X86InstrInfo.h revision da945e3bb2069c1a7194bcd10579a03ff925a031
18d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
28d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko//
38d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko//                     The LLVM Compiler Infrastructure
48d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko//
58d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko// This file is distributed under the University of Illinois Open Source
68d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko// License. See LICENSE.TXT for details.
78d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko//
88d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko//===----------------------------------------------------------------------===//
98d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko//
108d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko// This file contains the X86 implementation of the TargetInstrInfo class.
118d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko//
128d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko//===----------------------------------------------------------------------===//
138d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko
148d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko#ifndef X86INSTRUCTIONINFO_H
158d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko#define X86INSTRUCTIONINFO_H
168d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko
1730a2e16f6c27f888dd11eba6bbbae1e980078fcbChandler Carruth#include "llvm/Target/TargetInstrInfo.h"
18a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko#include "X86.h"
198d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko#include "X86RegisterInfo.h"
208d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko#include "llvm/ADT/DenseMap.h"
2196b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko#include "llvm/Target/TargetRegisterInfo.h"
2230a2e16f6c27f888dd11eba6bbbae1e980078fcbChandler Carruth
238d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenkonamespace llvm {
248d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko  class X86RegisterInfo;
258d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko  class X86TargetMachine;
26a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko
27a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenkonamespace X86 {
281952354bd376062c3ab3d328c0fc6c36530c9309Dmitri Gribenko  // X86 specific condition code. These correspond to X86_*_COND in
29a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko  // X86InstrInfo.td. They must be kept in synch.
308d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko  enum CondCode {
31aa58081902ad31927df02e8537d972eabe29d6dfDmitri Gribenko    COND_A  = 0,
328d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    COND_AE = 1,
338d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    COND_B  = 2,
34da5922f4864b5da254c6676af8833c42adaa6d86Dmitri Gribenko    COND_BE = 3,
35da5922f4864b5da254c6676af8833c42adaa6d86Dmitri Gribenko    COND_E  = 4,
366f36366c85dc81d67d70efdeeea4cfc382053febDmitri Gribenko    COND_G  = 5,
37a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko    COND_GE = 6,
388d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    COND_L  = 7,
398d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    COND_LE = 8,
40a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko    COND_NE = 9,
41a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko    COND_NO = 10,
42a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko    COND_NP = 11,
43a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko    COND_NS = 12,
44a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko    COND_O  = 13,
45e4330a302ac20b41b9800267ebd4b5b01f8553f8Dmitri Gribenko    COND_P  = 14,
46aa58081902ad31927df02e8537d972eabe29d6dfDmitri Gribenko    COND_S  = 15,
471952354bd376062c3ab3d328c0fc6c36530c9309Dmitri Gribenko
481952354bd376062c3ab3d328c0fc6c36530c9309Dmitri Gribenko    // Artificial condition codes. These are used by AnalyzeBranch
491ca7ecc8854ffea215c033a0d8482551bf1b73f0Dmitri Gribenko    // to indicate a block terminated with two conditional branches to
501ca7ecc8854ffea215c033a0d8482551bf1b73f0Dmitri Gribenko    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
518487c524fdfcea3da858fd0af850b4784c8096d0Dmitri Gribenko    // which can't be represented on x86 with a single condition. These
5296b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko    // are never used in MachineInstrs.
5396b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko    COND_NE_OR_P,
5496b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko    COND_NP_OR_E,
551ca7ecc8854ffea215c033a0d8482551bf1b73f0Dmitri Gribenko
5696b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko    COND_INVALID
5796b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko  };
589443c57150e870e308406e1e4e6d9d64712b417eDmitri Gribenko
599443c57150e870e308406e1e4e6d9d64712b417eDmitri Gribenko  // Turn condition code into conditional branch opcode.
609443c57150e870e308406e1e4e6d9d64712b417eDmitri Gribenko  unsigned GetCondBranchFromCond(CondCode CC);
61f843a580c4a54ca147f22422ee8ccfd2347784fcFariborz Jahanian
62f843a580c4a54ca147f22422ee8ccfd2347784fcFariborz Jahanian  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
639443c57150e870e308406e1e4e6d9d64712b417eDmitri Gribenko  /// e.g. turning COND_E to COND_NE.
64a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko  CondCode GetOppositeBranchCondition(X86::CondCode CC);
65a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko
66a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko}
67a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko
68a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko/// X86II - This namespace holds all of the target specific flags that
69a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko/// instruction info tracks.
703f38bf2d441fac379c427f86153fbb0cb41256c6Dmitri Gribenko///
71a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenkonamespace X86II {
728d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko  enum {
73a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko    //===------------------------------------------------------------------===//
741952354bd376062c3ab3d328c0fc6c36530c9309Dmitri Gribenko    // Instruction types.  These are the standard/most common forms for X86
751952354bd376062c3ab3d328c0fc6c36530c9309Dmitri Gribenko    // instructions.
76a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko    //
77a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko
788d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    // PseudoFrm - This represents an instruction that is a pseudo instruction
7996b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko    // or one that has not been implemented yet.  It is illegal to code generate
8096b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko    // it, but tolerated for intermediate implementation stages.
8196b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko    Pseudo         = 0,
8296b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko
8396b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko    /// Raw - This form is for instructions that don't have any operands, so
8496b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko    /// they are just a fixed opcode value, like 'leave'.
8596b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko    RawFrm         = 1,
8696b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko
876bcf27bb9a4b5c3f79cb44c0e4654a6d7619ad89Stephen Hines    /// AddRegFrm - This form is used for instructions like 'push r32' that have
886bcf27bb9a4b5c3f79cb44c0e4654a6d7619ad89Stephen Hines    /// their one register operand added to their opcode.
8996b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko    AddRegFrm      = 2,
9096b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko
918d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
928d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    /// to specify a destination, which in this case is a register.
938d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    ///
948d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    MRMDestReg     = 3,
958d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko
968536fa14ee1048e5e2d62cb3dc11fc640c7dc00dFariborz Jahanian    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
97808383d2d6d58a7c7db85f8c7618fb74d821309fDmitri Gribenko    /// to specify a destination, which in this case is memory.
988d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    ///
997d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    MRMDestMem     = 4,
1007d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko
1018d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
1027d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    /// to specify a source, which in this case is a register.
1037d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    ///
1048d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    MRMSrcReg      = 5,
1058d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko
1068d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
1078536fa14ee1048e5e2d62cb3dc11fc640c7dc00dFariborz Jahanian    /// to specify a source, which in this case is memory.
108808383d2d6d58a7c7db85f8c7618fb74d821309fDmitri Gribenko    ///
1098d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    MRMSrcMem      = 6,
1107d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko
1117d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    /// MRM[0-7][rm] - These forms are used to represent instructions that use
1127d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    /// a Mod/RM byte, and use the middle field to hold extended opcode
1137d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    /// information.  In the intel manual these are represented as /0, /1, ...
114a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko    ///
1157d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko
1167d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    // First, instructions that operate on a register r/m operand...
1177d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
1187d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
1198d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko
1207d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    // Next, instructions that operate on a memory r/m operand...
1217d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
1228d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
12396b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko
12496b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko    // MRMInitReg - This form is used for instructions whose source and
1258536fa14ee1048e5e2d62cb3dc11fc640c7dc00dFariborz Jahanian    // destinations are the same register.
126808383d2d6d58a7c7db85f8c7618fb74d821309fDmitri Gribenko    MRMInitReg = 32,
12796b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko
1287d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    FormMask       = 63,
1297d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko
1307d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    //===------------------------------------------------------------------===//
1317d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    // Actual flags...
13296b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko
1337d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    // OpSize - Set if this instruction requires an operand size prefix (0x66),
1347d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    // which most often indicates that the instruction operates on 16 bit data
13596b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko    // instead of 32 bit data.
1368d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    OpSize      = 1 << 6,
1378d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko
138e4330a302ac20b41b9800267ebd4b5b01f8553f8Dmitri Gribenko    // AsSize - Set if this instruction requires an operand size prefix (0x67),
1398d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    // which most often indicates that the instruction address 16 bit address
1408d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    // instead of 32 bit address (or 32 bit address in 64 bit mode).
1418d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    AdSize      = 1 << 7,
142e4330a302ac20b41b9800267ebd4b5b01f8553f8Dmitri Gribenko
1438d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    //===------------------------------------------------------------------===//
1448d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    // Op0Mask - There are several prefix bytes that are used to form two byte
1458d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
1468d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    // used to obtain the setting of this field.  If no bits in this field is
1478d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    // set, there is no prefix byte for obtaining a multibyte opcode.
1488d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    //
149b0b8a96df25660cbdbf35d23c3ff5887c33f82f9Dmitri Gribenko    Op0Shift    = 8,
150b0b8a96df25660cbdbf35d23c3ff5887c33f82f9Dmitri Gribenko    Op0Mask     = 0xF << Op0Shift,
151b0b8a96df25660cbdbf35d23c3ff5887c33f82f9Dmitri Gribenko
152b0b8a96df25660cbdbf35d23c3ff5887c33f82f9Dmitri Gribenko    // TB - TwoByte - Set if this instruction has a two byte opcode, which
153b0b8a96df25660cbdbf35d23c3ff5887c33f82f9Dmitri Gribenko    // starts with a 0x0F byte before the real opcode.
1548d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    TB          = 1 << Op0Shift,
1558d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko
1568d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    // REP - The 0xF3 prefix byte indicating repetition of the following
1578d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    // instruction.
1588d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    REP         = 2 << Op0Shift,
1598d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko
160e4330a302ac20b41b9800267ebd4b5b01f8553f8Dmitri Gribenko    // D8-DF - These escape opcodes are used by the floating point unit.  These
1618d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    // values must remain sequential.
1628d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
1638d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
1648d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
1657d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
1667d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko
1677d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    // XS, XD - These prefix codes are for single and double precision scalar
1687d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    // floating point operations performed in the SSE registers.
1698d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
1708d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko
171e4330a302ac20b41b9800267ebd4b5b01f8553f8Dmitri Gribenko    // T8, TA - Prefix after the 0x0F prefix.
1728d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
1738d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko
1748d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    //===------------------------------------------------------------------===//
1753f38bf2d441fac379c427f86153fbb0cb41256c6Dmitri Gribenko    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
1763f38bf2d441fac379c427f86153fbb0cb41256c6Dmitri Gribenko    // They are used to specify GPRs and SSE registers, 64-bit operand size,
1778d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    // etc. We only cares about REX.W and REX.R bits and only the former is
1787d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    // statically determined.
1797d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    //
1807d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    REXShift    = 12,
1817d9b51107999c1c1fada7319c4687fe570eb2c0bDmitri Gribenko    REX_W       = 1 << REXShift,
1828d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko
1833f38bf2d441fac379c427f86153fbb0cb41256c6Dmitri Gribenko    //===------------------------------------------------------------------===//
1843f38bf2d441fac379c427f86153fbb0cb41256c6Dmitri Gribenko    // This three-bit field describes the size of an immediate operand.  Zero is
1853f38bf2d441fac379c427f86153fbb0cb41256c6Dmitri Gribenko    // unused so that we can tell if we forgot to set a value.
1868d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    ImmShift = 13,
1878d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    ImmMask  = 7 << ImmShift,
1888d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    Imm8     = 1 << ImmShift,
189a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko    Imm16    = 2 << ImmShift,
190a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko    Imm32    = 3 << ImmShift,
19189ab7d0012ffe02a335b765eeb9b48977a5ecd79Dmitri Gribenko    Imm64    = 4 << ImmShift,
19289ab7d0012ffe02a335b765eeb9b48977a5ecd79Dmitri Gribenko
1939443c57150e870e308406e1e4e6d9d64712b417eDmitri Gribenko    //===------------------------------------------------------------------===//
1949443c57150e870e308406e1e4e6d9d64712b417eDmitri Gribenko    // FP Instruction Classification...  Zero is non-fp instruction.
1959443c57150e870e308406e1e4e6d9d64712b417eDmitri Gribenko
1969443c57150e870e308406e1e4e6d9d64712b417eDmitri Gribenko    // FPTypeMask - Mask for all of the FP types...
1970bd9838751384181ff387f2fb346896792b89617Dmitri Gribenko    FPTypeShift = 16,
1982a268f2629b49958427e8eb02f2c3d565be71accFariborz Jahanian    FPTypeMask  = 7 << FPTypeShift,
1992a268f2629b49958427e8eb02f2c3d565be71accFariborz Jahanian
20028c1cd2138f700742235e1e720c1f7e6dc75a11aFariborz Jahanian    // NotFP - The default, set for instructions that do not use FP registers.
20128c1cd2138f700742235e1e720c1f7e6dc75a11aFariborz Jahanian    NotFP      = 0 << FPTypeShift,
20228c1cd2138f700742235e1e720c1f7e6dc75a11aFariborz Jahanian
20328c1cd2138f700742235e1e720c1f7e6dc75a11aFariborz Jahanian    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
2040bd9838751384181ff387f2fb346896792b89617Dmitri Gribenko    ZeroArgFP  = 1 << FPTypeShift,
2059edd2c8a2ff6c6326ff2d5b081929e4baaa798edDmitri Gribenko
2069edd2c8a2ff6c6326ff2d5b081929e4baaa798edDmitri Gribenko    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
2079edd2c8a2ff6c6326ff2d5b081929e4baaa798edDmitri Gribenko    OneArgFP   = 2 << FPTypeShift,
2089edd2c8a2ff6c6326ff2d5b081929e4baaa798edDmitri Gribenko
2098487c524fdfcea3da858fd0af850b4784c8096d0Dmitri Gribenko    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
210eb8f69f094e95d0132e4a6817a2111ad188ab087Fariborz Jahanian    // result back to ST(0).  For example, fcos, fsqrt, etc.
211a558d2e29817e36798875c96efb62251e53ff024Dmitri Gribenko    //
212a558d2e29817e36798875c96efb62251e53ff024Dmitri Gribenko    OneArgFPRW = 3 << FPTypeShift,
213a558d2e29817e36798875c96efb62251e53ff024Dmitri Gribenko
21499a7057098c56211e641705e1ff38d4b7c8b309dFariborz Jahanian    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
215c5b0054693b3b3cafe6a13549358c22e07fcd4ffDmitri Gribenko    // explicit argument, storing the result to either ST(0) or the implicit
21699a7057098c56211e641705e1ff38d4b7c8b309dFariborz Jahanian    // argument.  For example: fadd, fsub, fmul, etc...
217664e860beb2550bef24fb8946192f61648a71d7fFariborz Jahanian    TwoArgFP   = 4 << FPTypeShift,
21804bf29eb1b197e0a103139ab5d63b0b97432f004Dmitri Gribenko
219b421b56d5a83c5bcae576b714ebd9df7b745368dFariborz Jahanian    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
220b421b56d5a83c5bcae576b714ebd9df7b745368dFariborz Jahanian    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
22128c1cd2138f700742235e1e720c1f7e6dc75a11aFariborz Jahanian    CompareFP  = 5 << FPTypeShift,
22228c1cd2138f700742235e1e720c1f7e6dc75a11aFariborz Jahanian
22328c1cd2138f700742235e1e720c1f7e6dc75a11aFariborz Jahanian    // CondMovFP - "2 operand" floating point conditional move instructions.
2242d588b4bc7127adf1a1c621002dfe452a99fef6fFariborz Jahanian    CondMovFP  = 6 << FPTypeShift,
2252d588b4bc7127adf1a1c621002dfe452a99fef6fFariborz Jahanian
22696b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
2278487c524fdfcea3da858fd0af850b4784c8096d0Dmitri Gribenko    SpecialFP  = 7 << FPTypeShift,
2288487c524fdfcea3da858fd0af850b4784c8096d0Dmitri Gribenko
2291ca7ecc8854ffea215c033a0d8482551bf1b73f0Dmitri Gribenko    // Lock prefix
2301ca7ecc8854ffea215c033a0d8482551bf1b73f0Dmitri Gribenko    LOCKShift = 19,
2318487c524fdfcea3da858fd0af850b4784c8096d0Dmitri Gribenko    LOCK = 1 << LOCKShift,
2328487c524fdfcea3da858fd0af850b4784c8096d0Dmitri Gribenko
233a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko    // Segment override prefixes. Currently we just need ability to address
234a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko    // stuff in gs and fs segments.
2358487c524fdfcea3da858fd0af850b4784c8096d0Dmitri Gribenko    SegOvrShift = 20,
236a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko    SegOvrMask  = 3 << SegOvrShift,
237a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko    FS          = 1 << SegOvrShift,
238a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko    GS          = 2 << SegOvrShift,
239a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko
2408487c524fdfcea3da858fd0af850b4784c8096d0Dmitri Gribenko    // Bits 22 -> 23 are unused
241a5ef44ff5d93a3be6ca67782828157a71894cf0cDmitri Gribenko    OpcodeShift   = 24,
24296b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko    OpcodeMask    = 0xFF << OpcodeShift
24396b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko  };
24496b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko}
24596b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko
24696b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenkoconst int X86AddrNumOperands = 4;
24796b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko
24896b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenkoinline static bool isScale(const MachineOperand &MO) {
24996b098674908eaa59a9128f3305cda6fbbdad563Dmitri Gribenko  return MO.isImm() &&
2502d66a5016d4aacce362f89290261c8a1a6eef0d3Dmitri Gribenko    (MO.getImm() == 1 || MO.getImm() == 2 ||
2512d66a5016d4aacce362f89290261c8a1a6eef0d3Dmitri Gribenko     MO.getImm() == 4 || MO.getImm() == 8);
2528d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko}
2538d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko
2548d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenkoinline static bool isMem(const MachineInstr *MI, unsigned Op) {
2558d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko  if (MI->getOperand(Op).isFI()) return true;
2568d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko  return Op+4 <= MI->getNumOperands() &&
2578d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
2588d3ba23f2d9e6c87794d059412a0808c9cbacb25Dmitri Gribenko    MI->getOperand(Op+2).isReg() &&
259    (MI->getOperand(Op+3).isImm() ||
260     MI->getOperand(Op+3).isGlobal() ||
261     MI->getOperand(Op+3).isCPI() ||
262     MI->getOperand(Op+3).isJTI());
263}
264
265class X86InstrInfo : public TargetInstrInfoImpl {
266  X86TargetMachine &TM;
267  const X86RegisterInfo RI;
268
269  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
270  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
271  ///
272  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
273  DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
274  DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
275  DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
276
277  /// MemOp2RegOpTable - Load / store unfolding opcode map.
278  ///
279  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
280
281public:
282  explicit X86InstrInfo(X86TargetMachine &tm);
283
284  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
285  /// such, whenever a client has an instance of instruction info, it should
286  /// always be able to get register info as well (through this method).
287  ///
288  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
289
290  /// Return true if the instruction is a register to register move and return
291  /// the source and dest operands and their sub-register indices by reference.
292  virtual bool isMoveInstr(const MachineInstr &MI,
293                           unsigned &SrcReg, unsigned &DstReg,
294                           unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
295
296  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
297  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
298
299  bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
300  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
301                     unsigned DestReg, const MachineInstr *Orig) const;
302
303  bool isInvariantLoad(const MachineInstr *MI) const;
304
305  /// convertToThreeAddress - This method must be implemented by targets that
306  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
307  /// may be able to convert a two-address instruction into a true
308  /// three-address instruction on demand.  This allows the X86 target (for
309  /// example) to convert ADD and SHL instructions into LEA instructions if they
310  /// would require register copies due to two-addressness.
311  ///
312  /// This method returns a null pointer if the transformation cannot be
313  /// performed, otherwise it returns the new instruction.
314  ///
315  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
316                                              MachineBasicBlock::iterator &MBBI,
317                                              LiveVariables *LV) const;
318
319  /// commuteInstruction - We have a few instructions that must be hacked on to
320  /// commute them.
321  ///
322  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
323
324  // Branch analysis.
325  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
326  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
327                             MachineBasicBlock *&FBB,
328                             SmallVectorImpl<MachineOperand> &Cond,
329                             bool AllowModify) const;
330  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
331  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
332                                MachineBasicBlock *FBB,
333                            const SmallVectorImpl<MachineOperand> &Cond) const;
334  virtual bool copyRegToReg(MachineBasicBlock &MBB,
335                            MachineBasicBlock::iterator MI,
336                            unsigned DestReg, unsigned SrcReg,
337                            const TargetRegisterClass *DestRC,
338                            const TargetRegisterClass *SrcRC) const;
339  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
340                                   MachineBasicBlock::iterator MI,
341                                   unsigned SrcReg, bool isKill, int FrameIndex,
342                                   const TargetRegisterClass *RC) const;
343
344  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
345                              SmallVectorImpl<MachineOperand> &Addr,
346                              const TargetRegisterClass *RC,
347                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
348
349  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
350                                    MachineBasicBlock::iterator MI,
351                                    unsigned DestReg, int FrameIndex,
352                                    const TargetRegisterClass *RC) const;
353
354  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
355                               SmallVectorImpl<MachineOperand> &Addr,
356                               const TargetRegisterClass *RC,
357                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
358
359  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
360                                         MachineBasicBlock::iterator MI,
361                                 const std::vector<CalleeSavedInfo> &CSI) const;
362
363  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
364                                           MachineBasicBlock::iterator MI,
365                                 const std::vector<CalleeSavedInfo> &CSI) const;
366
367  /// foldMemoryOperand - If this target supports it, fold a load or store of
368  /// the specified stack slot into the specified machine instruction for the
369  /// specified operand(s).  If this is possible, the target should perform the
370  /// folding and return true, otherwise it should return false.  If it folds
371  /// the instruction, it is likely that the MachineInstruction the iterator
372  /// references has been changed.
373  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
374                                              MachineInstr* MI,
375                                           const SmallVectorImpl<unsigned> &Ops,
376                                              int FrameIndex) const;
377
378  /// foldMemoryOperand - Same as the previous version except it allows folding
379  /// of any load and store from / to any address, not just from a specific
380  /// stack slot.
381  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
382                                              MachineInstr* MI,
383                                           const SmallVectorImpl<unsigned> &Ops,
384                                              MachineInstr* LoadMI) const;
385
386  /// canFoldMemoryOperand - Returns true if the specified load / store is
387  /// folding is possible.
388  virtual bool canFoldMemoryOperand(const MachineInstr*,
389                                    const SmallVectorImpl<unsigned> &) const;
390
391  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
392  /// a store or a load and a store into two or more instruction. If this is
393  /// possible, returns true as well as the new instructions by reference.
394  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
395                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
396                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
397
398  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
399                           SmallVectorImpl<SDNode*> &NewNodes) const;
400
401  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
402  /// instruction after load / store are unfolded from an instruction of the
403  /// specified opcode. It returns zero if the specified unfolding is not
404  /// possible.
405  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
406                                      bool UnfoldLoad, bool UnfoldStore) const;
407
408  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
409  virtual
410  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
411
412  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
413  /// instruction that defines the specified register class.
414  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
415
416  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
417  // specified machine instruction.
418  //
419  unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
420    return TID->TSFlags >> X86II::OpcodeShift;
421  }
422  unsigned char getBaseOpcodeFor(unsigned Opcode) const {
423    return getBaseOpcodeFor(&get(Opcode));
424  }
425
426  static bool isX86_64NonExtLowByteReg(unsigned reg) {
427    return (reg == X86::SPL || reg == X86::BPL ||
428          reg == X86::SIL || reg == X86::DIL);
429  }
430
431  static unsigned sizeOfImm(const TargetInstrDesc *Desc);
432  static bool isX86_64ExtendedReg(const MachineOperand &MO);
433  static unsigned determineREX(const MachineInstr &MI);
434
435  /// GetInstSize - Returns the size of the specified MachineInstr.
436  ///
437  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
438
439  /// getGlobalBaseReg - Return a virtual register initialized with the
440  /// the global base register value. Output instructions required to
441  /// initialize the register in the function entry block, if necessary.
442  ///
443  unsigned getGlobalBaseReg(MachineFunction *MF) const;
444
445private:
446  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
447                                      MachineInstr* MI,
448                                      unsigned OpNum,
449                                      const SmallVectorImpl<MachineOperand> &MOs) const;
450};
451
452} // End llvm namespace
453
454#endif
455