X86InstrInfo.h revision bb1ee05253d965e0944351a21e9970c02b1aebfe
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86RegisterInfo.h"
19
20namespace llvm {
21  class X86RegisterInfo;
22  class X86TargetMachine;
23
24namespace X86 {
25  // X86 specific condition code. These correspond to X86_*_COND in
26  // X86InstrInfo.td. They must be kept in synch.
27  enum CondCode {
28    COND_A  = 0,
29    COND_AE = 1,
30    COND_B  = 2,
31    COND_BE = 3,
32    COND_E  = 4,
33    COND_G  = 5,
34    COND_GE = 6,
35    COND_L  = 7,
36    COND_LE = 8,
37    COND_NE = 9,
38    COND_NO = 10,
39    COND_NP = 11,
40    COND_NS = 12,
41    COND_O  = 13,
42    COND_P  = 14,
43    COND_S  = 15,
44    COND_INVALID
45  };
46
47  // Turn condition code into conditional branch opcode.
48  unsigned GetCondBranchFromCond(CondCode CC);
49
50  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
51  /// e.g. turning COND_E to COND_NE.
52  CondCode GetOppositeBranchCondition(X86::CondCode CC);
53
54}
55
56/// X86II - This namespace holds all of the target specific flags that
57/// instruction info tracks.
58///
59namespace X86II {
60  enum {
61    //===------------------------------------------------------------------===//
62    // Instruction types.  These are the standard/most common forms for X86
63    // instructions.
64    //
65
66    // PseudoFrm - This represents an instruction that is a pseudo instruction
67    // or one that has not been implemented yet.  It is illegal to code generate
68    // it, but tolerated for intermediate implementation stages.
69    Pseudo         = 0,
70
71    /// Raw - This form is for instructions that don't have any operands, so
72    /// they are just a fixed opcode value, like 'leave'.
73    RawFrm         = 1,
74
75    /// AddRegFrm - This form is used for instructions like 'push r32' that have
76    /// their one register operand added to their opcode.
77    AddRegFrm      = 2,
78
79    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
80    /// to specify a destination, which in this case is a register.
81    ///
82    MRMDestReg     = 3,
83
84    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
85    /// to specify a destination, which in this case is memory.
86    ///
87    MRMDestMem     = 4,
88
89    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
90    /// to specify a source, which in this case is a register.
91    ///
92    MRMSrcReg      = 5,
93
94    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
95    /// to specify a source, which in this case is memory.
96    ///
97    MRMSrcMem      = 6,
98
99    /// MRM[0-7][rm] - These forms are used to represent instructions that use
100    /// a Mod/RM byte, and use the middle field to hold extended opcode
101    /// information.  In the intel manual these are represented as /0, /1, ...
102    ///
103
104    // First, instructions that operate on a register r/m operand...
105    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
106    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
107
108    // Next, instructions that operate on a memory r/m operand...
109    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
110    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
111
112    // MRMInitReg - This form is used for instructions whose source and
113    // destinations are the same register.
114    MRMInitReg = 32,
115
116    FormMask       = 63,
117
118    //===------------------------------------------------------------------===//
119    // Actual flags...
120
121    // OpSize - Set if this instruction requires an operand size prefix (0x66),
122    // which most often indicates that the instruction operates on 16 bit data
123    // instead of 32 bit data.
124    OpSize      = 1 << 6,
125
126    // AsSize - Set if this instruction requires an operand size prefix (0x67),
127    // which most often indicates that the instruction address 16 bit address
128    // instead of 32 bit address (or 32 bit address in 64 bit mode).
129    AdSize      = 1 << 7,
130
131    //===------------------------------------------------------------------===//
132    // Op0Mask - There are several prefix bytes that are used to form two byte
133    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
134    // used to obtain the setting of this field.  If no bits in this field is
135    // set, there is no prefix byte for obtaining a multibyte opcode.
136    //
137    Op0Shift    = 8,
138    Op0Mask     = 0xF << Op0Shift,
139
140    // TB - TwoByte - Set if this instruction has a two byte opcode, which
141    // starts with a 0x0F byte before the real opcode.
142    TB          = 1 << Op0Shift,
143
144    // REP - The 0xF3 prefix byte indicating repetition of the following
145    // instruction.
146    REP         = 2 << Op0Shift,
147
148    // D8-DF - These escape opcodes are used by the floating point unit.  These
149    // values must remain sequential.
150    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
151    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
152    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
153    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
154
155    // XS, XD - These prefix codes are for single and double precision scalar
156    // floating point operations performed in the SSE registers.
157    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
158
159    // T8, TA - Prefix after the 0x0F prefix.
160    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
161
162    //===------------------------------------------------------------------===//
163    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
164    // They are used to specify GPRs and SSE registers, 64-bit operand size,
165    // etc. We only cares about REX.W and REX.R bits and only the former is
166    // statically determined.
167    //
168    REXShift    = 12,
169    REX_W       = 1 << REXShift,
170
171    //===------------------------------------------------------------------===//
172    // This three-bit field describes the size of an immediate operand.  Zero is
173    // unused so that we can tell if we forgot to set a value.
174    ImmShift = 13,
175    ImmMask  = 7 << ImmShift,
176    Imm8     = 1 << ImmShift,
177    Imm16    = 2 << ImmShift,
178    Imm32    = 3 << ImmShift,
179    Imm64    = 4 << ImmShift,
180
181    //===------------------------------------------------------------------===//
182    // FP Instruction Classification...  Zero is non-fp instruction.
183
184    // FPTypeMask - Mask for all of the FP types...
185    FPTypeShift = 16,
186    FPTypeMask  = 7 << FPTypeShift,
187
188    // NotFP - The default, set for instructions that do not use FP registers.
189    NotFP      = 0 << FPTypeShift,
190
191    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
192    ZeroArgFP  = 1 << FPTypeShift,
193
194    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
195    OneArgFP   = 2 << FPTypeShift,
196
197    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
198    // result back to ST(0).  For example, fcos, fsqrt, etc.
199    //
200    OneArgFPRW = 3 << FPTypeShift,
201
202    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
203    // explicit argument, storing the result to either ST(0) or the implicit
204    // argument.  For example: fadd, fsub, fmul, etc...
205    TwoArgFP   = 4 << FPTypeShift,
206
207    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
208    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
209    CompareFP  = 5 << FPTypeShift,
210
211    // CondMovFP - "2 operand" floating point conditional move instructions.
212    CondMovFP  = 6 << FPTypeShift,
213
214    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
215    SpecialFP  = 7 << FPTypeShift,
216
217    // Bits 19 -> 23 are unused
218    OpcodeShift   = 24,
219    OpcodeMask    = 0xFF << OpcodeShift
220  };
221}
222
223class X86InstrInfo : public TargetInstrInfo {
224  X86TargetMachine &TM;
225  const X86RegisterInfo RI;
226public:
227  X86InstrInfo(X86TargetMachine &tm);
228
229  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
230  /// such, whenever a client has an instance of instruction info, it should
231  /// always be able to get register info as well (through this method).
232  ///
233  virtual const MRegisterInfo &getRegisterInfo() const { return RI; }
234
235  // Return true if the instruction is a register to register move and
236  // leave the source and dest operands in the passed parameters.
237  //
238  bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg,
239                   unsigned& destReg) const;
240  unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const;
241  unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const;
242
243  /// convertToThreeAddress - This method must be implemented by targets that
244  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
245  /// may be able to convert a two-address instruction into a true
246  /// three-address instruction on demand.  This allows the X86 target (for
247  /// example) to convert ADD and SHL instructions into LEA instructions if they
248  /// would require register copies due to two-addressness.
249  ///
250  /// This method returns a null pointer if the transformation cannot be
251  /// performed, otherwise it returns the new instruction.
252  ///
253  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
254                                              MachineBasicBlock::iterator &MBBI,
255                                              LiveVariables &LV) const;
256
257  /// commuteInstruction - We have a few instructions that must be hacked on to
258  /// commute them.
259  ///
260  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
261
262  // Branch analysis.
263  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
264                             MachineBasicBlock *&FBB,
265                             std::vector<MachineOperand> &Cond) const;
266  virtual void RemoveBranch(MachineBasicBlock &MBB) const;
267  virtual void InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
268                            MachineBasicBlock *FBB,
269                            const std::vector<MachineOperand> &Cond) const;
270  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const;
271  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const;
272
273  const TargetRegisterClass *getPointerRegClass() const;
274
275  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
276  // specified opcode number.
277  //
278  unsigned char getBaseOpcodeFor(const TargetInstrDescriptor *TID) const {
279    return TID->TSFlags >> X86II::OpcodeShift;
280  }
281};
282
283} // End llvm namespace
284
285#endif
286