    MO_PLT = 6,
116
117    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
118    /// some TLS offset.
119    ///
120    /// See 'ELF Handling for Thread-Local Storage' for more details.
121    ///    SYMBOL_LABEL @TLSGD
122    MO_TLSGD = 7,
123
124    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
125    /// some TLS offset.
126    ///
127    /// See 'ELF Handling for Thread-Local Storage' for more details.
128    ///    SYMBOL_LABEL @GOTTPOFF
129    MO_GOTTPOFF = 8,
130
131    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
132    /// some TLS offset.
133    ///
134    /// See 'ELF Handling for Thread-Local Storage' for more details.
135    ///    SYMBOL_LABEL @INDNTPOFF
136    MO_INDNTPOFF = 9,
137
138    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
139    /// some TLS offset.
140    ///
141    /// See 'ELF Handling for Thread-Local Storage' for more details.
142    ///    SYMBOL_LABEL @TPOFF
143    MO_TPOFF = 10,
144
145    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
146    /// some TLS offset.
147    ///
148    /// See 'ELF Handling for Thread-Local Storage' for more details.
149    ///    SYMBOL_LABEL @NTPOFF
150    MO_NTPOFF = 11,
151
152    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
153    /// reference is actually to the "__imp_FOO" symbol.  This is used for
154    /// dllimport linkage on windows.
155    MO_DLLIMPORT = 12,
156
157    /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
158    /// reference is actually to the "FOO$stub" symbol.  This is used for calls
159    /// and jumps to external functions on Tiger and before.
160    MO_DARWIN_STUB = 13,
161
162    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
163    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
164    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
165    MO_DARWIN_NONLAZY = 14,
166
167    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
168    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
169    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
170    MO_DARWIN_NONLAZY_PIC_BASE = 15,
171
172    /// MO_DARWIN_HIDDEN_NONLAZY - On a symbol operand "FOO", this indicates
173    /// that the reference is actually to the "FOO$non_lazy_ptr" symbol, which
174    /// is a non-PIC-base-relative reference to a hidden dyld lazy pointer stub.
175    MO_DARWIN_HIDDEN_NONLAZY = 16,
176
177    /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
178    /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
179    /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
180    /// stub.
181    MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE = 17,
182
183    //===------------------------------------------------------------------===//
184    // Instruction encodings.  These are the standard/most common forms for X86
185    // instructions.
186    //
187
188    // PseudoFrm - This represents an instruction that is a pseudo instruction
189    // or one that has not been implemented yet.  It is illegal to code generate
190    // it, but tolerated for intermediate implementation stages.
191    Pseudo         = 0,
192
193    /// Raw - This form is for instructions that don't have any operands, so
194    /// they are just a fixed opcode value, like 'leave'.
195    RawFrm         = 1,
196
197    /// AddRegFrm - This form is used for instructions like 'push r32' that have
198    /// their one register operand added to their opcode.
199    AddRegFrm      = 2,
200
201    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
202    /// to specify a destination, which in this case is a register.
203    ///
204    MRMDestReg     = 3,
205
206    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
207    /// to specify a destination, which in this case is memory.
208    ///
209    MRMDestMem     = 4,
210
211    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
212    /// to specify a source, which in this case is a register.
213    ///
214    MRMSrcReg      = 5,
215
216    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
217    /// to specify a source, which in this case is memory.
218    ///
219    MRMSrcMem      = 6,
220
221    /// MRM[0-7][rm] - These forms are used to represent instructions that use
222    /// a Mod/RM byte, and use the middle field to hold extended opcode
223    /// information.  In the intel manual these are represented as /0, /1, ...
224    ///
225
226    // First, instructions that operate on a register r/m operand...
227    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
228    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
229
230    // Next, instructions that operate on a memory r/m operand...
231    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
232    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
233
234    // MRMInitReg - This form is used for instructions whose source and
235    // destinations are the same register.
236    MRMInitReg = 32,
237
238    FormMask       = 63,
239
240    //===------------------------------------------------------------------===//
241    // Actual flags...
242
243    // OpSize - Set if this instruction requires an operand size prefix (0x66),
244    // which most often indicates that the instruction operates on 16 bit data
245    // instead of 32 bit data.
246    OpSize      = 1 << 6,
247
248    // AsSize - Set if this instruction requires an operand size prefix (0x67),
249    // which most often indicates that the instruction address 16 bit address
250    // instead of 32 bit address (or 32 bit address in 64 bit mode).
251    AdSize      = 1 << 7,
252
253    //===------------------------------------------------------------------===//
254    // Op0Mask - There are several prefix bytes that are used to form two byte
255    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
256    // used to obtain the setting of this field.  If no bits in this field is
257    // set, there is no prefix byte for obtaining a multibyte opcode.
258    //
259    Op0Shift    = 8,
260    Op0Mask     = 0xF << Op0Shift,
261
262    // TB - TwoByte - Set if this instruction has a two byte opcode, which
263    // starts with a 0x0F byte before the real opcode.
264    TB          = 1 << Op0Shift,
265
266    // REP - The 0xF3 prefix byte indicating repetition of the following
267    // instruction.
268    REP         = 2 << Op0Shift,
269
270    // D8-DF - These escape opcodes are used by the floating point unit.  These
271    // values must remain sequential.
272    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
273    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
274    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
275    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
276
277    // XS, XD - These prefix codes are for single and double precision scalar
278    // floating point operations performed in the SSE registers.
279    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
280
281    // T8, TA - Prefix after the 0x0F prefix.
282    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
283
284    //===------------------------------------------------------------------===//
285    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
286    // They are used to specify GPRs and SSE registers, 64-bit operand size,
287    // etc. We only cares about REX.W and REX.R bits and only the former is
288    // statically determined.
289    //
290    REXShift    = 12,
291    REX_W       = 1 << REXShift,
292
293    //===------------------------------------------------------------------===//
294    // This three-bit field describes the size of an immediate operand.  Zero is
295    // unused so that we can tell if we forgot to set a value.
296    ImmShift = 13,
297    ImmMask  = 7 << ImmShift,
298    Imm8     = 1 << ImmShift,
299    Imm16    = 2 << ImmShift,
300    Imm32    = 3 << ImmShift,
301    Imm64    = 4 << ImmShift,
302
303    //===------------------------------------------------------------------===//
304    // FP Instruction Classification...  Zero is non-fp instruction.
305
306    // FPTypeMask - Mask for all of the FP types...
307    FPTypeShift = 16,
308    FPTypeMask  = 7 << FPTypeShift,
309
310    // NotFP - The default, set for instructions that do not use FP registers.
311    NotFP      = 0 << FPTypeShift,
312
313    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
314    ZeroArgFP  = 1 << FPTypeShift,
315
316    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
317    OneArgFP   = 2 << FPTypeShift,
318
319    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
320    // result back to ST(0).  For example, fcos, fsqrt, etc.
321    //
322    OneArgFPRW = 3 << FPTypeShift,
323
324    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
325    // explicit argument, storing the result to either ST(0) or the implicit
326    // argument.  For example: fadd, fsub, fmul, etc...
327    TwoArgFP   = 4 << FPTypeShift,
328
329    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
330    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
331    CompareFP  = 5 << FPTypeShift,
332
333    // CondMovFP - "2 operand" floating point conditional move instructions.
334    CondMovFP  = 6 << FPTypeShift,
335
336    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
337    SpecialFP  = 7 << FPTypeShift,
338
339    // Lock prefix
340    LOCKShift = 19,
341    LOCK = 1 << LOCKShift,
342
343    // Segment override prefixes. Currently we just need ability to address
344    // stuff in gs and fs segments.
345    SegOvrShift = 20,
346    SegOvrMask  = 3 << SegOvrShift,
347    FS          = 1 << SegOvrShift,
348    GS          = 2 << SegOvrShift,
349
350    // Bits 22 -> 23 are unused
351    OpcodeShift   = 24,
352    OpcodeMask    = 0xFF << OpcodeShift
353  };
354}
355
356const int X86AddrNumOperands = 5;
357
358inline static bool isScale(const MachineOperand &MO) {
359  return MO.isImm() &&
360    (MO.getImm() == 1 || MO.getImm() == 2 ||
361     MO.getImm() == 4 || MO.getImm() == 8);
362}
363
364inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
365  if (MI->getOperand(Op).isFI()) return true;
366  return Op+4 <= MI->getNumOperands() &&
367    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
368    MI->getOperand(Op+2).isReg() &&
369    (MI->getOperand(Op+3).isImm() ||
370     MI->getOperand(Op+3).isGlobal() ||
371     MI->getOperand(Op+3).isCPI() ||
372     MI->getOperand(Op+3).isJTI());
373}
374
375inline static bool isMem(const MachineInstr *MI, unsigned Op) {
376  if (MI->getOperand(Op).isFI()) return true;
377  return Op+5 <= MI->getNumOperands() &&
378    MI->getOperand(Op+4).isReg() &&
379    isLeaMem(MI, Op);
380}
381
382class X86InstrInfo : public TargetInstrInfoImpl {
383  X86TargetMachine &TM;
384  const X86RegisterInfo RI;
385
386  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
387  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
388  ///
389  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
390  DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
391  DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
392  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
393
394  /// MemOp2RegOpTable - Load / store unfolding opcode map.
395  ///
396  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
397
398public:
399  explicit X86InstrInfo(X86TargetMachine &tm);
400
401  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
402  /// such, whenever a client has an instance of instruction info, it should
403  /// always be able to get register info as well (through this method).
404  ///
405  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
406
407  /// Return true if the instruction is a register to register move and return
408  /// the source and dest operands and their sub-register indices by reference.
409  virtual bool isMoveInstr(const MachineInstr &MI,
410                           unsigned &SrcReg, unsigned &DstReg,
411                           unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
412
413  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
414  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
415
416  bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
417  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
418                     unsigned DestReg, const MachineInstr *Orig) const;
419
420  bool isInvariantLoad(const MachineInstr *MI) const;
421
422  /// convertToThreeAddress - This method must be implemented by targets that
423  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
424  /// may be able to convert a two-address instruction into a true
425  /// three-address instruction on demand.  This allows the X86 target (for
426  /// example) to convert ADD and SHL instructions into LEA instructions if they
427  /// would require register copies due to two-addressness.
428  ///
429  /// This method returns a null pointer if the transformation cannot be
430  /// performed, otherwise it returns the new instruction.
431  ///
432  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
433                                              MachineBasicBlock::iterator &MBBI,
434                                              LiveVariables *LV) const;
435
436  /// commuteInstruction - We have a few instructions that must be hacked on to
437  /// commute them.
438  ///
439  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
440
441  // Branch analysis.
442  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
443  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
444                             MachineBasicBlock *&FBB,
445                             SmallVectorImpl<MachineOperand> &Cond,
446                             bool AllowModify) const;
447  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
448  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
449                                MachineBasicBlock *FBB,
450                            const SmallVectorImpl<MachineOperand> &Cond) const;
451  virtual bool copyRegToReg(MachineBasicBlock &MBB,
452                            MachineBasicBlock::iterator MI,
453                            unsigned DestReg, unsigned SrcReg,
454                            const TargetRegisterClass *DestRC,
455                            const TargetRegisterClass *SrcRC) const;
456  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
457                                   MachineBasicBlock::iterator MI,
458                                   unsigned SrcReg, bool isKill, int FrameIndex,
459                                   const TargetRegisterClass *RC) const;
460
461  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
462                              SmallVectorImpl<MachineOperand> &Addr,
463                              const TargetRegisterClass *RC,
464                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
465
466  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
467                                    MachineBasicBlock::iterator MI,
468                                    unsigned DestReg, int FrameIndex,
469                                    const TargetRegisterClass *RC) const;
470
471  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
472                               SmallVectorImpl<MachineOperand> &Addr,
473                               const TargetRegisterClass *RC,
474                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
475
476  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
477                                         MachineBasicBlock::iterator MI,
478                                 const std::vector<CalleeSavedInfo> &CSI) const;
479
480  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
481                                           MachineBasicBlock::iterator MI,
482                                 const std::vector<CalleeSavedInfo> &CSI) const;
483
484  /// foldMemoryOperand - If this target supports it, fold a load or store of
485  /// the specified stack slot into the specified machine instruction for the
486  /// specified operand(s).  If this is possible, the target should perform the
487  /// folding and return true, otherwise it should return false.  If it folds
488  /// the instruction, it is likely that the MachineInstruction the iterator
489  /// references has been changed.
490  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
491                                              MachineInstr* MI,
492                                           const SmallVectorImpl<unsigned> &Ops,
493                                              int FrameIndex) const;
494
495  /// foldMemoryOperand - Same as the previous version except it allows folding
496  /// of any load and store from / to any address, not just from a specific
497  /// stack slot.
498  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
499                                              MachineInstr* MI,
500                                           const SmallVectorImpl<unsigned> &Ops,
501                                              MachineInstr* LoadMI) const;
502
503  /// canFoldMemoryOperand - Returns true if the specified load / store is
504  /// folding is possible.
505  virtual bool canFoldMemoryOperand(const MachineInstr*,
506                                    const SmallVectorImpl<unsigned> &) const;
507
508  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
509  /// a store or a load and a store into two or more instruction. If this is
510  /// possible, returns true as well as the new instructions by reference.
511  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
512                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
513                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
514
515  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
516                           SmallVectorImpl<SDNode*> &NewNodes) const;
517
518  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
519  /// instruction after load / store are unfolded from an instruction of the
520  /// specified opcode. It returns zero if the specified unfolding is not
521  /// possible.
522  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
523                                      bool UnfoldLoad, bool UnfoldStore) const;
524
525  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
526  virtual
527  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
528
529  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
530  /// instruction that defines the specified register class.
531  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
532
533  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
534  // specified machine instruction.
535  //
536  unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
537    return TID->TSFlags >> X86II::OpcodeShift;
538  }
539  unsigned char getBaseOpcodeFor(unsigned Opcode) const {
540    return getBaseOpcodeFor(&get(Opcode));
541  }
542
543  static bool isX86_64NonExtLowByteReg(unsigned reg) {
544    return (reg == X86::SPL || reg == X86::BPL ||
545          reg == X86::SIL || reg == X86::DIL);
546  }
547
548  static unsigned sizeOfImm(const TargetInstrDesc *Desc);
549  static bool isX86_64ExtendedReg(const MachineOperand &MO);
550  static unsigned determineREX(const MachineInstr &MI);
551
552  /// GetInstSize - Returns the size of the specified MachineInstr.
553  ///
554  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
555
556  /// getGlobalBaseReg - Return a virtual register initialized with the
557  /// the global base register value. Output instructions required to
558  /// initialize the register in the function entry block, if necessary.
559  ///
560  unsigned getGlobalBaseReg(MachineFunction *MF) const;
561
562private:
563  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
564                                      MachineInstr* MI,
565                                      unsigned OpNum,
566                                      const SmallVectorImpl<MachineOperand> &MOs) const;
567};
568
569} // End llvm namespace
570
571#endif
572