X86InstrInfo.h revision 915e5e56d7cc8e140d33202eed6244ed0356ed1f
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86RegisterInfo.h"
19
20namespace llvm {
21
22/// X86II - This namespace holds all of the target specific flags that
23/// instruction info tracks.
24///
25namespace X86II {
26  enum {
27    //===------------------------------------------------------------------===//
28    // Instruction types.  These are the standard/most common forms for X86
29    // instructions.
30    //
31
32    // PseudoFrm - This represents an instruction that is a pseudo instruction
33    // or one that has not been implemented yet.  It is illegal to code generate
34    // it, but tolerated for intermediate implementation stages.
35    Pseudo         = 0,
36
37    /// Raw - This form is for instructions that don't have any operands, so
38    /// they are just a fixed opcode value, like 'leave'.
39    RawFrm         = 1,
40
41    /// AddRegFrm - This form is used for instructions like 'push r32' that have
42    /// their one register operand added to their opcode.
43    AddRegFrm      = 2,
44
45    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
46    /// to specify a destination, which in this case is a register.
47    ///
48    MRMDestReg     = 3,
49
50    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
51    /// to specify a destination, which in this case is memory.
52    ///
53    MRMDestMem     = 4,
54
55    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
56    /// to specify a source, which in this case is a register.
57    ///
58    MRMSrcReg      = 5,
59
60    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
61    /// to specify a source, which in this case is memory.
62    ///
63    MRMSrcMem      = 6,
64
65    /// MRMS[0-7][rm] - These forms are used to represent instructions that use
66    /// a Mod/RM byte, and use the middle field to hold extended opcode
67    /// information.  In the intel manual these are represented as /0, /1, ...
68    ///
69
70    // First, instructions that operate on a register r/m operand...
71    MRMS0r = 16,  MRMS1r = 17,  MRMS2r = 18,  MRMS3r = 19, // Format /0 /1 /2 /3
72    MRMS4r = 20,  MRMS5r = 21,  MRMS6r = 22,  MRMS7r = 23, // Format /4 /5 /6 /7
73
74    // Next, instructions that operate on a memory r/m operand...
75    MRMS0m = 24,  MRMS1m = 25,  MRMS2m = 26,  MRMS3m = 27, // Format /0 /1 /2 /3
76    MRMS4m = 28,  MRMS5m = 29,  MRMS6m = 30,  MRMS7m = 31, // Format /4 /5 /6 /7
77
78    FormMask       = 31,
79
80    //===------------------------------------------------------------------===//
81    // Actual flags...
82
83    // OpSize - Set if this instruction requires an operand size prefix (0x66),
84    // which most often indicates that the instruction operates on 16 bit data
85    // instead of 32 bit data.
86    OpSize      = 1 << 5,
87
88    // Op0Mask - There are several prefix bytes that are used to form two byte
89    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
90    // used to obtain the setting of this field.  If no bits in this field is
91    // set, there is no prefix byte for obtaining a multibyte opcode.
92    //
93    Op0Shift    = 6,
94    Op0Mask     = 0xF << Op0Shift,
95
96    // TB - TwoByte - Set if this instruction has a two byte opcode, which
97    // starts with a 0x0F byte before the real opcode.
98    TB          = 1 << Op0Shift,
99
100    // REP - The 0xF3 prefix byte indicating repetition of the following
101    // instruction.
102    REP         = 2 << Op0Shift,
103
104    // D8-DF - These escape opcodes are used by the floating point unit.  These
105    // values must remain sequential.
106    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
107    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
108    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
109    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
110
111    //===------------------------------------------------------------------===//
112    // This three-bit field describes the size of a memory operand.  Zero is
113    // unused so that we can tell if we forgot to set a value.
114    ArgShift = 10,
115    ArgMask  = 7 << ArgShift,
116    Arg8     = 1 << ArgShift,
117    Arg16    = 2 << ArgShift,
118    Arg32    = 3 << ArgShift,
119    Arg64    = 4 << ArgShift,  // 64 bit int argument for FILD64
120    ArgF32   = 5 << ArgShift,
121    ArgF64   = 6 << ArgShift,
122    ArgF80   = 7 << ArgShift,
123
124    //===------------------------------------------------------------------===//
125    // FP Instruction Classification...  Zero is non-fp instruction.
126
127    // FPTypeMask - Mask for all of the FP types...
128    FPTypeShift = 13,
129    FPTypeMask  = 7 << FPTypeShift,
130
131    // NotFP - The default, set for instructions that do not use FP registers.
132    NotFP      = 0 << FPTypeShift,
133
134    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
135    ZeroArgFP  = 1 << FPTypeShift,
136
137    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
138    OneArgFP   = 2 << FPTypeShift,
139
140    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
141    // result back to ST(0).  For example, fcos, fsqrt, etc.
142    //
143    OneArgFPRW = 3 << FPTypeShift,
144
145    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
146    // explicit argument, storing the result to either ST(0) or the implicit
147    // argument.  For example: fadd, fsub, fmul, etc...
148    TwoArgFP   = 4 << FPTypeShift,
149
150    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
151    SpecialFP  = 5 << FPTypeShift,
152
153    // PrintImplUses - Print out implicit uses in the assembly output.
154    PrintImplUses = 1 << 16,
155
156    OpcodeShift   = 17,
157    OpcodeMask    = 0xFF << OpcodeShift,
158    // Bits 25 -> 31 are unused
159  };
160}
161
162class X86InstrInfo : public TargetInstrInfo {
163  const X86RegisterInfo RI;
164public:
165  X86InstrInfo();
166
167  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
168  /// such, whenever a client has an instance of instruction info, it should
169  /// always be able to get register info as well (through this method).
170  ///
171  virtual const MRegisterInfo &getRegisterInfo() const { return RI; }
172
173  /// createNOPinstr - returns the target's implementation of NOP, which is
174  /// usually a pseudo-instruction, implemented by a degenerate version of
175  /// another instruction, e.g. X86: `xchg ax, ax'; SparcV9: `sethi r0, r0, r0'
176  ///
177  MachineInstr* createNOPinstr() const;
178
179  //
180  // Return true if the instruction is a register to register move and
181  // leave the source and dest operands in the passed parameters.
182  //
183  virtual bool isMoveInstr(const MachineInstr& MI,
184                           unsigned& sourceReg,
185                           unsigned& destReg) const;
186
187  /// isNOPinstr - not having a special NOP opcode, we need to know if a given
188  /// instruction is interpreted as an `official' NOP instr, i.e., there may be
189  /// more than one way to `do nothing' but only one canonical way to slack off.
190  ///
191  bool isNOPinstr(const MachineInstr &MI) const;
192
193  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
194  // specified opcode number.
195  //
196  unsigned char getBaseOpcodeFor(unsigned Opcode) const {
197    return get(Opcode).TSFlags >> X86II::OpcodeShift;
198  }
199};
200
201} // End llvm namespace
202
203#endif
204