X86InstrInfo.h revision c73ea9102b711d6c2bfd33a86e1c07565c83ffe7
1//===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "X86.h"
18#include "X86RegisterInfo.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/Target/TargetInstrInfo.h"
21
22#define GET_INSTRINFO_HEADER
23#include "X86GenInstrInfo.inc"
24
25namespace llvm {
26  class X86RegisterInfo;
27  class X86TargetMachine;
28
29namespace X86 {
30  // X86 specific condition code. These correspond to X86_*_COND in
31  // X86InstrInfo.td. They must be kept in synch.
32  enum CondCode {
33    COND_A  = 0,
34    COND_AE = 1,
35    COND_B  = 2,
36    COND_BE = 3,
37    COND_E  = 4,
38    COND_G  = 5,
39    COND_GE = 6,
40    COND_L  = 7,
41    COND_LE = 8,
42    COND_NE = 9,
43    COND_NO = 10,
44    COND_NP = 11,
45    COND_NS = 12,
46    COND_O  = 13,
47    COND_P  = 14,
48    COND_S  = 15,
49
50    // Artificial condition codes. These are used by AnalyzeBranch
51    // to indicate a block terminated with two conditional branches to
52    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
53    // which can't be represented on x86 with a single condition. These
54    // are never used in MachineInstrs.
55    COND_NE_OR_P,
56    COND_NP_OR_E,
57
58    COND_INVALID
59  };
60
61  // Turn condition code into conditional branch opcode.
62  unsigned GetCondBranchFromCond(CondCode CC);
63
64  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
65  /// e.g. turning COND_E to COND_NE.
66  CondCode GetOppositeBranchCondition(X86::CondCode CC);
67}  // end namespace X86;
68
69
70/// isGlobalStubReference - Return true if the specified TargetFlag operand is
71/// a reference to a stub for a global, not the global itself.
72inline static bool isGlobalStubReference(unsigned char TargetFlag) {
73  switch (TargetFlag) {
74  case X86II::MO_DLLIMPORT: // dllimport stub.
75  case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
76  case X86II::MO_GOT:       // normal GOT reference.
77  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
78  case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
79  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
80    return true;
81  default:
82    return false;
83  }
84}
85
86/// isGlobalRelativeToPICBase - Return true if the specified global value
87/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
88/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
89inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
90  switch (TargetFlag) {
91  case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
92  case X86II::MO_GOT:                            // isPICStyleGOT: other global.
93  case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
94  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
95  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
96  case X86II::MO_TLVP:                           // ??? Pretty sure..
97    return true;
98  default:
99    return false;
100  }
101}
102
103inline static bool isScale(const MachineOperand &MO) {
104  return MO.isImm() &&
105    (MO.getImm() == 1 || MO.getImm() == 2 ||
106     MO.getImm() == 4 || MO.getImm() == 8);
107}
108
109inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
110  if (MI->getOperand(Op).isFI()) return true;
111  return Op+4 <= MI->getNumOperands() &&
112    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
113    MI->getOperand(Op+2).isReg() &&
114    (MI->getOperand(Op+3).isImm() ||
115     MI->getOperand(Op+3).isGlobal() ||
116     MI->getOperand(Op+3).isCPI() ||
117     MI->getOperand(Op+3).isJTI());
118}
119
120inline static bool isMem(const MachineInstr *MI, unsigned Op) {
121  if (MI->getOperand(Op).isFI()) return true;
122  return Op+5 <= MI->getNumOperands() &&
123    MI->getOperand(Op+4).isReg() &&
124    isLeaMem(MI, Op);
125}
126
127class X86InstrInfo : public X86GenInstrInfo {
128  X86TargetMachine &TM;
129  const X86RegisterInfo RI;
130
131  /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
132  /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps.
133  ///
134  typedef DenseMap<unsigned,
135                   std::pair<unsigned, unsigned> > RegOp2MemOpTableType;
136  RegOp2MemOpTableType RegOp2MemOpTable2Addr;
137  RegOp2MemOpTableType RegOp2MemOpTable0;
138  RegOp2MemOpTableType RegOp2MemOpTable1;
139  RegOp2MemOpTableType RegOp2MemOpTable2;
140  RegOp2MemOpTableType RegOp2MemOpTable3;
141
142  /// MemOp2RegOpTable - Load / store unfolding opcode map.
143  ///
144  typedef DenseMap<unsigned,
145                   std::pair<unsigned, unsigned> > MemOp2RegOpTableType;
146  MemOp2RegOpTableType MemOp2RegOpTable;
147
148  void AddTableEntry(RegOp2MemOpTableType &R2MTable,
149                     MemOp2RegOpTableType &M2RTable,
150                     unsigned RegOp, unsigned MemOp, unsigned Flags);
151
152public:
153  explicit X86InstrInfo(X86TargetMachine &tm);
154
155  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
156  /// such, whenever a client has an instance of instruction info, it should
157  /// always be able to get register info as well (through this method).
158  ///
159  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
160
161  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
162  /// extension instruction. That is, it's like a copy where it's legal for the
163  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
164  /// true, then it's expected the pre-extension value is available as a subreg
165  /// of the result register. This also returns the sub-register index in
166  /// SubIdx.
167  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
168                                     unsigned &SrcReg, unsigned &DstReg,
169                                     unsigned &SubIdx) const;
170
171  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
172  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
173  /// stack locations as well.  This uses a heuristic so it isn't
174  /// reliable for correctness.
175  unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
176                                     int &FrameIndex) const;
177
178  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
179  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
180  /// stack locations as well.  This uses a heuristic so it isn't
181  /// reliable for correctness.
182  unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
183                                    int &FrameIndex) const;
184
185  bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
186                                         AliasAnalysis *AA) const;
187  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
188                     unsigned DestReg, unsigned SubIdx,
189                     const MachineInstr *Orig,
190                     const TargetRegisterInfo &TRI) const;
191
192  /// convertToThreeAddress - This method must be implemented by targets that
193  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
194  /// may be able to convert a two-address instruction into a true
195  /// three-address instruction on demand.  This allows the X86 target (for
196  /// example) to convert ADD and SHL instructions into LEA instructions if they
197  /// would require register copies due to two-addressness.
198  ///
199  /// This method returns a null pointer if the transformation cannot be
200  /// performed, otherwise it returns the new instruction.
201  ///
202  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
203                                              MachineBasicBlock::iterator &MBBI,
204                                              LiveVariables *LV) const;
205
206  /// commuteInstruction - We have a few instructions that must be hacked on to
207  /// commute them.
208  ///
209  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
210
211  // Branch analysis.
212  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
213  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
214                             MachineBasicBlock *&FBB,
215                             SmallVectorImpl<MachineOperand> &Cond,
216                             bool AllowModify) const;
217  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
218  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
219                                MachineBasicBlock *FBB,
220                                const SmallVectorImpl<MachineOperand> &Cond,
221                                DebugLoc DL) const;
222  virtual void copyPhysReg(MachineBasicBlock &MBB,
223                           MachineBasicBlock::iterator MI, DebugLoc DL,
224                           unsigned DestReg, unsigned SrcReg,
225                           bool KillSrc) const;
226  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
227                                   MachineBasicBlock::iterator MI,
228                                   unsigned SrcReg, bool isKill, int FrameIndex,
229                                   const TargetRegisterClass *RC,
230                                   const TargetRegisterInfo *TRI) const;
231
232  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
233                              SmallVectorImpl<MachineOperand> &Addr,
234                              const TargetRegisterClass *RC,
235                              MachineInstr::mmo_iterator MMOBegin,
236                              MachineInstr::mmo_iterator MMOEnd,
237                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
238
239  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
240                                    MachineBasicBlock::iterator MI,
241                                    unsigned DestReg, int FrameIndex,
242                                    const TargetRegisterClass *RC,
243                                    const TargetRegisterInfo *TRI) const;
244
245  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
246                               SmallVectorImpl<MachineOperand> &Addr,
247                               const TargetRegisterClass *RC,
248                               MachineInstr::mmo_iterator MMOBegin,
249                               MachineInstr::mmo_iterator MMOEnd,
250                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
251
252  virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const;
253
254  virtual
255  MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
256                                         int FrameIx, uint64_t Offset,
257                                         const MDNode *MDPtr,
258                                         DebugLoc DL) const;
259
260  /// foldMemoryOperand - If this target supports it, fold a load or store of
261  /// the specified stack slot into the specified machine instruction for the
262  /// specified operand(s).  If this is possible, the target should perform the
263  /// folding and return true, otherwise it should return false.  If it folds
264  /// the instruction, it is likely that the MachineInstruction the iterator
265  /// references has been changed.
266  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
267                                              MachineInstr* MI,
268                                           const SmallVectorImpl<unsigned> &Ops,
269                                              int FrameIndex) const;
270
271  /// foldMemoryOperand - Same as the previous version except it allows folding
272  /// of any load and store from / to any address, not just from a specific
273  /// stack slot.
274  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
275                                              MachineInstr* MI,
276                                           const SmallVectorImpl<unsigned> &Ops,
277                                              MachineInstr* LoadMI) const;
278
279  /// canFoldMemoryOperand - Returns true if the specified load / store is
280  /// folding is possible.
281  virtual bool canFoldMemoryOperand(const MachineInstr*,
282                                    const SmallVectorImpl<unsigned> &) const;
283
284  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
285  /// a store or a load and a store into two or more instruction. If this is
286  /// possible, returns true as well as the new instructions by reference.
287  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
288                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
289                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
290
291  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
292                           SmallVectorImpl<SDNode*> &NewNodes) const;
293
294  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
295  /// instruction after load / store are unfolded from an instruction of the
296  /// specified opcode. It returns zero if the specified unfolding is not
297  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
298  /// index of the operand which will hold the register holding the loaded
299  /// value.
300  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
301                                      bool UnfoldLoad, bool UnfoldStore,
302                                      unsigned *LoadRegIndex = 0) const;
303
304  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
305  /// to determine if two loads are loading from the same base address. It
306  /// should only return true if the base pointers are the same and the
307  /// only differences between the two addresses are the offset. It also returns
308  /// the offsets by reference.
309  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
310                                       int64_t &Offset1, int64_t &Offset2) const;
311
312  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
313  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
314  /// be scheduled togther. On some targets if two loads are loading from
315  /// addresses in the same cache line, it's better if they are scheduled
316  /// together. This function takes two integers that represent the load offsets
317  /// from the common base address. It returns true if it decides it's desirable
318  /// to schedule the two loads together. "NumLoads" is the number of loads that
319  /// have already been scheduled after Load1.
320  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
321                                       int64_t Offset1, int64_t Offset2,
322                                       unsigned NumLoads) const;
323
324  virtual void getNoopForMachoTarget(MCInst &NopInst) const;
325
326  virtual
327  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
328
329  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
330  /// instruction that defines the specified register class.
331  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
332
333  static bool isX86_64ExtendedReg(const MachineOperand &MO) {
334    if (!MO.isReg()) return false;
335    return X86II::isX86_64ExtendedReg(MO.getReg());
336  }
337
338  /// getGlobalBaseReg - Return a virtual register initialized with the
339  /// the global base register value. Output instructions required to
340  /// initialize the register in the function entry block, if necessary.
341  ///
342  unsigned getGlobalBaseReg(MachineFunction *MF) const;
343
344  std::pair<uint16_t, uint16_t>
345  getExecutionDomain(const MachineInstr *MI) const;
346
347  void setExecutionDomain(MachineInstr *MI, unsigned Domain) const;
348
349  unsigned getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
350                                        const TargetRegisterInfo *TRI) const;
351  void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
352                                 const TargetRegisterInfo *TRI) const;
353
354  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
355                                      MachineInstr* MI,
356                                      unsigned OpNum,
357                                      const SmallVectorImpl<MachineOperand> &MOs,
358                                      unsigned Size, unsigned Alignment) const;
359
360  bool isHighLatencyDef(int opc) const;
361
362  bool hasHighOperandLatency(const InstrItineraryData *ItinData,
363                             const MachineRegisterInfo *MRI,
364                             const MachineInstr *DefMI, unsigned DefIdx,
365                             const MachineInstr *UseMI, unsigned UseIdx) const;
366
367  virtual bool OptimizeSubInstr(MachineInstr *SubInstr,
368                                const MachineRegisterInfo *MRI) const;
369
370private:
371  MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
372                                              MachineFunction::iterator &MFI,
373                                              MachineBasicBlock::iterator &MBBI,
374                                              LiveVariables *LV) const;
375
376  /// isFrameOperand - Return true and the FrameIndex if the specified
377  /// operand and follow operands form a reference to the stack frame.
378  bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
379                      int &FrameIndex) const;
380};
381
382} // End llvm namespace
383
384#endif
385