X86InstrInfo.h revision cbad42cfd1cc93a41ff26ea2e8895bfbc09f54f2
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86.h"
19#include "X86RegisterInfo.h"
20#include "llvm/ADT/IndexedMap.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22
23namespace llvm {
24  class X86RegisterInfo;
25  class X86TargetMachine;
26
27namespace X86 {
28  // X86 specific condition code. These correspond to X86_*_COND in
29  // X86InstrInfo.td. They must be kept in synch.
30  enum CondCode {
31    COND_A  = 0,
32    COND_AE = 1,
33    COND_B  = 2,
34    COND_BE = 3,
35    COND_E  = 4,
36    COND_G  = 5,
37    COND_GE = 6,
38    COND_L  = 7,
39    COND_LE = 8,
40    COND_NE = 9,
41    COND_NO = 10,
42    COND_NP = 11,
43    COND_NS = 12,
44    COND_O  = 13,
45    COND_P  = 14,
46    COND_S  = 15,
47
48    // Artificial condition codes. These are used by AnalyzeBranch
49    // to indicate a block terminated with two conditional branches to
50    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
51    // which can't be represented on x86 with a single condition. These
52    // are never used in MachineInstrs.
53    COND_NE_OR_P,
54    COND_NP_OR_E,
55
56    COND_INVALID
57  };
58
59  // Turn condition code into conditional branch opcode.
60  unsigned GetCondBranchFromCond(CondCode CC);
61
62  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63  /// e.g. turning COND_E to COND_NE.
64  CondCode GetOppositeBranchCondition(X86::CondCode CC);
65
66}
67
68/// X86II - This namespace holds all of the target specific flags that
69/// instruction info tracks.
70///
71namespace X86II {
72  enum {
73    //===------------------------------------------------------------------===//
74    // Instruction types.  These are the standard/most common forms for X86
75    // instructions.
76    //
77
78    // PseudoFrm - This represents an instruction that is a pseudo instruction
79    // or one that has not been implemented yet.  It is illegal to code generate
80    // it, but tolerated for intermediate implementation stages.
81    Pseudo         = 0,
82
83    /// Raw - This form is for instructions that don't have any operands, so
84    /// they are just a fixed opcode value, like 'leave'.
85    RawFrm         = 1,
86
87    /// AddRegFrm - This form is used for instructions like 'push r32' that have
88    /// their one register operand added to their opcode.
89    AddRegFrm      = 2,
90
91    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
92    /// to specify a destination, which in this case is a register.
93    ///
94    MRMDestReg     = 3,
95
96    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
97    /// to specify a destination, which in this case is memory.
98    ///
99    MRMDestMem     = 4,
100
101    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
102    /// to specify a source, which in this case is a register.
103    ///
104    MRMSrcReg      = 5,
105
106    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
107    /// to specify a source, which in this case is memory.
108    ///
109    MRMSrcMem      = 6,
110
111    /// MRM[0-7][rm] - These forms are used to represent instructions that use
112    /// a Mod/RM byte, and use the middle field to hold extended opcode
113    /// information.  In the intel manual these are represented as /0, /1, ...
114    ///
115
116    // First, instructions that operate on a register r/m operand...
117    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
118    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
119
120    // Next, instructions that operate on a memory r/m operand...
121    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
122    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
123
124    // MRMInitReg - This form is used for instructions whose source and
125    // destinations are the same register.
126    MRMInitReg = 32,
127
128    FormMask       = 63,
129
130    //===------------------------------------------------------------------===//
131    // Actual flags...
132
133    // OpSize - Set if this instruction requires an operand size prefix (0x66),
134    // which most often indicates that the instruction operates on 16 bit data
135    // instead of 32 bit data.
136    OpSize      = 1 << 6,
137
138    // AsSize - Set if this instruction requires an operand size prefix (0x67),
139    // which most often indicates that the instruction address 16 bit address
140    // instead of 32 bit address (or 32 bit address in 64 bit mode).
141    AdSize      = 1 << 7,
142
143    //===------------------------------------------------------------------===//
144    // Op0Mask - There are several prefix bytes that are used to form two byte
145    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
146    // used to obtain the setting of this field.  If no bits in this field is
147    // set, there is no prefix byte for obtaining a multibyte opcode.
148    //
149    Op0Shift    = 8,
150    Op0Mask     = 0xF << Op0Shift,
151
152    // TB - TwoByte - Set if this instruction has a two byte opcode, which
153    // starts with a 0x0F byte before the real opcode.
154    TB          = 1 << Op0Shift,
155
156    // REP - The 0xF3 prefix byte indicating repetition of the following
157    // instruction.
158    REP         = 2 << Op0Shift,
159
160    // D8-DF - These escape opcodes are used by the floating point unit.  These
161    // values must remain sequential.
162    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
163    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
164    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
165    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
166
167    // XS, XD - These prefix codes are for single and double precision scalar
168    // floating point operations performed in the SSE registers.
169    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
170
171    // T8, TA - Prefix after the 0x0F prefix.
172    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
173
174    //===------------------------------------------------------------------===//
175    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
176    // They are used to specify GPRs and SSE registers, 64-bit operand size,
177    // etc. We only cares about REX.W and REX.R bits and only the former is
178    // statically determined.
179    //
180    REXShift    = 12,
181    REX_W       = 1 << REXShift,
182
183    //===------------------------------------------------------------------===//
184    // This three-bit field describes the size of an immediate operand.  Zero is
185    // unused so that we can tell if we forgot to set a value.
186    ImmShift = 13,
187    ImmMask  = 7 << ImmShift,
188    Imm8     = 1 << ImmShift,
189    Imm16    = 2 << ImmShift,
190    Imm32    = 3 << ImmShift,
191    Imm64    = 4 << ImmShift,
192
193    //===------------------------------------------------------------------===//
194    // FP Instruction Classification...  Zero is non-fp instruction.
195
196    // FPTypeMask - Mask for all of the FP types...
197    FPTypeShift = 16,
198    FPTypeMask  = 7 << FPTypeShift,
199
200    // NotFP - The default, set for instructions that do not use FP registers.
201    NotFP      = 0 << FPTypeShift,
202
203    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
204    ZeroArgFP  = 1 << FPTypeShift,
205
206    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
207    OneArgFP   = 2 << FPTypeShift,
208
209    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
210    // result back to ST(0).  For example, fcos, fsqrt, etc.
211    //
212    OneArgFPRW = 3 << FPTypeShift,
213
214    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
215    // explicit argument, storing the result to either ST(0) or the implicit
216    // argument.  For example: fadd, fsub, fmul, etc...
217    TwoArgFP   = 4 << FPTypeShift,
218
219    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
220    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
221    CompareFP  = 5 << FPTypeShift,
222
223    // CondMovFP - "2 operand" floating point conditional move instructions.
224    CondMovFP  = 6 << FPTypeShift,
225
226    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
227    SpecialFP  = 7 << FPTypeShift,
228
229    // Lock prefix
230    LOCKShift = 19,
231    LOCK = 1 << LOCKShift,
232
233    // Segment override prefixes. Currently we just need ability to address
234    // stuff in gs and fs segments.
235    SegOvrShift = 20,
236    SegOvrMask  = 3 << SegOvrShift,
237    FS          = 1 << SegOvrShift,
238    GS          = 2 << SegOvrShift,
239
240    // Bits 22 -> 23 are unused
241    OpcodeShift   = 24,
242    OpcodeMask    = 0xFF << OpcodeShift
243  };
244}
245
246inline static bool isScale(const MachineOperand &MO) {
247  return MO.isImm() &&
248    (MO.getImm() == 1 || MO.getImm() == 2 ||
249     MO.getImm() == 4 || MO.getImm() == 8);
250}
251
252inline static bool isMem(const MachineInstr *MI, unsigned Op) {
253  if (MI->getOperand(Op).isFI()) return true;
254  return Op+4 <= MI->getNumOperands() &&
255    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
256    MI->getOperand(Op+2).isReg() &&
257    (MI->getOperand(Op+3).isImm() ||
258     MI->getOperand(Op+3).isGlobal() ||
259     MI->getOperand(Op+3).isCPI() ||
260     MI->getOperand(Op+3).isJTI());
261}
262
263class X86InstrInfo : public TargetInstrInfoImpl {
264  X86TargetMachine &TM;
265  const X86RegisterInfo RI;
266
267  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
268  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
269  ///
270  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
271  DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
272  DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
273  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
274
275  /// MemOp2RegOpTable - Load / store unfolding opcode map.
276  ///
277  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
278
279public:
280  explicit X86InstrInfo(X86TargetMachine &tm);
281
282  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
283  /// such, whenever a client has an instance of instruction info, it should
284  /// always be able to get register info as well (through this method).
285  ///
286  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
287
288  // Return true if the instruction is a register to register move and
289  // leave the source and dest operands in the passed parameters.
290  //
291  bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg,
292                   unsigned& destReg) const;
293  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
294  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
295
296  bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
297  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
298                     unsigned DestReg, const MachineInstr *Orig) const;
299
300  bool isInvariantLoad(const MachineInstr *MI) const;
301
302  /// convertToThreeAddress - This method must be implemented by targets that
303  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
304  /// may be able to convert a two-address instruction into a true
305  /// three-address instruction on demand.  This allows the X86 target (for
306  /// example) to convert ADD and SHL instructions into LEA instructions if they
307  /// would require register copies due to two-addressness.
308  ///
309  /// This method returns a null pointer if the transformation cannot be
310  /// performed, otherwise it returns the new instruction.
311  ///
312  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
313                                              MachineBasicBlock::iterator &MBBI,
314                                              LiveVariables *LV) const;
315
316  /// commuteInstruction - We have a few instructions that must be hacked on to
317  /// commute them.
318  ///
319  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
320
321  // Branch analysis.
322  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
323  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
324                             MachineBasicBlock *&FBB,
325                             SmallVectorImpl<MachineOperand> &Cond) const;
326  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
327  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
328                                MachineBasicBlock *FBB,
329                            const SmallVectorImpl<MachineOperand> &Cond) const;
330  virtual bool copyRegToReg(MachineBasicBlock &MBB,
331                            MachineBasicBlock::iterator MI,
332                            unsigned DestReg, unsigned SrcReg,
333                            const TargetRegisterClass *DestRC,
334                            const TargetRegisterClass *SrcRC) const;
335  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
336                                   MachineBasicBlock::iterator MI,
337                                   unsigned SrcReg, bool isKill, int FrameIndex,
338                                   const TargetRegisterClass *RC) const;
339
340  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
341                              SmallVectorImpl<MachineOperand> &Addr,
342                              const TargetRegisterClass *RC,
343                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
344
345  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
346                                    MachineBasicBlock::iterator MI,
347                                    unsigned DestReg, int FrameIndex,
348                                    const TargetRegisterClass *RC) const;
349
350  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
351                               SmallVectorImpl<MachineOperand> &Addr,
352                               const TargetRegisterClass *RC,
353                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
354
355  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
356                                         MachineBasicBlock::iterator MI,
357                                 const std::vector<CalleeSavedInfo> &CSI) const;
358
359  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
360                                           MachineBasicBlock::iterator MI,
361                                 const std::vector<CalleeSavedInfo> &CSI) const;
362
363  /// foldMemoryOperand - If this target supports it, fold a load or store of
364  /// the specified stack slot into the specified machine instruction for the
365  /// specified operand(s).  If this is possible, the target should perform the
366  /// folding and return true, otherwise it should return false.  If it folds
367  /// the instruction, it is likely that the MachineInstruction the iterator
368  /// references has been changed.
369  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
370                                          MachineInstr* MI,
371                                          const SmallVectorImpl<unsigned> &Ops,
372                                          int FrameIndex) const;
373
374  /// foldMemoryOperand - Same as the previous version except it allows folding
375  /// of any load and store from / to any address, not just from a specific
376  /// stack slot.
377  virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
378                                          MachineInstr* MI,
379                                  const SmallVectorImpl<unsigned> &Ops,
380                                  MachineInstr* LoadMI) const;
381
382  /// canFoldMemoryOperand - Returns true if the specified load / store is
383  /// folding is possible.
384  virtual bool canFoldMemoryOperand(const MachineInstr*,
385                                    const SmallVectorImpl<unsigned> &) const;
386
387  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
388  /// a store or a load and a store into two or more instruction. If this is
389  /// possible, returns true as well as the new instructions by reference.
390  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
391                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
392                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
393
394  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
395                           SmallVectorImpl<SDNode*> &NewNodes) const;
396
397  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
398  /// instruction after load / store are unfolded from an instruction of the
399  /// specified opcode. It returns zero if the specified unfolding is not
400  /// possible.
401  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
402                                      bool UnfoldLoad, bool UnfoldStore) const;
403
404  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
405  virtual
406  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
407
408  /// IgnoreRegisterClassBarriers - Returns true if pre-register allocation
409  /// live interval splitting pass should ignore barriers of the specified
410  /// register class.
411  bool IgnoreRegisterClassBarriers(const TargetRegisterClass *RC) const;
412
413  const TargetRegisterClass *getPointerRegClass() const;
414
415  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
416  // specified machine instruction.
417  //
418  unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
419    return TID->TSFlags >> X86II::OpcodeShift;
420  }
421  unsigned char getBaseOpcodeFor(unsigned Opcode) const {
422    return getBaseOpcodeFor(&get(Opcode));
423  }
424
425  static bool isX86_64NonExtLowByteReg(unsigned reg) {
426    return (reg == X86::SPL || reg == X86::BPL ||
427          reg == X86::SIL || reg == X86::DIL);
428  }
429
430  static unsigned sizeOfImm(const TargetInstrDesc *Desc);
431  static bool isX86_64ExtendedReg(const MachineOperand &MO);
432  static unsigned determineREX(const MachineInstr &MI);
433
434  /// GetInstSize - Returns the size of the specified MachineInstr.
435  ///
436  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
437
438  /// getGlobalBaseReg - Return a virtual register initialized with the
439  /// the global base register value. Output instructions required to
440  /// initialize the register in the function entry block, if necessary.
441  ///
442  unsigned getGlobalBaseReg(MachineFunction *MF) const;
443
444private:
445  MachineInstr* foldMemoryOperand(MachineFunction &MF,
446                                  MachineInstr* MI,
447                                  unsigned OpNum,
448                                const SmallVector<MachineOperand,4> &MOs) const;
449};
450
451} // End llvm namespace
452
453#endif
454