X86SchedHaswell.td revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the machine model for Haswell to support instruction
11// scheduling and other instruction cost heuristics.
12//
13//===----------------------------------------------------------------------===//
14
15def HaswellModel : SchedMachineModel {
16  // All x86 instructions are modeled as a single micro-op, and HW can decode 4
17  // instructions per cycle.
18  let IssueWidth = 4;
19  let MicroOpBufferSize = 192; // Based on the reorder buffer.
20  let LoadLatency = 4;
21  let MispredictPenalty = 16;
22
23  // FIXME: SSE4 and AVX are unimplemented. This flag is set to allow
24  // the scheduler to assign a default model to unrecognized opcodes.
25  let CompleteModel = 0;
26}
27
28let SchedModel = HaswellModel in {
29
30// Haswell can issue micro-ops to 8 different ports in one cycle.
31
32// Ports 0, 1, 5, and 6 handle all computation.
33// Port 4 gets the data half of stores. Store data can be available later than
34// the store address, but since we don't model the latency of stores, we can
35// ignore that.
36// Ports 2 and 3 are identical. They handle loads and the address half of
37// stores. Port 7 can handle address calculations.
38def HWPort0 : ProcResource<1>;
39def HWPort1 : ProcResource<1>;
40def HWPort2 : ProcResource<1>;
41def HWPort3 : ProcResource<1>;
42def HWPort4 : ProcResource<1>;
43def HWPort5 : ProcResource<1>;
44def HWPort6 : ProcResource<1>;
45def HWPort7 : ProcResource<1>;
46
47// Many micro-ops are capable of issuing on multiple ports.
48def HWPort23  : ProcResGroup<[HWPort2, HWPort3]>;
49def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>;
50def HWPort05  : ProcResGroup<[HWPort0, HWPort5]>;
51def HWPort06 : ProcResGroup<[HWPort0, HWPort6]>;
52def HWPort15  : ProcResGroup<[HWPort1, HWPort5]>;
53def HWPort16  : ProcResGroup<[HWPort1, HWPort6]>;
54def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>;
55def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>;
56
57// 60 Entry Unified Scheduler
58def HWPortAny : ProcResGroup<[HWPort0, HWPort1, HWPort2, HWPort3, HWPort4,
59                              HWPort5, HWPort6, HWPort7]> {
60  let BufferSize=60;
61}
62
63// Integer division issued on port 0.
64def HWDivider : ProcResource<1>;
65
66// Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4
67// cycles after the memory operand.
68def : ReadAdvance<ReadAfterLd, 4>;
69
70// Many SchedWrites are defined in pairs with and without a folded load.
71// Instructions with folded loads are usually micro-fused, so they only appear
72// as two micro-ops when queued in the reservation station.
73// This multiclass defines the resource usage for variants with and without
74// folded loads.
75multiclass HWWriteResPair<X86FoldableSchedWrite SchedRW,
76                          ProcResourceKind ExePort,
77                          int Lat> {
78  // Register variant is using a single cycle on ExePort.
79  def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
80
81  // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the
82  // latency.
83  def : WriteRes<SchedRW.Folded, [HWPort23, ExePort]> {
84     let Latency = !add(Lat, 4);
85  }
86}
87
88// A folded store needs a cycle on port 4 for the store data, but it does not
89// need an extra port 2/3 cycle to recompute the address.
90def : WriteRes<WriteRMW, [HWPort4]>;
91
92// Store_addr on 237.
93// Store_data on 4.
94def : WriteRes<WriteStore, [HWPort237, HWPort4]>;
95def : WriteRes<WriteLoad,  [HWPort23]> { let Latency = 4; }
96def : WriteRes<WriteMove,  [HWPort0156]>;
97def : WriteRes<WriteZero,  []>;
98
99defm : HWWriteResPair<WriteALU,   HWPort0156, 1>;
100defm : HWWriteResPair<WriteIMul,  HWPort1,   3>;
101def  : WriteRes<WriteIMulH, []> { let Latency = 3; }
102defm : HWWriteResPair<WriteShift, HWPort06,  1>;
103defm : HWWriteResPair<WriteJump,  HWPort06,   1>;
104
105// This is for simple LEAs with one or two input operands.
106// The complex ones can only execute on port 1, and they require two cycles on
107// the port to read all inputs. We don't model that.
108def : WriteRes<WriteLEA, [HWPort15]>;
109
110// This is quite rough, latency depends on the dividend.
111def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> {
112  let Latency = 25;
113  let ResourceCycles = [1, 10];
114}
115def : WriteRes<WriteIDivLd, [HWPort23, HWPort0, HWDivider]> {
116  let Latency = 29;
117  let ResourceCycles = [1, 1, 10];
118}
119
120// Scalar and vector floating point.
121defm : HWWriteResPair<WriteFAdd,   HWPort1, 3>;
122defm : HWWriteResPair<WriteFMul,   HWPort0, 5>;
123defm : HWWriteResPair<WriteFDiv,   HWPort0, 12>; // 10-14 cycles.
124defm : HWWriteResPair<WriteFRcp,   HWPort0, 5>;
125defm : HWWriteResPair<WriteFSqrt,  HWPort0, 15>;
126defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>;
127defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>;
128defm : HWWriteResPair<WriteCvtF2F, HWPort1, 3>;
129defm : HWWriteResPair<WriteFShuffle,  HWPort5,  1>;
130defm : HWWriteResPair<WriteFBlend,  HWPort015,  1>;
131defm : HWWriteResPair<WriteFShuffle256,  HWPort5,  3>;
132
133def : WriteRes<WriteFVarBlend, [HWPort5]> {
134  let Latency = 2;
135  let ResourceCycles = [2];
136}
137def : WriteRes<WriteFVarBlendLd, [HWPort5, HWPort23]> {
138  let Latency = 6;
139  let ResourceCycles = [2, 1];
140}
141
142// Vector integer operations.
143defm : HWWriteResPair<WriteVecShift, HWPort0,  1>;
144defm : HWWriteResPair<WriteVecLogic, HWPort015, 1>;
145defm : HWWriteResPair<WriteVecALU,   HWPort15,  1>;
146defm : HWWriteResPair<WriteVecIMul,  HWPort0,   5>;
147defm : HWWriteResPair<WriteShuffle,  HWPort5,  1>;
148defm : HWWriteResPair<WriteBlend,  HWPort15,  1>;
149defm : HWWriteResPair<WriteShuffle256,  HWPort5,  3>;
150
151def : WriteRes<WriteVarBlend, [HWPort5]> {
152  let Latency = 2;
153  let ResourceCycles = [2];
154}
155def : WriteRes<WriteVarBlendLd, [HWPort5, HWPort23]> {
156  let Latency = 6;
157  let ResourceCycles = [2, 1];
158}
159
160def : WriteRes<WriteVarVecShift, [HWPort0, HWPort5]> {
161  let Latency = 2;
162  let ResourceCycles = [2, 1];
163}
164def : WriteRes<WriteVarVecShiftLd, [HWPort0, HWPort5, HWPort23]> {
165  let Latency = 6;
166  let ResourceCycles = [2, 1, 1];
167}
168
169def : WriteRes<WriteMPSAD, [HWPort0, HWPort5]> {
170  let Latency = 6;
171  let ResourceCycles = [1, 2];
172}
173def : WriteRes<WriteMPSADLd, [HWPort23, HWPort0, HWPort5]> {
174  let Latency = 6;
175  let ResourceCycles = [1, 1, 2];
176}
177
178// String instructions.
179// Packed Compare Implicit Length Strings, Return Mask
180def : WriteRes<WritePCmpIStrM, [HWPort0]> {
181  let Latency = 10;
182  let ResourceCycles = [3];
183}
184def : WriteRes<WritePCmpIStrMLd, [HWPort0, HWPort23]> {
185  let Latency = 10;
186  let ResourceCycles = [3, 1];
187}
188
189// Packed Compare Explicit Length Strings, Return Mask
190def : WriteRes<WritePCmpEStrM, [HWPort0, HWPort16, HWPort5]> {
191  let Latency = 10;
192  let ResourceCycles = [3, 2, 4];
193}
194def : WriteRes<WritePCmpEStrMLd, [HWPort05, HWPort16, HWPort23]> {
195  let Latency = 10;
196  let ResourceCycles = [6, 2, 1];
197}
198
199// Packed Compare Implicit Length Strings, Return Index
200def : WriteRes<WritePCmpIStrI, [HWPort0]> {
201  let Latency = 11;
202  let ResourceCycles = [3];
203}
204def : WriteRes<WritePCmpIStrILd, [HWPort0, HWPort23]> {
205  let Latency = 11;
206  let ResourceCycles = [3, 1];
207}
208
209// Packed Compare Explicit Length Strings, Return Index
210def : WriteRes<WritePCmpEStrI, [HWPort05, HWPort16]> {
211  let Latency = 11;
212  let ResourceCycles = [6, 2];
213}
214def : WriteRes<WritePCmpEStrILd, [HWPort0, HWPort16, HWPort5, HWPort23]> {
215  let Latency = 11;
216  let ResourceCycles = [3, 2, 2, 1];
217}
218
219// AES Instructions.
220def : WriteRes<WriteAESDecEnc, [HWPort5]> {
221  let Latency = 7;
222  let ResourceCycles = [1];
223}
224def : WriteRes<WriteAESDecEncLd, [HWPort5, HWPort23]> {
225  let Latency = 7;
226  let ResourceCycles = [1, 1];
227}
228
229def : WriteRes<WriteAESIMC, [HWPort5]> {
230  let Latency = 14;
231  let ResourceCycles = [2];
232}
233def : WriteRes<WriteAESIMCLd, [HWPort5, HWPort23]> {
234  let Latency = 14;
235  let ResourceCycles = [2, 1];
236}
237
238def : WriteRes<WriteAESKeyGen, [HWPort0, HWPort5]> {
239  let Latency = 10;
240  let ResourceCycles = [2, 8];
241}
242def : WriteRes<WriteAESKeyGenLd, [HWPort0, HWPort5, HWPort23]> {
243  let Latency = 10;
244  let ResourceCycles = [2, 7, 1];
245}
246
247// Carry-less multiplication instructions.
248def : WriteRes<WriteCLMul, [HWPort0, HWPort5]> {
249  let Latency = 7;
250  let ResourceCycles = [2, 1];
251}
252def : WriteRes<WriteCLMulLd, [HWPort0, HWPort5, HWPort23]> {
253  let Latency = 7;
254  let ResourceCycles = [2, 1, 1];
255}
256
257def : WriteRes<WriteSystem,     [HWPort0156]> { let Latency = 100; }
258def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; }
259def : WriteRes<WriteFence,  [HWPort23, HWPort4]>;
260def : WriteRes<WriteNop, []>;
261} // SchedModel
262