X86InstrInfo.h revision ac5e887a6cf0a6182664d8c11beb0d2270272b02
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86.h"
19#include "X86RegisterInfo.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22
23namespace llvm {
24  class X86RegisterInfo;
25  class X86TargetMachine;
26
27namespace X86 {
28  // X86 specific condition code. These correspond to X86_*_COND in
29  // X86InstrInfo.td. They must be kept in synch.
30  enum CondCode {
31    COND_A  = 0,
32    COND_AE = 1,
33    COND_B  = 2,
34    COND_BE = 3,
35    COND_E  = 4,
36    COND_G  = 5,
37    COND_GE = 6,
38    COND_L  = 7,
39    COND_LE = 8,
40    COND_NE = 9,
41    COND_NO = 10,
42    COND_NP = 11,
43    COND_NS = 12,
44    COND_O  = 13,
45    COND_P  = 14,
46    COND_S  = 15,
47
48    // Artificial condition codes. These are used by AnalyzeBranch
49    // to indicate a block terminated with two conditional branches to
50    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
51    // which can't be represented on x86 with a single condition. These
52    // are never used in MachineInstrs.
53    COND_NE_OR_P,
54    COND_NP_OR_E,
55
56    COND_INVALID
57  };
58
59  // Turn condition code into conditional branch opcode.
60  unsigned GetCondBranchFromCond(CondCode CC);
61
62  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63  /// e.g. turning COND_E to COND_NE.
64  CondCode GetOppositeBranchCondition(X86::CondCode CC);
65
66}
67
68/// X86II - This namespace holds all of the target specific flags that
69/// instruction info tracks.
70///
71namespace X86II {
72  enum {
73    //===------------------------------------------------------------------===//
74    // X86 Specific MachineOperand flags.
75
76    MO_NO_FLAG = 0,
77
78    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
79    /// relocation of:
80    ///    $SYMBOL_LABEL + [. - PICBASELABEL]
81    MO_GOT_ABSOLUTE_ADDRESS = 1,
82
83
84    //===------------------------------------------------------------------===//
85    // Instruction encodings.  These are the standard/most common forms for X86
86    // instructions.
87    //
88
89    // PseudoFrm - This represents an instruction that is a pseudo instruction
90    // or one that has not been implemented yet.  It is illegal to code generate
91    // it, but tolerated for intermediate implementation stages.
92    Pseudo         = 0,
93
94    /// Raw - This form is for instructions that don't have any operands, so
95    /// they are just a fixed opcode value, like 'leave'.
96    RawFrm         = 1,
97
98    /// AddRegFrm - This form is used for instructions like 'push r32' that have
99    /// their one register operand added to their opcode.
100    AddRegFrm      = 2,
101
102    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
103    /// to specify a destination, which in this case is a register.
104    ///
105    MRMDestReg     = 3,
106
107    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
108    /// to specify a destination, which in this case is memory.
109    ///
110    MRMDestMem     = 4,
111
112    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
113    /// to specify a source, which in this case is a register.
114    ///
115    MRMSrcReg      = 5,
116
117    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
118    /// to specify a source, which in this case is memory.
119    ///
120    MRMSrcMem      = 6,
121
122    /// MRM[0-7][rm] - These forms are used to represent instructions that use
123    /// a Mod/RM byte, and use the middle field to hold extended opcode
124    /// information.  In the intel manual these are represented as /0, /1, ...
125    ///
126
127    // First, instructions that operate on a register r/m operand...
128    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
129    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
130
131    // Next, instructions that operate on a memory r/m operand...
132    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
133    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
134
135    // MRMInitReg - This form is used for instructions whose source and
136    // destinations are the same register.
137    MRMInitReg = 32,
138
139    FormMask       = 63,
140
141    //===------------------------------------------------------------------===//
142    // Actual flags...
143
144    // OpSize - Set if this instruction requires an operand size prefix (0x66),
145    // which most often indicates that the instruction operates on 16 bit data
146    // instead of 32 bit data.
147    OpSize      = 1 << 6,
148
149    // AsSize - Set if this instruction requires an operand size prefix (0x67),
150    // which most often indicates that the instruction address 16 bit address
151    // instead of 32 bit address (or 32 bit address in 64 bit mode).
152    AdSize      = 1 << 7,
153
154    //===------------------------------------------------------------------===//
155    // Op0Mask - There are several prefix bytes that are used to form two byte
156    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
157    // used to obtain the setting of this field.  If no bits in this field is
158    // set, there is no prefix byte for obtaining a multibyte opcode.
159    //
160    Op0Shift    = 8,
161    Op0Mask     = 0xF << Op0Shift,
162
163    // TB - TwoByte - Set if this instruction has a two byte opcode, which
164    // starts with a 0x0F byte before the real opcode.
165    TB          = 1 << Op0Shift,
166
167    // REP - The 0xF3 prefix byte indicating repetition of the following
168    // instruction.
169    REP         = 2 << Op0Shift,
170
171    // D8-DF - These escape opcodes are used by the floating point unit.  These
172    // values must remain sequential.
173    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
174    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
175    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
176    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
177
178    // XS, XD - These prefix codes are for single and double precision scalar
179    // floating point operations performed in the SSE registers.
180    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
181
182    // T8, TA - Prefix after the 0x0F prefix.
183    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
184
185    //===------------------------------------------------------------------===//
186    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
187    // They are used to specify GPRs and SSE registers, 64-bit operand size,
188    // etc. We only cares about REX.W and REX.R bits and only the former is
189    // statically determined.
190    //
191    REXShift    = 12,
192    REX_W       = 1 << REXShift,
193
194    //===------------------------------------------------------------------===//
195    // This three-bit field describes the size of an immediate operand.  Zero is
196    // unused so that we can tell if we forgot to set a value.
197    ImmShift = 13,
198    ImmMask  = 7 << ImmShift,
199    Imm8     = 1 << ImmShift,
200    Imm16    = 2 << ImmShift,
201    Imm32    = 3 << ImmShift,
202    Imm64    = 4 << ImmShift,
203
204    //===------------------------------------------------------------------===//
205    // FP Instruction Classification...  Zero is non-fp instruction.
206
207    // FPTypeMask - Mask for all of the FP types...
208    FPTypeShift = 16,
209    FPTypeMask  = 7 << FPTypeShift,
210
211    // NotFP - The default, set for instructions that do not use FP registers.
212    NotFP      = 0 << FPTypeShift,
213
214    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
215    ZeroArgFP  = 1 << FPTypeShift,
216
217    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
218    OneArgFP   = 2 << FPTypeShift,
219
220    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
221    // result back to ST(0).  For example, fcos, fsqrt, etc.
222    //
223    OneArgFPRW = 3 << FPTypeShift,
224
225    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
226    // explicit argument, storing the result to either ST(0) or the implicit
227    // argument.  For example: fadd, fsub, fmul, etc...
228    TwoArgFP   = 4 << FPTypeShift,
229
230    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
231    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
232    CompareFP  = 5 << FPTypeShift,
233
234    // CondMovFP - "2 operand" floating point conditional move instructions.
235    CondMovFP  = 6 << FPTypeShift,
236
237    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
238    SpecialFP  = 7 << FPTypeShift,
239
240    // Lock prefix
241    LOCKShift = 19,
242    LOCK = 1 << LOCKShift,
243
244    // Segment override prefixes. Currently we just need ability to address
245    // stuff in gs and fs segments.
246    SegOvrShift = 20,
247    SegOvrMask  = 3 << SegOvrShift,
248    FS          = 1 << SegOvrShift,
249    GS          = 2 << SegOvrShift,
250
251    // Bits 22 -> 23 are unused
252    OpcodeShift   = 24,
253    OpcodeMask    = 0xFF << OpcodeShift
254  };
255}
256
257const int X86AddrNumOperands = 5;
258
259inline static bool isScale(const MachineOperand &MO) {
260  return MO.isImm() &&
261    (MO.getImm() == 1 || MO.getImm() == 2 ||
262     MO.getImm() == 4 || MO.getImm() == 8);
263}
264
265inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
266  if (MI->getOperand(Op).isFI()) return true;
267  return Op+4 <= MI->getNumOperands() &&
268    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
269    MI->getOperand(Op+2).isReg() &&
270    (MI->getOperand(Op+3).isImm() ||
271     MI->getOperand(Op+3).isGlobal() ||
272     MI->getOperand(Op+3).isCPI() ||
273     MI->getOperand(Op+3).isJTI());
274}
275
276inline static bool isMem(const MachineInstr *MI, unsigned Op) {
277  if (MI->getOperand(Op).isFI()) return true;
278  return Op+5 <= MI->getNumOperands() &&
279    MI->getOperand(Op+4).isReg() &&
280    isLeaMem(MI, Op);
281}
282
283class X86InstrInfo : public TargetInstrInfoImpl {
284  X86TargetMachine &TM;
285  const X86RegisterInfo RI;
286
287  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
288  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
289  ///
290  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
291  DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
292  DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
293  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
294
295  /// MemOp2RegOpTable - Load / store unfolding opcode map.
296  ///
297  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
298
299public:
300  explicit X86InstrInfo(X86TargetMachine &tm);
301
302  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
303  /// such, whenever a client has an instance of instruction info, it should
304  /// always be able to get register info as well (through this method).
305  ///
306  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
307
308  /// Return true if the instruction is a register to register move and return
309  /// the source and dest operands and their sub-register indices by reference.
310  virtual bool isMoveInstr(const MachineInstr &MI,
311                           unsigned &SrcReg, unsigned &DstReg,
312                           unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
313
314  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
315  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
316
317  bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
318  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
319                     unsigned DestReg, const MachineInstr *Orig) const;
320
321  bool isInvariantLoad(const MachineInstr *MI) const;
322
323  /// convertToThreeAddress - This method must be implemented by targets that
324  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
325  /// may be able to convert a two-address instruction into a true
326  /// three-address instruction on demand.  This allows the X86 target (for
327  /// example) to convert ADD and SHL instructions into LEA instructions if they
328  /// would require register copies due to two-addressness.
329  ///
330  /// This method returns a null pointer if the transformation cannot be
331  /// performed, otherwise it returns the new instruction.
332  ///
333  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
334                                              MachineBasicBlock::iterator &MBBI,
335                                              LiveVariables *LV) const;
336
337  /// commuteInstruction - We have a few instructions that must be hacked on to
338  /// commute them.
339  ///
340  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
341
342  // Branch analysis.
343  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
344  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
345                             MachineBasicBlock *&FBB,
346                             SmallVectorImpl<MachineOperand> &Cond,
347                             bool AllowModify) const;
348  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
349  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
350                                MachineBasicBlock *FBB,
351                            const SmallVectorImpl<MachineOperand> &Cond) const;
352  virtual bool copyRegToReg(MachineBasicBlock &MBB,
353                            MachineBasicBlock::iterator MI,
354                            unsigned DestReg, unsigned SrcReg,
355                            const TargetRegisterClass *DestRC,
356                            const TargetRegisterClass *SrcRC) const;
357  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
358                                   MachineBasicBlock::iterator MI,
359                                   unsigned SrcReg, bool isKill, int FrameIndex,
360                                   const TargetRegisterClass *RC) const;
361
362  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
363                              SmallVectorImpl<MachineOperand> &Addr,
364                              const TargetRegisterClass *RC,
365                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
366
367  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
368                                    MachineBasicBlock::iterator MI,
369                                    unsigned DestReg, int FrameIndex,
370                                    const TargetRegisterClass *RC) const;
371
372  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
373                               SmallVectorImpl<MachineOperand> &Addr,
374                               const TargetRegisterClass *RC,
375                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
376
377  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
378                                         MachineBasicBlock::iterator MI,
379                                 const std::vector<CalleeSavedInfo> &CSI) const;
380
381  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
382                                           MachineBasicBlock::iterator MI,
383                                 const std::vector<CalleeSavedInfo> &CSI) const;
384
385  /// foldMemoryOperand - If this target supports it, fold a load or store of
386  /// the specified stack slot into the specified machine instruction for the
387  /// specified operand(s).  If this is possible, the target should perform the
388  /// folding and return true, otherwise it should return false.  If it folds
389  /// the instruction, it is likely that the MachineInstruction the iterator
390  /// references has been changed.
391  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
392                                              MachineInstr* MI,
393                                           const SmallVectorImpl<unsigned> &Ops,
394                                              int FrameIndex) const;
395
396  /// foldMemoryOperand - Same as the previous version except it allows folding
397  /// of any load and store from / to any address, not just from a specific
398  /// stack slot.
399  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
400                                              MachineInstr* MI,
401                                           const SmallVectorImpl<unsigned> &Ops,
402                                              MachineInstr* LoadMI) const;
403
404  /// canFoldMemoryOperand - Returns true if the specified load / store is
405  /// folding is possible.
406  virtual bool canFoldMemoryOperand(const MachineInstr*,
407                                    const SmallVectorImpl<unsigned> &) const;
408
409  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
410  /// a store or a load and a store into two or more instruction. If this is
411  /// possible, returns true as well as the new instructions by reference.
412  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
413                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
414                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
415
416  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
417                           SmallVectorImpl<SDNode*> &NewNodes) const;
418
419  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
420  /// instruction after load / store are unfolded from an instruction of the
421  /// specified opcode. It returns zero if the specified unfolding is not
422  /// possible.
423  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
424                                      bool UnfoldLoad, bool UnfoldStore) const;
425
426  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
427  virtual
428  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
429
430  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
431  /// instruction that defines the specified register class.
432  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
433
434  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
435  // specified machine instruction.
436  //
437  unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
438    return TID->TSFlags >> X86II::OpcodeShift;
439  }
440  unsigned char getBaseOpcodeFor(unsigned Opcode) const {
441    return getBaseOpcodeFor(&get(Opcode));
442  }
443
444  static bool isX86_64NonExtLowByteReg(unsigned reg) {
445    return (reg == X86::SPL || reg == X86::BPL ||
446          reg == X86::SIL || reg == X86::DIL);
447  }
448
449  static unsigned sizeOfImm(const TargetInstrDesc *Desc);
450  static bool isX86_64ExtendedReg(const MachineOperand &MO);
451  static unsigned determineREX(const MachineInstr &MI);
452
453  /// GetInstSize - Returns the size of the specified MachineInstr.
454  ///
455  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
456
457  /// getGlobalBaseReg - Return a virtual register initialized with the
458  /// the global base register value. Output instructions required to
459  /// initialize the register in the function entry block, if necessary.
460  ///
461  unsigned getGlobalBaseReg(MachineFunction *MF) const;
462
463private:
464  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
465                                      MachineInstr* MI,
466                                      unsigned OpNum,
467                                      const SmallVectorImpl<MachineOperand> &MOs) const;
468};
469
470} // End llvm namespace
471
472#endif
473