X86InstrInfo.h revision f9b36f08efbc66670910a8a85dd89f03d36196d4
1//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
18#include "X86.h"
19#include "X86RegisterInfo.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22
23namespace llvm {
24  class X86RegisterInfo;
25  class X86TargetMachine;
26
27namespace X86 {
28  // X86 specific condition code. These correspond to X86_*_COND in
29  // X86InstrInfo.td. They must be kept in synch.
30  enum CondCode {
31    COND_A  = 0,
32    COND_AE = 1,
33    COND_B  = 2,
34    COND_BE = 3,
35    COND_E  = 4,
36    COND_G  = 5,
37    COND_GE = 6,
38    COND_L  = 7,
39    COND_LE = 8,
40    COND_NE = 9,
41    COND_NO = 10,
42    COND_NP = 11,
43    COND_NS = 12,
44    COND_O  = 13,
45    COND_P  = 14,
46    COND_S  = 15,
47
48    // Artificial condition codes. These are used by AnalyzeBranch
49    // to indicate a block terminated with two conditional branches to
50    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
51    // which can't be represented on x86 with a single condition. These
52    // are never used in MachineInstrs.
53    COND_NE_OR_P,
54    COND_NP_OR_E,
55
56    COND_INVALID
57  };
58
59  // Turn condition code into conditional branch opcode.
60  unsigned GetCondBranchFromCond(CondCode CC);
61
62  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63  /// e.g. turning COND_E to COND_NE.
64  CondCode GetOppositeBranchCondition(X86::CondCode CC);
65
66}
67
68/// X86II - This namespace holds all of the target specific flags that
69/// instruction info tracks.
70///
71namespace X86II {
72  /// Target Operand Flag enum.
73  enum TOF {
74    //===------------------------------------------------------------------===//
75    // X86 Specific MachineOperand flags.
76
77    MO_NO_FLAG = 0,
78
79    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
80    /// relocation of:
81    ///    SYMBOL_LABEL + [. - PICBASELABEL]
82    MO_GOT_ABSOLUTE_ADDRESS = 1,
83
84    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
85    /// immediate should get the value of the symbol minus the PIC base label:
86    ///    SYMBOL_LABEL - PICBASELABEL
87    MO_PIC_BASE_OFFSET = 2,
88
89    /// MO_GOT - On a symbol operand this indicates that the immediate is the
90    /// offset to the GOT entry for the symbol name from the base of the GOT.
91    ///
92    /// See the X86-64 ELF ABI supplement for more details.
93    ///    SYMBOL_LABEL @GOT
94    MO_GOT = 3,
95
96    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
97    /// the offset to the location of the symbol name from the base of the GOT.
98    ///
99    /// See the X86-64 ELF ABI supplement for more details.
100    ///    SYMBOL_LABEL @GOTOFF
101    MO_GOTOFF = 4,
102
103    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
104    /// offset to the GOT entry for the symbol name from the current code
105    /// location.
106    ///
107    /// See the X86-64 ELF ABI supplement for more details.
108    ///    SYMBOL_LABEL @GOTPCREL
109    MO_GOTPCREL = 5,
110
111    /// MO_PLT - On a symbol operand this indicates that the immediate is
112    /// offset to the PLT entry of symbol name from the current code location.
113    ///
114    /// See the X86-64 ELF ABI supplement for more details.
115    ///    SYMBOL_LABEL @PLT
116    MO_PLT = 6,
117
118    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
119    /// some TLS offset.
120    ///
121    /// See 'ELF Handling for Thread-Local Storage' for more details.
122    ///    SYMBOL_LABEL @TLSGD
123    MO_TLSGD = 7,
124
125    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
126    /// some TLS offset.
127    ///
128    /// See 'ELF Handling for Thread-Local Storage' for more details.
129    ///    SYMBOL_LABEL @GOTTPOFF
130    MO_GOTTPOFF = 8,
131
132    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
133    /// some TLS offset.
134    ///
135    /// See 'ELF Handling for Thread-Local Storage' for more details.
136    ///    SYMBOL_LABEL @INDNTPOFF
137    MO_INDNTPOFF = 9,
138
139    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
140    /// some TLS offset.
141    ///
142    /// See 'ELF Handling for Thread-Local Storage' for more details.
143    ///    SYMBOL_LABEL @TPOFF
144    MO_TPOFF = 10,
145
146    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
147    /// some TLS offset.
148    ///
149    /// See 'ELF Handling for Thread-Local Storage' for more details.
150    ///    SYMBOL_LABEL @NTPOFF
151    MO_NTPOFF = 11,
152
153    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
154    /// reference is actually to the "__imp_FOO" symbol.  This is used for
155    /// dllimport linkage on windows.
156    MO_DLLIMPORT = 12,
157
158    /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
159    /// reference is actually to the "FOO$stub" symbol.  This is used for calls
160    /// and jumps to external functions on Tiger and before.
161    MO_DARWIN_STUB = 13,
162
163    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
164    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
165    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
166    MO_DARWIN_NONLAZY = 14,
167
168    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
169    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
170    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
171    MO_DARWIN_NONLAZY_PIC_BASE = 15,
172
173    /// MO_DARWIN_HIDDEN_NONLAZY - On a symbol operand "FOO", this indicates
174    /// that the reference is actually to the "FOO$non_lazy_ptr" symbol, which
175    /// is a non-PIC-base-relative reference to a hidden dyld lazy pointer stub.
176    MO_DARWIN_HIDDEN_NONLAZY = 16,
177
178    /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
179    /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
180    /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
181    /// stub.
182    MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE = 17
183  };
184}
185
186/// isGlobalStubReference - Return true if the specified TargetFlag operand is
187/// a reference to a stub for a global, not the global itself.
188inline static bool isGlobalStubReference(unsigned char TargetFlag) {
189  switch (TargetFlag) {
190  case X86II::MO_DLLIMPORT: // dllimport stub.
191  case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
192  case X86II::MO_GOT:       // normal GOT reference.
193  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
194  case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
195  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
196  case X86II::MO_DARWIN_HIDDEN_NONLAZY:          // Hidden $non_lazy_ptr ref.
197    return true;
198  default:
199    return false;
200  }
201}
202
203/// isGlobalRelativeToPICBase - Return true if the specified global value
204/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
205/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
206inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
207  switch (TargetFlag) {
208  case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
209  case X86II::MO_GOT:                            // isPICStyleGOT: other global.
210  case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
211  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
212  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
213    return true;
214  default:
215    return false;
216  }
217}
218
219/// X86II - This namespace holds all of the target specific flags that
220/// instruction info tracks.
221///
222namespace X86II {
223  enum {
224    //===------------------------------------------------------------------===//
225    // Instruction encodings.  These are the standard/most common forms for X86
226    // instructions.
227    //
228
229    // PseudoFrm - This represents an instruction that is a pseudo instruction
230    // or one that has not been implemented yet.  It is illegal to code generate
231    // it, but tolerated for intermediate implementation stages.
232    Pseudo         = 0,
233
234    /// Raw - This form is for instructions that don't have any operands, so
235    /// they are just a fixed opcode value, like 'leave'.
236    RawFrm         = 1,
237
238    /// AddRegFrm - This form is used for instructions like 'push r32' that have
239    /// their one register operand added to their opcode.
240    AddRegFrm      = 2,
241
242    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
243    /// to specify a destination, which in this case is a register.
244    ///
245    MRMDestReg     = 3,
246
247    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
248    /// to specify a destination, which in this case is memory.
249    ///
250    MRMDestMem     = 4,
251
252    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
253    /// to specify a source, which in this case is a register.
254    ///
255    MRMSrcReg      = 5,
256
257    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
258    /// to specify a source, which in this case is memory.
259    ///
260    MRMSrcMem      = 6,
261
262    /// MRM[0-7][rm] - These forms are used to represent instructions that use
263    /// a Mod/RM byte, and use the middle field to hold extended opcode
264    /// information.  In the intel manual these are represented as /0, /1, ...
265    ///
266
267    // First, instructions that operate on a register r/m operand...
268    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
269    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
270
271    // Next, instructions that operate on a memory r/m operand...
272    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
273    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
274
275    // MRMInitReg - This form is used for instructions whose source and
276    // destinations are the same register.
277    MRMInitReg = 32,
278
279    FormMask       = 63,
280
281    //===------------------------------------------------------------------===//
282    // Actual flags...
283
284    // OpSize - Set if this instruction requires an operand size prefix (0x66),
285    // which most often indicates that the instruction operates on 16 bit data
286    // instead of 32 bit data.
287    OpSize      = 1 << 6,
288
289    // AsSize - Set if this instruction requires an operand size prefix (0x67),
290    // which most often indicates that the instruction address 16 bit address
291    // instead of 32 bit address (or 32 bit address in 64 bit mode).
292    AdSize      = 1 << 7,
293
294    //===------------------------------------------------------------------===//
295    // Op0Mask - There are several prefix bytes that are used to form two byte
296    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
297    // used to obtain the setting of this field.  If no bits in this field is
298    // set, there is no prefix byte for obtaining a multibyte opcode.
299    //
300    Op0Shift    = 8,
301    Op0Mask     = 0xF << Op0Shift,
302
303    // TB - TwoByte - Set if this instruction has a two byte opcode, which
304    // starts with a 0x0F byte before the real opcode.
305    TB          = 1 << Op0Shift,
306
307    // REP - The 0xF3 prefix byte indicating repetition of the following
308    // instruction.
309    REP         = 2 << Op0Shift,
310
311    // D8-DF - These escape opcodes are used by the floating point unit.  These
312    // values must remain sequential.
313    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
314    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
315    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
316    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
317
318    // XS, XD - These prefix codes are for single and double precision scalar
319    // floating point operations performed in the SSE registers.
320    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
321
322    // T8, TA - Prefix after the 0x0F prefix.
323    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
324
325    //===------------------------------------------------------------------===//
326    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
327    // They are used to specify GPRs and SSE registers, 64-bit operand size,
328    // etc. We only cares about REX.W and REX.R bits and only the former is
329    // statically determined.
330    //
331    REXShift    = 12,
332    REX_W       = 1 << REXShift,
333
334    //===------------------------------------------------------------------===//
335    // This three-bit field describes the size of an immediate operand.  Zero is
336    // unused so that we can tell if we forgot to set a value.
337    ImmShift = 13,
338    ImmMask  = 7 << ImmShift,
339    Imm8     = 1 << ImmShift,
340    Imm16    = 2 << ImmShift,
341    Imm32    = 3 << ImmShift,
342    Imm64    = 4 << ImmShift,
343
344    //===------------------------------------------------------------------===//
345    // FP Instruction Classification...  Zero is non-fp instruction.
346
347    // FPTypeMask - Mask for all of the FP types...
348    FPTypeShift = 16,
349    FPTypeMask  = 7 << FPTypeShift,
350
351    // NotFP - The default, set for instructions that do not use FP registers.
352    NotFP      = 0 << FPTypeShift,
353
354    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
355    ZeroArgFP  = 1 << FPTypeShift,
356
357    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
358    OneArgFP   = 2 << FPTypeShift,
359
360    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
361    // result back to ST(0).  For example, fcos, fsqrt, etc.
362    //
363    OneArgFPRW = 3 << FPTypeShift,
364
365    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
366    // explicit argument, storing the result to either ST(0) or the implicit
367    // argument.  For example: fadd, fsub, fmul, etc...
368    TwoArgFP   = 4 << FPTypeShift,
369
370    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
371    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
372    CompareFP  = 5 << FPTypeShift,
373
374    // CondMovFP - "2 operand" floating point conditional move instructions.
375    CondMovFP  = 6 << FPTypeShift,
376
377    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
378    SpecialFP  = 7 << FPTypeShift,
379
380    // Lock prefix
381    LOCKShift = 19,
382    LOCK = 1 << LOCKShift,
383
384    // Segment override prefixes. Currently we just need ability to address
385    // stuff in gs and fs segments.
386    SegOvrShift = 20,
387    SegOvrMask  = 3 << SegOvrShift,
388    FS          = 1 << SegOvrShift,
389    GS          = 2 << SegOvrShift,
390
391    // Bits 22 -> 23 are unused
392    OpcodeShift   = 24,
393    OpcodeMask    = 0xFF << OpcodeShift
394  };
395}
396
397const int X86AddrNumOperands = 5;
398
399inline static bool isScale(const MachineOperand &MO) {
400  return MO.isImm() &&
401    (MO.getImm() == 1 || MO.getImm() == 2 ||
402     MO.getImm() == 4 || MO.getImm() == 8);
403}
404
405inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
406  if (MI->getOperand(Op).isFI()) return true;
407  return Op+4 <= MI->getNumOperands() &&
408    MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
409    MI->getOperand(Op+2).isReg() &&
410    (MI->getOperand(Op+3).isImm() ||
411     MI->getOperand(Op+3).isGlobal() ||
412     MI->getOperand(Op+3).isCPI() ||
413     MI->getOperand(Op+3).isJTI());
414}
415
416inline static bool isMem(const MachineInstr *MI, unsigned Op) {
417  if (MI->getOperand(Op).isFI()) return true;
418  return Op+5 <= MI->getNumOperands() &&
419    MI->getOperand(Op+4).isReg() &&
420    isLeaMem(MI, Op);
421}
422
423class X86InstrInfo : public TargetInstrInfoImpl {
424  X86TargetMachine &TM;
425  const X86RegisterInfo RI;
426
427  /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
428  /// RegOp2MemOpTable2 - Load / store folding opcode maps.
429  ///
430  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
431  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
432  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
433  DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
434
435  /// MemOp2RegOpTable - Load / store unfolding opcode map.
436  ///
437  DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
438
439public:
440  explicit X86InstrInfo(X86TargetMachine &tm);
441
442  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
443  /// such, whenever a client has an instance of instruction info, it should
444  /// always be able to get register info as well (through this method).
445  ///
446  virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
447
448  /// Return true if the instruction is a register to register move and return
449  /// the source and dest operands and their sub-register indices by reference.
450  virtual bool isMoveInstr(const MachineInstr &MI,
451                           unsigned &SrcReg, unsigned &DstReg,
452                           unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
453
454  unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
455  unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
456
457  bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
458  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
459                     unsigned DestReg, const MachineInstr *Orig) const;
460
461  bool isInvariantLoad(const MachineInstr *MI) const;
462
463  /// convertToThreeAddress - This method must be implemented by targets that
464  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
465  /// may be able to convert a two-address instruction into a true
466  /// three-address instruction on demand.  This allows the X86 target (for
467  /// example) to convert ADD and SHL instructions into LEA instructions if they
468  /// would require register copies due to two-addressness.
469  ///
470  /// This method returns a null pointer if the transformation cannot be
471  /// performed, otherwise it returns the new instruction.
472  ///
473  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
474                                              MachineBasicBlock::iterator &MBBI,
475                                              LiveVariables *LV) const;
476
477  /// commuteInstruction - We have a few instructions that must be hacked on to
478  /// commute them.
479  ///
480  virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
481
482  // Branch analysis.
483  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
484  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
485                             MachineBasicBlock *&FBB,
486                             SmallVectorImpl<MachineOperand> &Cond,
487                             bool AllowModify) const;
488  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
489  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
490                                MachineBasicBlock *FBB,
491                            const SmallVectorImpl<MachineOperand> &Cond) const;
492  virtual bool copyRegToReg(MachineBasicBlock &MBB,
493                            MachineBasicBlock::iterator MI,
494                            unsigned DestReg, unsigned SrcReg,
495                            const TargetRegisterClass *DestRC,
496                            const TargetRegisterClass *SrcRC) const;
497  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
498                                   MachineBasicBlock::iterator MI,
499                                   unsigned SrcReg, bool isKill, int FrameIndex,
500                                   const TargetRegisterClass *RC) const;
501
502  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
503                              SmallVectorImpl<MachineOperand> &Addr,
504                              const TargetRegisterClass *RC,
505                              SmallVectorImpl<MachineInstr*> &NewMIs) const;
506
507  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
508                                    MachineBasicBlock::iterator MI,
509                                    unsigned DestReg, int FrameIndex,
510                                    const TargetRegisterClass *RC) const;
511
512  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
513                               SmallVectorImpl<MachineOperand> &Addr,
514                               const TargetRegisterClass *RC,
515                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
516
517  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
518                                         MachineBasicBlock::iterator MI,
519                                 const std::vector<CalleeSavedInfo> &CSI) const;
520
521  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
522                                           MachineBasicBlock::iterator MI,
523                                 const std::vector<CalleeSavedInfo> &CSI) const;
524
525  /// foldMemoryOperand - If this target supports it, fold a load or store of
526  /// the specified stack slot into the specified machine instruction for the
527  /// specified operand(s).  If this is possible, the target should perform the
528  /// folding and return true, otherwise it should return false.  If it folds
529  /// the instruction, it is likely that the MachineInstruction the iterator
530  /// references has been changed.
531  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
532                                              MachineInstr* MI,
533                                           const SmallVectorImpl<unsigned> &Ops,
534                                              int FrameIndex) const;
535
536  /// foldMemoryOperand - Same as the previous version except it allows folding
537  /// of any load and store from / to any address, not just from a specific
538  /// stack slot.
539  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
540                                              MachineInstr* MI,
541                                           const SmallVectorImpl<unsigned> &Ops,
542                                              MachineInstr* LoadMI) const;
543
544  /// canFoldMemoryOperand - Returns true if the specified load / store is
545  /// folding is possible.
546  virtual bool canFoldMemoryOperand(const MachineInstr*,
547                                    const SmallVectorImpl<unsigned> &) const;
548
549  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
550  /// a store or a load and a store into two or more instruction. If this is
551  /// possible, returns true as well as the new instructions by reference.
552  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
553                           unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
554                           SmallVectorImpl<MachineInstr*> &NewMIs) const;
555
556  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
557                           SmallVectorImpl<SDNode*> &NewNodes) const;
558
559  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
560  /// instruction after load / store are unfolded from an instruction of the
561  /// specified opcode. It returns zero if the specified unfolding is not
562  /// possible.
563  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
564                                      bool UnfoldLoad, bool UnfoldStore) const;
565
566  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
567  virtual
568  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
569
570  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
571  /// instruction that defines the specified register class.
572  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
573
574  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
575  // specified machine instruction.
576  //
577  unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
578    return TID->TSFlags >> X86II::OpcodeShift;
579  }
580  unsigned char getBaseOpcodeFor(unsigned Opcode) const {
581    return getBaseOpcodeFor(&get(Opcode));
582  }
583
584  static bool isX86_64NonExtLowByteReg(unsigned reg) {
585    return (reg == X86::SPL || reg == X86::BPL ||
586          reg == X86::SIL || reg == X86::DIL);
587  }
588
589  static unsigned sizeOfImm(const TargetInstrDesc *Desc);
590  static bool isX86_64ExtendedReg(const MachineOperand &MO);
591  static unsigned determineREX(const MachineInstr &MI);
592
593  /// GetInstSize - Returns the size of the specified MachineInstr.
594  ///
595  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
596
597  /// getGlobalBaseReg - Return a virtual register initialized with the
598  /// the global base register value. Output instructions required to
599  /// initialize the register in the function entry block, if necessary.
600  ///
601  unsigned getGlobalBaseReg(MachineFunction *MF) const;
602
603private:
604  MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
605                                     MachineInstr* MI,
606                                     unsigned OpNum,
607                                     const SmallVectorImpl<MachineOperand> &MOs,
608                                     unsigned Alignment) const;
609};
610
611} // End llvm namespace
612
613#endif
614