1//===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the XCoreTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "XCoreISelLowering.h"
15#include "XCore.h"
16#include "XCoreMachineFunctionInfo.h"
17#include "XCoreSubtarget.h"
18#include "XCoreTargetMachine.h"
19#include "XCoreTargetObjectFile.h"
20#include "llvm/CodeGen/CallingConvLower.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/SelectionDAGISel.h"
27#include "llvm/CodeGen/ValueTypes.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/GlobalAlias.h"
33#include "llvm/IR/GlobalVariable.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39
40using namespace llvm;
41
42#define DEBUG_TYPE "xcore-lower"
43
44const char *XCoreTargetLowering::
45getTargetNodeName(unsigned Opcode) const
46{
47  switch (Opcode)
48  {
49    case XCoreISD::BL                : return "XCoreISD::BL";
50    case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
51    case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
52    case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
53    case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
54    case XCoreISD::STWSP             : return "XCoreISD::STWSP";
55    case XCoreISD::RETSP             : return "XCoreISD::RETSP";
56    case XCoreISD::LADD              : return "XCoreISD::LADD";
57    case XCoreISD::LSUB              : return "XCoreISD::LSUB";
58    case XCoreISD::LMUL              : return "XCoreISD::LMUL";
59    case XCoreISD::MACCU             : return "XCoreISD::MACCU";
60    case XCoreISD::MACCS             : return "XCoreISD::MACCS";
61    case XCoreISD::CRC8              : return "XCoreISD::CRC8";
62    case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
63    case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
64    case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
65    case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
66    case XCoreISD::MEMBARRIER        : return "XCoreISD::MEMBARRIER";
67    default                          : return nullptr;
68  }
69}
70
71XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM)
72    : TargetLowering(TM, new XCoreTargetObjectFile()), TM(TM),
73      Subtarget(TM.getSubtarget<XCoreSubtarget>()) {
74
75  // Set up the register classes.
76  addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
77
78  // Compute derived properties from the register classes
79  computeRegisterProperties();
80
81  // Division is expensive
82  setIntDivIsCheap(false);
83
84  setStackPointerRegisterToSaveRestore(XCore::SP);
85
86  setSchedulingPreference(Sched::Source);
87
88  // Use i32 for setcc operations results (slt, sgt, ...).
89  setBooleanContents(ZeroOrOneBooleanContent);
90  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
91
92  // XCore does not have the NodeTypes below.
93  setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
94  setOperationAction(ISD::SELECT_CC, MVT::i32,   Expand);
95  setOperationAction(ISD::ADDC, MVT::i32, Expand);
96  setOperationAction(ISD::ADDE, MVT::i32, Expand);
97  setOperationAction(ISD::SUBC, MVT::i32, Expand);
98  setOperationAction(ISD::SUBE, MVT::i32, Expand);
99
100  // 64bit
101  setOperationAction(ISD::ADD, MVT::i64, Custom);
102  setOperationAction(ISD::SUB, MVT::i64, Custom);
103  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
104  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
105  setOperationAction(ISD::MULHS, MVT::i32, Expand);
106  setOperationAction(ISD::MULHU, MVT::i32, Expand);
107  setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
108  setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
109  setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
110
111  // Bit Manipulation
112  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
113  setOperationAction(ISD::ROTL , MVT::i32, Expand);
114  setOperationAction(ISD::ROTR , MVT::i32, Expand);
115  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
116  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
117
118  setOperationAction(ISD::TRAP, MVT::Other, Legal);
119
120  // Jump tables.
121  setOperationAction(ISD::BR_JT, MVT::Other, Custom);
122
123  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
124  setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
125
126  // Conversion of i64 -> double produces constantpool nodes
127  setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
128
129  // Loads
130  setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
131  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
132  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
133
134  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
135  setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Expand);
136
137  // Custom expand misaligned loads / stores.
138  setOperationAction(ISD::LOAD, MVT::i32, Custom);
139  setOperationAction(ISD::STORE, MVT::i32, Custom);
140
141  // Varargs
142  setOperationAction(ISD::VAEND, MVT::Other, Expand);
143  setOperationAction(ISD::VACOPY, MVT::Other, Expand);
144  setOperationAction(ISD::VAARG, MVT::Other, Custom);
145  setOperationAction(ISD::VASTART, MVT::Other, Custom);
146
147  // Dynamic stack
148  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
149  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
150  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
151
152  // Exception handling
153  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
154  setExceptionPointerRegister(XCore::R0);
155  setExceptionSelectorRegister(XCore::R1);
156  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
157
158  // Atomic operations
159  // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
160  // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
161  setInsertFencesForAtomic(true);
162  setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
163  setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
164  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
165
166  // TRAMPOLINE is custom lowered.
167  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
168  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
169
170  // We want to custom lower some of our intrinsics.
171  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
172
173  MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
174  MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
175    = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
176
177  // We have target-specific dag combine patterns for the following nodes:
178  setTargetDAGCombine(ISD::STORE);
179  setTargetDAGCombine(ISD::ADD);
180  setTargetDAGCombine(ISD::INTRINSIC_VOID);
181  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
182
183  setMinFunctionAlignment(1);
184  setPrefFunctionAlignment(2);
185}
186
187bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
188  if (Val.getOpcode() != ISD::LOAD)
189    return false;
190
191  EVT VT1 = Val.getValueType();
192  if (!VT1.isSimple() || !VT1.isInteger() ||
193      !VT2.isSimple() || !VT2.isInteger())
194    return false;
195
196  switch (VT1.getSimpleVT().SimpleTy) {
197  default: break;
198  case MVT::i8:
199    return true;
200  }
201
202  return false;
203}
204
205SDValue XCoreTargetLowering::
206LowerOperation(SDValue Op, SelectionDAG &DAG) const {
207  switch (Op.getOpcode())
208  {
209  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
210  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
211  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
212  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
213  case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
214  case ISD::LOAD:               return LowerLOAD(Op, DAG);
215  case ISD::STORE:              return LowerSTORE(Op, DAG);
216  case ISD::VAARG:              return LowerVAARG(Op, DAG);
217  case ISD::VASTART:            return LowerVASTART(Op, DAG);
218  case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
219  case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
220  // FIXME: Remove these when LegalizeDAGTypes lands.
221  case ISD::ADD:
222  case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
223  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
224  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
225  case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
226  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
227  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
228  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
229  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
230  case ISD::ATOMIC_LOAD:        return LowerATOMIC_LOAD(Op, DAG);
231  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
232  default:
233    llvm_unreachable("unimplemented operand");
234  }
235}
236
237/// ReplaceNodeResults - Replace the results of node with an illegal result
238/// type with new values built out of custom code.
239void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
240                                             SmallVectorImpl<SDValue>&Results,
241                                             SelectionDAG &DAG) const {
242  switch (N->getOpcode()) {
243  default:
244    llvm_unreachable("Don't know how to custom expand this!");
245  case ISD::ADD:
246  case ISD::SUB:
247    Results.push_back(ExpandADDSUB(N, DAG));
248    return;
249  }
250}
251
252//===----------------------------------------------------------------------===//
253//  Misc Lower Operation implementation
254//===----------------------------------------------------------------------===//
255
256SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
257                                                     const GlobalValue *GV,
258                                                     SelectionDAG &DAG) const {
259  // FIXME there is no actual debug info here
260  SDLoc dl(GA);
261
262  if (GV->getType()->getElementType()->isFunctionTy())
263    return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
264
265  const auto *GVar = dyn_cast<GlobalVariable>(GV);
266  if ((GV->hasSection() && StringRef(GV->getSection()).startswith(".cp.")) ||
267      (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
268    return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
269
270  return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
271}
272
273static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
274  if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
275    return true;
276
277  Type *ObjType = GV->getType()->getPointerElementType();
278  if (!ObjType->isSized())
279    return false;
280
281  unsigned ObjSize = XTL.getDataLayout()->getTypeAllocSize(ObjType);
282  return ObjSize < CodeModelLargeSize && ObjSize != 0;
283}
284
285SDValue XCoreTargetLowering::
286LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
287{
288  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
289  const GlobalValue *GV = GN->getGlobal();
290  SDLoc DL(GN);
291  int64_t Offset = GN->getOffset();
292  if (IsSmallObject(GV, *this)) {
293    // We can only fold positive offsets that are a multiple of the word size.
294    int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
295    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
296    GA = getGlobalAddressWrapper(GA, GV, DAG);
297    // Handle the rest of the offset.
298    if (Offset != FoldedOffset) {
299      SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, MVT::i32);
300      GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
301    }
302    return GA;
303  } else {
304    // Ideally we would not fold in offset with an index <= 11.
305    Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
306    Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
307    Ty = Type::getInt32Ty(*DAG.getContext());
308    Constant *Idx = ConstantInt::get(Ty, Offset);
309    Constant *GAI = ConstantExpr::getGetElementPtr(GA, Idx);
310    SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
311    return DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), CP,
312                       MachinePointerInfo(), false, false, false, 0);
313  }
314}
315
316SDValue XCoreTargetLowering::
317LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
318{
319  SDLoc DL(Op);
320
321  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
322  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy());
323
324  return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, getPointerTy(), Result);
325}
326
327SDValue XCoreTargetLowering::
328LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
329{
330  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
331  // FIXME there isn't really debug info here
332  SDLoc dl(CP);
333  EVT PtrVT = Op.getValueType();
334  SDValue Res;
335  if (CP->isMachineConstantPoolEntry()) {
336    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
337                                    CP->getAlignment(), CP->getOffset());
338  } else {
339    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
340                                    CP->getAlignment(), CP->getOffset());
341  }
342  return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
343}
344
345unsigned XCoreTargetLowering::getJumpTableEncoding() const {
346  return MachineJumpTableInfo::EK_Inline;
347}
348
349SDValue XCoreTargetLowering::
350LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
351{
352  SDValue Chain = Op.getOperand(0);
353  SDValue Table = Op.getOperand(1);
354  SDValue Index = Op.getOperand(2);
355  SDLoc dl(Op);
356  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
357  unsigned JTI = JT->getIndex();
358  MachineFunction &MF = DAG.getMachineFunction();
359  const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
360  SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
361
362  unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
363  if (NumEntries <= 32) {
364    return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
365  }
366  assert((NumEntries >> 31) == 0);
367  SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
368                                    DAG.getConstant(1, MVT::i32));
369  return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
370                     ScaledIndex);
371}
372
373SDValue XCoreTargetLowering::
374lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base,
375                                       int64_t Offset, SelectionDAG &DAG) const
376{
377  if ((Offset & 0x3) == 0) {
378    return DAG.getLoad(getPointerTy(), DL, Chain, Base, MachinePointerInfo(),
379                       false, false, false, 0);
380  }
381  // Lower to pair of consecutive word aligned loads plus some bit shifting.
382  int32_t HighOffset = RoundUpToAlignment(Offset, 4);
383  int32_t LowOffset = HighOffset - 4;
384  SDValue LowAddr, HighAddr;
385  if (GlobalAddressSDNode *GASD =
386        dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
387    LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
388                                   LowOffset);
389    HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
390                                    HighOffset);
391  } else {
392    LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
393                          DAG.getConstant(LowOffset, MVT::i32));
394    HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
395                           DAG.getConstant(HighOffset, MVT::i32));
396  }
397  SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, MVT::i32);
398  SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, MVT::i32);
399
400  SDValue Low = DAG.getLoad(getPointerTy(), DL, Chain,
401                            LowAddr, MachinePointerInfo(),
402                            false, false, false, 0);
403  SDValue High = DAG.getLoad(getPointerTy(), DL, Chain,
404                             HighAddr, MachinePointerInfo(),
405                             false, false, false, 0);
406  SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
407  SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
408  SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
409  Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
410                      High.getValue(1));
411  SDValue Ops[] = { Result, Chain };
412  return DAG.getMergeValues(Ops, DL);
413}
414
415static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
416{
417  APInt KnownZero, KnownOne;
418  DAG.computeKnownBits(Value, KnownZero, KnownOne);
419  return KnownZero.countTrailingOnes() >= 2;
420}
421
422SDValue XCoreTargetLowering::
423LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
424  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
425  LoadSDNode *LD = cast<LoadSDNode>(Op);
426  assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
427         "Unexpected extension type");
428  assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
429  if (allowsUnalignedMemoryAccesses(LD->getMemoryVT()))
430    return SDValue();
431
432  unsigned ABIAlignment = getDataLayout()->
433    getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
434  // Leave aligned load alone.
435  if (LD->getAlignment() >= ABIAlignment)
436    return SDValue();
437
438  SDValue Chain = LD->getChain();
439  SDValue BasePtr = LD->getBasePtr();
440  SDLoc DL(Op);
441
442  if (!LD->isVolatile()) {
443    const GlobalValue *GV;
444    int64_t Offset = 0;
445    if (DAG.isBaseWithConstantOffset(BasePtr) &&
446        isWordAligned(BasePtr->getOperand(0), DAG)) {
447      SDValue NewBasePtr = BasePtr->getOperand(0);
448      Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
449      return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
450                                                    Offset, DAG);
451    }
452    if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
453        MinAlign(GV->getAlignment(), 4) == 4) {
454      SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
455                                                BasePtr->getValueType(0));
456      return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
457                                                    Offset, DAG);
458    }
459  }
460
461  if (LD->getAlignment() == 2) {
462    SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain,
463                                 BasePtr, LD->getPointerInfo(), MVT::i16,
464                                 LD->isVolatile(), LD->isNonTemporal(), 2);
465    SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
466                                   DAG.getConstant(2, MVT::i32));
467    SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
468                                  HighAddr,
469                                  LD->getPointerInfo().getWithOffset(2),
470                                  MVT::i16, LD->isVolatile(),
471                                  LD->isNonTemporal(), 2);
472    SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
473                                      DAG.getConstant(16, MVT::i32));
474    SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
475    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
476                             High.getValue(1));
477    SDValue Ops[] = { Result, Chain };
478    return DAG.getMergeValues(Ops, DL);
479  }
480
481  // Lower to a call to __misaligned_load(BasePtr).
482  Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
483  TargetLowering::ArgListTy Args;
484  TargetLowering::ArgListEntry Entry;
485
486  Entry.Ty = IntPtrTy;
487  Entry.Node = BasePtr;
488  Args.push_back(Entry);
489
490  TargetLowering::CallLoweringInfo CLI(DAG);
491  CLI.setDebugLoc(DL).setChain(Chain)
492    .setCallee(CallingConv::C, IntPtrTy,
493               DAG.getExternalSymbol("__misaligned_load", getPointerTy()),
494               std::move(Args), 0);
495
496  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
497  SDValue Ops[] = { CallResult.first, CallResult.second };
498  return DAG.getMergeValues(Ops, DL);
499}
500
501SDValue XCoreTargetLowering::
502LowerSTORE(SDValue Op, SelectionDAG &DAG) const
503{
504  StoreSDNode *ST = cast<StoreSDNode>(Op);
505  assert(!ST->isTruncatingStore() && "Unexpected store type");
506  assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
507  if (allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
508    return SDValue();
509  }
510  unsigned ABIAlignment = getDataLayout()->
511    getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
512  // Leave aligned store alone.
513  if (ST->getAlignment() >= ABIAlignment) {
514    return SDValue();
515  }
516  SDValue Chain = ST->getChain();
517  SDValue BasePtr = ST->getBasePtr();
518  SDValue Value = ST->getValue();
519  SDLoc dl(Op);
520
521  if (ST->getAlignment() == 2) {
522    SDValue Low = Value;
523    SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
524                                      DAG.getConstant(16, MVT::i32));
525    SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr,
526                                         ST->getPointerInfo(), MVT::i16,
527                                         ST->isVolatile(), ST->isNonTemporal(),
528                                         2);
529    SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
530                                   DAG.getConstant(2, MVT::i32));
531    SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr,
532                                          ST->getPointerInfo().getWithOffset(2),
533                                          MVT::i16, ST->isVolatile(),
534                                          ST->isNonTemporal(), 2);
535    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
536  }
537
538  // Lower to a call to __misaligned_store(BasePtr, Value).
539  Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
540  TargetLowering::ArgListTy Args;
541  TargetLowering::ArgListEntry Entry;
542
543  Entry.Ty = IntPtrTy;
544  Entry.Node = BasePtr;
545  Args.push_back(Entry);
546
547  Entry.Node = Value;
548  Args.push_back(Entry);
549
550  TargetLowering::CallLoweringInfo CLI(DAG);
551  CLI.setDebugLoc(dl).setChain(Chain)
552    .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
553               DAG.getExternalSymbol("__misaligned_store", getPointerTy()),
554               std::move(Args), 0);
555
556  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
557  return CallResult.second;
558}
559
560SDValue XCoreTargetLowering::
561LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
562{
563  assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
564         "Unexpected operand to lower!");
565  SDLoc dl(Op);
566  SDValue LHS = Op.getOperand(0);
567  SDValue RHS = Op.getOperand(1);
568  SDValue Zero = DAG.getConstant(0, MVT::i32);
569  SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
570                           DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
571                           LHS, RHS);
572  SDValue Lo(Hi.getNode(), 1);
573  SDValue Ops[] = { Lo, Hi };
574  return DAG.getMergeValues(Ops, dl);
575}
576
577SDValue XCoreTargetLowering::
578LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
579{
580  assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
581         "Unexpected operand to lower!");
582  SDLoc dl(Op);
583  SDValue LHS = Op.getOperand(0);
584  SDValue RHS = Op.getOperand(1);
585  SDValue Zero = DAG.getConstant(0, MVT::i32);
586  SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
587                           DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
588                           Zero, Zero);
589  SDValue Lo(Hi.getNode(), 1);
590  SDValue Ops[] = { Lo, Hi };
591  return DAG.getMergeValues(Ops, dl);
592}
593
594/// isADDADDMUL - Return whether Op is in a form that is equivalent to
595/// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
596/// each intermediate result in the calculation must also have a single use.
597/// If the Op is in the correct form the constituent parts are written to Mul0,
598/// Mul1, Addend0 and Addend1.
599static bool
600isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
601            SDValue &Addend1, bool requireIntermediatesHaveOneUse)
602{
603  if (Op.getOpcode() != ISD::ADD)
604    return false;
605  SDValue N0 = Op.getOperand(0);
606  SDValue N1 = Op.getOperand(1);
607  SDValue AddOp;
608  SDValue OtherOp;
609  if (N0.getOpcode() == ISD::ADD) {
610    AddOp = N0;
611    OtherOp = N1;
612  } else if (N1.getOpcode() == ISD::ADD) {
613    AddOp = N1;
614    OtherOp = N0;
615  } else {
616    return false;
617  }
618  if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
619    return false;
620  if (OtherOp.getOpcode() == ISD::MUL) {
621    // add(add(a,b),mul(x,y))
622    if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
623      return false;
624    Mul0 = OtherOp.getOperand(0);
625    Mul1 = OtherOp.getOperand(1);
626    Addend0 = AddOp.getOperand(0);
627    Addend1 = AddOp.getOperand(1);
628    return true;
629  }
630  if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
631    // add(add(mul(x,y),a),b)
632    if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
633      return false;
634    Mul0 = AddOp.getOperand(0).getOperand(0);
635    Mul1 = AddOp.getOperand(0).getOperand(1);
636    Addend0 = AddOp.getOperand(1);
637    Addend1 = OtherOp;
638    return true;
639  }
640  if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
641    // add(add(a,mul(x,y)),b)
642    if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
643      return false;
644    Mul0 = AddOp.getOperand(1).getOperand(0);
645    Mul1 = AddOp.getOperand(1).getOperand(1);
646    Addend0 = AddOp.getOperand(0);
647    Addend1 = OtherOp;
648    return true;
649  }
650  return false;
651}
652
653SDValue XCoreTargetLowering::
654TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
655{
656  SDValue Mul;
657  SDValue Other;
658  if (N->getOperand(0).getOpcode() == ISD::MUL) {
659    Mul = N->getOperand(0);
660    Other = N->getOperand(1);
661  } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
662    Mul = N->getOperand(1);
663    Other = N->getOperand(0);
664  } else {
665    return SDValue();
666  }
667  SDLoc dl(N);
668  SDValue LL, RL, AddendL, AddendH;
669  LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
670                   Mul.getOperand(0),  DAG.getConstant(0, MVT::i32));
671  RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
672                   Mul.getOperand(1),  DAG.getConstant(0, MVT::i32));
673  AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
674                        Other,  DAG.getConstant(0, MVT::i32));
675  AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
676                        Other,  DAG.getConstant(1, MVT::i32));
677  APInt HighMask = APInt::getHighBitsSet(64, 32);
678  unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
679  unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
680  if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
681      DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
682    // The inputs are both zero-extended.
683    SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
684                             DAG.getVTList(MVT::i32, MVT::i32), AddendH,
685                             AddendL, LL, RL);
686    SDValue Lo(Hi.getNode(), 1);
687    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
688  }
689  if (LHSSB > 32 && RHSSB > 32) {
690    // The inputs are both sign-extended.
691    SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
692                             DAG.getVTList(MVT::i32, MVT::i32), AddendH,
693                             AddendL, LL, RL);
694    SDValue Lo(Hi.getNode(), 1);
695    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
696  }
697  SDValue LH, RH;
698  LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
699                   Mul.getOperand(0),  DAG.getConstant(1, MVT::i32));
700  RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
701                   Mul.getOperand(1),  DAG.getConstant(1, MVT::i32));
702  SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
703                           DAG.getVTList(MVT::i32, MVT::i32), AddendH,
704                           AddendL, LL, RL);
705  SDValue Lo(Hi.getNode(), 1);
706  RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
707  LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
708  Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
709  Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
710  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
711}
712
713SDValue XCoreTargetLowering::
714ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
715{
716  assert(N->getValueType(0) == MVT::i64 &&
717         (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
718        "Unknown operand to lower!");
719
720  if (N->getOpcode() == ISD::ADD) {
721    SDValue Result = TryExpandADDWithMul(N, DAG);
722    if (Result.getNode())
723      return Result;
724  }
725
726  SDLoc dl(N);
727
728  // Extract components
729  SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
730                            N->getOperand(0),  DAG.getConstant(0, MVT::i32));
731  SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
732                            N->getOperand(0),  DAG.getConstant(1, MVT::i32));
733  SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
734                             N->getOperand(1), DAG.getConstant(0, MVT::i32));
735  SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
736                             N->getOperand(1), DAG.getConstant(1, MVT::i32));
737
738  // Expand
739  unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
740                                                   XCoreISD::LSUB;
741  SDValue Zero = DAG.getConstant(0, MVT::i32);
742  SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
743                           LHSL, RHSL, Zero);
744  SDValue Carry(Lo.getNode(), 1);
745
746  SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
747                           LHSH, RHSH, Carry);
748  SDValue Ignored(Hi.getNode(), 1);
749  // Merge the pieces
750  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
751}
752
753SDValue XCoreTargetLowering::
754LowerVAARG(SDValue Op, SelectionDAG &DAG) const
755{
756  // Whist llvm does not support aggregate varargs we can ignore
757  // the possibility of the ValueType being an implicit byVal vararg.
758  SDNode *Node = Op.getNode();
759  EVT VT = Node->getValueType(0); // not an aggregate
760  SDValue InChain = Node->getOperand(0);
761  SDValue VAListPtr = Node->getOperand(1);
762  EVT PtrVT = VAListPtr.getValueType();
763  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
764  SDLoc dl(Node);
765  SDValue VAList = DAG.getLoad(PtrVT, dl, InChain,
766                               VAListPtr, MachinePointerInfo(SV),
767                               false, false, false, 0);
768  // Increment the pointer, VAList, to the next vararg
769  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
770                                DAG.getIntPtrConstant(VT.getSizeInBits() / 8));
771  // Store the incremented VAList to the legalized pointer
772  InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
773                         MachinePointerInfo(SV), false, false, 0);
774  // Load the actual argument out of the pointer VAList
775  return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(),
776                     false, false, false, 0);
777}
778
779SDValue XCoreTargetLowering::
780LowerVASTART(SDValue Op, SelectionDAG &DAG) const
781{
782  SDLoc dl(Op);
783  // vastart stores the address of the VarArgsFrameIndex slot into the
784  // memory location argument
785  MachineFunction &MF = DAG.getMachineFunction();
786  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
787  SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
788  return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
789                      MachinePointerInfo(), false, false, 0);
790}
791
792SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
793                                            SelectionDAG &DAG) const {
794  // This nodes represent llvm.frameaddress on the DAG.
795  // It takes one operand, the index of the frame address to return.
796  // An index of zero corresponds to the current function's frame address.
797  // An index of one to the parent's frame address, and so on.
798  // Depths > 0 not supported yet!
799  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
800    return SDValue();
801
802  MachineFunction &MF = DAG.getMachineFunction();
803  const TargetRegisterInfo *RegInfo = getTargetMachine().getRegisterInfo();
804  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
805                            RegInfo->getFrameRegister(MF), MVT::i32);
806}
807
808SDValue XCoreTargetLowering::
809LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
810  // This nodes represent llvm.returnaddress on the DAG.
811  // It takes one operand, the index of the return address to return.
812  // An index of zero corresponds to the current function's return address.
813  // An index of one to the parent's return address, and so on.
814  // Depths > 0 not supported yet!
815  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
816    return SDValue();
817
818  MachineFunction &MF = DAG.getMachineFunction();
819  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
820  int FI = XFI->createLRSpillSlot(MF);
821  SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
822  return DAG.getLoad(getPointerTy(), SDLoc(Op), DAG.getEntryNode(), FIN,
823                     MachinePointerInfo::getFixedStack(FI), false, false,
824                     false, 0);
825}
826
827SDValue XCoreTargetLowering::
828LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
829  // This node represents offset from frame pointer to first on-stack argument.
830  // This is needed for correct stack adjustment during unwind.
831  // However, we don't know the offset until after the frame has be finalised.
832  // This is done during the XCoreFTAOElim pass.
833  return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
834}
835
836SDValue XCoreTargetLowering::
837LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
838  // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
839  // This node represents 'eh_return' gcc dwarf builtin, which is used to
840  // return from exception. The general meaning is: adjust stack by OFFSET and
841  // pass execution to HANDLER.
842  MachineFunction &MF = DAG.getMachineFunction();
843  SDValue Chain     = Op.getOperand(0);
844  SDValue Offset    = Op.getOperand(1);
845  SDValue Handler   = Op.getOperand(2);
846  SDLoc dl(Op);
847
848  // Absolute SP = (FP + FrameToArgs) + Offset
849  const TargetRegisterInfo *RegInfo = getTargetMachine().getRegisterInfo();
850  SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
851                            RegInfo->getFrameRegister(MF), MVT::i32);
852  SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
853                                    MVT::i32);
854  Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
855  Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
856
857  // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
858  // which leaves 2 caller saved registers, R2 & R3 for us to use.
859  unsigned StackReg = XCore::R2;
860  unsigned HandlerReg = XCore::R3;
861
862  SDValue OutChains[] = {
863    DAG.getCopyToReg(Chain, dl, StackReg, Stack),
864    DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
865  };
866
867  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
868
869  return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
870                     DAG.getRegister(StackReg, MVT::i32),
871                     DAG.getRegister(HandlerReg, MVT::i32));
872
873}
874
875SDValue XCoreTargetLowering::
876LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
877  return Op.getOperand(0);
878}
879
880SDValue XCoreTargetLowering::
881LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
882  SDValue Chain = Op.getOperand(0);
883  SDValue Trmp = Op.getOperand(1); // trampoline
884  SDValue FPtr = Op.getOperand(2); // nested function
885  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
886
887  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
888
889  // .align 4
890  // LDAPF_u10 r11, nest
891  // LDW_2rus r11, r11[0]
892  // STWSP_ru6 r11, sp[0]
893  // LDAPF_u10 r11, fptr
894  // LDW_2rus r11, r11[0]
895  // BAU_1r r11
896  // nest:
897  // .word nest
898  // fptr:
899  // .word fptr
900  SDValue OutChains[5];
901
902  SDValue Addr = Trmp;
903
904  SDLoc dl(Op);
905  OutChains[0] = DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, MVT::i32),
906                              Addr, MachinePointerInfo(TrmpAddr), false, false,
907                              0);
908
909  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
910                     DAG.getConstant(4, MVT::i32));
911  OutChains[1] = DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, MVT::i32),
912                              Addr, MachinePointerInfo(TrmpAddr, 4), false,
913                              false, 0);
914
915  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
916                     DAG.getConstant(8, MVT::i32));
917  OutChains[2] = DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, MVT::i32),
918                              Addr, MachinePointerInfo(TrmpAddr, 8), false,
919                              false, 0);
920
921  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
922                     DAG.getConstant(12, MVT::i32));
923  OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr,
924                              MachinePointerInfo(TrmpAddr, 12), false, false,
925                              0);
926
927  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
928                     DAG.getConstant(16, MVT::i32));
929  OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr,
930                              MachinePointerInfo(TrmpAddr, 16), false, false,
931                              0);
932
933  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
934}
935
936SDValue XCoreTargetLowering::
937LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
938  SDLoc DL(Op);
939  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
940  switch (IntNo) {
941    case Intrinsic::xcore_crc8:
942      EVT VT = Op.getValueType();
943      SDValue Data =
944        DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
945                    Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
946      SDValue Crc(Data.getNode(), 1);
947      SDValue Results[] = { Crc, Data };
948      return DAG.getMergeValues(Results, DL);
949  }
950  return SDValue();
951}
952
953SDValue XCoreTargetLowering::
954LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
955  SDLoc DL(Op);
956  return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
957}
958
959SDValue XCoreTargetLowering::
960LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
961  AtomicSDNode *N = cast<AtomicSDNode>(Op);
962  assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
963  assert(N->getOrdering() <= Monotonic &&
964         "setInsertFencesForAtomic(true) and yet greater than Monotonic");
965  if (N->getMemoryVT() == MVT::i32) {
966    if (N->getAlignment() < 4)
967      report_fatal_error("atomic load must be aligned");
968    return DAG.getLoad(getPointerTy(), SDLoc(Op), N->getChain(),
969                       N->getBasePtr(), N->getPointerInfo(),
970                       N->isVolatile(), N->isNonTemporal(),
971                       N->isInvariant(), N->getAlignment(),
972                       N->getTBAAInfo(), N->getRanges());
973  }
974  if (N->getMemoryVT() == MVT::i16) {
975    if (N->getAlignment() < 2)
976      report_fatal_error("atomic load must be aligned");
977    return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
978                          N->getBasePtr(), N->getPointerInfo(), MVT::i16,
979                          N->isVolatile(), N->isNonTemporal(),
980                          N->getAlignment(), N->getTBAAInfo());
981  }
982  if (N->getMemoryVT() == MVT::i8)
983    return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
984                          N->getBasePtr(), N->getPointerInfo(), MVT::i8,
985                          N->isVolatile(), N->isNonTemporal(),
986                          N->getAlignment(), N->getTBAAInfo());
987  return SDValue();
988}
989
990SDValue XCoreTargetLowering::
991LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
992  AtomicSDNode *N = cast<AtomicSDNode>(Op);
993  assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
994  assert(N->getOrdering() <= Monotonic &&
995         "setInsertFencesForAtomic(true) and yet greater than Monotonic");
996  if (N->getMemoryVT() == MVT::i32) {
997    if (N->getAlignment() < 4)
998      report_fatal_error("atomic store must be aligned");
999    return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(),
1000                        N->getBasePtr(), N->getPointerInfo(),
1001                        N->isVolatile(), N->isNonTemporal(),
1002                        N->getAlignment(), N->getTBAAInfo());
1003  }
1004  if (N->getMemoryVT() == MVT::i16) {
1005    if (N->getAlignment() < 2)
1006      report_fatal_error("atomic store must be aligned");
1007    return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1008                             N->getBasePtr(), N->getPointerInfo(), MVT::i16,
1009                             N->isVolatile(), N->isNonTemporal(),
1010                             N->getAlignment(), N->getTBAAInfo());
1011  }
1012  if (N->getMemoryVT() == MVT::i8)
1013    return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1014                             N->getBasePtr(), N->getPointerInfo(), MVT::i8,
1015                             N->isVolatile(), N->isNonTemporal(),
1016                             N->getAlignment(), N->getTBAAInfo());
1017  return SDValue();
1018}
1019
1020//===----------------------------------------------------------------------===//
1021//                      Calling Convention Implementation
1022//===----------------------------------------------------------------------===//
1023
1024#include "XCoreGenCallingConv.inc"
1025
1026//===----------------------------------------------------------------------===//
1027//                  Call Calling Convention Implementation
1028//===----------------------------------------------------------------------===//
1029
1030/// XCore call implementation
1031SDValue
1032XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1033                               SmallVectorImpl<SDValue> &InVals) const {
1034  SelectionDAG &DAG                     = CLI.DAG;
1035  SDLoc &dl                             = CLI.DL;
1036  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1037  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1038  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1039  SDValue Chain                         = CLI.Chain;
1040  SDValue Callee                        = CLI.Callee;
1041  bool &isTailCall                      = CLI.IsTailCall;
1042  CallingConv::ID CallConv              = CLI.CallConv;
1043  bool isVarArg                         = CLI.IsVarArg;
1044
1045  // XCore target does not yet support tail call optimization.
1046  isTailCall = false;
1047
1048  // For now, only CallingConv::C implemented
1049  switch (CallConv)
1050  {
1051    default:
1052      llvm_unreachable("Unsupported calling convention");
1053    case CallingConv::Fast:
1054    case CallingConv::C:
1055      return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1056                            Outs, OutVals, Ins, dl, DAG, InVals);
1057  }
1058}
1059
1060/// LowerCallResult - Lower the result values of a call into the
1061/// appropriate copies out of appropriate physical registers / memory locations.
1062static SDValue
1063LowerCallResult(SDValue Chain, SDValue InFlag,
1064                const SmallVectorImpl<CCValAssign> &RVLocs,
1065                SDLoc dl, SelectionDAG &DAG,
1066                SmallVectorImpl<SDValue> &InVals) {
1067  SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1068  // Copy results out of physical registers.
1069  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1070    const CCValAssign &VA = RVLocs[i];
1071    if (VA.isRegLoc()) {
1072      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1073                                 InFlag).getValue(1);
1074      InFlag = Chain.getValue(2);
1075      InVals.push_back(Chain.getValue(0));
1076    } else {
1077      assert(VA.isMemLoc());
1078      ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1079                                             InVals.size()));
1080      // Reserve space for this result.
1081      InVals.push_back(SDValue());
1082    }
1083  }
1084
1085  // Copy results out of memory.
1086  SmallVector<SDValue, 4> MemOpChains;
1087  for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1088    int offset = ResultMemLocs[i].first;
1089    unsigned index = ResultMemLocs[i].second;
1090    SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1091    SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, MVT::i32) };
1092    SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1093    InVals[index] = load;
1094    MemOpChains.push_back(load.getValue(1));
1095  }
1096
1097  // Transform all loads nodes into one single node because
1098  // all load nodes are independent of each other.
1099  if (!MemOpChains.empty())
1100    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1101
1102  return Chain;
1103}
1104
1105/// LowerCCCCallTo - functions arguments are copied from virtual
1106/// regs to (physical regs)/(stack frame), CALLSEQ_START and
1107/// CALLSEQ_END are emitted.
1108/// TODO: isTailCall, sret.
1109SDValue
1110XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
1111                                    CallingConv::ID CallConv, bool isVarArg,
1112                                    bool isTailCall,
1113                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1114                                    const SmallVectorImpl<SDValue> &OutVals,
1115                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1116                                    SDLoc dl, SelectionDAG &DAG,
1117                                    SmallVectorImpl<SDValue> &InVals) const {
1118
1119  // Analyze operands of the call, assigning locations to each operand.
1120  SmallVector<CCValAssign, 16> ArgLocs;
1121  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1122                 getTargetMachine(), ArgLocs, *DAG.getContext());
1123
1124  // The ABI dictates there should be one stack slot available to the callee
1125  // on function entry (for saving lr).
1126  CCInfo.AllocateStack(4, 4);
1127
1128  CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1129
1130  SmallVector<CCValAssign, 16> RVLocs;
1131  // Analyze return values to determine the number of bytes of stack required.
1132  CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1133                    getTargetMachine(), RVLocs, *DAG.getContext());
1134  RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
1135  RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1136
1137  // Get a count of how many bytes are to be pushed on the stack.
1138  unsigned NumBytes = RetCCInfo.getNextStackOffset();
1139
1140  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes,
1141                                 getPointerTy(), true), dl);
1142
1143  SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1144  SmallVector<SDValue, 12> MemOpChains;
1145
1146  // Walk the register/memloc assignments, inserting copies/loads.
1147  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1148    CCValAssign &VA = ArgLocs[i];
1149    SDValue Arg = OutVals[i];
1150
1151    // Promote the value if needed.
1152    switch (VA.getLocInfo()) {
1153      default: llvm_unreachable("Unknown loc info!");
1154      case CCValAssign::Full: break;
1155      case CCValAssign::SExt:
1156        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1157        break;
1158      case CCValAssign::ZExt:
1159        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1160        break;
1161      case CCValAssign::AExt:
1162        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1163        break;
1164    }
1165
1166    // Arguments that can be passed on register must be kept at
1167    // RegsToPass vector
1168    if (VA.isRegLoc()) {
1169      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1170    } else {
1171      assert(VA.isMemLoc());
1172
1173      int Offset = VA.getLocMemOffset();
1174
1175      MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1176                                        Chain, Arg,
1177                                        DAG.getConstant(Offset/4, MVT::i32)));
1178    }
1179  }
1180
1181  // Transform all store nodes into one single node because
1182  // all store nodes are independent of each other.
1183  if (!MemOpChains.empty())
1184    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1185
1186  // Build a sequence of copy-to-reg nodes chained together with token
1187  // chain and flag operands which copy the outgoing args into registers.
1188  // The InFlag in necessary since all emitted instructions must be
1189  // stuck together.
1190  SDValue InFlag;
1191  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1192    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1193                             RegsToPass[i].second, InFlag);
1194    InFlag = Chain.getValue(1);
1195  }
1196
1197  // If the callee is a GlobalAddress node (quite common, every direct call is)
1198  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1199  // Likewise ExternalSymbol -> TargetExternalSymbol.
1200  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1201    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1202  else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1203    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1204
1205  // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1206  //             = Chain, Callee, Reg#1, Reg#2, ...
1207  //
1208  // Returns a chain & a flag for retval copy to use.
1209  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1210  SmallVector<SDValue, 8> Ops;
1211  Ops.push_back(Chain);
1212  Ops.push_back(Callee);
1213
1214  // Add argument registers to the end of the list so that they are
1215  // known live into the call.
1216  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1217    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1218                                  RegsToPass[i].second.getValueType()));
1219
1220  if (InFlag.getNode())
1221    Ops.push_back(InFlag);
1222
1223  Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1224  InFlag = Chain.getValue(1);
1225
1226  // Create the CALLSEQ_END node.
1227  Chain = DAG.getCALLSEQ_END(Chain,
1228                             DAG.getConstant(NumBytes, getPointerTy(), true),
1229                             DAG.getConstant(0, getPointerTy(), true),
1230                             InFlag, dl);
1231  InFlag = Chain.getValue(1);
1232
1233  // Handle result values, copying them out of physregs into vregs that we
1234  // return.
1235  return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1236}
1237
1238//===----------------------------------------------------------------------===//
1239//             Formal Arguments Calling Convention Implementation
1240//===----------------------------------------------------------------------===//
1241
1242namespace {
1243  struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1244}
1245
1246/// XCore formal arguments implementation
1247SDValue
1248XCoreTargetLowering::LowerFormalArguments(SDValue Chain,
1249                                          CallingConv::ID CallConv,
1250                                          bool isVarArg,
1251                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1252                                          SDLoc dl,
1253                                          SelectionDAG &DAG,
1254                                          SmallVectorImpl<SDValue> &InVals)
1255                                            const {
1256  switch (CallConv)
1257  {
1258    default:
1259      llvm_unreachable("Unsupported calling convention");
1260    case CallingConv::C:
1261    case CallingConv::Fast:
1262      return LowerCCCArguments(Chain, CallConv, isVarArg,
1263                               Ins, dl, DAG, InVals);
1264  }
1265}
1266
1267/// LowerCCCArguments - transform physical registers into
1268/// virtual registers and generate load operations for
1269/// arguments places on the stack.
1270/// TODO: sret
1271SDValue
1272XCoreTargetLowering::LowerCCCArguments(SDValue Chain,
1273                                       CallingConv::ID CallConv,
1274                                       bool isVarArg,
1275                                       const SmallVectorImpl<ISD::InputArg>
1276                                         &Ins,
1277                                       SDLoc dl,
1278                                       SelectionDAG &DAG,
1279                                       SmallVectorImpl<SDValue> &InVals) const {
1280  MachineFunction &MF = DAG.getMachineFunction();
1281  MachineFrameInfo *MFI = MF.getFrameInfo();
1282  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1283  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1284
1285  // Assign locations to all of the incoming arguments.
1286  SmallVector<CCValAssign, 16> ArgLocs;
1287  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1288                 getTargetMachine(), ArgLocs, *DAG.getContext());
1289
1290  CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1291
1292  unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1293
1294  unsigned LRSaveSize = StackSlotSize;
1295
1296  if (!isVarArg)
1297    XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1298
1299  // All getCopyFromReg ops must precede any getMemcpys to prevent the
1300  // scheduler clobbering a register before it has been copied.
1301  // The stages are:
1302  // 1. CopyFromReg (and load) arg & vararg registers.
1303  // 2. Chain CopyFromReg nodes into a TokenFactor.
1304  // 3. Memcpy 'byVal' args & push final InVals.
1305  // 4. Chain mem ops nodes into a TokenFactor.
1306  SmallVector<SDValue, 4> CFRegNode;
1307  SmallVector<ArgDataPair, 4> ArgData;
1308  SmallVector<SDValue, 4> MemOps;
1309
1310  // 1a. CopyFromReg (and load) arg registers.
1311  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1312
1313    CCValAssign &VA = ArgLocs[i];
1314    SDValue ArgIn;
1315
1316    if (VA.isRegLoc()) {
1317      // Arguments passed in registers
1318      EVT RegVT = VA.getLocVT();
1319      switch (RegVT.getSimpleVT().SimpleTy) {
1320      default:
1321        {
1322#ifndef NDEBUG
1323          errs() << "LowerFormalArguments Unhandled argument type: "
1324                 << RegVT.getSimpleVT().SimpleTy << "\n";
1325#endif
1326          llvm_unreachable(nullptr);
1327        }
1328      case MVT::i32:
1329        unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1330        RegInfo.addLiveIn(VA.getLocReg(), VReg);
1331        ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1332        CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1333      }
1334    } else {
1335      // sanity check
1336      assert(VA.isMemLoc());
1337      // Load the argument to a virtual register
1338      unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1339      if (ObjSize > StackSlotSize) {
1340        errs() << "LowerFormalArguments Unhandled argument type: "
1341               << EVT(VA.getLocVT()).getEVTString()
1342               << "\n";
1343      }
1344      // Create the frame index object for this incoming parameter...
1345      int FI = MFI->CreateFixedObject(ObjSize,
1346                                      LRSaveSize + VA.getLocMemOffset(),
1347                                      true);
1348
1349      // Create the SelectionDAG nodes corresponding to a load
1350      //from this parameter
1351      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1352      ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1353                          MachinePointerInfo::getFixedStack(FI),
1354                          false, false, false, 0);
1355    }
1356    const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1357    ArgData.push_back(ADP);
1358  }
1359
1360  // 1b. CopyFromReg vararg registers.
1361  if (isVarArg) {
1362    // Argument registers
1363    static const MCPhysReg ArgRegs[] = {
1364      XCore::R0, XCore::R1, XCore::R2, XCore::R3
1365    };
1366    XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1367    unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs,
1368                                                     array_lengthof(ArgRegs));
1369    if (FirstVAReg < array_lengthof(ArgRegs)) {
1370      int offset = 0;
1371      // Save remaining registers, storing higher register numbers at a higher
1372      // address
1373      for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1374        // Create a stack slot
1375        int FI = MFI->CreateFixedObject(4, offset, true);
1376        if (i == (int)FirstVAReg) {
1377          XFI->setVarArgsFrameIndex(FI);
1378        }
1379        offset -= StackSlotSize;
1380        SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1381        // Move argument from phys reg -> virt reg
1382        unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1383        RegInfo.addLiveIn(ArgRegs[i], VReg);
1384        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1385        CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1386        // Move argument from virt reg -> stack
1387        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1388                                     MachinePointerInfo(), false, false, 0);
1389        MemOps.push_back(Store);
1390      }
1391    } else {
1392      // This will point to the next argument passed via stack.
1393      XFI->setVarArgsFrameIndex(
1394        MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1395                               true));
1396    }
1397  }
1398
1399  // 2. chain CopyFromReg nodes into a TokenFactor.
1400  if (!CFRegNode.empty())
1401    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1402
1403  // 3. Memcpy 'byVal' args & push final InVals.
1404  // Aggregates passed "byVal" need to be copied by the callee.
1405  // The callee will use a pointer to this copy, rather than the original
1406  // pointer.
1407  for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1408                                                    ArgDE = ArgData.end();
1409       ArgDI != ArgDE; ++ArgDI) {
1410    if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1411      unsigned Size = ArgDI->Flags.getByValSize();
1412      unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
1413      // Create a new object on the stack and copy the pointee into it.
1414      int FI = MFI->CreateStackObject(Size, Align, false);
1415      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1416      InVals.push_back(FIN);
1417      MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
1418                                     DAG.getConstant(Size, MVT::i32),
1419                                     Align, false, false,
1420                                     MachinePointerInfo(),
1421                                     MachinePointerInfo()));
1422    } else {
1423      InVals.push_back(ArgDI->SDV);
1424    }
1425  }
1426
1427  // 4, chain mem ops nodes into a TokenFactor.
1428  if (!MemOps.empty()) {
1429    MemOps.push_back(Chain);
1430    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1431  }
1432
1433  return Chain;
1434}
1435
1436//===----------------------------------------------------------------------===//
1437//               Return Value Calling Convention Implementation
1438//===----------------------------------------------------------------------===//
1439
1440bool XCoreTargetLowering::
1441CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1442               bool isVarArg,
1443               const SmallVectorImpl<ISD::OutputArg> &Outs,
1444               LLVMContext &Context) const {
1445  SmallVector<CCValAssign, 16> RVLocs;
1446  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
1447  if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1448    return false;
1449  if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1450    return false;
1451  return true;
1452}
1453
1454SDValue
1455XCoreTargetLowering::LowerReturn(SDValue Chain,
1456                                 CallingConv::ID CallConv, bool isVarArg,
1457                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
1458                                 const SmallVectorImpl<SDValue> &OutVals,
1459                                 SDLoc dl, SelectionDAG &DAG) const {
1460
1461  XCoreFunctionInfo *XFI =
1462    DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1463  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1464
1465  // CCValAssign - represent the assignment of
1466  // the return value to a location
1467  SmallVector<CCValAssign, 16> RVLocs;
1468
1469  // CCState - Info about the registers and stack slot.
1470  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1471                 getTargetMachine(), RVLocs, *DAG.getContext());
1472
1473  // Analyze return values.
1474  if (!isVarArg)
1475    CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
1476
1477  CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1478
1479  SDValue Flag;
1480  SmallVector<SDValue, 4> RetOps(1, Chain);
1481
1482  // Return on XCore is always a "retsp 0"
1483  RetOps.push_back(DAG.getConstant(0, MVT::i32));
1484
1485  SmallVector<SDValue, 4> MemOpChains;
1486  // Handle return values that must be copied to memory.
1487  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1488    CCValAssign &VA = RVLocs[i];
1489    if (VA.isRegLoc())
1490      continue;
1491    assert(VA.isMemLoc());
1492    if (isVarArg) {
1493      report_fatal_error("Can't return value from vararg function in memory");
1494    }
1495
1496    int Offset = VA.getLocMemOffset();
1497    unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1498    // Create the frame index object for the memory location.
1499    int FI = MFI->CreateFixedObject(ObjSize, Offset, false);
1500
1501    // Create a SelectionDAG node corresponding to a store
1502    // to this memory location.
1503    SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1504    MemOpChains.push_back(DAG.getStore(Chain, dl, OutVals[i], FIN,
1505                          MachinePointerInfo::getFixedStack(FI), false, false,
1506                          0));
1507  }
1508
1509  // Transform all store nodes into one single node because
1510  // all stores are independent of each other.
1511  if (!MemOpChains.empty())
1512    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1513
1514  // Now handle return values copied to registers.
1515  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1516    CCValAssign &VA = RVLocs[i];
1517    if (!VA.isRegLoc())
1518      continue;
1519    // Copy the result values into the output registers.
1520    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1521
1522    // guarantee that all emitted copies are
1523    // stuck together, avoiding something bad
1524    Flag = Chain.getValue(1);
1525    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1526  }
1527
1528  RetOps[0] = Chain;  // Update chain.
1529
1530  // Add the flag if we have it.
1531  if (Flag.getNode())
1532    RetOps.push_back(Flag);
1533
1534  return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1535}
1536
1537//===----------------------------------------------------------------------===//
1538//  Other Lowering Code
1539//===----------------------------------------------------------------------===//
1540
1541MachineBasicBlock *
1542XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1543                                                 MachineBasicBlock *BB) const {
1544  const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
1545  DebugLoc dl = MI->getDebugLoc();
1546  assert((MI->getOpcode() == XCore::SELECT_CC) &&
1547         "Unexpected instr type to insert");
1548
1549  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1550  // control-flow pattern.  The incoming instruction knows the destination vreg
1551  // to set, the condition code register to branch on, the true/false values to
1552  // select between, and a branch opcode to use.
1553  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1554  MachineFunction::iterator It = BB;
1555  ++It;
1556
1557  //  thisMBB:
1558  //  ...
1559  //   TrueVal = ...
1560  //   cmpTY ccX, r1, r2
1561  //   bCC copy1MBB
1562  //   fallthrough --> copy0MBB
1563  MachineBasicBlock *thisMBB = BB;
1564  MachineFunction *F = BB->getParent();
1565  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1566  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1567  F->insert(It, copy0MBB);
1568  F->insert(It, sinkMBB);
1569
1570  // Transfer the remainder of BB and its successor edges to sinkMBB.
1571  sinkMBB->splice(sinkMBB->begin(), BB,
1572                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1573  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1574
1575  // Next, add the true and fallthrough blocks as its successors.
1576  BB->addSuccessor(copy0MBB);
1577  BB->addSuccessor(sinkMBB);
1578
1579  BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1580    .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
1581
1582  //  copy0MBB:
1583  //   %FalseValue = ...
1584  //   # fallthrough to sinkMBB
1585  BB = copy0MBB;
1586
1587  // Update machine-CFG edges
1588  BB->addSuccessor(sinkMBB);
1589
1590  //  sinkMBB:
1591  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1592  //  ...
1593  BB = sinkMBB;
1594  BuildMI(*BB, BB->begin(), dl,
1595          TII.get(XCore::PHI), MI->getOperand(0).getReg())
1596    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
1597    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
1598
1599  MI->eraseFromParent();   // The pseudo instruction is gone now.
1600  return BB;
1601}
1602
1603//===----------------------------------------------------------------------===//
1604// Target Optimization Hooks
1605//===----------------------------------------------------------------------===//
1606
1607SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1608                                             DAGCombinerInfo &DCI) const {
1609  SelectionDAG &DAG = DCI.DAG;
1610  SDLoc dl(N);
1611  switch (N->getOpcode()) {
1612  default: break;
1613  case ISD::INTRINSIC_VOID:
1614    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1615    case Intrinsic::xcore_outt:
1616    case Intrinsic::xcore_outct:
1617    case Intrinsic::xcore_chkct: {
1618      SDValue OutVal = N->getOperand(3);
1619      // These instructions ignore the high bits.
1620      if (OutVal.hasOneUse()) {
1621        unsigned BitWidth = OutVal.getValueSizeInBits();
1622        APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1623        APInt KnownZero, KnownOne;
1624        TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1625                                              !DCI.isBeforeLegalizeOps());
1626        const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1627        if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) ||
1628            TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne,
1629                                     TLO))
1630          DCI.CommitTargetLoweringOpt(TLO);
1631      }
1632      break;
1633    }
1634    case Intrinsic::xcore_setpt: {
1635      SDValue Time = N->getOperand(3);
1636      // This instruction ignores the high bits.
1637      if (Time.hasOneUse()) {
1638        unsigned BitWidth = Time.getValueSizeInBits();
1639        APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1640        APInt KnownZero, KnownOne;
1641        TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1642                                              !DCI.isBeforeLegalizeOps());
1643        const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1644        if (TLO.ShrinkDemandedConstant(Time, DemandedMask) ||
1645            TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne,
1646                                     TLO))
1647          DCI.CommitTargetLoweringOpt(TLO);
1648      }
1649      break;
1650    }
1651    }
1652    break;
1653  case XCoreISD::LADD: {
1654    SDValue N0 = N->getOperand(0);
1655    SDValue N1 = N->getOperand(1);
1656    SDValue N2 = N->getOperand(2);
1657    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1658    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1659    EVT VT = N0.getValueType();
1660
1661    // canonicalize constant to RHS
1662    if (N0C && !N1C)
1663      return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1664
1665    // fold (ladd 0, 0, x) -> 0, x & 1
1666    if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1667      SDValue Carry = DAG.getConstant(0, VT);
1668      SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1669                                   DAG.getConstant(1, VT));
1670      SDValue Ops[] = { Result, Carry };
1671      return DAG.getMergeValues(Ops, dl);
1672    }
1673
1674    // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1675    // low bit set
1676    if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1677      APInt KnownZero, KnownOne;
1678      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1679                                         VT.getSizeInBits() - 1);
1680      DAG.computeKnownBits(N2, KnownZero, KnownOne);
1681      if ((KnownZero & Mask) == Mask) {
1682        SDValue Carry = DAG.getConstant(0, VT);
1683        SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1684        SDValue Ops[] = { Result, Carry };
1685        return DAG.getMergeValues(Ops, dl);
1686      }
1687    }
1688  }
1689  break;
1690  case XCoreISD::LSUB: {
1691    SDValue N0 = N->getOperand(0);
1692    SDValue N1 = N->getOperand(1);
1693    SDValue N2 = N->getOperand(2);
1694    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1695    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1696    EVT VT = N0.getValueType();
1697
1698    // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1699    if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1700      APInt KnownZero, KnownOne;
1701      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1702                                         VT.getSizeInBits() - 1);
1703      DAG.computeKnownBits(N2, KnownZero, KnownOne);
1704      if ((KnownZero & Mask) == Mask) {
1705        SDValue Borrow = N2;
1706        SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1707                                     DAG.getConstant(0, VT), N2);
1708        SDValue Ops[] = { Result, Borrow };
1709        return DAG.getMergeValues(Ops, dl);
1710      }
1711    }
1712
1713    // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1714    // low bit set
1715    if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1716      APInt KnownZero, KnownOne;
1717      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1718                                         VT.getSizeInBits() - 1);
1719      DAG.computeKnownBits(N2, KnownZero, KnownOne);
1720      if ((KnownZero & Mask) == Mask) {
1721        SDValue Borrow = DAG.getConstant(0, VT);
1722        SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1723        SDValue Ops[] = { Result, Borrow };
1724        return DAG.getMergeValues(Ops, dl);
1725      }
1726    }
1727  }
1728  break;
1729  case XCoreISD::LMUL: {
1730    SDValue N0 = N->getOperand(0);
1731    SDValue N1 = N->getOperand(1);
1732    SDValue N2 = N->getOperand(2);
1733    SDValue N3 = N->getOperand(3);
1734    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1735    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1736    EVT VT = N0.getValueType();
1737    // Canonicalize multiplicative constant to RHS. If both multiplicative
1738    // operands are constant canonicalize smallest to RHS.
1739    if ((N0C && !N1C) ||
1740        (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1741      return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1742                         N1, N0, N2, N3);
1743
1744    // lmul(x, 0, a, b)
1745    if (N1C && N1C->isNullValue()) {
1746      // If the high result is unused fold to add(a, b)
1747      if (N->hasNUsesOfValue(0, 0)) {
1748        SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1749        SDValue Ops[] = { Lo, Lo };
1750        return DAG.getMergeValues(Ops, dl);
1751      }
1752      // Otherwise fold to ladd(a, b, 0)
1753      SDValue Result =
1754        DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1755      SDValue Carry(Result.getNode(), 1);
1756      SDValue Ops[] = { Carry, Result };
1757      return DAG.getMergeValues(Ops, dl);
1758    }
1759  }
1760  break;
1761  case ISD::ADD: {
1762    // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1763    // lmul(x, y, a, b). The high result of lmul will be ignored.
1764    // This is only profitable if the intermediate results are unused
1765    // elsewhere.
1766    SDValue Mul0, Mul1, Addend0, Addend1;
1767    if (N->getValueType(0) == MVT::i32 &&
1768        isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1769      SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1770                                    DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1771                                    Mul1, Addend0, Addend1);
1772      SDValue Result(Ignored.getNode(), 1);
1773      return Result;
1774    }
1775    APInt HighMask = APInt::getHighBitsSet(64, 32);
1776    // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1777    // lmul(x, y, a, b) if all operands are zero-extended. We do this
1778    // before type legalization as it is messy to match the operands after
1779    // that.
1780    if (N->getValueType(0) == MVT::i64 &&
1781        isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1782        DAG.MaskedValueIsZero(Mul0, HighMask) &&
1783        DAG.MaskedValueIsZero(Mul1, HighMask) &&
1784        DAG.MaskedValueIsZero(Addend0, HighMask) &&
1785        DAG.MaskedValueIsZero(Addend1, HighMask)) {
1786      SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1787                                  Mul0, DAG.getConstant(0, MVT::i32));
1788      SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1789                                  Mul1, DAG.getConstant(0, MVT::i32));
1790      SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1791                                     Addend0, DAG.getConstant(0, MVT::i32));
1792      SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1793                                     Addend1, DAG.getConstant(0, MVT::i32));
1794      SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1795                               DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1796                               Addend0L, Addend1L);
1797      SDValue Lo(Hi.getNode(), 1);
1798      return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1799    }
1800  }
1801  break;
1802  case ISD::STORE: {
1803    // Replace unaligned store of unaligned load with memmove.
1804    StoreSDNode *ST  = cast<StoreSDNode>(N);
1805    if (!DCI.isBeforeLegalize() ||
1806        allowsUnalignedMemoryAccesses(ST->getMemoryVT()) ||
1807        ST->isVolatile() || ST->isIndexed()) {
1808      break;
1809    }
1810    SDValue Chain = ST->getChain();
1811
1812    unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1813    if (StoreBits % 8) {
1814      break;
1815    }
1816    unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(
1817        ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
1818    unsigned Alignment = ST->getAlignment();
1819    if (Alignment >= ABIAlignment) {
1820      break;
1821    }
1822
1823    if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1824      if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1825        LD->getAlignment() == Alignment &&
1826        !LD->isVolatile() && !LD->isIndexed() &&
1827        Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1828        return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
1829                              LD->getBasePtr(),
1830                              DAG.getConstant(StoreBits/8, MVT::i32),
1831                              Alignment, false, ST->getPointerInfo(),
1832                              LD->getPointerInfo());
1833      }
1834    }
1835    break;
1836  }
1837  }
1838  return SDValue();
1839}
1840
1841void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1842                                                        APInt &KnownZero,
1843                                                        APInt &KnownOne,
1844                                                        const SelectionDAG &DAG,
1845                                                        unsigned Depth) const {
1846  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
1847  switch (Op.getOpcode()) {
1848  default: break;
1849  case XCoreISD::LADD:
1850  case XCoreISD::LSUB:
1851    if (Op.getResNo() == 1) {
1852      // Top bits of carry / borrow are clear.
1853      KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1854                                        KnownZero.getBitWidth() - 1);
1855    }
1856    break;
1857  case ISD::INTRINSIC_W_CHAIN:
1858    {
1859      unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1860      switch (IntNo) {
1861      case Intrinsic::xcore_getts:
1862        // High bits are known to be zero.
1863        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1864                                          KnownZero.getBitWidth() - 16);
1865        break;
1866      case Intrinsic::xcore_int:
1867      case Intrinsic::xcore_inct:
1868        // High bits are known to be zero.
1869        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1870                                          KnownZero.getBitWidth() - 8);
1871        break;
1872      case Intrinsic::xcore_testct:
1873        // Result is either 0 or 1.
1874        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1875                                          KnownZero.getBitWidth() - 1);
1876        break;
1877      case Intrinsic::xcore_testwct:
1878        // Result is in the range 0 - 4.
1879        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1880                                          KnownZero.getBitWidth() - 3);
1881        break;
1882      }
1883    }
1884    break;
1885  }
1886}
1887
1888//===----------------------------------------------------------------------===//
1889//  Addressing mode description hooks
1890//===----------------------------------------------------------------------===//
1891
1892static inline bool isImmUs(int64_t val)
1893{
1894  return (val >= 0 && val <= 11);
1895}
1896
1897static inline bool isImmUs2(int64_t val)
1898{
1899  return (val%2 == 0 && isImmUs(val/2));
1900}
1901
1902static inline bool isImmUs4(int64_t val)
1903{
1904  return (val%4 == 0 && isImmUs(val/4));
1905}
1906
1907/// isLegalAddressingMode - Return true if the addressing mode represented
1908/// by AM is legal for this target, for a load/store of the specified type.
1909bool
1910XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM,
1911                                              Type *Ty) const {
1912  if (Ty->getTypeID() == Type::VoidTyID)
1913    return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1914
1915  const DataLayout *TD = TM.getDataLayout();
1916  unsigned Size = TD->getTypeAllocSize(Ty);
1917  if (AM.BaseGV) {
1918    return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1919                 AM.BaseOffs%4 == 0;
1920  }
1921
1922  switch (Size) {
1923  case 1:
1924    // reg + imm
1925    if (AM.Scale == 0) {
1926      return isImmUs(AM.BaseOffs);
1927    }
1928    // reg + reg
1929    return AM.Scale == 1 && AM.BaseOffs == 0;
1930  case 2:
1931  case 3:
1932    // reg + imm
1933    if (AM.Scale == 0) {
1934      return isImmUs2(AM.BaseOffs);
1935    }
1936    // reg + reg<<1
1937    return AM.Scale == 2 && AM.BaseOffs == 0;
1938  default:
1939    // reg + imm
1940    if (AM.Scale == 0) {
1941      return isImmUs4(AM.BaseOffs);
1942    }
1943    // reg + reg<<2
1944    return AM.Scale == 4 && AM.BaseOffs == 0;
1945  }
1946}
1947
1948//===----------------------------------------------------------------------===//
1949//                           XCore Inline Assembly Support
1950//===----------------------------------------------------------------------===//
1951
1952std::pair<unsigned, const TargetRegisterClass*>
1953XCoreTargetLowering::
1954getRegForInlineAsmConstraint(const std::string &Constraint,
1955                             MVT VT) const {
1956  if (Constraint.size() == 1) {
1957    switch (Constraint[0]) {
1958    default : break;
1959    case 'r':
1960      return std::make_pair(0U, &XCore::GRRegsRegClass);
1961    }
1962  }
1963  // Use the default implementation in TargetLowering to convert the register
1964  // constraint into a member of a register class.
1965  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
1966}
1967