X86InstrInfo.h revision 9f8fea3531f8f8d04d1e183ff570be37d41d13f5
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86.h"
19#include "X86RegisterInfo.h"
20#include "llvm/ADT/IndexedMap.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22
23namespace llvm {
24  class X86RegisterInfo;
25  class X86TargetMachine;
26
27namespace X86 {
28  // X86 specific condition code. These correspond to X86_*_COND in
29  // X86InstrInfo.td. They must be kept in synch.
30  enum CondCode {
31    COND_A  = 0,
32    COND_AE = 1,
33    COND_B  = 2,
34    COND_BE = 3,
35    COND_E  = 4,
36    COND_G  = 5,
37    COND_GE = 6,
38    COND_L  = 7,
39    COND_LE = 8,
40    COND_NE = 9,
41    COND_NO = 10,
42    COND_NP = 11,
43    COND_NS = 12,
44    COND_O  = 13,
45    COND_P  = 14,
46    COND_S  = 15,
47    COND_INVALID
48  };
49
50  // Turn condition code into conditional branch opcode.
51  unsigned GetCondBranchFromCond(CondCode CC);
52
53  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
54  /// e.g. turning COND_E to COND_NE.
55  CondCode GetOppositeBranchCondition(X86::CondCode CC);
56
57}
58
59/// X86II - This namespace holds all of the target specific flags that
60/// instruction info tracks.
61///
62namespace X86II {
63  enum {
64    //===------------------------------------------------------------------===//
65    // Instruction types.  These are the standard/most common forms for X86
66    // instructions.
67    //
68
69    // PseudoFrm - This represents an instruction that is a pseudo instruction
70    // or one that has not been implemented yet.  It is illegal to code generate
71    // it, but tolerated for intermediate implementation stages.
72    Pseudo         = 0,
73
74    /// Raw - This form is for instructions that don't have any operands, so
75    /// they are just a fixed opcode value, like 'leave'.
76    RawFrm         = 1,
77
78    /// AddRegFrm - This form is used for instructions like 'push r32' that have
79    /// their one register operand added to their opcode.
80    AddRegFrm      = 2,
81
82    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
83    /// to specify a destination, which in this case is a register.
84    ///
85    MRMDestReg     = 3,
86
87    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
88    /// to specify a destination, which in this case is memory.
89    ///
90    MRMDestMem     = 4,
91
92    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
93    /// to specify a source, which in this case is a register.
94    ///
95    MRMSrcReg      = 5,
96
97    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
98    /// to specify a source, which in this case is memory.
99    ///
100    MRMSrcMem      = 6,
101
102    /// MRM[0-7][rm] - These forms are used to represent instructions that use
103    /// a Mod/RM byte, and use the middle field to hold extended opcode
104    /// information.  In the intel manual these are represented as /0, /1, ...
105    ///
106
107    // First, instructions that operate on a register r/m operand...
108    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
109    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
110
111    // Next, instructions that operate on a memory r/m operand...
112    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
113    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
114
115    // MRMInitReg - This form is used for instructions whose source and
116    // destinations are the same register.
117    MRMInitReg = 32,
118
119    FormMask       = 63,
120
121    //===------------------------------------------------------------------===//
122    // Actual flags...
123
124    // OpSize - Set if this instruction requires an operand size prefix (0x66),
125    // which most often indicates that the instruction operates on 16 bit data
126    // instead of 32 bit data.
127    OpSize      = 1 << 6,
128
129    // AsSize - Set if this instruction requires an operand size prefix (0x67),
130    // which most often indicates that the instruction address 16 bit address
131    // instead of 32 bit address (or 32 bit address in 64 bit mode).
132    AdSize      = 1 << 7,
133
134    //===------------------------------------------------------------------===//
135    // Op0Mask - There are several prefix bytes that are used to form two byte
136    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
137    // used to obtain the setting of this field.  If no bits in this field is
138    // set, there is no prefix byte for obtaining a multibyte opcode.
139    //
140    Op0Shift    = 8,
141    Op0Mask     = 0xF << Op0Shift,
142
143    // TB - TwoByte - Set if this instruction has a two byte opcode, which
144    // starts with a 0x0F byte before the real opcode.
145    TB          = 1 << Op0Shift,
146
147    // REP - The 0xF3 prefix byte indicating repetition of the following
148    // instruction.
149    REP         = 2 << Op0Shift,
150
151    // D8-DF - These escape opcodes are used by the floating point unit.  These
152    // values must remain sequential.
153    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
154    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
155    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
156    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
157
158    // XS, XD - These prefix codes are for single and double precision scalar
159    // floating point operations performed in the SSE registers.
160    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
161
162    // T8, TA - Prefix after the 0x0F prefix.
163    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
164
165    //===------------------------------------------------------------------===//
166    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
167    // They are used to specify GPRs and SSE registers, 64-bit operand size,
168    // etc. We only cares about REX.W and REX.R bits and only the former is
169    // statically determined.
170    //
171    REXShift    = 12,
172    REX_W       = 1 << REXShift,
173
174    //===------------------------------------------------------------------===//
175    // This three-bit field describes the size of an immediate operand.  Zero is
176    // unused so that we can tell if we forgot to set a value.
177    ImmShift = 13,
178    ImmMask  = 7 << ImmShift,
179    Imm8     = 1 << ImmShift,
180    Imm16    = 2 << ImmShift,
181    Imm32    = 3 << ImmShift,
182    Imm64    = 4 << ImmShift,
183
184    //===------------------------------------------------------------------===//
185    // FP Instruction Classification...  Zero is non-fp instruction.
186
187    // FPTypeMask - Mask for all of the FP types...
188    FPTypeShift = 16,
189    FPTypeMask  = 7 << FPTypeShift,
190
191    // NotFP - The default, set for instructions that do not use FP registers.
192    NotFP      = 0 << FPTypeShift,
193
194    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
195    ZeroArgFP  = 1 << FPTypeShift,
196
197    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
198    OneArgFP   = 2 << FPTypeShift,
199
200    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
201    // result back to ST(0).  For example, fcos, fsqrt, etc.
202    //
203    OneArgFPRW = 3 << FPTypeShift,
204
205    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
206    // explicit argument, storing the result to either ST(0) or the implicit
207    // argument.  For example: fadd, fsub, fmul, etc...
208    TwoArgFP   = 4 << FPTypeShift,
209
210    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
211    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
212    CompareFP  = 5 << FPTypeShift,
213
214    // CondMovFP - "2 operand" floating point conditional move instructions.
215    CondMovFP  = 6 << FPTypeShift,
216
217    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
218    SpecialFP  = 7 << FPTypeShift,
219
220    // Lock prefix
221    LOCKShift = 19,
222    LOCK = 1 << LOCKShift,
223
224    // Bits 20 -> 23 are unused
225    OpcodeShift   = 24,
226    OpcodeMask    = 0xFF << OpcodeShift
227  };
228}
229
230class X86InstrInfo : public TargetInstrInfoImpl {
231  X86TargetMachine &TM;
232  const X86RegisterInfo RI;
233
234  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
235  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
236  ///
237  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
238  DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
239  DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
240  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
241
242  /// MemOp2RegOpTable - Load / store unfolding opcode map.
243  ///
244  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
245
246public:
247  explicit X86InstrInfo(X86TargetMachine &tm);
248
249  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
250  /// such, whenever a client has an instance of instruction info, it should
251  /// always be able to get register info as well (through this method).
252  ///
253  virtual const TargetRegisterInfo &getRegisterInfo() const { return RI; }
254
255  // Return true if the instruction is a register to register move and
256  // leave the source and dest operands in the passed parameters.
257  //
258  bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg,
259                   unsigned& destReg) const;
260  unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const;
261  unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const;
262
263  bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
264  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
265                     unsigned DestReg, const MachineInstr *Orig) const;
266
267  bool isInvariantLoad(MachineInstr *MI) const;
268
269  /// convertToThreeAddress - This method must be implemented by targets that
270  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
271  /// may be able to convert a two-address instruction into a true
272  /// three-address instruction on demand.  This allows the X86 target (for
273  /// example) to convert ADD and SHL instructions into LEA instructions if they
274  /// would require register copies due to two-addressness.
275  ///
276  /// This method returns a null pointer if the transformation cannot be
277  /// performed, otherwise it returns the new instruction.
278  ///
279  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
280                                              MachineBasicBlock::iterator &MBBI,
281                                              LiveVariables &LV) const;
282
283  /// commuteInstruction - We have a few instructions that must be hacked on to
284  /// commute them.
285  ///
286  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
287
288  // Branch analysis.
289  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
290  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
291                             MachineBasicBlock *&FBB,
292                             std::vector<MachineOperand> &Cond) const;
293  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
294  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
295                                MachineBasicBlock *FBB,
296                                const std::vector<MachineOperand> &Cond) const;
297  virtual void copyRegToReg(MachineBasicBlock &MBB,
298                            MachineBasicBlock::iterator MI,
299                            unsigned DestReg, unsigned SrcReg,
300                            const TargetRegisterClass *DestRC,
301                            const TargetRegisterClass *SrcRC) const;
302  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
303                                   MachineBasicBlock::iterator MI,
304                                   unsigned SrcReg, bool isKill, int FrameIndex,
305                                   const TargetRegisterClass *RC) const;
306
307  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
308                              SmallVectorImpl<MachineOperand> &Addr,
309                              const TargetRegisterClass *RC,
310                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
311
312  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
313                                    MachineBasicBlock::iterator MI,
314                                    unsigned DestReg, int FrameIndex,
315                                    const TargetRegisterClass *RC) const;
316
317  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
318                               SmallVectorImpl<MachineOperand> &Addr,
319                               const TargetRegisterClass *RC,
320                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
321
322  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
323                                         MachineBasicBlock::iterator MI,
324                                 const std::vector<CalleeSavedInfo> &CSI) const;
325
326  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
327                                           MachineBasicBlock::iterator MI,
328                                 const std::vector<CalleeSavedInfo> &CSI) const;
329
330  /// foldMemoryOperand - If this target supports it, fold a load or store of
331  /// the specified stack slot into the specified machine instruction for the
332  /// specified operand(s).  If this is possible, the target should perform the
333  /// folding and return true, otherwise it should return false.  If it folds
334  /// the instruction, it is likely that the MachineInstruction the iterator
335  /// references has been changed.
336  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
337                                          MachineInstr* MI,
338                                          SmallVectorImpl<unsigned> &Ops,
339                                          int FrameIndex) const;
340
341  /// foldMemoryOperand - Same as the previous version except it allows folding
342  /// of any load and store from / to any address, not just from a specific
343  /// stack slot.
344  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
345                                          MachineInstr* MI,
346                                  SmallVectorImpl<unsigned> &Ops,
347                                  MachineInstr* LoadMI) const;
348
349  /// canFoldMemoryOperand - Returns true if the specified load / store is
350  /// folding is possible.
351  virtual bool canFoldMemoryOperand(MachineInstr*, SmallVectorImpl<unsigned> &) const;
352
353  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
354  /// a store or a load and a store into two or more instruction. If this is
355  /// possible, returns true as well as the new instructions by reference.
356  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
357                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
358                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
359
360  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
361                           SmallVectorImpl<SDNode*> &NewNodes) const;
362
363  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
364  /// instruction after load / store are unfolded from an instruction of the
365  /// specified opcode. It returns zero if the specified unfolding is not
366  /// possible.
367  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
368                                      bool UnfoldLoad, bool UnfoldStore) const;
369
370  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const;
371  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const;
372
373  const TargetRegisterClass *getPointerRegClass() const;
374
375  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
376  // specified machine instruction.
377  //
378  unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
379    return TID->TSFlags >> X86II::OpcodeShift;
380  }
381  unsigned char getBaseOpcodeFor(unsigned Opcode) const {
382    return getBaseOpcodeFor(&get(Opcode));
383  }
384
385  static bool isX86_64NonExtLowByteReg(unsigned reg) {
386    return (reg == X86::SPL || reg == X86::BPL ||
387          reg == X86::SIL || reg == X86::DIL);
388  }
389
390  static unsigned sizeOfImm(const TargetInstrDesc *Desc);
391  static unsigned getX86RegNum(unsigned RegNo);
392  static bool isX86_64ExtendedReg(const MachineOperand &MO);
393  static unsigned determineREX(const MachineInstr &MI);
394
395  /// GetInstSize - Returns the size of the specified MachineInstr.
396  ///
397  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
398
399private:
400  MachineInstr* foldMemoryOperand(MachineInstr* MI,
401                                    unsigned OpNum,
402                                    SmallVector<MachineOperand,4> &MOs) const;
403};
404
405} // End llvm namespace
406
407#endif
408