X86InstrInfo.h revision 9fc05227a2596c545b845ed9a72673995e49d16b
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86.h"
19#include "X86RegisterInfo.h"
20#include "llvm/ADT/DenseMap.h"
21
22namespace llvm {
23  class X86RegisterInfo;
24  class X86TargetMachine;
25
26namespace X86 {
27  // X86 specific condition code. These correspond to X86_*_COND in
28  // X86InstrInfo.td. They must be kept in synch.
29  enum CondCode {
30    COND_A  = 0,
31    COND_AE = 1,
32    COND_B  = 2,
33    COND_BE = 3,
34    COND_E  = 4,
35    COND_G  = 5,
36    COND_GE = 6,
37    COND_L  = 7,
38    COND_LE = 8,
39    COND_NE = 9,
40    COND_NO = 10,
41    COND_NP = 11,
42    COND_NS = 12,
43    COND_O  = 13,
44    COND_P  = 14,
45    COND_S  = 15,
46
47    // Artificial condition codes. These are used by AnalyzeBranch
48    // to indicate a block terminated with two conditional branches to
49    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
50    // which can't be represented on x86 with a single condition. These
51    // are never used in MachineInstrs.
52    COND_NE_OR_P,
53    COND_NP_OR_E,
54
55    COND_INVALID
56  };
57
58  // Turn condition code into conditional branch opcode.
59  unsigned GetCondBranchFromCond(CondCode CC);
60
61  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
62  /// e.g. turning COND_E to COND_NE.
63  CondCode GetOppositeBranchCondition(X86::CondCode CC);
64
65}
66
67/// X86II - This namespace holds all of the target specific flags that
68/// instruction info tracks.
69///
70namespace X86II {
71  /// Target Operand Flag enum.
72  enum TOF {
73    //===------------------------------------------------------------------===//
74    // X86 Specific MachineOperand flags.
75
76    MO_NO_FLAG,
77
78    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
79    /// relocation of:
80    ///    SYMBOL_LABEL + [. - PICBASELABEL]
81    MO_GOT_ABSOLUTE_ADDRESS,
82
83    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
84    /// immediate should get the value of the symbol minus the PIC base label:
85    ///    SYMBOL_LABEL - PICBASELABEL
86    MO_PIC_BASE_OFFSET,
87
88    /// MO_GOT - On a symbol operand this indicates that the immediate is the
89    /// offset to the GOT entry for the symbol name from the base of the GOT.
90    ///
91    /// See the X86-64 ELF ABI supplement for more details.
92    ///    SYMBOL_LABEL @GOT
93    MO_GOT,
94
95    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
96    /// the offset to the location of the symbol name from the base of the GOT.
97    ///
98    /// See the X86-64 ELF ABI supplement for more details.
99    ///    SYMBOL_LABEL @GOTOFF
100    MO_GOTOFF,
101
102    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
103    /// offset to the GOT entry for the symbol name from the current code
104    /// location.
105    ///
106    /// See the X86-64 ELF ABI supplement for more details.
107    ///    SYMBOL_LABEL @GOTPCREL
108    MO_GOTPCREL,
109
110    /// MO_PLT - On a symbol operand this indicates that the immediate is
111    /// offset to the PLT entry of symbol name from the current code location.
112    ///
113    /// See the X86-64 ELF ABI supplement for more details.
114    ///    SYMBOL_LABEL @PLT
115    MO_PLT,
116
117    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
118    /// some TLS offset.
119    ///
120    /// See 'ELF Handling for Thread-Local Storage' for more details.
121    ///    SYMBOL_LABEL @TLSGD
122    MO_TLSGD,
123
124    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
125    /// some TLS offset.
126    ///
127    /// See 'ELF Handling for Thread-Local Storage' for more details.
128    ///    SYMBOL_LABEL @GOTTPOFF
129    MO_GOTTPOFF,
130
131    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
132    /// some TLS offset.
133    ///
134    /// See 'ELF Handling for Thread-Local Storage' for more details.
135    ///    SYMBOL_LABEL @INDNTPOFF
136    MO_INDNTPOFF,
137
138    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
139    /// some TLS offset.
140    ///
141    /// See 'ELF Handling for Thread-Local Storage' for more details.
142    ///    SYMBOL_LABEL @TPOFF
143    MO_TPOFF,
144
145    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
146    /// some TLS offset.
147    ///
148    /// See 'ELF Handling for Thread-Local Storage' for more details.
149    ///    SYMBOL_LABEL @NTPOFF
150    MO_NTPOFF,
151
152    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
153    /// reference is actually to the "__imp_FOO" symbol.  This is used for
154    /// dllimport linkage on windows.
155    MO_DLLIMPORT,
156
157    /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
158    /// reference is actually to the "FOO$stub" symbol.  This is used for calls
159    /// and jumps to external functions on Tiger and before.
160    MO_DARWIN_STUB,
161
162    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
163    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
164    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
165    MO_DARWIN_NONLAZY,
166
167    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
168    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
169    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
170    MO_DARWIN_NONLAZY_PIC_BASE,
171
172    /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
173    /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
174    /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
175    /// stub.
176    MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
177
178    /// MO_TLVP - On a symbol operand this indicates that the immediate is
179    /// some TLS offset.
180    ///
181    /// This is the TLS offset for the Darwin TLS mechanism.
182    MO_TLVP,
183
184    /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
185    /// is some TLS offset from the picbase.
186    ///
187    /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
188    MO_TLVP_PIC_BASE
189  };
190}
191
192/// isGlobalStubReference - Return true if the specified TargetFlag operand is
193/// a reference to a stub for a global, not the global itself.
194inline static bool isGlobalStubReference(unsigned char TargetFlag) {
195  switch (TargetFlag) {
196  case X86II::MO_DLLIMPORT: // dllimport stub.
197  case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
198  case X86II::MO_GOT:       // normal GOT reference.
199  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
200  case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
201  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
202    return true;
203  default:
204    return false;
205  }
206}
207
208/// isGlobalRelativeToPICBase - Return true if the specified global value
209/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
210/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
211inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
212  switch (TargetFlag) {
213  case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
214  case X86II::MO_GOT:                            // isPICStyleGOT: other global.
215  case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
216  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
217  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
218  case X86II::MO_TLVP:                           // ??? Pretty sure..
219    return true;
220  default:
221    return false;
222  }
223}
224
225/// X86II - This namespace holds all of the target specific flags that
226/// instruction info tracks.
227///
228namespace X86II {
229  enum {
230    //===------------------------------------------------------------------===//
231    // Instruction encodings.  These are the standard/most common forms for X86
232    // instructions.
233    //
234
235    // PseudoFrm - This represents an instruction that is a pseudo instruction
236    // or one that has not been implemented yet.  It is illegal to code generate
237    // it, but tolerated for intermediate implementation stages.
238    Pseudo         = 0,
239
240    /// Raw - This form is for instructions that don't have any operands, so
241    /// they are just a fixed opcode value, like 'leave'.
242    RawFrm         = 1,
243
244    /// AddRegFrm - This form is used for instructions like 'push r32' that have
245    /// their one register operand added to their opcode.
246    AddRegFrm      = 2,
247
248    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
249    /// to specify a destination, which in this case is a register.
250    ///
251    MRMDestReg     = 3,
252
253    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
254    /// to specify a destination, which in this case is memory.
255    ///
256    MRMDestMem     = 4,
257
258    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
259    /// to specify a source, which in this case is a register.
260    ///
261    MRMSrcReg      = 5,
262
263    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
264    /// to specify a source, which in this case is memory.
265    ///
266    MRMSrcMem      = 6,
267
268    /// MRM[0-7][rm] - These forms are used to represent instructions that use
269    /// a Mod/RM byte, and use the middle field to hold extended opcode
270    /// information.  In the intel manual these are represented as /0, /1, ...
271    ///
272
273    // First, instructions that operate on a register r/m operand...
274    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
275    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
276
277    // Next, instructions that operate on a memory r/m operand...
278    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
279    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
280
281    // MRMInitReg - This form is used for instructions whose source and
282    // destinations are the same register.
283    MRMInitReg = 32,
284
285    //// MRM_C1 - A mod/rm byte of exactly 0xC1.
286    MRM_C1 = 33,
287    MRM_C2 = 34,
288    MRM_C3 = 35,
289    MRM_C4 = 36,
290    MRM_C8 = 37,
291    MRM_C9 = 38,
292    MRM_E8 = 39,
293    MRM_F0 = 40,
294    MRM_F8 = 41,
295    MRM_F9 = 42,
296
297    FormMask       = 63,
298
299    //===------------------------------------------------------------------===//
300    // Actual flags...
301
302    // OpSize - Set if this instruction requires an operand size prefix (0x66),
303    // which most often indicates that the instruction operates on 16 bit data
304    // instead of 32 bit data.
305    OpSize      = 1 << 6,
306
307    // AsSize - Set if this instruction requires an operand size prefix (0x67),
308    // which most often indicates that the instruction address 16 bit address
309    // instead of 32 bit address (or 32 bit address in 64 bit mode).
310    AdSize      = 1 << 7,
311
312    //===------------------------------------------------------------------===//
313    // Op0Mask - There are several prefix bytes that are used to form two byte
314    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
315    // used to obtain the setting of this field.  If no bits in this field is
316    // set, there is no prefix byte for obtaining a multibyte opcode.
317    //
318    Op0Shift    = 8,
319    Op0Mask     = 0xF << Op0Shift,
320
321    // TB - TwoByte - Set if this instruction has a two byte opcode, which
322    // starts with a 0x0F byte before the real opcode.
323    TB          = 1 << Op0Shift,
324
325    // REP - The 0xF3 prefix byte indicating repetition of the following
326    // instruction.
327    REP         = 2 << Op0Shift,
328
329    // D8-DF - These escape opcodes are used by the floating point unit.  These
330    // values must remain sequential.
331    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
332    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
333    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
334    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
335
336    // XS, XD - These prefix codes are for single and double precision scalar
337    // floating point operations performed in the SSE registers.
338    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
339
340    // T8, TA - Prefix after the 0x0F prefix.
341    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
342
343    // TF - Prefix before and after 0x0F
344    TF = 15 << Op0Shift,
345
346    //===------------------------------------------------------------------===//
347    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
348    // They are used to specify GPRs and SSE registers, 64-bit operand size,
349    // etc. We only cares about REX.W and REX.R bits and only the former is
350    // statically determined.
351    //
352    REXShift    = 12,
353    REX_W       = 1 << REXShift,
354
355    //===------------------------------------------------------------------===//
356    // This three-bit field describes the size of an immediate operand.  Zero is
357    // unused so that we can tell if we forgot to set a value.
358    ImmShift = 13,
359    ImmMask    = 7 << ImmShift,
360    Imm8       = 1 << ImmShift,
361    Imm8PCRel  = 2 << ImmShift,
362    Imm16      = 3 << ImmShift,
363    Imm16PCRel = 4 << ImmShift,
364    Imm32      = 5 << ImmShift,
365    Imm32PCRel = 6 << ImmShift,
366    Imm64      = 7 << ImmShift,
367
368    //===------------------------------------------------------------------===//
369    // FP Instruction Classification...  Zero is non-fp instruction.
370
371    // FPTypeMask - Mask for all of the FP types...
372    FPTypeShift = 16,
373    FPTypeMask  = 7 << FPTypeShift,
374
375    // NotFP - The default, set for instructions that do not use FP registers.
376    NotFP      = 0 << FPTypeShift,
377
378    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
379    ZeroArgFP  = 1 << FPTypeShift,
380
381    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
382    OneArgFP   = 2 << FPTypeShift,
383
384    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
385    // result back to ST(0).  For example, fcos, fsqrt, etc.
386    //
387    OneArgFPRW = 3 << FPTypeShift,
388
389    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
390    // explicit argument, storing the result to either ST(0) or the implicit
391    // argument.  For example: fadd, fsub, fmul, etc...
392    TwoArgFP   = 4 << FPTypeShift,
393
394    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
395    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
396    CompareFP  = 5 << FPTypeShift,
397
398    // CondMovFP - "2 operand" floating point conditional move instructions.
399    CondMovFP  = 6 << FPTypeShift,
400
401    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
402    SpecialFP  = 7 << FPTypeShift,
403
404    // Lock prefix
405    LOCKShift = 19,
406    LOCK = 1 << LOCKShift,
407
408    // Segment override prefixes. Currently we just need ability to address
409    // stuff in gs and fs segments.
410    SegOvrShift = 20,
411    SegOvrMask  = 3 << SegOvrShift,
412    FS          = 1 << SegOvrShift,
413    GS          = 2 << SegOvrShift,
414
415    // Execution domain for SSE instructions in bits 22, 23.
416    // 0 in bits 22-23 means normal, non-SSE instruction.
417    SSEDomainShift = 22,
418
419    OpcodeShift   = 24,
420    OpcodeMask    = 0xFF << OpcodeShift
421
422  };
423
424  // FIXME: The enum opcode space is over and more bits are needed. Anywhere
425  // those enums below are used, TSFlags must be shifted right by 32 first.
426  enum {
427    //===------------------------------------------------------------------===//
428    // VEX - A prefix used by AVX instructions
429    VEX         = 1,
430
431    // VEX_W is has a opcode specific functionality, but is used in the same
432    // way as REX_W is for regular SSE instructions.
433    VEX_W       = 1 << 1,
434
435    // VEX_4V is used to specify an additional AVX/SSE register. Several 2
436    // address instructions in SSE are represented as 3 address ones in AVX
437    // and the additional register is encoded in VEX_VVVV prefix.
438    VEX_4V      = 1 << 2,
439
440    // VEX_I8IMM specifies that the last register used in a AVX instruction,
441    // must be encoded in the i8 immediate field. This usually happens in
442    // instructions with 4 operands.
443    VEX_I8IMM   = 1 << 3
444  };
445
446  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
447  // specified machine instruction.
448  //
449  static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
450    return TSFlags >> X86II::OpcodeShift;
451  }
452
453  static inline bool hasImm(uint64_t TSFlags) {
454    return (TSFlags & X86II::ImmMask) != 0;
455  }
456
457  /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
458  /// of the specified instruction.
459  static inline unsigned getSizeOfImm(uint64_t TSFlags) {
460    switch (TSFlags & X86II::ImmMask) {
461    default: assert(0 && "Unknown immediate size");
462    case X86II::Imm8:
463    case X86II::Imm8PCRel:  return 1;
464    case X86II::Imm16:
465    case X86II::Imm16PCRel: return 2;
466    case X86II::Imm32:
467    case X86II::Imm32PCRel: return 4;
468    case X86II::Imm64:      return 8;
469    }
470  }
471
472  /// isImmPCRel - Return true if the immediate of the specified instruction's
473  /// TSFlags indicates that it is pc relative.
474  static inline unsigned isImmPCRel(uint64_t TSFlags) {
475    switch (TSFlags & X86II::ImmMask) {
476      default: assert(0 && "Unknown immediate size");
477      case X86II::Imm8PCRel:
478      case X86II::Imm16PCRel:
479      case X86II::Imm32PCRel:
480        return true;
481      case X86II::Imm8:
482      case X86II::Imm16:
483      case X86II::Imm32:
484      case X86II::Imm64:
485        return false;
486    }
487  }
488}
489
490const int X86AddrNumOperands = 5;
491
492inline static bool isScale(const MachineOperand &MO) {
493  return MO.isImm() &&
494    (MO.getImm() == 1 || MO.getImm() == 2 ||
495     MO.getImm() == 4 || MO.getImm() == 8);
496}
497
498inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
499  if (MI->getOperand(Op).isFI()) return true;
500  return Op+4 <= MI->getNumOperands() &&
501    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
502    MI->getOperand(Op+2).isReg() &&
503    (MI->getOperand(Op+3).isImm() ||
504     MI->getOperand(Op+3).isGlobal() ||
505     MI->getOperand(Op+3).isCPI() ||
506     MI->getOperand(Op+3).isJTI());
507}
508
509inline static bool isMem(const MachineInstr *MI, unsigned Op) {
510  if (MI->getOperand(Op).isFI()) return true;
511  return Op+5 <= MI->getNumOperands() &&
512    MI->getOperand(Op+4).isReg() &&
513    isLeaMem(MI, Op);
514}
515
516class X86InstrInfo : public TargetInstrInfoImpl {
517  X86TargetMachine &TM;
518  const X86RegisterInfo RI;
519
520  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
521  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
522  ///
523  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
524  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
525  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
526  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
527
528  /// MemOp2RegOpTable - Load / store unfolding opcode map.
529  ///
530  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
531
532public:
533  explicit X86InstrInfo(X86TargetMachine &tm);
534
535  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
536  /// such, whenever a client has an instance of instruction info, it should
537  /// always be able to get register info as well (through this method).
538  ///
539  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
540
541  /// Return true if the instruction is a register to register move and return
542  /// the source and dest operands and their sub-register indices by reference.
543  virtual bool isMoveInstr(const MachineInstr &MI,
544                           unsigned &SrcReg, unsigned &DstReg,
545                           unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
546
547  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
548  /// extension instruction. That is, it's like a copy where it's legal for the
549  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
550  /// true, then it's expected the pre-extension value is available as a subreg
551  /// of the result register. This also returns the sub-register index in
552  /// SubIdx.
553  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
554                                     unsigned &SrcReg, unsigned &DstReg,
555                                     unsigned &SubIdx) const;
556
557  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
558  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
559  /// stack locations as well.  This uses a heuristic so it isn't
560  /// reliable for correctness.
561  unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
562                                     int &FrameIndex) const;
563
564  /// hasLoadFromStackSlot - If the specified machine instruction has
565  /// a load from a stack slot, return true along with the FrameIndex
566  /// of the loaded stack slot and the machine mem operand containing
567  /// the reference.  If not, return false.  Unlike
568  /// isLoadFromStackSlot, this returns true for any instructions that
569  /// loads from the stack.  This is a hint only and may not catch all
570  /// cases.
571  bool hasLoadFromStackSlot(const MachineInstr *MI,
572                            const MachineMemOperand *&MMO,
573                            int &FrameIndex) const;
574
575  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
576  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
577  /// stack locations as well.  This uses a heuristic so it isn't
578  /// reliable for correctness.
579  unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
580                                    int &FrameIndex) const;
581
582  /// hasStoreToStackSlot - If the specified machine instruction has a
583  /// store to a stack slot, return true along with the FrameIndex of
584  /// the loaded stack slot and the machine mem operand containing the
585  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
586  /// this returns true for any instructions that loads from the
587  /// stack.  This is a hint only and may not catch all cases.
588  bool hasStoreToStackSlot(const MachineInstr *MI,
589                           const MachineMemOperand *&MMO,
590                           int &FrameIndex) const;
591
592  bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
593                                         AliasAnalysis *AA) const;
594  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
595                     unsigned DestReg, unsigned SubIdx,
596                     const MachineInstr *Orig,
597                     const TargetRegisterInfo &TRI) const;
598
599  /// convertToThreeAddress - This method must be implemented by targets that
600  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
601  /// may be able to convert a two-address instruction into a true
602  /// three-address instruction on demand.  This allows the X86 target (for
603  /// example) to convert ADD and SHL instructions into LEA instructions if they
604  /// would require register copies due to two-addressness.
605  ///
606  /// This method returns a null pointer if the transformation cannot be
607  /// performed, otherwise it returns the new instruction.
608  ///
609  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
610                                              MachineBasicBlock::iterator &MBBI,
611                                              LiveVariables *LV) const;
612
613  /// commuteInstruction - We have a few instructions that must be hacked on to
614  /// commute them.
615  ///
616  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
617
618  // Branch analysis.
619  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
620  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
621                             MachineBasicBlock *&FBB,
622                             SmallVectorImpl<MachineOperand> &Cond,
623                             bool AllowModify) const;
624  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
625  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
626                                MachineBasicBlock *FBB,
627                                const SmallVectorImpl<MachineOperand> &Cond,
628                                DebugLoc DL) const;
629  virtual bool copyRegToReg(MachineBasicBlock &MBB,
630                            MachineBasicBlock::iterator MI,
631                            unsigned DestReg, unsigned SrcReg,
632                            const TargetRegisterClass *DestRC,
633                            const TargetRegisterClass *SrcRC,
634                            DebugLoc DL) const;
635  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
636                                   MachineBasicBlock::iterator MI,
637                                   unsigned SrcReg, bool isKill, int FrameIndex,
638                                   const TargetRegisterClass *RC,
639                                   const TargetRegisterInfo *TRI) const;
640
641  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
642                              SmallVectorImpl<MachineOperand> &Addr,
643                              const TargetRegisterClass *RC,
644                              MachineInstr::mmo_iterator MMOBegin,
645                              MachineInstr::mmo_iterator MMOEnd,
646                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
647
648  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
649                                    MachineBasicBlock::iterator MI,
650                                    unsigned DestReg, int FrameIndex,
651                                    const TargetRegisterClass *RC,
652                                    const TargetRegisterInfo *TRI) const;
653
654  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
655                               SmallVectorImpl<MachineOperand> &Addr,
656                               const TargetRegisterClass *RC,
657                               MachineInstr::mmo_iterator MMOBegin,
658                               MachineInstr::mmo_iterator MMOEnd,
659                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
660
661  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
662                                         MachineBasicBlock::iterator MI,
663                                        const std::vector<CalleeSavedInfo> &CSI,
664                                         const TargetRegisterInfo *TRI) const;
665
666  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
667                                           MachineBasicBlock::iterator MI,
668                                        const std::vector<CalleeSavedInfo> &CSI,
669                                           const TargetRegisterInfo *TRI) const;
670
671  virtual
672  MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
673                                         int FrameIx, uint64_t Offset,
674                                         const MDNode *MDPtr,
675                                         DebugLoc DL) const;
676
677  /// foldMemoryOperand - If this target supports it, fold a load or store of
678  /// the specified stack slot into the specified machine instruction for the
679  /// specified operand(s).  If this is possible, the target should perform the
680  /// folding and return true, otherwise it should return false.  If it folds
681  /// the instruction, it is likely that the MachineInstruction the iterator
682  /// references has been changed.
683  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
684                                              MachineInstr* MI,
685                                           const SmallVectorImpl<unsigned> &Ops,
686                                              int FrameIndex) const;
687
688  /// foldMemoryOperand - Same as the previous version except it allows folding
689  /// of any load and store from / to any address, not just from a specific
690  /// stack slot.
691  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
692                                              MachineInstr* MI,
693                                           const SmallVectorImpl<unsigned> &Ops,
694                                              MachineInstr* LoadMI) const;
695
696  /// canFoldMemoryOperand - Returns true if the specified load / store is
697  /// folding is possible.
698  virtual bool canFoldMemoryOperand(const MachineInstr*,
699                                    const SmallVectorImpl<unsigned> &) const;
700
701  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
702  /// a store or a load and a store into two or more instruction. If this is
703  /// possible, returns true as well as the new instructions by reference.
704  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
705                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
706                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
707
708  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
709                           SmallVectorImpl<SDNode*> &NewNodes) const;
710
711  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
712  /// instruction after load / store are unfolded from an instruction of the
713  /// specified opcode. It returns zero if the specified unfolding is not
714  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
715  /// index of the operand which will hold the register holding the loaded
716  /// value.
717  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
718                                      bool UnfoldLoad, bool UnfoldStore,
719                                      unsigned *LoadRegIndex = 0) const;
720
721  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
722  /// to determine if two loads are loading from the same base address. It
723  /// should only return true if the base pointers are the same and the
724  /// only differences between the two addresses are the offset. It also returns
725  /// the offsets by reference.
726  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
727                                       int64_t &Offset1, int64_t &Offset2) const;
728
729  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
730  /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
731  /// be scheduled togther. On some targets if two loads are loading from
732  /// addresses in the same cache line, it's better if they are scheduled
733  /// together. This function takes two integers that represent the load offsets
734  /// from the common base address. It returns true if it decides it's desirable
735  /// to schedule the two loads together. "NumLoads" is the number of loads that
736  /// have already been scheduled after Load1.
737  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
738                                       int64_t Offset1, int64_t Offset2,
739                                       unsigned NumLoads) const;
740
741  virtual void getNoopForMachoTarget(MCInst &NopInst) const;
742
743  virtual
744  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
745
746  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
747  /// instruction that defines the specified register class.
748  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
749
750  static bool isX86_64NonExtLowByteReg(unsigned reg) {
751    return (reg == X86::SPL || reg == X86::BPL ||
752          reg == X86::SIL || reg == X86::DIL);
753  }
754
755  static bool isX86_64ExtendedReg(const MachineOperand &MO) {
756    if (!MO.isReg()) return false;
757    return isX86_64ExtendedReg(MO.getReg());
758  }
759  static unsigned determineREX(const MachineInstr &MI);
760
761  /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
762  /// higher) register?  e.g. r8, xmm8, xmm13, etc.
763  static bool isX86_64ExtendedReg(unsigned RegNo);
764
765  /// GetInstSize - Returns the size of the specified MachineInstr.
766  ///
767  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
768
769  /// getGlobalBaseReg - Return a virtual register initialized with the
770  /// the global base register value. Output instructions required to
771  /// initialize the register in the function entry block, if necessary.
772  ///
773  unsigned getGlobalBaseReg(MachineFunction *MF) const;
774
775  /// GetSSEDomain - Return the SSE execution domain of MI as the first element,
776  /// and a bitmask of possible arguments to SetSSEDomain ase the second.
777  std::pair<uint16_t, uint16_t> GetSSEDomain(const MachineInstr *MI) const;
778
779  /// SetSSEDomain - Set the SSEDomain of MI.
780  void SetSSEDomain(MachineInstr *MI, unsigned Domain) const;
781
782private:
783  MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
784                                              MachineFunction::iterator &MFI,
785                                              MachineBasicBlock::iterator &MBBI,
786                                              LiveVariables *LV) const;
787
788  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
789                                     MachineInstr* MI,
790                                     unsigned OpNum,
791                                     const SmallVectorImpl<MachineOperand> &MOs,
792                                     unsigned Size, unsigned Alignment) const;
793
794  /// isFrameOperand - Return true and the FrameIndex if the specified
795  /// operand and follow operands form a reference to the stack frame.
796  bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
797                      int &FrameIndex) const;
798};
799
800} // End llvm namespace
801
802#endif
803