X86Subtarget.h revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the X86 specific subclass of TargetSubtargetInfo.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86SUBTARGET_H
15#define X86SUBTARGET_H
16
17#include "X86FrameLowering.h"
18#include "X86ISelLowering.h"
19#include "X86InstrInfo.h"
20#include "X86JITInfo.h"
21#include "X86SelectionDAGInfo.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/IR/CallingConv.h"
24#include "llvm/Target/TargetSubtargetInfo.h"
25#include <string>
26
27#define GET_SUBTARGETINFO_HEADER
28#include "X86GenSubtargetInfo.inc"
29
30namespace llvm {
31class GlobalValue;
32class StringRef;
33class TargetMachine;
34
35/// PICStyles - The X86 backend supports a number of different styles of PIC.
36///
37namespace PICStyles {
38enum Style {
39  StubPIC,          // Used on i386-darwin in -fPIC mode.
40  StubDynamicNoPIC, // Used on i386-darwin in -mdynamic-no-pic mode.
41  GOT,              // Used on many 32-bit unices in -fPIC mode.
42  RIPRel,           // Used on X86-64 when not in -static mode.
43  None              // Set when in -static mode (not PIC or DynamicNoPIC mode).
44};
45}
46
47class X86Subtarget final : public X86GenSubtargetInfo {
48
49protected:
50  enum X86SSEEnum {
51    NoMMXSSE, MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F
52  };
53
54  enum X863DNowEnum {
55    NoThreeDNow, ThreeDNow, ThreeDNowA
56  };
57
58  enum X86ProcFamilyEnum {
59    Others, IntelAtom, IntelSLM
60  };
61
62  /// X86ProcFamily - X86 processor family: Intel Atom, and others
63  X86ProcFamilyEnum X86ProcFamily;
64
65  /// PICStyle - Which PIC style to use
66  ///
67  PICStyles::Style PICStyle;
68
69  /// X86SSELevel - MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or
70  /// none supported.
71  X86SSEEnum X86SSELevel;
72
73  /// X863DNowLevel - 3DNow or 3DNow Athlon, or none supported.
74  ///
75  X863DNowEnum X863DNowLevel;
76
77  /// HasCMov - True if this processor has conditional move instructions
78  /// (generally pentium pro+).
79  bool HasCMov;
80
81  /// HasX86_64 - True if the processor supports X86-64 instructions.
82  ///
83  bool HasX86_64;
84
85  /// HasPOPCNT - True if the processor supports POPCNT.
86  bool HasPOPCNT;
87
88  /// HasSSE4A - True if the processor supports SSE4A instructions.
89  bool HasSSE4A;
90
91  /// HasAES - Target has AES instructions
92  bool HasAES;
93
94  /// HasPCLMUL - Target has carry-less multiplication
95  bool HasPCLMUL;
96
97  /// HasFMA - Target has 3-operand fused multiply-add
98  bool HasFMA;
99
100  /// HasFMA4 - Target has 4-operand fused multiply-add
101  bool HasFMA4;
102
103  /// HasXOP - Target has XOP instructions
104  bool HasXOP;
105
106  /// HasTBM - Target has TBM instructions.
107  bool HasTBM;
108
109  /// HasMOVBE - True if the processor has the MOVBE instruction.
110  bool HasMOVBE;
111
112  /// HasRDRAND - True if the processor has the RDRAND instruction.
113  bool HasRDRAND;
114
115  /// HasF16C - Processor has 16-bit floating point conversion instructions.
116  bool HasF16C;
117
118  /// HasFSGSBase - Processor has FS/GS base insturctions.
119  bool HasFSGSBase;
120
121  /// HasLZCNT - Processor has LZCNT instruction.
122  bool HasLZCNT;
123
124  /// HasBMI - Processor has BMI1 instructions.
125  bool HasBMI;
126
127  /// HasBMI2 - Processor has BMI2 instructions.
128  bool HasBMI2;
129
130  /// HasRTM - Processor has RTM instructions.
131  bool HasRTM;
132
133  /// HasHLE - Processor has HLE.
134  bool HasHLE;
135
136  /// HasADX - Processor has ADX instructions.
137  bool HasADX;
138
139  /// HasSHA - Processor has SHA instructions.
140  bool HasSHA;
141
142  /// HasPRFCHW - Processor has PRFCHW instructions.
143  bool HasPRFCHW;
144
145  /// HasRDSEED - Processor has RDSEED instructions.
146  bool HasRDSEED;
147
148  /// IsBTMemSlow - True if BT (bit test) of memory instructions are slow.
149  bool IsBTMemSlow;
150
151  /// IsSHLDSlow - True if SHLD instructions are slow.
152  bool IsSHLDSlow;
153
154  /// IsUAMemFast - True if unaligned memory access is fast.
155  bool IsUAMemFast;
156
157  /// HasVectorUAMem - True if SIMD operations can have unaligned memory
158  /// operands. This may require setting a feature bit in the processor.
159  bool HasVectorUAMem;
160
161  /// HasCmpxchg16b - True if this processor has the CMPXCHG16B instruction;
162  /// this is true for most x86-64 chips, but not the first AMD chips.
163  bool HasCmpxchg16b;
164
165  /// UseLeaForSP - True if the LEA instruction should be used for adjusting
166  /// the stack pointer. This is an optimization for Intel Atom processors.
167  bool UseLeaForSP;
168
169  /// HasSlowDivide - True if smaller divides are significantly faster than
170  /// full divides and should be used when possible.
171  bool HasSlowDivide;
172
173  /// PostRAScheduler - True if using post-register-allocation scheduler.
174  bool PostRAScheduler;
175
176  /// PadShortFunctions - True if the short functions should be padded to prevent
177  /// a stall when returning too early.
178  bool PadShortFunctions;
179
180  /// CallRegIndirect - True if the Calls with memory reference should be converted
181  /// to a register-based indirect call.
182  bool CallRegIndirect;
183  /// LEAUsesAG - True if the LEA instruction inputs have to be ready at
184  ///             address generation (AG) time.
185  bool LEAUsesAG;
186
187  /// SlowLEA - True if the LEA instruction with certain arguments is slow
188  bool SlowLEA;
189
190  /// SlowIncDec - True if INC and DEC instructions are slow when writing to flags
191  bool SlowIncDec;
192
193  /// Processor has AVX-512 PreFetch Instructions
194  bool HasPFI;
195
196  /// Processor has AVX-512 Exponential and Reciprocal Instructions
197  bool HasERI;
198
199  /// Processor has AVX-512 Conflict Detection Instructions
200  bool HasCDI;
201
202  /// stackAlignment - The minimum alignment known to hold of the stack frame on
203  /// entry to the function and which must be maintained by every function.
204  unsigned stackAlignment;
205
206  /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops.
207  ///
208  unsigned MaxInlineSizeThreshold;
209
210  /// TargetTriple - What processor and OS we're targeting.
211  Triple TargetTriple;
212
213  /// Instruction itineraries for scheduling
214  InstrItineraryData InstrItins;
215
216private:
217  /// StackAlignOverride - Override the stack alignment.
218  unsigned StackAlignOverride;
219
220  /// In64BitMode - True if compiling for 64-bit, false for 16-bit or 32-bit.
221  bool In64BitMode;
222
223  /// In32BitMode - True if compiling for 32-bit, false for 16-bit or 64-bit.
224  bool In32BitMode;
225
226  /// In16BitMode - True if compiling for 16-bit, false for 32-bit or 64-bit.
227  bool In16BitMode;
228
229  // Calculates type size & alignment
230  const DataLayout DL;
231  X86SelectionDAGInfo TSInfo;
232  // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
233  // X86TargetLowering needs.
234  X86InstrInfo InstrInfo;
235  X86TargetLowering TLInfo;
236  X86FrameLowering FrameLowering;
237  X86JITInfo JITInfo;
238
239public:
240  /// This constructor initializes the data members to match that
241  /// of the specified triple.
242  ///
243  X86Subtarget(const std::string &TT, const std::string &CPU,
244               const std::string &FS, X86TargetMachine &TM,
245               unsigned StackAlignOverride);
246
247  const X86TargetLowering *getTargetLowering() const { return &TLInfo; }
248  const X86InstrInfo *getInstrInfo() const { return &InstrInfo; }
249  const DataLayout *getDataLayout() const { return &DL; }
250  const X86FrameLowering *getFrameLowering() const { return &FrameLowering; }
251  const X86SelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
252  X86JITInfo *getJITInfo() { return &JITInfo; }
253
254  /// getStackAlignment - Returns the minimum alignment known to hold of the
255  /// stack frame on entry to the function and which must be maintained by every
256  /// function for this subtarget.
257  unsigned getStackAlignment() const { return stackAlignment; }
258
259  /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
260  /// that still makes it profitable to inline the call.
261  unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; }
262
263  /// ParseSubtargetFeatures - Parses features string setting specified
264  /// subtarget options.  Definition of function is auto generated by tblgen.
265  void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
266
267  /// \brief Reset the features for the X86 target.
268  void resetSubtargetFeatures(const MachineFunction *MF) override;
269private:
270  /// \brief Initialize the full set of dependencies so we can use an initializer
271  /// list for X86Subtarget.
272  X86Subtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
273  void initializeEnvironment();
274  void resetSubtargetFeatures(StringRef CPU, StringRef FS);
275public:
276  /// Is this x86_64? (disregarding specific ABI / programming model)
277  bool is64Bit() const {
278    return In64BitMode;
279  }
280
281  bool is32Bit() const {
282    return In32BitMode;
283  }
284
285  bool is16Bit() const {
286    return In16BitMode;
287  }
288
289  /// Is this x86_64 with the ILP32 programming model (x32 ABI)?
290  bool isTarget64BitILP32() const {
291    return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 ||
292                           TargetTriple.getOS() == Triple::NaCl);
293  }
294
295  /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
296  bool isTarget64BitLP64() const {
297    return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32);
298  }
299
300  PICStyles::Style getPICStyle() const { return PICStyle; }
301  void setPICStyle(PICStyles::Style Style)  { PICStyle = Style; }
302
303  bool hasCMov() const { return HasCMov; }
304  bool hasMMX() const { return X86SSELevel >= MMX; }
305  bool hasSSE1() const { return X86SSELevel >= SSE1; }
306  bool hasSSE2() const { return X86SSELevel >= SSE2; }
307  bool hasSSE3() const { return X86SSELevel >= SSE3; }
308  bool hasSSSE3() const { return X86SSELevel >= SSSE3; }
309  bool hasSSE41() const { return X86SSELevel >= SSE41; }
310  bool hasSSE42() const { return X86SSELevel >= SSE42; }
311  bool hasAVX() const { return X86SSELevel >= AVX; }
312  bool hasAVX2() const { return X86SSELevel >= AVX2; }
313  bool hasAVX512() const { return X86SSELevel >= AVX512F; }
314  bool hasFp256() const { return hasAVX(); }
315  bool hasInt256() const { return hasAVX2(); }
316  bool hasSSE4A() const { return HasSSE4A; }
317  bool has3DNow() const { return X863DNowLevel >= ThreeDNow; }
318  bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; }
319  bool hasPOPCNT() const { return HasPOPCNT; }
320  bool hasAES() const { return HasAES; }
321  bool hasPCLMUL() const { return HasPCLMUL; }
322  bool hasFMA() const { return HasFMA; }
323  // FIXME: Favor FMA when both are enabled. Is this the right thing to do?
324  bool hasFMA4() const { return HasFMA4 && !HasFMA; }
325  bool hasXOP() const { return HasXOP; }
326  bool hasTBM() const { return HasTBM; }
327  bool hasMOVBE() const { return HasMOVBE; }
328  bool hasRDRAND() const { return HasRDRAND; }
329  bool hasF16C() const { return HasF16C; }
330  bool hasFSGSBase() const { return HasFSGSBase; }
331  bool hasLZCNT() const { return HasLZCNT; }
332  bool hasBMI() const { return HasBMI; }
333  bool hasBMI2() const { return HasBMI2; }
334  bool hasRTM() const { return HasRTM; }
335  bool hasHLE() const { return HasHLE; }
336  bool hasADX() const { return HasADX; }
337  bool hasSHA() const { return HasSHA; }
338  bool hasPRFCHW() const { return HasPRFCHW; }
339  bool hasRDSEED() const { return HasRDSEED; }
340  bool isBTMemSlow() const { return IsBTMemSlow; }
341  bool isSHLDSlow() const { return IsSHLDSlow; }
342  bool isUnalignedMemAccessFast() const { return IsUAMemFast; }
343  bool hasVectorUAMem() const { return HasVectorUAMem; }
344  bool hasCmpxchg16b() const { return HasCmpxchg16b; }
345  bool useLeaForSP() const { return UseLeaForSP; }
346  bool hasSlowDivide() const { return HasSlowDivide; }
347  bool padShortFunctions() const { return PadShortFunctions; }
348  bool callRegIndirect() const { return CallRegIndirect; }
349  bool LEAusesAG() const { return LEAUsesAG; }
350  bool slowLEA() const { return SlowLEA; }
351  bool slowIncDec() const { return SlowIncDec; }
352  bool hasCDI() const { return HasCDI; }
353  bool hasPFI() const { return HasPFI; }
354  bool hasERI() const { return HasERI; }
355
356  bool isAtom() const { return X86ProcFamily == IntelAtom; }
357  bool isSLM() const { return X86ProcFamily == IntelSLM; }
358
359  const Triple &getTargetTriple() const { return TargetTriple; }
360
361  bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
362  bool isTargetFreeBSD() const {
363    return TargetTriple.getOS() == Triple::FreeBSD;
364  }
365  bool isTargetSolaris() const {
366    return TargetTriple.getOS() == Triple::Solaris;
367  }
368
369  bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
370  bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
371  bool isTargetMacho() const { return TargetTriple.isOSBinFormatMachO(); }
372
373  bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
374  bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
375  bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); }
376  bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); }
377
378  bool isTargetWindowsMSVC() const {
379    return TargetTriple.isWindowsMSVCEnvironment();
380  }
381
382  bool isTargetKnownWindowsMSVC() const {
383    return TargetTriple.isKnownWindowsMSVCEnvironment();
384  }
385
386  bool isTargetWindowsCygwin() const {
387    return TargetTriple.isWindowsCygwinEnvironment();
388  }
389
390  bool isTargetWindowsGNU() const {
391    return TargetTriple.isWindowsGNUEnvironment();
392  }
393
394  bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); }
395
396  bool isOSWindows() const { return TargetTriple.isOSWindows(); }
397
398  bool isTargetWin64() const {
399    return In64BitMode && TargetTriple.isOSWindows();
400  }
401
402  bool isTargetWin32() const {
403    return !In64BitMode && (isTargetCygMing() || isTargetKnownWindowsMSVC());
404  }
405
406  bool isPICStyleSet() const { return PICStyle != PICStyles::None; }
407  bool isPICStyleGOT() const { return PICStyle == PICStyles::GOT; }
408  bool isPICStyleRIPRel() const { return PICStyle == PICStyles::RIPRel; }
409
410  bool isPICStyleStubPIC() const {
411    return PICStyle == PICStyles::StubPIC;
412  }
413
414  bool isPICStyleStubNoDynamic() const {
415    return PICStyle == PICStyles::StubDynamicNoPIC;
416  }
417  bool isPICStyleStubAny() const {
418    return PICStyle == PICStyles::StubDynamicNoPIC ||
419           PICStyle == PICStyles::StubPIC;
420  }
421
422  bool isCallingConvWin64(CallingConv::ID CC) const {
423    return (isTargetWin64() && CC != CallingConv::X86_64_SysV) ||
424           CC == CallingConv::X86_64_Win64;
425  }
426
427  /// ClassifyGlobalReference - Classify a global variable reference for the
428  /// current subtarget according to how we should reference it in a non-pcrel
429  /// context.
430  unsigned char ClassifyGlobalReference(const GlobalValue *GV,
431                                        const TargetMachine &TM)const;
432
433  /// ClassifyBlockAddressReference - Classify a blockaddress reference for the
434  /// current subtarget according to how we should reference it in a non-pcrel
435  /// context.
436  unsigned char ClassifyBlockAddressReference() const;
437
438  /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
439  /// to immediate address.
440  bool IsLegalToCallImmediateAddr(const TargetMachine &TM) const;
441
442  /// This function returns the name of a function which has an interface
443  /// like the non-standard bzero function, if such a function exists on
444  /// the current subtarget and it is considered prefereable over
445  /// memset with zero passed as the second argument. Otherwise it
446  /// returns null.
447  const char *getBZeroEntry() const;
448
449  /// This function returns true if the target has sincos() routine in its
450  /// compiler runtime or math libraries.
451  bool hasSinCos() const;
452
453  /// Enable the MachineScheduler pass for all X86 subtargets.
454  bool enableMachineScheduler() const override { return true; }
455
456  /// enablePostRAScheduler - run for Atom optimization.
457  bool enablePostRAScheduler(CodeGenOpt::Level OptLevel,
458                             TargetSubtargetInfo::AntiDepBreakMode& Mode,
459                             RegClassVector& CriticalPathRCs) const override;
460
461  bool postRAScheduler() const { return PostRAScheduler; }
462
463  bool enableEarlyIfConversion() const override;
464
465  /// getInstrItins = Return the instruction itineraries based on the
466  /// subtarget selection.
467  const InstrItineraryData &getInstrItineraryData() const { return InstrItins; }
468};
469
470} // End llvm namespace
471
472#endif
473