X86InstrInfo.h revision ac0ed5dc082dff9ce359af5422f5b82047b4fe6b
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86.h"
19#include "X86RegisterInfo.h"
20#include "llvm/ADT/DenseMap.h"
21
22namespace llvm {
23  class X86RegisterInfo;
24  class X86TargetMachine;
25
26namespace X86 {
27  // Enums for memory operand decoding.  Each memory operand is represented with
28  // a 5 operand sequence in the form:
29  //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30  // These enums help decode this.
31  enum {
32    AddrBaseReg = 0,
33    AddrScaleAmt = 1,
34    AddrIndexReg = 2,
35    AddrDisp = 3,
36
37    /// AddrSegmentReg - The operand # of the segment in the memory operand.
38    AddrSegmentReg = 4,
39
40    /// AddrNumOperands - Total number of operands in a memory reference.
41    AddrNumOperands = 5
42  };
43
44
45  // X86 specific condition code. These correspond to X86_*_COND in
46  // X86InstrInfo.td. They must be kept in synch.
47  enum CondCode {
48    COND_A  = 0,
49    COND_AE = 1,
50    COND_B  = 2,
51    COND_BE = 3,
52    COND_E  = 4,
53    COND_G  = 5,
54    COND_GE = 6,
55    COND_L  = 7,
56    COND_LE = 8,
57    COND_NE = 9,
58    COND_NO = 10,
59    COND_NP = 11,
60    COND_NS = 12,
61    COND_O  = 13,
62    COND_P  = 14,
63    COND_S  = 15,
64
65    // Artificial condition codes. These are used by AnalyzeBranch
66    // to indicate a block terminated with two conditional branches to
67    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
68    // which can't be represented on x86 with a single condition. These
69    // are never used in MachineInstrs.
70    COND_NE_OR_P,
71    COND_NP_OR_E,
72
73    COND_INVALID
74  };
75
76  // Turn condition code into conditional branch opcode.
77  unsigned GetCondBranchFromCond(CondCode CC);
78
79  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
80  /// e.g. turning COND_E to COND_NE.
81  CondCode GetOppositeBranchCondition(X86::CondCode CC);
82
83}
84
85/// X86II - This namespace holds all of the target specific flags that
86/// instruction info tracks.
87///
88namespace X86II {
89  /// Target Operand Flag enum.
90  enum TOF {
91    //===------------------------------------------------------------------===//
92    // X86 Specific MachineOperand flags.
93
94    MO_NO_FLAG,
95
96    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
97    /// relocation of:
98    ///    SYMBOL_LABEL + [. - PICBASELABEL]
99    MO_GOT_ABSOLUTE_ADDRESS,
100
101    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
102    /// immediate should get the value of the symbol minus the PIC base label:
103    ///    SYMBOL_LABEL - PICBASELABEL
104    MO_PIC_BASE_OFFSET,
105
106    /// MO_GOT - On a symbol operand this indicates that the immediate is the
107    /// offset to the GOT entry for the symbol name from the base of the GOT.
108    ///
109    /// See the X86-64 ELF ABI supplement for more details.
110    ///    SYMBOL_LABEL @GOT
111    MO_GOT,
112
113    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
114    /// the offset to the location of the symbol name from the base of the GOT.
115    ///
116    /// See the X86-64 ELF ABI supplement for more details.
117    ///    SYMBOL_LABEL @GOTOFF
118    MO_GOTOFF,
119
120    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
121    /// offset to the GOT entry for the symbol name from the current code
122    /// location.
123    ///
124    /// See the X86-64 ELF ABI supplement for more details.
125    ///    SYMBOL_LABEL @GOTPCREL
126    MO_GOTPCREL,
127
128    /// MO_PLT - On a symbol operand this indicates that the immediate is
129    /// offset to the PLT entry of symbol name from the current code location.
130    ///
131    /// See the X86-64 ELF ABI supplement for more details.
132    ///    SYMBOL_LABEL @PLT
133    MO_PLT,
134
135    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
136    /// some TLS offset.
137    ///
138    /// See 'ELF Handling for Thread-Local Storage' for more details.
139    ///    SYMBOL_LABEL @TLSGD
140    MO_TLSGD,
141
142    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
143    /// some TLS offset.
144    ///
145    /// See 'ELF Handling for Thread-Local Storage' for more details.
146    ///    SYMBOL_LABEL @GOTTPOFF
147    MO_GOTTPOFF,
148
149    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
150    /// some TLS offset.
151    ///
152    /// See 'ELF Handling for Thread-Local Storage' for more details.
153    ///    SYMBOL_LABEL @INDNTPOFF
154    MO_INDNTPOFF,
155
156    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
157    /// some TLS offset.
158    ///
159    /// See 'ELF Handling for Thread-Local Storage' for more details.
160    ///    SYMBOL_LABEL @TPOFF
161    MO_TPOFF,
162
163    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
164    /// some TLS offset.
165    ///
166    /// See 'ELF Handling for Thread-Local Storage' for more details.
167    ///    SYMBOL_LABEL @NTPOFF
168    MO_NTPOFF,
169
170    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
171    /// reference is actually to the "__imp_FOO" symbol.  This is used for
172    /// dllimport linkage on windows.
173    MO_DLLIMPORT,
174
175    /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
176    /// reference is actually to the "FOO$stub" symbol.  This is used for calls
177    /// and jumps to external functions on Tiger and before.
178    MO_DARWIN_STUB,
179
180    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
181    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
182    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
183    MO_DARWIN_NONLAZY,
184
185    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
186    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
187    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
188    MO_DARWIN_NONLAZY_PIC_BASE,
189
190    /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
191    /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
192    /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
193    /// stub.
194    MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
195
196    /// MO_TLVP - On a symbol operand this indicates that the immediate is
197    /// some TLS offset.
198    ///
199    /// This is the TLS offset for the Darwin TLS mechanism.
200    MO_TLVP,
201
202    /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
203    /// is some TLS offset from the picbase.
204    ///
205    /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
206    MO_TLVP_PIC_BASE
207  };
208}
209
210/// isGlobalStubReference - Return true if the specified TargetFlag operand is
211/// a reference to a stub for a global, not the global itself.
212inline static bool isGlobalStubReference(unsigned char TargetFlag) {
213  switch (TargetFlag) {
214  case X86II::MO_DLLIMPORT: // dllimport stub.
215  case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
216  case X86II::MO_GOT:       // normal GOT reference.
217  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
218  case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
219  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
220    return true;
221  default:
222    return false;
223  }
224}
225
226/// isGlobalRelativeToPICBase - Return true if the specified global value
227/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
228/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
229inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
230  switch (TargetFlag) {
231  case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
232  case X86II::MO_GOT:                            // isPICStyleGOT: other global.
233  case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
234  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
235  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
236  case X86II::MO_TLVP:                           // ??? Pretty sure..
237    return true;
238  default:
239    return false;
240  }
241}
242
243/// X86II - This namespace holds all of the target specific flags that
244/// instruction info tracks.
245///
246namespace X86II {
247  enum {
248    //===------------------------------------------------------------------===//
249    // Instruction encodings.  These are the standard/most common forms for X86
250    // instructions.
251    //
252
253    // PseudoFrm - This represents an instruction that is a pseudo instruction
254    // or one that has not been implemented yet.  It is illegal to code generate
255    // it, but tolerated for intermediate implementation stages.
256    Pseudo         = 0,
257
258    /// Raw - This form is for instructions that don't have any operands, so
259    /// they are just a fixed opcode value, like 'leave'.
260    RawFrm         = 1,
261
262    /// AddRegFrm - This form is used for instructions like 'push r32' that have
263    /// their one register operand added to their opcode.
264    AddRegFrm      = 2,
265
266    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
267    /// to specify a destination, which in this case is a register.
268    ///
269    MRMDestReg     = 3,
270
271    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
272    /// to specify a destination, which in this case is memory.
273    ///
274    MRMDestMem     = 4,
275
276    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
277    /// to specify a source, which in this case is a register.
278    ///
279    MRMSrcReg      = 5,
280
281    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
282    /// to specify a source, which in this case is memory.
283    ///
284    MRMSrcMem      = 6,
285
286    /// MRM[0-7][rm] - These forms are used to represent instructions that use
287    /// a Mod/RM byte, and use the middle field to hold extended opcode
288    /// information.  In the intel manual these are represented as /0, /1, ...
289    ///
290
291    // First, instructions that operate on a register r/m operand...
292    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
293    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
294
295    // Next, instructions that operate on a memory r/m operand...
296    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
297    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
298
299    // MRMInitReg - This form is used for instructions whose source and
300    // destinations are the same register.
301    MRMInitReg = 32,
302
303    //// MRM_C1 - A mod/rm byte of exactly 0xC1.
304    MRM_C1 = 33,
305    MRM_C2 = 34,
306    MRM_C3 = 35,
307    MRM_C4 = 36,
308    MRM_C8 = 37,
309    MRM_C9 = 38,
310    MRM_E8 = 39,
311    MRM_F0 = 40,
312    MRM_F8 = 41,
313    MRM_F9 = 42,
314
315    FormMask       = 63,
316
317    //===------------------------------------------------------------------===//
318    // Actual flags...
319
320    // OpSize - Set if this instruction requires an operand size prefix (0x66),
321    // which most often indicates that the instruction operates on 16 bit data
322    // instead of 32 bit data.
323    OpSize      = 1 << 6,
324
325    // AsSize - Set if this instruction requires an operand size prefix (0x67),
326    // which most often indicates that the instruction address 16 bit address
327    // instead of 32 bit address (or 32 bit address in 64 bit mode).
328    AdSize      = 1 << 7,
329
330    //===------------------------------------------------------------------===//
331    // Op0Mask - There are several prefix bytes that are used to form two byte
332    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
333    // used to obtain the setting of this field.  If no bits in this field is
334    // set, there is no prefix byte for obtaining a multibyte opcode.
335    //
336    Op0Shift    = 8,
337    Op0Mask     = 0xF << Op0Shift,
338
339    // TB - TwoByte - Set if this instruction has a two byte opcode, which
340    // starts with a 0x0F byte before the real opcode.
341    TB          = 1 << Op0Shift,
342
343    // REP - The 0xF3 prefix byte indicating repetition of the following
344    // instruction.
345    REP         = 2 << Op0Shift,
346
347    // D8-DF - These escape opcodes are used by the floating point unit.  These
348    // values must remain sequential.
349    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
350    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
351    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
352    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
353
354    // XS, XD - These prefix codes are for single and double precision scalar
355    // floating point operations performed in the SSE registers.
356    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
357
358    // T8, TA - Prefix after the 0x0F prefix.
359    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
360
361    // TF - Prefix before and after 0x0F
362    TF = 15 << Op0Shift,
363
364    //===------------------------------------------------------------------===//
365    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
366    // They are used to specify GPRs and SSE registers, 64-bit operand size,
367    // etc. We only cares about REX.W and REX.R bits and only the former is
368    // statically determined.
369    //
370    REXShift    = 12,
371    REX_W       = 1 << REXShift,
372
373    //===------------------------------------------------------------------===//
374    // This three-bit field describes the size of an immediate operand.  Zero is
375    // unused so that we can tell if we forgot to set a value.
376    ImmShift = 13,
377    ImmMask    = 7 << ImmShift,
378    Imm8       = 1 << ImmShift,
379    Imm8PCRel  = 2 << ImmShift,
380    Imm16      = 3 << ImmShift,
381    Imm16PCRel = 4 << ImmShift,
382    Imm32      = 5 << ImmShift,
383    Imm32PCRel = 6 << ImmShift,
384    Imm64      = 7 << ImmShift,
385
386    //===------------------------------------------------------------------===//
387    // FP Instruction Classification...  Zero is non-fp instruction.
388
389    // FPTypeMask - Mask for all of the FP types...
390    FPTypeShift = 16,
391    FPTypeMask  = 7 << FPTypeShift,
392
393    // NotFP - The default, set for instructions that do not use FP registers.
394    NotFP      = 0 << FPTypeShift,
395
396    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
397    ZeroArgFP  = 1 << FPTypeShift,
398
399    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
400    OneArgFP   = 2 << FPTypeShift,
401
402    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
403    // result back to ST(0).  For example, fcos, fsqrt, etc.
404    //
405    OneArgFPRW = 3 << FPTypeShift,
406
407    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
408    // explicit argument, storing the result to either ST(0) or the implicit
409    // argument.  For example: fadd, fsub, fmul, etc...
410    TwoArgFP   = 4 << FPTypeShift,
411
412    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
413    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
414    CompareFP  = 5 << FPTypeShift,
415
416    // CondMovFP - "2 operand" floating point conditional move instructions.
417    CondMovFP  = 6 << FPTypeShift,
418
419    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
420    SpecialFP  = 7 << FPTypeShift,
421
422    // Lock prefix
423    LOCKShift = 19,
424    LOCK = 1 << LOCKShift,
425
426    // Segment override prefixes. Currently we just need ability to address
427    // stuff in gs and fs segments.
428    SegOvrShift = 20,
429    SegOvrMask  = 3 << SegOvrShift,
430    FS          = 1 << SegOvrShift,
431    GS          = 2 << SegOvrShift,
432
433    // Execution domain for SSE instructions in bits 22, 23.
434    // 0 in bits 22-23 means normal, non-SSE instruction.
435    SSEDomainShift = 22,
436
437    OpcodeShift   = 24,
438    OpcodeMask    = 0xFF << OpcodeShift
439
440  };
441
442  // FIXME: The enum opcode space is over and more bits are needed. Anywhere
443  // those enums below are used, TSFlags must be shifted right by 32 first.
444  enum {
445    //===------------------------------------------------------------------===//
446    // VEX - A prefix used by AVX instructions
447    VEX         = 1,
448
449    // VEX_W is has a opcode specific functionality, but is used in the same
450    // way as REX_W is for regular SSE instructions.
451    VEX_W       = 1 << 1,
452
453    // VEX_4V is used to specify an additional AVX/SSE register. Several 2
454    // address instructions in SSE are represented as 3 address ones in AVX
455    // and the additional register is encoded in VEX_VVVV prefix.
456    VEX_4V      = 1 << 2,
457
458    // VEX_I8IMM specifies that the last register used in a AVX instruction,
459    // must be encoded in the i8 immediate field. This usually happens in
460    // instructions with 4 operands.
461    VEX_I8IMM   = 1 << 3
462  };
463
464  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
465  // specified machine instruction.
466  //
467  static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
468    return TSFlags >> X86II::OpcodeShift;
469  }
470
471  static inline bool hasImm(uint64_t TSFlags) {
472    return (TSFlags & X86II::ImmMask) != 0;
473  }
474
475  /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
476  /// of the specified instruction.
477  static inline unsigned getSizeOfImm(uint64_t TSFlags) {
478    switch (TSFlags & X86II::ImmMask) {
479    default: assert(0 && "Unknown immediate size");
480    case X86II::Imm8:
481    case X86II::Imm8PCRel:  return 1;
482    case X86II::Imm16:
483    case X86II::Imm16PCRel: return 2;
484    case X86II::Imm32:
485    case X86II::Imm32PCRel: return 4;
486    case X86II::Imm64:      return 8;
487    }
488  }
489
490  /// isImmPCRel - Return true if the immediate of the specified instruction's
491  /// TSFlags indicates that it is pc relative.
492  static inline unsigned isImmPCRel(uint64_t TSFlags) {
493    switch (TSFlags & X86II::ImmMask) {
494    default: assert(0 && "Unknown immediate size");
495    case X86II::Imm8PCRel:
496    case X86II::Imm16PCRel:
497    case X86II::Imm32PCRel:
498      return true;
499    case X86II::Imm8:
500    case X86II::Imm16:
501    case X86II::Imm32:
502    case X86II::Imm64:
503      return false;
504    }
505  }
506
507  /// getMemoryOperandNo - The function returns the MCInst operand # for the
508  /// first field of the memory operand.  If the instruction doesn't have a
509  /// memory operand, this returns -1.
510  ///
511  /// Note that this ignores tied operands.  If there is a tied register which
512  /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
513  /// counted as one operand.
514  ///
515  static inline int getMemoryOperandNo(uint64_t TSFlags) {
516    switch (TSFlags & X86II::FormMask) {
517    case X86II::MRMInitReg:  assert(0 && "FIXME: Remove this form");
518    default: assert(0 && "Unknown FormMask value in getMemoryOperandNo!");
519    case X86II::Pseudo:
520    case X86II::RawFrm:
521    case X86II::AddRegFrm:
522    case X86II::MRMDestReg:
523    case X86II::MRMSrcReg:
524       return -1;
525    case X86II::MRMDestMem:
526      return 0;
527    case X86II::MRMSrcMem: {
528      bool HasVEX_4V = (TSFlags >> 32) & X86II::VEX_4V;
529      unsigned FirstMemOp = 1;
530      if (HasVEX_4V)
531        ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
532
533      // FIXME: Maybe lea should have its own form?  This is a horrible hack.
534      //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
535      //    Opcode == X86::LEA16r || Opcode == X86::LEA32r)
536      return FirstMemOp;
537    }
538    case X86II::MRM0r: case X86II::MRM1r:
539    case X86II::MRM2r: case X86II::MRM3r:
540    case X86II::MRM4r: case X86II::MRM5r:
541    case X86II::MRM6r: case X86II::MRM7r:
542      return -1;
543    case X86II::MRM0m: case X86II::MRM1m:
544    case X86II::MRM2m: case X86II::MRM3m:
545    case X86II::MRM4m: case X86II::MRM5m:
546    case X86II::MRM6m: case X86II::MRM7m:
547      return 0;
548    case X86II::MRM_C1:
549    case X86II::MRM_C2:
550    case X86II::MRM_C3:
551    case X86II::MRM_C4:
552    case X86II::MRM_C8:
553    case X86II::MRM_C9:
554    case X86II::MRM_E8:
555    case X86II::MRM_F0:
556    case X86II::MRM_F8:
557    case X86II::MRM_F9:
558      return -1;
559    }
560  }
561}
562
563inline static bool isScale(const MachineOperand &MO) {
564  return MO.isImm() &&
565    (MO.getImm() == 1 || MO.getImm() == 2 ||
566     MO.getImm() == 4 || MO.getImm() == 8);
567}
568
569inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
570  if (MI->getOperand(Op).isFI()) return true;
571  return Op+4 <= MI->getNumOperands() &&
572    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
573    MI->getOperand(Op+2).isReg() &&
574    (MI->getOperand(Op+3).isImm() ||
575     MI->getOperand(Op+3).isGlobal() ||
576     MI->getOperand(Op+3).isCPI() ||
577     MI->getOperand(Op+3).isJTI());
578}
579
580inline static bool isMem(const MachineInstr *MI, unsigned Op) {
581  if (MI->getOperand(Op).isFI()) return true;
582  return Op+5 <= MI->getNumOperands() &&
583    MI->getOperand(Op+4).isReg() &&
584    isLeaMem(MI, Op);
585}
586
587class X86InstrInfo : public TargetInstrInfoImpl {
588  X86TargetMachine &TM;
589  const X86RegisterInfo RI;
590
591  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
592  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
593  ///
594  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
595  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
596  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
597  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
598
599  /// MemOp2RegOpTable - Load / store unfolding opcode map.
600  ///
601  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
602
603public:
604  explicit X86InstrInfo(X86TargetMachine &tm);
605
606  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
607  /// such, whenever a client has an instance of instruction info, it should
608  /// always be able to get register info as well (through this method).
609  ///
610  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
611
612  /// Return true if the instruction is a register to register move and return
613  /// the source and dest operands and their sub-register indices by reference.
614  virtual bool isMoveInstr(const MachineInstr &MI,
615                           unsigned &SrcReg, unsigned &DstReg,
616                           unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
617
618  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
619  /// extension instruction. That is, it's like a copy where it's legal for the
620  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
621  /// true, then it's expected the pre-extension value is available as a subreg
622  /// of the result register. This also returns the sub-register index in
623  /// SubIdx.
624  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
625                                     unsigned &SrcReg, unsigned &DstReg,
626                                     unsigned &SubIdx) const;
627
628  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
629  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
630  /// stack locations as well.  This uses a heuristic so it isn't
631  /// reliable for correctness.
632  unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
633                                     int &FrameIndex) const;
634
635  /// hasLoadFromStackSlot - If the specified machine instruction has
636  /// a load from a stack slot, return true along with the FrameIndex
637  /// of the loaded stack slot and the machine mem operand containing
638  /// the reference.  If not, return false.  Unlike
639  /// isLoadFromStackSlot, this returns true for any instructions that
640  /// loads from the stack.  This is a hint only and may not catch all
641  /// cases.
642  bool hasLoadFromStackSlot(const MachineInstr *MI,
643                            const MachineMemOperand *&MMO,
644                            int &FrameIndex) const;
645
646  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
647  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
648  /// stack locations as well.  This uses a heuristic so it isn't
649  /// reliable for correctness.
650  unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
651                                    int &FrameIndex) const;
652
653  /// hasStoreToStackSlot - If the specified machine instruction has a
654  /// store to a stack slot, return true along with the FrameIndex of
655  /// the loaded stack slot and the machine mem operand containing the
656  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
657  /// this returns true for any instructions that loads from the
658  /// stack.  This is a hint only and may not catch all cases.
659  bool hasStoreToStackSlot(const MachineInstr *MI,
660                           const MachineMemOperand *&MMO,
661                           int &FrameIndex) const;
662
663  bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
664                                         AliasAnalysis *AA) const;
665  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
666                     unsigned DestReg, unsigned SubIdx,
667                     const MachineInstr *Orig,
668                     const TargetRegisterInfo &TRI) const;
669
670  /// convertToThreeAddress - This method must be implemented by targets that
671  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
672  /// may be able to convert a two-address instruction into a true
673  /// three-address instruction on demand.  This allows the X86 target (for
674  /// example) to convert ADD and SHL instructions into LEA instructions if they
675  /// would require register copies due to two-addressness.
676  ///
677  /// This method returns a null pointer if the transformation cannot be
678  /// performed, otherwise it returns the new instruction.
679  ///
680  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
681                                              MachineBasicBlock::iterator &MBBI,
682                                              LiveVariables *LV) const;
683
684  /// commuteInstruction - We have a few instructions that must be hacked on to
685  /// commute them.
686  ///
687  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
688
689  // Branch analysis.
690  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
691  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
692                             MachineBasicBlock *&FBB,
693                             SmallVectorImpl<MachineOperand> &Cond,
694                             bool AllowModify) const;
695  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
696  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
697                                MachineBasicBlock *FBB,
698                                const SmallVectorImpl<MachineOperand> &Cond,
699                                DebugLoc DL) const;
700  virtual bool copyRegToReg(MachineBasicBlock &MBB,
701                            MachineBasicBlock::iterator MI,
702                            unsigned DestReg, unsigned SrcReg,
703                            const TargetRegisterClass *DestRC,
704                            const TargetRegisterClass *SrcRC,
705                            DebugLoc DL) const;
706  virtual void copyPhysReg(MachineBasicBlock &MBB,
707                           MachineBasicBlock::iterator MI, DebugLoc DL,
708                           unsigned DestReg, unsigned SrcReg,
709                           bool KillSrc) const;
710  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
711                                   MachineBasicBlock::iterator MI,
712                                   unsigned SrcReg, bool isKill, int FrameIndex,
713                                   const TargetRegisterClass *RC,
714                                   const TargetRegisterInfo *TRI) const;
715
716  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
717                              SmallVectorImpl<MachineOperand> &Addr,
718                              const TargetRegisterClass *RC,
719                              MachineInstr::mmo_iterator MMOBegin,
720                              MachineInstr::mmo_iterator MMOEnd,
721                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
722
723  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
724                                    MachineBasicBlock::iterator MI,
725                                    unsigned DestReg, int FrameIndex,
726                                    const TargetRegisterClass *RC,
727                                    const TargetRegisterInfo *TRI) const;
728
729  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
730                               SmallVectorImpl<MachineOperand> &Addr,
731                               const TargetRegisterClass *RC,
732                               MachineInstr::mmo_iterator MMOBegin,
733                               MachineInstr::mmo_iterator MMOEnd,
734                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
735
736  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
737                                         MachineBasicBlock::iterator MI,
738                                        const std::vector<CalleeSavedInfo> &CSI,
739                                         const TargetRegisterInfo *TRI) const;
740
741  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
742                                           MachineBasicBlock::iterator MI,
743                                        const std::vector<CalleeSavedInfo> &CSI,
744                                           const TargetRegisterInfo *TRI) const;
745
746  virtual
747  MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
748                                         int FrameIx, uint64_t Offset,
749                                         const MDNode *MDPtr,
750                                         DebugLoc DL) const;
751
752  /// foldMemoryOperand - If this target supports it, fold a load or store of
753  /// the specified stack slot into the specified machine instruction for the
754  /// specified operand(s).  If this is possible, the target should perform the
755  /// folding and return true, otherwise it should return false.  If it folds
756  /// the instruction, it is likely that the MachineInstruction the iterator
757  /// references has been changed.
758  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
759                                              MachineInstr* MI,
760                                           const SmallVectorImpl<unsigned> &Ops,
761                                              int FrameIndex) const;
762
763  /// foldMemoryOperand - Same as the previous version except it allows folding
764  /// of any load and store from / to any address, not just from a specific
765  /// stack slot.
766  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
767                                              MachineInstr* MI,
768                                           const SmallVectorImpl<unsigned> &Ops,
769                                              MachineInstr* LoadMI) const;
770
771  /// canFoldMemoryOperand - Returns true if the specified load / store is
772  /// folding is possible.
773  virtual bool canFoldMemoryOperand(const MachineInstr*,
774                                    const SmallVectorImpl<unsigned> &) const;
775
776  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
777  /// a store or a load and a store into two or more instruction. If this is
778  /// possible, returns true as well as the new instructions by reference.
779  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
780                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
781                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
782
783  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
784                           SmallVectorImpl<SDNode*> &NewNodes) const;
785
786  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
787  /// instruction after load / store are unfolded from an instruction of the
788  /// specified opcode. It returns zero if the specified unfolding is not
789  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
790  /// index of the operand which will hold the register holding the loaded
791  /// value.
792  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
793                                      bool UnfoldLoad, bool UnfoldStore,
794                                      unsigned *LoadRegIndex = 0) const;
795
796  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
797  /// to determine if two loads are loading from the same base address. It
798  /// should only return true if the base pointers are the same and the
799  /// only differences between the two addresses are the offset. It also returns
800  /// the offsets by reference.
801  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
802                                       int64_t &Offset1, int64_t &Offset2) const;
803
804  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
805  /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
806  /// be scheduled togther. On some targets if two loads are loading from
807  /// addresses in the same cache line, it's better if they are scheduled
808  /// together. This function takes two integers that represent the load offsets
809  /// from the common base address. It returns true if it decides it's desirable
810  /// to schedule the two loads together. "NumLoads" is the number of loads that
811  /// have already been scheduled after Load1.
812  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
813                                       int64_t Offset1, int64_t Offset2,
814                                       unsigned NumLoads) const;
815
816  virtual void getNoopForMachoTarget(MCInst &NopInst) const;
817
818  virtual
819  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
820
821  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
822  /// instruction that defines the specified register class.
823  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
824
825  static bool isX86_64NonExtLowByteReg(unsigned reg) {
826    return (reg == X86::SPL || reg == X86::BPL ||
827          reg == X86::SIL || reg == X86::DIL);
828  }
829
830  static bool isX86_64ExtendedReg(const MachineOperand &MO) {
831    if (!MO.isReg()) return false;
832    return isX86_64ExtendedReg(MO.getReg());
833  }
834  static unsigned determineREX(const MachineInstr &MI);
835
836  /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
837  /// higher) register?  e.g. r8, xmm8, xmm13, etc.
838  static bool isX86_64ExtendedReg(unsigned RegNo);
839
840  /// GetInstSize - Returns the size of the specified MachineInstr.
841  ///
842  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
843
844  /// getGlobalBaseReg - Return a virtual register initialized with the
845  /// the global base register value. Output instructions required to
846  /// initialize the register in the function entry block, if necessary.
847  ///
848  unsigned getGlobalBaseReg(MachineFunction *MF) const;
849
850  /// GetSSEDomain - Return the SSE execution domain of MI as the first element,
851  /// and a bitmask of possible arguments to SetSSEDomain ase the second.
852  std::pair<uint16_t, uint16_t> GetSSEDomain(const MachineInstr *MI) const;
853
854  /// SetSSEDomain - Set the SSEDomain of MI.
855  void SetSSEDomain(MachineInstr *MI, unsigned Domain) const;
856
857private:
858  MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
859                                              MachineFunction::iterator &MFI,
860                                              MachineBasicBlock::iterator &MBBI,
861                                              LiveVariables *LV) const;
862
863  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
864                                     MachineInstr* MI,
865                                     unsigned OpNum,
866                                     const SmallVectorImpl<MachineOperand> &MOs,
867                                     unsigned Size, unsigned Alignment) const;
868
869  /// isFrameOperand - Return true and the FrameIndex if the specified
870  /// operand and follow operands form a reference to the stack frame.
871  bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
872                      int &FrameIndex) const;
873};
874
875} // End llvm namespace
876
877#endif
878