X86InstrInfo.h revision c3d57b179c33ef010ebbff003ce8c5d908cf9c01
12a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
22a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//
32a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//                     The LLVM Compiler Infrastructure
42a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//
52a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)// This file is distributed under the University of Illinois Open Source
62a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)// License. See LICENSE.TXT for details.
72a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//
8c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)//===----------------------------------------------------------------------===//
92a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//
102a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)// This file contains the X86 implementation of the TargetInstrInfo class.
112a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//
122a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)//===----------------------------------------------------------------------===//
132a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
142a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#ifndef X86INSTRUCTIONINFO_H
15c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)#define X86INSTRUCTIONINFO_H
162a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
177d4cd473f85ac64c3747c96c277f9e506a0d2246Torne (Richard Coles)#include "llvm/Target/TargetInstrInfo.h"
18eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch#include "X86.h"
192a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "X86RegisterInfo.h"
202a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include "llvm/ADT/DenseMap.h"
212a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
222a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)namespace llvm {
232a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  class X86RegisterInfo;
242a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  class X86TargetMachine;
252a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
262a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)namespace X86 {
272a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  // X86 specific condition code. These correspond to X86_*_COND in
282a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  // X86InstrInfo.td. They must be kept in synch.
292a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  enum CondCode {
302a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    COND_A  = 0,
312a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    COND_AE = 1,
327d4cd473f85ac64c3747c96c277f9e506a0d2246Torne (Richard Coles)    COND_B  = 2,
337d4cd473f85ac64c3747c96c277f9e506a0d2246Torne (Richard Coles)    COND_BE = 3,
342a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    COND_E  = 4,
352a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    COND_G  = 5,
367d4cd473f85ac64c3747c96c277f9e506a0d2246Torne (Richard Coles)    COND_GE = 6,
377d4cd473f85ac64c3747c96c277f9e506a0d2246Torne (Richard Coles)    COND_L  = 7,
382a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    COND_LE = 8,
392a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    COND_NE = 9,
402a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    COND_NO = 10,
412a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    COND_NP = 11,
422a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    COND_NS = 12,
432a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    COND_O  = 13,
44c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    COND_P  = 14,
452a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    COND_S  = 15,
462a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
472a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    // Artificial condition codes. These are used by AnalyzeBranch
482a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    // to indicate a block terminated with two conditional branches to
492a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
502a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    // which can't be represented on x86 with a single condition. These
512a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    // are never used in MachineInstrs.
522a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    COND_NE_OR_P,
532a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    COND_NP_OR_E,
542a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
552a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    COND_INVALID
562a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  };
572a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
582a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  // Turn condition code into conditional branch opcode.
597d4cd473f85ac64c3747c96c277f9e506a0d2246Torne (Richard Coles)  unsigned GetCondBranchFromCond(CondCode CC);
607d4cd473f85ac64c3747c96c277f9e506a0d2246Torne (Richard Coles)
617d4cd473f85ac64c3747c96c277f9e506a0d2246Torne (Richard Coles)  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
627d4cd473f85ac64c3747c96c277f9e506a0d2246Torne (Richard Coles)  /// e.g. turning COND_E to COND_NE.
637d4cd473f85ac64c3747c96c277f9e506a0d2246Torne (Richard Coles)  CondCode GetOppositeBranchCondition(X86::CondCode CC);
642a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
652a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)}
662a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
67c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)/// X86II - This namespace holds all of the target specific flags that
68c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)/// instruction info tracks.
69c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)///
70c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)namespace X86II {
712a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  /// Target Operand Flag enum.
722a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  enum TOF {
732a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    //===------------------------------------------------------------------===//
742a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    // X86 Specific MachineOperand flags.
752a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
762a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    MO_NO_FLAG,
772a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
78c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
792a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// relocation of:
802a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///    SYMBOL_LABEL + [. - PICBASELABEL]
812a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    MO_GOT_ABSOLUTE_ADDRESS,
822a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
832a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
842a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// immediate should get the value of the symbol minus the PIC base label:
857d4cd473f85ac64c3747c96c277f9e506a0d2246Torne (Richard Coles)    ///    SYMBOL_LABEL - PICBASELABEL
867d4cd473f85ac64c3747c96c277f9e506a0d2246Torne (Richard Coles)    MO_PIC_BASE_OFFSET,
877d4cd473f85ac64c3747c96c277f9e506a0d2246Torne (Richard Coles)
887d4cd473f85ac64c3747c96c277f9e506a0d2246Torne (Richard Coles)    /// MO_GOT - On a symbol operand this indicates that the immediate is the
892a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// offset to the GOT entry for the symbol name from the base of the GOT.
902a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///
912a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// See the X86-64 ELF ABI supplement for more details.
922a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///    SYMBOL_LABEL @GOT
932a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    MO_GOT,
94c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)
952a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
962a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// the offset to the location of the symbol name from the base of the GOT.
972a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///
982a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// See the X86-64 ELF ABI supplement for more details.
992a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///    SYMBOL_LABEL @GOTOFF
1002a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    MO_GOTOFF,
1012a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1022a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
1032a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// offset to the GOT entry for the symbol name from the current code
1042a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// location.
1052a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///
1062a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// See the X86-64 ELF ABI supplement for more details.
1072a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///    SYMBOL_LABEL @GOTPCREL
1082a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    MO_GOTPCREL,
1092a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1102a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// MO_PLT - On a symbol operand this indicates that the immediate is
1112a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// offset to the PLT entry of symbol name from the current code location.
1122a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///
1132a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// See the X86-64 ELF ABI supplement for more details.
1142a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///    SYMBOL_LABEL @PLT
1152a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    MO_PLT,
1162a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1172a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
1182a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// some TLS offset.
1192a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///
1202a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// See 'ELF Handling for Thread-Local Storage' for more details.
1212a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///    SYMBOL_LABEL @TLSGD
1222a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    MO_TLSGD,
1232a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1242a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
1252a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// some TLS offset.
1262a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///
1272a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// See 'ELF Handling for Thread-Local Storage' for more details.
1282a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///    SYMBOL_LABEL @GOTTPOFF
1292a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    MO_GOTTPOFF,
1302a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1312a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
1322a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// some TLS offset.
1332a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///
1342a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// See 'ELF Handling for Thread-Local Storage' for more details.
1352a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///    SYMBOL_LABEL @INDNTPOFF
1362a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    MO_INDNTPOFF,
1372a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1382a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
1392a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// some TLS offset.
1402a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///
1412a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// See 'ELF Handling for Thread-Local Storage' for more details.
1422a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///    SYMBOL_LABEL @TPOFF
1432a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    MO_TPOFF,
1442a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1452a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
1462a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// some TLS offset.
1472a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///
1482a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// See 'ELF Handling for Thread-Local Storage' for more details.
1492a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///    SYMBOL_LABEL @NTPOFF
1502a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    MO_NTPOFF,
1512a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1522a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
1532a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// reference is actually to the "__imp_FOO" symbol.  This is used for
1542a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// dllimport linkage on windows.
1552a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    MO_DLLIMPORT,
1562a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1572a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
1582a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// reference is actually to the "FOO$stub" symbol.  This is used for calls
1592a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// and jumps to external functions on Tiger and before.
1602a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    MO_DARWIN_STUB,
1612a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1622a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
1632a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
1642a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
1652a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    MO_DARWIN_NONLAZY,
1662a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1672a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
1682a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
169eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
1702a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    MO_DARWIN_NONLAZY_PIC_BASE,
1712a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1722a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
1732a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
1742a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
175c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    /// stub.
176c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
177c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)
178c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    /// MO_TLVP - On a symbol operand this indicates that the immediate is
179c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    /// some TLS offset.
180c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    ///
181c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    /// This is the TLS offset for the Darwin TLS mechanism.
182c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    MO_TLVP,
1832a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
1842a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
1852a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// is some TLS offset from the picbase.
1862a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    ///
1872a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
1882a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    MO_TLVP_PIC_BASE
1892a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  };
1902a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)}
1917d4cd473f85ac64c3747c96c277f9e506a0d2246Torne (Richard Coles)
1927d4cd473f85ac64c3747c96c277f9e506a0d2246Torne (Richard Coles)/// isGlobalStubReference - Return true if the specified TargetFlag operand is
1932a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// a reference to a stub for a global, not the global itself.
1942a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)inline static bool isGlobalStubReference(unsigned char TargetFlag) {
1952a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  switch (TargetFlag) {
1962a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  case X86II::MO_DLLIMPORT: // dllimport stub.
1972a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
1982a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  case X86II::MO_GOT:       // normal GOT reference.
1992a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
2002a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
2012a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
2022a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    return true;
2032a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  default:
2042a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    return false;
2052a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  }
2062a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)}
207eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch
2082a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// isGlobalRelativeToPICBase - Return true if the specified global value
2092a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
2102a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
2112a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
212c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  switch (TargetFlag) {
213c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
214c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  case X86II::MO_GOT:                            // isPICStyleGOT: other global.
215c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
216c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
217c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
218c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  case X86II::MO_TLVP:                           // ??? Pretty sure..
219c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    return true;
220c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  default:
221c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    return false;
222c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  }
223c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)}
2242a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
2252a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// X86II - This namespace holds all of the target specific flags that
2262a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)/// instruction info tracks.
227///
228namespace X86II {
229  enum {
230    //===------------------------------------------------------------------===//
231    // Instruction encodings.  These are the standard/most common forms for X86
232    // instructions.
233    //
234
235    // PseudoFrm - This represents an instruction that is a pseudo instruction
236    // or one that has not been implemented yet.  It is illegal to code generate
237    // it, but tolerated for intermediate implementation stages.
238    Pseudo         = 0,
239
240    /// Raw - This form is for instructions that don't have any operands, so
241    /// they are just a fixed opcode value, like 'leave'.
242    RawFrm         = 1,
243
244    /// AddRegFrm - This form is used for instructions like 'push r32' that have
245    /// their one register operand added to their opcode.
246    AddRegFrm      = 2,
247
248    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
249    /// to specify a destination, which in this case is a register.
250    ///
251    MRMDestReg     = 3,
252
253    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
254    /// to specify a destination, which in this case is memory.
255    ///
256    MRMDestMem     = 4,
257
258    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
259    /// to specify a source, which in this case is a register.
260    ///
261    MRMSrcReg      = 5,
262
263    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
264    /// to specify a source, which in this case is memory.
265    ///
266    MRMSrcMem      = 6,
267
268    /// MRM[0-7][rm] - These forms are used to represent instructions that use
269    /// a Mod/RM byte, and use the middle field to hold extended opcode
270    /// information.  In the intel manual these are represented as /0, /1, ...
271    ///
272
273    // First, instructions that operate on a register r/m operand...
274    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
275    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
276
277    // Next, instructions that operate on a memory r/m operand...
278    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
279    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
280
281    // MRMInitReg - This form is used for instructions whose source and
282    // destinations are the same register.
283    MRMInitReg = 32,
284
285    //// MRM_C1 - A mod/rm byte of exactly 0xC1.
286    MRM_C1 = 33,
287    MRM_C2 = 34,
288    MRM_C3 = 35,
289    MRM_C4 = 36,
290    MRM_C8 = 37,
291    MRM_C9 = 38,
292    MRM_E8 = 39,
293    MRM_F0 = 40,
294    MRM_F8 = 41,
295    MRM_F9 = 42,
296
297    FormMask       = 63,
298
299    //===------------------------------------------------------------------===//
300    // Actual flags...
301
302    // OpSize - Set if this instruction requires an operand size prefix (0x66),
303    // which most often indicates that the instruction operates on 16 bit data
304    // instead of 32 bit data.
305    OpSize      = 1 << 6,
306
307    // AsSize - Set if this instruction requires an operand size prefix (0x67),
308    // which most often indicates that the instruction address 16 bit address
309    // instead of 32 bit address (or 32 bit address in 64 bit mode).
310    AdSize      = 1 << 7,
311
312    //===------------------------------------------------------------------===//
313    // Op0Mask - There are several prefix bytes that are used to form two byte
314    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
315    // used to obtain the setting of this field.  If no bits in this field is
316    // set, there is no prefix byte for obtaining a multibyte opcode.
317    //
318    Op0Shift    = 8,
319    Op0Mask     = 0xF << Op0Shift,
320
321    // TB - TwoByte - Set if this instruction has a two byte opcode, which
322    // starts with a 0x0F byte before the real opcode.
323    TB          = 1 << Op0Shift,
324
325    // REP - The 0xF3 prefix byte indicating repetition of the following
326    // instruction.
327    REP         = 2 << Op0Shift,
328
329    // D8-DF - These escape opcodes are used by the floating point unit.  These
330    // values must remain sequential.
331    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
332    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
333    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
334    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
335
336    // XS, XD - These prefix codes are for single and double precision scalar
337    // floating point operations performed in the SSE registers.
338    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
339
340    // T8, TA - Prefix after the 0x0F prefix.
341    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
342
343    // TF - Prefix before and after 0x0F
344    TF = 15 << Op0Shift,
345
346    //===------------------------------------------------------------------===//
347    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
348    // They are used to specify GPRs and SSE registers, 64-bit operand size,
349    // etc. We only cares about REX.W and REX.R bits and only the former is
350    // statically determined.
351    //
352    REXShift    = 12,
353    REX_W       = 1 << REXShift,
354
355    //===------------------------------------------------------------------===//
356    // This three-bit field describes the size of an immediate operand.  Zero is
357    // unused so that we can tell if we forgot to set a value.
358    ImmShift = 13,
359    ImmMask    = 7 << ImmShift,
360    Imm8       = 1 << ImmShift,
361    Imm8PCRel  = 2 << ImmShift,
362    Imm16      = 3 << ImmShift,
363    Imm32      = 4 << ImmShift,
364    Imm32PCRel = 5 << ImmShift,
365    Imm64      = 6 << ImmShift,
366
367    //===------------------------------------------------------------------===//
368    // FP Instruction Classification...  Zero is non-fp instruction.
369
370    // FPTypeMask - Mask for all of the FP types...
371    FPTypeShift = 16,
372    FPTypeMask  = 7 << FPTypeShift,
373
374    // NotFP - The default, set for instructions that do not use FP registers.
375    NotFP      = 0 << FPTypeShift,
376
377    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
378    ZeroArgFP  = 1 << FPTypeShift,
379
380    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
381    OneArgFP   = 2 << FPTypeShift,
382
383    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
384    // result back to ST(0).  For example, fcos, fsqrt, etc.
385    //
386    OneArgFPRW = 3 << FPTypeShift,
387
388    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
389    // explicit argument, storing the result to either ST(0) or the implicit
390    // argument.  For example: fadd, fsub, fmul, etc...
391    TwoArgFP   = 4 << FPTypeShift,
392
393    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
394    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
395    CompareFP  = 5 << FPTypeShift,
396
397    // CondMovFP - "2 operand" floating point conditional move instructions.
398    CondMovFP  = 6 << FPTypeShift,
399
400    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
401    SpecialFP  = 7 << FPTypeShift,
402
403    // Lock prefix
404    LOCKShift = 19,
405    LOCK = 1 << LOCKShift,
406
407    // Segment override prefixes. Currently we just need ability to address
408    // stuff in gs and fs segments.
409    SegOvrShift = 20,
410    SegOvrMask  = 3 << SegOvrShift,
411    FS          = 1 << SegOvrShift,
412    GS          = 2 << SegOvrShift,
413
414    // Execution domain for SSE instructions in bits 22, 23.
415    // 0 in bits 22-23 means normal, non-SSE instruction.
416    SSEDomainShift = 22,
417
418    OpcodeShift   = 24,
419    OpcodeMask    = 0xFF << OpcodeShift
420
421  };
422
423  // FIXME: The enum opcode space is over and more bits are needed. Anywhere
424  // those enums below are used, TSFlags must be shifted right by 32 first.
425  enum {
426    //===------------------------------------------------------------------===//
427    // VEXPrefix - VEX prefixes are instruction prefixes used in AVX.
428    // VEX_4V is used to specify an additional AVX/SSE register. Several 2
429    // address instructions in SSE are represented as 3 address ones in AVX
430    // and the additional register is encoded in VEX_VVVV prefix.
431    //
432    VEXShift    = 0,
433    VEX         = 1 << VEXShift,
434    VEX_4V      = 2 << VEXShift
435  };
436
437  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
438  // specified machine instruction.
439  //
440  static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
441    return TSFlags >> X86II::OpcodeShift;
442  }
443
444  static inline bool hasImm(uint64_t TSFlags) {
445    return (TSFlags & X86II::ImmMask) != 0;
446  }
447
448  /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
449  /// of the specified instruction.
450  static inline unsigned getSizeOfImm(uint64_t TSFlags) {
451    switch (TSFlags & X86II::ImmMask) {
452    default: assert(0 && "Unknown immediate size");
453    case X86II::Imm8:
454    case X86II::Imm8PCRel:  return 1;
455    case X86II::Imm16:      return 2;
456    case X86II::Imm32:
457    case X86II::Imm32PCRel: return 4;
458    case X86II::Imm64:      return 8;
459    }
460  }
461
462  /// isImmPCRel - Return true if the immediate of the specified instruction's
463  /// TSFlags indicates that it is pc relative.
464  static inline unsigned isImmPCRel(uint64_t TSFlags) {
465    switch (TSFlags & X86II::ImmMask) {
466      default: assert(0 && "Unknown immediate size");
467      case X86II::Imm8PCRel:
468      case X86II::Imm32PCRel:
469        return true;
470      case X86II::Imm8:
471      case X86II::Imm16:
472      case X86II::Imm32:
473      case X86II::Imm64:
474        return false;
475    }
476  }
477}
478
479const int X86AddrNumOperands = 5;
480
481inline static bool isScale(const MachineOperand &MO) {
482  return MO.isImm() &&
483    (MO.getImm() == 1 || MO.getImm() == 2 ||
484     MO.getImm() == 4 || MO.getImm() == 8);
485}
486
487inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
488  if (MI->getOperand(Op).isFI()) return true;
489  return Op+4 <= MI->getNumOperands() &&
490    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
491    MI->getOperand(Op+2).isReg() &&
492    (MI->getOperand(Op+3).isImm() ||
493     MI->getOperand(Op+3).isGlobal() ||
494     MI->getOperand(Op+3).isCPI() ||
495     MI->getOperand(Op+3).isJTI());
496}
497
498inline static bool isMem(const MachineInstr *MI, unsigned Op) {
499  if (MI->getOperand(Op).isFI()) return true;
500  return Op+5 <= MI->getNumOperands() &&
501    MI->getOperand(Op+4).isReg() &&
502    isLeaMem(MI, Op);
503}
504
505class X86InstrInfo : public TargetInstrInfoImpl {
506  X86TargetMachine &TM;
507  const X86RegisterInfo RI;
508
509  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
510  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
511  ///
512  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
513  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
514  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
515  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
516
517  /// MemOp2RegOpTable - Load / store unfolding opcode map.
518  ///
519  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
520
521public:
522  explicit X86InstrInfo(X86TargetMachine &tm);
523
524  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
525  /// such, whenever a client has an instance of instruction info, it should
526  /// always be able to get register info as well (through this method).
527  ///
528  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
529
530  /// Return true if the instruction is a register to register move and return
531  /// the source and dest operands and their sub-register indices by reference.
532  virtual bool isMoveInstr(const MachineInstr &MI,
533                           unsigned &SrcReg, unsigned &DstReg,
534                           unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
535
536  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
537  /// extension instruction. That is, it's like a copy where it's legal for the
538  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
539  /// true, then it's expected the pre-extension value is available as a subreg
540  /// of the result register. This also returns the sub-register index in
541  /// SubIdx.
542  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
543                                     unsigned &SrcReg, unsigned &DstReg,
544                                     unsigned &SubIdx) const;
545
546  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
547  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
548  /// stack locations as well.  This uses a heuristic so it isn't
549  /// reliable for correctness.
550  unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
551                                     int &FrameIndex) const;
552
553  /// hasLoadFromStackSlot - If the specified machine instruction has
554  /// a load from a stack slot, return true along with the FrameIndex
555  /// of the loaded stack slot and the machine mem operand containing
556  /// the reference.  If not, return false.  Unlike
557  /// isLoadFromStackSlot, this returns true for any instructions that
558  /// loads from the stack.  This is a hint only and may not catch all
559  /// cases.
560  bool hasLoadFromStackSlot(const MachineInstr *MI,
561                            const MachineMemOperand *&MMO,
562                            int &FrameIndex) const;
563
564  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
565  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
566  /// stack locations as well.  This uses a heuristic so it isn't
567  /// reliable for correctness.
568  unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
569                                    int &FrameIndex) const;
570
571  /// hasStoreToStackSlot - If the specified machine instruction has a
572  /// store to a stack slot, return true along with the FrameIndex of
573  /// the loaded stack slot and the machine mem operand containing the
574  /// reference.  If not, return false.  Unlike isStoreToStackSlot,
575  /// this returns true for any instructions that loads from the
576  /// stack.  This is a hint only and may not catch all cases.
577  bool hasStoreToStackSlot(const MachineInstr *MI,
578                           const MachineMemOperand *&MMO,
579                           int &FrameIndex) const;
580
581  bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
582                                         AliasAnalysis *AA) const;
583  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
584                     unsigned DestReg, unsigned SubIdx,
585                     const MachineInstr *Orig,
586                     const TargetRegisterInfo &TRI) const;
587
588  /// convertToThreeAddress - This method must be implemented by targets that
589  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
590  /// may be able to convert a two-address instruction into a true
591  /// three-address instruction on demand.  This allows the X86 target (for
592  /// example) to convert ADD and SHL instructions into LEA instructions if they
593  /// would require register copies due to two-addressness.
594  ///
595  /// This method returns a null pointer if the transformation cannot be
596  /// performed, otherwise it returns the new instruction.
597  ///
598  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
599                                              MachineBasicBlock::iterator &MBBI,
600                                              LiveVariables *LV) const;
601
602  /// commuteInstruction - We have a few instructions that must be hacked on to
603  /// commute them.
604  ///
605  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
606
607  // Branch analysis.
608  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
609  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
610                             MachineBasicBlock *&FBB,
611                             SmallVectorImpl<MachineOperand> &Cond,
612                             bool AllowModify) const;
613  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
614  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
615                                MachineBasicBlock *FBB,
616                                const SmallVectorImpl<MachineOperand> &Cond,
617                                DebugLoc DL) const;
618  virtual bool copyRegToReg(MachineBasicBlock &MBB,
619                            MachineBasicBlock::iterator MI,
620                            unsigned DestReg, unsigned SrcReg,
621                            const TargetRegisterClass *DestRC,
622                            const TargetRegisterClass *SrcRC,
623                            DebugLoc DL) const;
624  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
625                                   MachineBasicBlock::iterator MI,
626                                   unsigned SrcReg, bool isKill, int FrameIndex,
627                                   const TargetRegisterClass *RC,
628                                   const TargetRegisterInfo *TRI) const;
629
630  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
631                              SmallVectorImpl<MachineOperand> &Addr,
632                              const TargetRegisterClass *RC,
633                              MachineInstr::mmo_iterator MMOBegin,
634                              MachineInstr::mmo_iterator MMOEnd,
635                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
636
637  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
638                                    MachineBasicBlock::iterator MI,
639                                    unsigned DestReg, int FrameIndex,
640                                    const TargetRegisterClass *RC,
641                                    const TargetRegisterInfo *TRI) const;
642
643  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
644                               SmallVectorImpl<MachineOperand> &Addr,
645                               const TargetRegisterClass *RC,
646                               MachineInstr::mmo_iterator MMOBegin,
647                               MachineInstr::mmo_iterator MMOEnd,
648                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
649
650  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
651                                         MachineBasicBlock::iterator MI,
652                                        const std::vector<CalleeSavedInfo> &CSI,
653                                         const TargetRegisterInfo *TRI) const;
654
655  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
656                                           MachineBasicBlock::iterator MI,
657                                        const std::vector<CalleeSavedInfo> &CSI,
658                                           const TargetRegisterInfo *TRI) const;
659
660  virtual
661  MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
662                                         int FrameIx, uint64_t Offset,
663                                         const MDNode *MDPtr,
664                                         DebugLoc DL) const;
665
666  /// foldMemoryOperand - If this target supports it, fold a load or store of
667  /// the specified stack slot into the specified machine instruction for the
668  /// specified operand(s).  If this is possible, the target should perform the
669  /// folding and return true, otherwise it should return false.  If it folds
670  /// the instruction, it is likely that the MachineInstruction the iterator
671  /// references has been changed.
672  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
673                                              MachineInstr* MI,
674                                           const SmallVectorImpl<unsigned> &Ops,
675                                              int FrameIndex) const;
676
677  /// foldMemoryOperand - Same as the previous version except it allows folding
678  /// of any load and store from / to any address, not just from a specific
679  /// stack slot.
680  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
681                                              MachineInstr* MI,
682                                           const SmallVectorImpl<unsigned> &Ops,
683                                              MachineInstr* LoadMI) const;
684
685  /// canFoldMemoryOperand - Returns true if the specified load / store is
686  /// folding is possible.
687  virtual bool canFoldMemoryOperand(const MachineInstr*,
688                                    const SmallVectorImpl<unsigned> &) const;
689
690  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
691  /// a store or a load and a store into two or more instruction. If this is
692  /// possible, returns true as well as the new instructions by reference.
693  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
694                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
695                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
696
697  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
698                           SmallVectorImpl<SDNode*> &NewNodes) const;
699
700  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
701  /// instruction after load / store are unfolded from an instruction of the
702  /// specified opcode. It returns zero if the specified unfolding is not
703  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
704  /// index of the operand which will hold the register holding the loaded
705  /// value.
706  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
707                                      bool UnfoldLoad, bool UnfoldStore,
708                                      unsigned *LoadRegIndex = 0) const;
709
710  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
711  /// to determine if two loads are loading from the same base address. It
712  /// should only return true if the base pointers are the same and the
713  /// only differences between the two addresses are the offset. It also returns
714  /// the offsets by reference.
715  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
716                                       int64_t &Offset1, int64_t &Offset2) const;
717
718  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
719  /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
720  /// be scheduled togther. On some targets if two loads are loading from
721  /// addresses in the same cache line, it's better if they are scheduled
722  /// together. This function takes two integers that represent the load offsets
723  /// from the common base address. It returns true if it decides it's desirable
724  /// to schedule the two loads together. "NumLoads" is the number of loads that
725  /// have already been scheduled after Load1.
726  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
727                                       int64_t Offset1, int64_t Offset2,
728                                       unsigned NumLoads) const;
729
730  virtual void getNoopForMachoTarget(MCInst &NopInst) const;
731
732  virtual
733  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
734
735  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
736  /// instruction that defines the specified register class.
737  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
738
739  static bool isX86_64NonExtLowByteReg(unsigned reg) {
740    return (reg == X86::SPL || reg == X86::BPL ||
741          reg == X86::SIL || reg == X86::DIL);
742  }
743
744  static bool isX86_64ExtendedReg(const MachineOperand &MO) {
745    if (!MO.isReg()) return false;
746    return isX86_64ExtendedReg(MO.getReg());
747  }
748  static unsigned determineREX(const MachineInstr &MI);
749
750  /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
751  /// higher) register?  e.g. r8, xmm8, xmm13, etc.
752  static bool isX86_64ExtendedReg(unsigned RegNo);
753
754  /// GetInstSize - Returns the size of the specified MachineInstr.
755  ///
756  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
757
758  /// getGlobalBaseReg - Return a virtual register initialized with the
759  /// the global base register value. Output instructions required to
760  /// initialize the register in the function entry block, if necessary.
761  ///
762  unsigned getGlobalBaseReg(MachineFunction *MF) const;
763
764  /// GetSSEDomain - Return the SSE execution domain of MI as the first element,
765  /// and a bitmask of possible arguments to SetSSEDomain ase the second.
766  std::pair<uint16_t, uint16_t> GetSSEDomain(const MachineInstr *MI) const;
767
768  /// SetSSEDomain - Set the SSEDomain of MI.
769  void SetSSEDomain(MachineInstr *MI, unsigned Domain) const;
770
771private:
772  MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
773                                              MachineFunction::iterator &MFI,
774                                              MachineBasicBlock::iterator &MBBI,
775                                              LiveVariables *LV) const;
776
777  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
778                                     MachineInstr* MI,
779                                     unsigned OpNum,
780                                     const SmallVectorImpl<MachineOperand> &MOs,
781                                     unsigned Size, unsigned Alignment) const;
782
783  /// isFrameOperand - Return true and the FrameIndex if the specified
784  /// operand and follow operands form a reference to the stack frame.
785  bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
786                      int &FrameIndex) const;
787};
788
789} // End llvm namespace
790
791#endif
792