X86TargetMachine.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86 specific subclass of TargetMachine.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86TargetMachine.h"
15#include "X86.h"
16#include "llvm/CodeGen/Passes.h"
17#include "llvm/PassManager.h"
18#include "llvm/Support/CommandLine.h"
19#include "llvm/Support/FormattedStream.h"
20#include "llvm/Support/TargetRegistry.h"
21#include "llvm/Target/TargetOptions.h"
22using namespace llvm;
23
24extern "C" void LLVMInitializeX86Target() {
25  // Register the target.
26  RegisterTargetMachine<X86TargetMachine> X(TheX86_32Target);
27  RegisterTargetMachine<X86TargetMachine> Y(TheX86_64Target);
28}
29
30void X86TargetMachine::anchor() { }
31
32static std::string computeDataLayout(const X86Subtarget &ST) {
33  // X86 is little endian
34  std::string Ret = "e";
35
36  Ret += DataLayout::getManglingComponent(ST.getTargetTriple());
37  // X86 and x32 have 32 bit pointers.
38  if (ST.isTarget64BitILP32() || !ST.is64Bit())
39    Ret += "-p:32:32";
40
41  // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
42  if (ST.is64Bit() || ST.isTargetCygMing() || ST.isTargetKnownWindowsMSVC() ||
43      ST.isTargetNaCl())
44    Ret += "-i64:64";
45  else
46    Ret += "-f64:32:64";
47
48  // Some ABIs align long double to 128 bits, others to 32.
49  if (ST.isTargetNaCl())
50    ; // No f80
51  else if (ST.is64Bit() || ST.isTargetDarwin())
52    Ret += "-f80:128";
53  else
54    Ret += "-f80:32";
55
56  // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
57  if (ST.is64Bit())
58    Ret += "-n8:16:32:64";
59  else
60    Ret += "-n8:16:32";
61
62  // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
63  if (!ST.is64Bit() && (ST.isTargetCygMing() || ST.isTargetKnownWindowsMSVC()))
64    Ret += "-S32";
65  else
66    Ret += "-S128";
67
68  return Ret;
69}
70
71/// X86TargetMachine ctor - Create an X86 target.
72///
73X86TargetMachine::X86TargetMachine(const Target &T, StringRef TT,
74                                   StringRef CPU, StringRef FS,
75                                   const TargetOptions &Options,
76                                   Reloc::Model RM, CodeModel::Model CM,
77                                   CodeGenOpt::Level OL)
78  : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
79    Subtarget(TT, CPU, FS, Options.StackAlignmentOverride),
80    FrameLowering(*this, Subtarget),
81    InstrItins(Subtarget.getInstrItineraryData()),
82    DL(computeDataLayout(*getSubtargetImpl())),
83    InstrInfo(*this),
84    TLInfo(*this),
85    TSInfo(*this),
86    JITInfo(*this) {
87  // Determine the PICStyle based on the target selected.
88  if (getRelocationModel() == Reloc::Static) {
89    // Unless we're in PIC or DynamicNoPIC mode, set the PIC style to None.
90    Subtarget.setPICStyle(PICStyles::None);
91  } else if (Subtarget.is64Bit()) {
92    // PIC in 64 bit mode is always rip-rel.
93    Subtarget.setPICStyle(PICStyles::RIPRel);
94  } else if (Subtarget.isTargetCOFF()) {
95    Subtarget.setPICStyle(PICStyles::None);
96  } else if (Subtarget.isTargetDarwin()) {
97    if (getRelocationModel() == Reloc::PIC_)
98      Subtarget.setPICStyle(PICStyles::StubPIC);
99    else {
100      assert(getRelocationModel() == Reloc::DynamicNoPIC);
101      Subtarget.setPICStyle(PICStyles::StubDynamicNoPIC);
102    }
103  } else if (Subtarget.isTargetELF()) {
104    Subtarget.setPICStyle(PICStyles::GOT);
105  }
106
107  // default to hard float ABI
108  if (Options.FloatABIType == FloatABI::Default)
109    this->Options.FloatABIType = FloatABI::Hard;
110
111  // Windows stack unwinder gets confused when execution flow "falls through"
112  // after a call to 'noreturn' function.
113  // To prevent that, we emit a trap for 'unreachable' IR instructions.
114  // (which on X86, happens to be the 'ud2' instruction)
115  if (Subtarget.isTargetWin64())
116    this->Options.TrapUnreachable = true;
117
118  initAsmInfo();
119}
120
121//===----------------------------------------------------------------------===//
122// Command line options for x86
123//===----------------------------------------------------------------------===//
124static cl::opt<bool>
125UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
126  cl::desc("Minimize AVX to SSE transition penalty"),
127  cl::init(true));
128
129//===----------------------------------------------------------------------===//
130// X86 Analysis Pass Setup
131//===----------------------------------------------------------------------===//
132
133void X86TargetMachine::addAnalysisPasses(PassManagerBase &PM) {
134  // Add first the target-independent BasicTTI pass, then our X86 pass. This
135  // allows the X86 pass to delegate to the target independent layer when
136  // appropriate.
137  PM.add(createBasicTargetTransformInfoPass(this));
138  PM.add(createX86TargetTransformInfoPass(this));
139}
140
141
142//===----------------------------------------------------------------------===//
143// Pass Pipeline Configuration
144//===----------------------------------------------------------------------===//
145
146namespace {
147/// X86 Code Generator Pass Configuration Options.
148class X86PassConfig : public TargetPassConfig {
149public:
150  X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM)
151    : TargetPassConfig(TM, PM) {}
152
153  X86TargetMachine &getX86TargetMachine() const {
154    return getTM<X86TargetMachine>();
155  }
156
157  const X86Subtarget &getX86Subtarget() const {
158    return *getX86TargetMachine().getSubtargetImpl();
159  }
160
161  bool addInstSelector() override;
162  bool addILPOpts() override;
163  bool addPreRegAlloc() override;
164  bool addPostRegAlloc() override;
165  bool addPreEmitPass() override;
166};
167} // namespace
168
169TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
170  return new X86PassConfig(this, PM);
171}
172
173bool X86PassConfig::addInstSelector() {
174  // Install an instruction selector.
175  addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
176
177  // For ELF, cleanup any local-dynamic TLS accesses.
178  if (getX86Subtarget().isTargetELF() && getOptLevel() != CodeGenOpt::None)
179    addPass(createCleanupLocalDynamicTLSPass());
180
181  addPass(createX86GlobalBaseRegPass());
182
183  return false;
184}
185
186bool X86PassConfig::addILPOpts() {
187  addPass(&EarlyIfConverterID);
188  return true;
189}
190
191bool X86PassConfig::addPreRegAlloc() {
192  return false;  // -print-machineinstr shouldn't print after this.
193}
194
195bool X86PassConfig::addPostRegAlloc() {
196  addPass(createX86FloatingPointStackifierPass());
197  return true;  // -print-machineinstr should print after this.
198}
199
200bool X86PassConfig::addPreEmitPass() {
201  bool ShouldPrint = false;
202  if (getOptLevel() != CodeGenOpt::None && getX86Subtarget().hasSSE2()) {
203    addPass(createExecutionDependencyFixPass(&X86::VR128RegClass));
204    ShouldPrint = true;
205  }
206
207  if (UseVZeroUpper) {
208    addPass(createX86IssueVZeroUpperPass());
209    ShouldPrint = true;
210  }
211
212  if (getOptLevel() != CodeGenOpt::None) {
213    addPass(createX86PadShortFunctions());
214    addPass(createX86FixupLEAs());
215    ShouldPrint = true;
216  }
217
218  return ShouldPrint;
219}
220
221bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM,
222                                      JITCodeEmitter &JCE) {
223  PM.add(createX86JITCodeEmitterPass(*this, JCE));
224
225  return false;
226}
227