XCoreISelLowering.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the XCoreTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "XCoreISelLowering.h"
15#include "XCore.h"
16#include "XCoreMachineFunctionInfo.h"
17#include "XCoreSubtarget.h"
18#include "XCoreTargetMachine.h"
19#include "XCoreTargetObjectFile.h"
20#include "llvm/CodeGen/CallingConvLower.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/SelectionDAGISel.h"
27#include "llvm/CodeGen/ValueTypes.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/GlobalAlias.h"
33#include "llvm/IR/GlobalVariable.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39
40using namespace llvm;
41
42#define DEBUG_TYPE "xcore-lower"
43
44const char *XCoreTargetLowering::
45getTargetNodeName(unsigned Opcode) const
46{
47  switch (Opcode)
48  {
49    case XCoreISD::BL                : return "XCoreISD::BL";
50    case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
51    case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
52    case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
53    case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
54    case XCoreISD::STWSP             : return "XCoreISD::STWSP";
55    case XCoreISD::RETSP             : return "XCoreISD::RETSP";
56    case XCoreISD::LADD              : return "XCoreISD::LADD";
57    case XCoreISD::LSUB              : return "XCoreISD::LSUB";
58    case XCoreISD::LMUL              : return "XCoreISD::LMUL";
59    case XCoreISD::MACCU             : return "XCoreISD::MACCU";
60    case XCoreISD::MACCS             : return "XCoreISD::MACCS";
61    case XCoreISD::CRC8              : return "XCoreISD::CRC8";
62    case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
63    case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
64    case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
65    case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
66    case XCoreISD::MEMBARRIER        : return "XCoreISD::MEMBARRIER";
67    default                          : return nullptr;
68  }
69}
70
71XCoreTargetLowering::XCoreTargetLowering(XCoreTargetMachine &XTM)
72  : TargetLowering(XTM, new XCoreTargetObjectFile()),
73    TM(XTM),
74    Subtarget(*XTM.getSubtargetImpl()) {
75
76  // Set up the register classes.
77  addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
78
79  // Compute derived properties from the register classes
80  computeRegisterProperties();
81
82  // Division is expensive
83  setIntDivIsCheap(false);
84
85  setStackPointerRegisterToSaveRestore(XCore::SP);
86
87  setSchedulingPreference(Sched::Source);
88
89  // Use i32 for setcc operations results (slt, sgt, ...).
90  setBooleanContents(ZeroOrOneBooleanContent);
91  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
92
93  // XCore does not have the NodeTypes below.
94  setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
95  setOperationAction(ISD::SELECT_CC, MVT::i32,   Custom);
96  setOperationAction(ISD::ADDC, MVT::i32, Expand);
97  setOperationAction(ISD::ADDE, MVT::i32, Expand);
98  setOperationAction(ISD::SUBC, MVT::i32, Expand);
99  setOperationAction(ISD::SUBE, MVT::i32, Expand);
100
101  // Stop the combiner recombining select and set_cc
102  setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
103
104  // 64bit
105  setOperationAction(ISD::ADD, MVT::i64, Custom);
106  setOperationAction(ISD::SUB, MVT::i64, Custom);
107  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
108  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
109  setOperationAction(ISD::MULHS, MVT::i32, Expand);
110  setOperationAction(ISD::MULHU, MVT::i32, Expand);
111  setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
112  setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
113  setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
114
115  // Bit Manipulation
116  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
117  setOperationAction(ISD::ROTL , MVT::i32, Expand);
118  setOperationAction(ISD::ROTR , MVT::i32, Expand);
119  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
120  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
121
122  setOperationAction(ISD::TRAP, MVT::Other, Legal);
123
124  // Jump tables.
125  setOperationAction(ISD::BR_JT, MVT::Other, Custom);
126
127  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
128  setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
129
130  // Conversion of i64 -> double produces constantpool nodes
131  setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
132
133  // Loads
134  setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
135  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
136  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
137
138  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
139  setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Expand);
140
141  // Custom expand misaligned loads / stores.
142  setOperationAction(ISD::LOAD, MVT::i32, Custom);
143  setOperationAction(ISD::STORE, MVT::i32, Custom);
144
145  // Varargs
146  setOperationAction(ISD::VAEND, MVT::Other, Expand);
147  setOperationAction(ISD::VACOPY, MVT::Other, Expand);
148  setOperationAction(ISD::VAARG, MVT::Other, Custom);
149  setOperationAction(ISD::VASTART, MVT::Other, Custom);
150
151  // Dynamic stack
152  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
153  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
154  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
155
156  // Exception handling
157  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
158  setExceptionPointerRegister(XCore::R0);
159  setExceptionSelectorRegister(XCore::R1);
160  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
161
162  // Atomic operations
163  // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
164  // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
165  setInsertFencesForAtomic(true);
166  setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
167  setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
168  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
169
170  // TRAMPOLINE is custom lowered.
171  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
172  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
173
174  // We want to custom lower some of our intrinsics.
175  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
176
177  MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
178  MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
179    = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
180
181  // We have target-specific dag combine patterns for the following nodes:
182  setTargetDAGCombine(ISD::STORE);
183  setTargetDAGCombine(ISD::ADD);
184  setTargetDAGCombine(ISD::INTRINSIC_VOID);
185  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
186
187  setMinFunctionAlignment(1);
188  setPrefFunctionAlignment(2);
189}
190
191bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
192  if (Val.getOpcode() != ISD::LOAD)
193    return false;
194
195  EVT VT1 = Val.getValueType();
196  if (!VT1.isSimple() || !VT1.isInteger() ||
197      !VT2.isSimple() || !VT2.isInteger())
198    return false;
199
200  switch (VT1.getSimpleVT().SimpleTy) {
201  default: break;
202  case MVT::i8:
203    return true;
204  }
205
206  return false;
207}
208
209SDValue XCoreTargetLowering::
210LowerOperation(SDValue Op, SelectionDAG &DAG) const {
211  switch (Op.getOpcode())
212  {
213  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
214  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
215  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
216  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
217  case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
218  case ISD::LOAD:               return LowerLOAD(Op, DAG);
219  case ISD::STORE:              return LowerSTORE(Op, DAG);
220  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
221  case ISD::VAARG:              return LowerVAARG(Op, DAG);
222  case ISD::VASTART:            return LowerVASTART(Op, DAG);
223  case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
224  case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
225  // FIXME: Remove these when LegalizeDAGTypes lands.
226  case ISD::ADD:
227  case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
228  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
229  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
230  case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
231  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
232  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
233  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
234  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
235  case ISD::ATOMIC_LOAD:        return LowerATOMIC_LOAD(Op, DAG);
236  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
237  default:
238    llvm_unreachable("unimplemented operand");
239  }
240}
241
242/// ReplaceNodeResults - Replace the results of node with an illegal result
243/// type with new values built out of custom code.
244void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
245                                             SmallVectorImpl<SDValue>&Results,
246                                             SelectionDAG &DAG) const {
247  switch (N->getOpcode()) {
248  default:
249    llvm_unreachable("Don't know how to custom expand this!");
250  case ISD::ADD:
251  case ISD::SUB:
252    Results.push_back(ExpandADDSUB(N, DAG));
253    return;
254  }
255}
256
257//===----------------------------------------------------------------------===//
258//  Misc Lower Operation implementation
259//===----------------------------------------------------------------------===//
260
261SDValue XCoreTargetLowering::
262LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
263{
264  SDLoc dl(Op);
265  SDValue Cond = DAG.getNode(ISD::SETCC, dl, MVT::i32, Op.getOperand(2),
266                             Op.getOperand(3), Op.getOperand(4));
267  return DAG.getNode(ISD::SELECT, dl, MVT::i32, Cond, Op.getOperand(0),
268                     Op.getOperand(1));
269}
270
271SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
272                                                     const GlobalValue *GV,
273                                                     SelectionDAG &DAG) const {
274  // FIXME there is no actual debug info here
275  SDLoc dl(GA);
276  const GlobalValue *UnderlyingGV = GV;
277  // If GV is an alias then use the aliasee to determine the wrapper type
278  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
279    UnderlyingGV = GA->getAliasee();
280  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(UnderlyingGV)) {
281    if ((GVar->isConstant() && GV->hasLocalLinkage()) ||
282        (GVar->hasSection() &&
283         StringRef(GVar->getSection()).startswith(".cp.")))
284      return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
285    return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
286  }
287  return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
288}
289
290static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
291  if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
292    return true;
293
294  Type *ObjType = GV->getType()->getPointerElementType();
295  if (!ObjType->isSized())
296    return false;
297
298  unsigned ObjSize = XTL.getDataLayout()->getTypeAllocSize(ObjType);
299  return ObjSize < CodeModelLargeSize && ObjSize != 0;
300}
301
302SDValue XCoreTargetLowering::
303LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
304{
305  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
306  const GlobalValue *GV = GN->getGlobal();
307  SDLoc DL(GN);
308  int64_t Offset = GN->getOffset();
309  if (IsSmallObject(GV, *this)) {
310    // We can only fold positive offsets that are a multiple of the word size.
311    int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
312    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
313    GA = getGlobalAddressWrapper(GA, GV, DAG);
314    // Handle the rest of the offset.
315    if (Offset != FoldedOffset) {
316      SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, MVT::i32);
317      GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
318    }
319    return GA;
320  } else {
321    // Ideally we would not fold in offset with an index <= 11.
322    Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
323    Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
324    Ty = Type::getInt32Ty(*DAG.getContext());
325    Constant *Idx = ConstantInt::get(Ty, Offset);
326    Constant *GAI = ConstantExpr::getGetElementPtr(GA, Idx);
327    SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
328    return DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), CP,
329                       MachinePointerInfo(), false, false, false, 0);
330  }
331}
332
333SDValue XCoreTargetLowering::
334LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
335{
336  SDLoc DL(Op);
337
338  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
339  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy());
340
341  return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, getPointerTy(), Result);
342}
343
344SDValue XCoreTargetLowering::
345LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
346{
347  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
348  // FIXME there isn't really debug info here
349  SDLoc dl(CP);
350  EVT PtrVT = Op.getValueType();
351  SDValue Res;
352  if (CP->isMachineConstantPoolEntry()) {
353    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
354                                    CP->getAlignment(), CP->getOffset());
355  } else {
356    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
357                                    CP->getAlignment(), CP->getOffset());
358  }
359  return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
360}
361
362unsigned XCoreTargetLowering::getJumpTableEncoding() const {
363  return MachineJumpTableInfo::EK_Inline;
364}
365
366SDValue XCoreTargetLowering::
367LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
368{
369  SDValue Chain = Op.getOperand(0);
370  SDValue Table = Op.getOperand(1);
371  SDValue Index = Op.getOperand(2);
372  SDLoc dl(Op);
373  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
374  unsigned JTI = JT->getIndex();
375  MachineFunction &MF = DAG.getMachineFunction();
376  const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
377  SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
378
379  unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
380  if (NumEntries <= 32) {
381    return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
382  }
383  assert((NumEntries >> 31) == 0);
384  SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
385                                    DAG.getConstant(1, MVT::i32));
386  return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
387                     ScaledIndex);
388}
389
390SDValue XCoreTargetLowering::
391lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base,
392                                       int64_t Offset, SelectionDAG &DAG) const
393{
394  if ((Offset & 0x3) == 0) {
395    return DAG.getLoad(getPointerTy(), DL, Chain, Base, MachinePointerInfo(),
396                       false, false, false, 0);
397  }
398  // Lower to pair of consecutive word aligned loads plus some bit shifting.
399  int32_t HighOffset = RoundUpToAlignment(Offset, 4);
400  int32_t LowOffset = HighOffset - 4;
401  SDValue LowAddr, HighAddr;
402  if (GlobalAddressSDNode *GASD =
403        dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
404    LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
405                                   LowOffset);
406    HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
407                                    HighOffset);
408  } else {
409    LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
410                          DAG.getConstant(LowOffset, MVT::i32));
411    HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
412                           DAG.getConstant(HighOffset, MVT::i32));
413  }
414  SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, MVT::i32);
415  SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, MVT::i32);
416
417  SDValue Low = DAG.getLoad(getPointerTy(), DL, Chain,
418                            LowAddr, MachinePointerInfo(),
419                            false, false, false, 0);
420  SDValue High = DAG.getLoad(getPointerTy(), DL, Chain,
421                             HighAddr, MachinePointerInfo(),
422                             false, false, false, 0);
423  SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
424  SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
425  SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
426  Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
427                      High.getValue(1));
428  SDValue Ops[] = { Result, Chain };
429  return DAG.getMergeValues(Ops, DL);
430}
431
432static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
433{
434  APInt KnownZero, KnownOne;
435  DAG.computeKnownBits(Value, KnownZero, KnownOne);
436  return KnownZero.countTrailingOnes() >= 2;
437}
438
439SDValue XCoreTargetLowering::
440LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
441  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
442  LoadSDNode *LD = cast<LoadSDNode>(Op);
443  assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
444         "Unexpected extension type");
445  assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
446  if (allowsUnalignedMemoryAccesses(LD->getMemoryVT()))
447    return SDValue();
448
449  unsigned ABIAlignment = getDataLayout()->
450    getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
451  // Leave aligned load alone.
452  if (LD->getAlignment() >= ABIAlignment)
453    return SDValue();
454
455  SDValue Chain = LD->getChain();
456  SDValue BasePtr = LD->getBasePtr();
457  SDLoc DL(Op);
458
459  if (!LD->isVolatile()) {
460    const GlobalValue *GV;
461    int64_t Offset = 0;
462    if (DAG.isBaseWithConstantOffset(BasePtr) &&
463        isWordAligned(BasePtr->getOperand(0), DAG)) {
464      SDValue NewBasePtr = BasePtr->getOperand(0);
465      Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
466      return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
467                                                    Offset, DAG);
468    }
469    if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
470        MinAlign(GV->getAlignment(), 4) == 4) {
471      SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
472                                                BasePtr->getValueType(0));
473      return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
474                                                    Offset, DAG);
475    }
476  }
477
478  if (LD->getAlignment() == 2) {
479    SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain,
480                                 BasePtr, LD->getPointerInfo(), MVT::i16,
481                                 LD->isVolatile(), LD->isNonTemporal(), 2);
482    SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
483                                   DAG.getConstant(2, MVT::i32));
484    SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
485                                  HighAddr,
486                                  LD->getPointerInfo().getWithOffset(2),
487                                  MVT::i16, LD->isVolatile(),
488                                  LD->isNonTemporal(), 2);
489    SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
490                                      DAG.getConstant(16, MVT::i32));
491    SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
492    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
493                             High.getValue(1));
494    SDValue Ops[] = { Result, Chain };
495    return DAG.getMergeValues(Ops, DL);
496  }
497
498  // Lower to a call to __misaligned_load(BasePtr).
499  Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
500  TargetLowering::ArgListTy Args;
501  TargetLowering::ArgListEntry Entry;
502
503  Entry.Ty = IntPtrTy;
504  Entry.Node = BasePtr;
505  Args.push_back(Entry);
506
507  TargetLowering::CallLoweringInfo CLI(DAG);
508  CLI.setDebugLoc(DL).setChain(Chain)
509    .setCallee(CallingConv::C, IntPtrTy,
510               DAG.getExternalSymbol("__misaligned_load", getPointerTy()),
511               &Args, 0);
512
513  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
514  SDValue Ops[] = { CallResult.first, CallResult.second };
515  return DAG.getMergeValues(Ops, DL);
516}
517
518SDValue XCoreTargetLowering::
519LowerSTORE(SDValue Op, SelectionDAG &DAG) const
520{
521  StoreSDNode *ST = cast<StoreSDNode>(Op);
522  assert(!ST->isTruncatingStore() && "Unexpected store type");
523  assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
524  if (allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
525    return SDValue();
526  }
527  unsigned ABIAlignment = getDataLayout()->
528    getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
529  // Leave aligned store alone.
530  if (ST->getAlignment() >= ABIAlignment) {
531    return SDValue();
532  }
533  SDValue Chain = ST->getChain();
534  SDValue BasePtr = ST->getBasePtr();
535  SDValue Value = ST->getValue();
536  SDLoc dl(Op);
537
538  if (ST->getAlignment() == 2) {
539    SDValue Low = Value;
540    SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
541                                      DAG.getConstant(16, MVT::i32));
542    SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr,
543                                         ST->getPointerInfo(), MVT::i16,
544                                         ST->isVolatile(), ST->isNonTemporal(),
545                                         2);
546    SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
547                                   DAG.getConstant(2, MVT::i32));
548    SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr,
549                                          ST->getPointerInfo().getWithOffset(2),
550                                          MVT::i16, ST->isVolatile(),
551                                          ST->isNonTemporal(), 2);
552    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
553  }
554
555  // Lower to a call to __misaligned_store(BasePtr, Value).
556  Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
557  TargetLowering::ArgListTy Args;
558  TargetLowering::ArgListEntry Entry;
559
560  Entry.Ty = IntPtrTy;
561  Entry.Node = BasePtr;
562  Args.push_back(Entry);
563
564  Entry.Node = Value;
565  Args.push_back(Entry);
566
567  TargetLowering::CallLoweringInfo CLI(DAG);
568  CLI.setDebugLoc(dl).setChain(Chain)
569    .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
570               DAG.getExternalSymbol("__misaligned_store", getPointerTy()),
571               &Args, 0);
572
573  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
574  return CallResult.second;
575}
576
577SDValue XCoreTargetLowering::
578LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
579{
580  assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
581         "Unexpected operand to lower!");
582  SDLoc dl(Op);
583  SDValue LHS = Op.getOperand(0);
584  SDValue RHS = Op.getOperand(1);
585  SDValue Zero = DAG.getConstant(0, MVT::i32);
586  SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
587                           DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
588                           LHS, RHS);
589  SDValue Lo(Hi.getNode(), 1);
590  SDValue Ops[] = { Lo, Hi };
591  return DAG.getMergeValues(Ops, dl);
592}
593
594SDValue XCoreTargetLowering::
595LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
596{
597  assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
598         "Unexpected operand to lower!");
599  SDLoc dl(Op);
600  SDValue LHS = Op.getOperand(0);
601  SDValue RHS = Op.getOperand(1);
602  SDValue Zero = DAG.getConstant(0, MVT::i32);
603  SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
604                           DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
605                           Zero, Zero);
606  SDValue Lo(Hi.getNode(), 1);
607  SDValue Ops[] = { Lo, Hi };
608  return DAG.getMergeValues(Ops, dl);
609}
610
611/// isADDADDMUL - Return whether Op is in a form that is equivalent to
612/// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
613/// each intermediate result in the calculation must also have a single use.
614/// If the Op is in the correct form the constituent parts are written to Mul0,
615/// Mul1, Addend0 and Addend1.
616static bool
617isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
618            SDValue &Addend1, bool requireIntermediatesHaveOneUse)
619{
620  if (Op.getOpcode() != ISD::ADD)
621    return false;
622  SDValue N0 = Op.getOperand(0);
623  SDValue N1 = Op.getOperand(1);
624  SDValue AddOp;
625  SDValue OtherOp;
626  if (N0.getOpcode() == ISD::ADD) {
627    AddOp = N0;
628    OtherOp = N1;
629  } else if (N1.getOpcode() == ISD::ADD) {
630    AddOp = N1;
631    OtherOp = N0;
632  } else {
633    return false;
634  }
635  if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
636    return false;
637  if (OtherOp.getOpcode() == ISD::MUL) {
638    // add(add(a,b),mul(x,y))
639    if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
640      return false;
641    Mul0 = OtherOp.getOperand(0);
642    Mul1 = OtherOp.getOperand(1);
643    Addend0 = AddOp.getOperand(0);
644    Addend1 = AddOp.getOperand(1);
645    return true;
646  }
647  if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
648    // add(add(mul(x,y),a),b)
649    if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
650      return false;
651    Mul0 = AddOp.getOperand(0).getOperand(0);
652    Mul1 = AddOp.getOperand(0).getOperand(1);
653    Addend0 = AddOp.getOperand(1);
654    Addend1 = OtherOp;
655    return true;
656  }
657  if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
658    // add(add(a,mul(x,y)),b)
659    if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
660      return false;
661    Mul0 = AddOp.getOperand(1).getOperand(0);
662    Mul1 = AddOp.getOperand(1).getOperand(1);
663    Addend0 = AddOp.getOperand(0);
664    Addend1 = OtherOp;
665    return true;
666  }
667  return false;
668}
669
670SDValue XCoreTargetLowering::
671TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
672{
673  SDValue Mul;
674  SDValue Other;
675  if (N->getOperand(0).getOpcode() == ISD::MUL) {
676    Mul = N->getOperand(0);
677    Other = N->getOperand(1);
678  } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
679    Mul = N->getOperand(1);
680    Other = N->getOperand(0);
681  } else {
682    return SDValue();
683  }
684  SDLoc dl(N);
685  SDValue LL, RL, AddendL, AddendH;
686  LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
687                   Mul.getOperand(0),  DAG.getConstant(0, MVT::i32));
688  RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
689                   Mul.getOperand(1),  DAG.getConstant(0, MVT::i32));
690  AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
691                        Other,  DAG.getConstant(0, MVT::i32));
692  AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
693                        Other,  DAG.getConstant(1, MVT::i32));
694  APInt HighMask = APInt::getHighBitsSet(64, 32);
695  unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
696  unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
697  if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
698      DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
699    // The inputs are both zero-extended.
700    SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
701                             DAG.getVTList(MVT::i32, MVT::i32), AddendH,
702                             AddendL, LL, RL);
703    SDValue Lo(Hi.getNode(), 1);
704    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
705  }
706  if (LHSSB > 32 && RHSSB > 32) {
707    // The inputs are both sign-extended.
708    SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
709                             DAG.getVTList(MVT::i32, MVT::i32), AddendH,
710                             AddendL, LL, RL);
711    SDValue Lo(Hi.getNode(), 1);
712    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
713  }
714  SDValue LH, RH;
715  LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
716                   Mul.getOperand(0),  DAG.getConstant(1, MVT::i32));
717  RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
718                   Mul.getOperand(1),  DAG.getConstant(1, MVT::i32));
719  SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
720                           DAG.getVTList(MVT::i32, MVT::i32), AddendH,
721                           AddendL, LL, RL);
722  SDValue Lo(Hi.getNode(), 1);
723  RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
724  LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
725  Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
726  Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
727  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
728}
729
730SDValue XCoreTargetLowering::
731ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
732{
733  assert(N->getValueType(0) == MVT::i64 &&
734         (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
735        "Unknown operand to lower!");
736
737  if (N->getOpcode() == ISD::ADD) {
738    SDValue Result = TryExpandADDWithMul(N, DAG);
739    if (Result.getNode())
740      return Result;
741  }
742
743  SDLoc dl(N);
744
745  // Extract components
746  SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
747                            N->getOperand(0),  DAG.getConstant(0, MVT::i32));
748  SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
749                            N->getOperand(0),  DAG.getConstant(1, MVT::i32));
750  SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
751                             N->getOperand(1), DAG.getConstant(0, MVT::i32));
752  SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
753                             N->getOperand(1), DAG.getConstant(1, MVT::i32));
754
755  // Expand
756  unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
757                                                   XCoreISD::LSUB;
758  SDValue Zero = DAG.getConstant(0, MVT::i32);
759  SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
760                           LHSL, RHSL, Zero);
761  SDValue Carry(Lo.getNode(), 1);
762
763  SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
764                           LHSH, RHSH, Carry);
765  SDValue Ignored(Hi.getNode(), 1);
766  // Merge the pieces
767  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
768}
769
770SDValue XCoreTargetLowering::
771LowerVAARG(SDValue Op, SelectionDAG &DAG) const
772{
773  // Whist llvm does not support aggregate varargs we can ignore
774  // the possibility of the ValueType being an implicit byVal vararg.
775  SDNode *Node = Op.getNode();
776  EVT VT = Node->getValueType(0); // not an aggregate
777  SDValue InChain = Node->getOperand(0);
778  SDValue VAListPtr = Node->getOperand(1);
779  EVT PtrVT = VAListPtr.getValueType();
780  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
781  SDLoc dl(Node);
782  SDValue VAList = DAG.getLoad(PtrVT, dl, InChain,
783                               VAListPtr, MachinePointerInfo(SV),
784                               false, false, false, 0);
785  // Increment the pointer, VAList, to the next vararg
786  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
787                                DAG.getIntPtrConstant(VT.getSizeInBits() / 8));
788  // Store the incremented VAList to the legalized pointer
789  InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
790                         MachinePointerInfo(SV), false, false, 0);
791  // Load the actual argument out of the pointer VAList
792  return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(),
793                     false, false, false, 0);
794}
795
796SDValue XCoreTargetLowering::
797LowerVASTART(SDValue Op, SelectionDAG &DAG) const
798{
799  SDLoc dl(Op);
800  // vastart stores the address of the VarArgsFrameIndex slot into the
801  // memory location argument
802  MachineFunction &MF = DAG.getMachineFunction();
803  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
804  SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
805  return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
806                      MachinePointerInfo(), false, false, 0);
807}
808
809SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
810                                            SelectionDAG &DAG) const {
811  // This nodes represent llvm.frameaddress on the DAG.
812  // It takes one operand, the index of the frame address to return.
813  // An index of zero corresponds to the current function's frame address.
814  // An index of one to the parent's frame address, and so on.
815  // Depths > 0 not supported yet!
816  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
817    return SDValue();
818
819  MachineFunction &MF = DAG.getMachineFunction();
820  const TargetRegisterInfo *RegInfo = getTargetMachine().getRegisterInfo();
821  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
822                            RegInfo->getFrameRegister(MF), MVT::i32);
823}
824
825SDValue XCoreTargetLowering::
826LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
827  // This nodes represent llvm.returnaddress on the DAG.
828  // It takes one operand, the index of the return address to return.
829  // An index of zero corresponds to the current function's return address.
830  // An index of one to the parent's return address, and so on.
831  // Depths > 0 not supported yet!
832  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
833    return SDValue();
834
835  MachineFunction &MF = DAG.getMachineFunction();
836  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
837  int FI = XFI->createLRSpillSlot(MF);
838  SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
839  return DAG.getLoad(getPointerTy(), SDLoc(Op), DAG.getEntryNode(), FIN,
840                     MachinePointerInfo::getFixedStack(FI), false, false,
841                     false, 0);
842}
843
844SDValue XCoreTargetLowering::
845LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
846  // This node represents offset from frame pointer to first on-stack argument.
847  // This is needed for correct stack adjustment during unwind.
848  // However, we don't know the offset until after the frame has be finalised.
849  // This is done during the XCoreFTAOElim pass.
850  return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
851}
852
853SDValue XCoreTargetLowering::
854LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
855  // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
856  // This node represents 'eh_return' gcc dwarf builtin, which is used to
857  // return from exception. The general meaning is: adjust stack by OFFSET and
858  // pass execution to HANDLER.
859  MachineFunction &MF = DAG.getMachineFunction();
860  SDValue Chain     = Op.getOperand(0);
861  SDValue Offset    = Op.getOperand(1);
862  SDValue Handler   = Op.getOperand(2);
863  SDLoc dl(Op);
864
865  // Absolute SP = (FP + FrameToArgs) + Offset
866  const TargetRegisterInfo *RegInfo = getTargetMachine().getRegisterInfo();
867  SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
868                            RegInfo->getFrameRegister(MF), MVT::i32);
869  SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
870                                    MVT::i32);
871  Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
872  Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
873
874  // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
875  // which leaves 2 caller saved registers, R2 & R3 for us to use.
876  unsigned StackReg = XCore::R2;
877  unsigned HandlerReg = XCore::R3;
878
879  SDValue OutChains[] = {
880    DAG.getCopyToReg(Chain, dl, StackReg, Stack),
881    DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
882  };
883
884  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
885
886  return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
887                     DAG.getRegister(StackReg, MVT::i32),
888                     DAG.getRegister(HandlerReg, MVT::i32));
889
890}
891
892SDValue XCoreTargetLowering::
893LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
894  return Op.getOperand(0);
895}
896
897SDValue XCoreTargetLowering::
898LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
899  SDValue Chain = Op.getOperand(0);
900  SDValue Trmp = Op.getOperand(1); // trampoline
901  SDValue FPtr = Op.getOperand(2); // nested function
902  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
903
904  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
905
906  // .align 4
907  // LDAPF_u10 r11, nest
908  // LDW_2rus r11, r11[0]
909  // STWSP_ru6 r11, sp[0]
910  // LDAPF_u10 r11, fptr
911  // LDW_2rus r11, r11[0]
912  // BAU_1r r11
913  // nest:
914  // .word nest
915  // fptr:
916  // .word fptr
917  SDValue OutChains[5];
918
919  SDValue Addr = Trmp;
920
921  SDLoc dl(Op);
922  OutChains[0] = DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, MVT::i32),
923                              Addr, MachinePointerInfo(TrmpAddr), false, false,
924                              0);
925
926  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
927                     DAG.getConstant(4, MVT::i32));
928  OutChains[1] = DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, MVT::i32),
929                              Addr, MachinePointerInfo(TrmpAddr, 4), false,
930                              false, 0);
931
932  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
933                     DAG.getConstant(8, MVT::i32));
934  OutChains[2] = DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, MVT::i32),
935                              Addr, MachinePointerInfo(TrmpAddr, 8), false,
936                              false, 0);
937
938  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
939                     DAG.getConstant(12, MVT::i32));
940  OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr,
941                              MachinePointerInfo(TrmpAddr, 12), false, false,
942                              0);
943
944  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
945                     DAG.getConstant(16, MVT::i32));
946  OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr,
947                              MachinePointerInfo(TrmpAddr, 16), false, false,
948                              0);
949
950  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
951}
952
953SDValue XCoreTargetLowering::
954LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
955  SDLoc DL(Op);
956  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
957  switch (IntNo) {
958    case Intrinsic::xcore_crc8:
959      EVT VT = Op.getValueType();
960      SDValue Data =
961        DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
962                    Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
963      SDValue Crc(Data.getNode(), 1);
964      SDValue Results[] = { Crc, Data };
965      return DAG.getMergeValues(Results, DL);
966  }
967  return SDValue();
968}
969
970SDValue XCoreTargetLowering::
971LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
972  SDLoc DL(Op);
973  return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
974}
975
976SDValue XCoreTargetLowering::
977LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
978  AtomicSDNode *N = cast<AtomicSDNode>(Op);
979  assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
980  assert(N->getOrdering() <= Monotonic &&
981         "setInsertFencesForAtomic(true) and yet greater than Monotonic");
982  if (N->getMemoryVT() == MVT::i32) {
983    if (N->getAlignment() < 4)
984      report_fatal_error("atomic load must be aligned");
985    return DAG.getLoad(getPointerTy(), SDLoc(Op), N->getChain(),
986                       N->getBasePtr(), N->getPointerInfo(),
987                       N->isVolatile(), N->isNonTemporal(),
988                       N->isInvariant(), N->getAlignment(),
989                       N->getTBAAInfo(), N->getRanges());
990  }
991  if (N->getMemoryVT() == MVT::i16) {
992    if (N->getAlignment() < 2)
993      report_fatal_error("atomic load must be aligned");
994    return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
995                          N->getBasePtr(), N->getPointerInfo(), MVT::i16,
996                          N->isVolatile(), N->isNonTemporal(),
997                          N->getAlignment(), N->getTBAAInfo());
998  }
999  if (N->getMemoryVT() == MVT::i8)
1000    return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
1001                          N->getBasePtr(), N->getPointerInfo(), MVT::i8,
1002                          N->isVolatile(), N->isNonTemporal(),
1003                          N->getAlignment(), N->getTBAAInfo());
1004  return SDValue();
1005}
1006
1007SDValue XCoreTargetLowering::
1008LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
1009  AtomicSDNode *N = cast<AtomicSDNode>(Op);
1010  assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
1011  assert(N->getOrdering() <= Monotonic &&
1012         "setInsertFencesForAtomic(true) and yet greater than Monotonic");
1013  if (N->getMemoryVT() == MVT::i32) {
1014    if (N->getAlignment() < 4)
1015      report_fatal_error("atomic store must be aligned");
1016    return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(),
1017                        N->getBasePtr(), N->getPointerInfo(),
1018                        N->isVolatile(), N->isNonTemporal(),
1019                        N->getAlignment(), N->getTBAAInfo());
1020  }
1021  if (N->getMemoryVT() == MVT::i16) {
1022    if (N->getAlignment() < 2)
1023      report_fatal_error("atomic store must be aligned");
1024    return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1025                             N->getBasePtr(), N->getPointerInfo(), MVT::i16,
1026                             N->isVolatile(), N->isNonTemporal(),
1027                             N->getAlignment(), N->getTBAAInfo());
1028  }
1029  if (N->getMemoryVT() == MVT::i8)
1030    return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1031                             N->getBasePtr(), N->getPointerInfo(), MVT::i8,
1032                             N->isVolatile(), N->isNonTemporal(),
1033                             N->getAlignment(), N->getTBAAInfo());
1034  return SDValue();
1035}
1036
1037//===----------------------------------------------------------------------===//
1038//                      Calling Convention Implementation
1039//===----------------------------------------------------------------------===//
1040
1041#include "XCoreGenCallingConv.inc"
1042
1043//===----------------------------------------------------------------------===//
1044//                  Call Calling Convention Implementation
1045//===----------------------------------------------------------------------===//
1046
1047/// XCore call implementation
1048SDValue
1049XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1050                               SmallVectorImpl<SDValue> &InVals) const {
1051  SelectionDAG &DAG                     = CLI.DAG;
1052  SDLoc &dl                             = CLI.DL;
1053  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1054  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1055  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1056  SDValue Chain                         = CLI.Chain;
1057  SDValue Callee                        = CLI.Callee;
1058  bool &isTailCall                      = CLI.IsTailCall;
1059  CallingConv::ID CallConv              = CLI.CallConv;
1060  bool isVarArg                         = CLI.IsVarArg;
1061
1062  // XCore target does not yet support tail call optimization.
1063  isTailCall = false;
1064
1065  // For now, only CallingConv::C implemented
1066  switch (CallConv)
1067  {
1068    default:
1069      llvm_unreachable("Unsupported calling convention");
1070    case CallingConv::Fast:
1071    case CallingConv::C:
1072      return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1073                            Outs, OutVals, Ins, dl, DAG, InVals);
1074  }
1075}
1076
1077/// LowerCallResult - Lower the result values of a call into the
1078/// appropriate copies out of appropriate physical registers / memory locations.
1079static SDValue
1080LowerCallResult(SDValue Chain, SDValue InFlag,
1081                const SmallVectorImpl<CCValAssign> &RVLocs,
1082                SDLoc dl, SelectionDAG &DAG,
1083                SmallVectorImpl<SDValue> &InVals) {
1084  SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1085  // Copy results out of physical registers.
1086  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1087    const CCValAssign &VA = RVLocs[i];
1088    if (VA.isRegLoc()) {
1089      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1090                                 InFlag).getValue(1);
1091      InFlag = Chain.getValue(2);
1092      InVals.push_back(Chain.getValue(0));
1093    } else {
1094      assert(VA.isMemLoc());
1095      ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1096                                             InVals.size()));
1097      // Reserve space for this result.
1098      InVals.push_back(SDValue());
1099    }
1100  }
1101
1102  // Copy results out of memory.
1103  SmallVector<SDValue, 4> MemOpChains;
1104  for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1105    int offset = ResultMemLocs[i].first;
1106    unsigned index = ResultMemLocs[i].second;
1107    SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1108    SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, MVT::i32) };
1109    SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1110    InVals[index] = load;
1111    MemOpChains.push_back(load.getValue(1));
1112  }
1113
1114  // Transform all loads nodes into one single node because
1115  // all load nodes are independent of each other.
1116  if (!MemOpChains.empty())
1117    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1118
1119  return Chain;
1120}
1121
1122/// LowerCCCCallTo - functions arguments are copied from virtual
1123/// regs to (physical regs)/(stack frame), CALLSEQ_START and
1124/// CALLSEQ_END are emitted.
1125/// TODO: isTailCall, sret.
1126SDValue
1127XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
1128                                    CallingConv::ID CallConv, bool isVarArg,
1129                                    bool isTailCall,
1130                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1131                                    const SmallVectorImpl<SDValue> &OutVals,
1132                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1133                                    SDLoc dl, SelectionDAG &DAG,
1134                                    SmallVectorImpl<SDValue> &InVals) const {
1135
1136  // Analyze operands of the call, assigning locations to each operand.
1137  SmallVector<CCValAssign, 16> ArgLocs;
1138  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1139                 getTargetMachine(), ArgLocs, *DAG.getContext());
1140
1141  // The ABI dictates there should be one stack slot available to the callee
1142  // on function entry (for saving lr).
1143  CCInfo.AllocateStack(4, 4);
1144
1145  CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1146
1147  SmallVector<CCValAssign, 16> RVLocs;
1148  // Analyze return values to determine the number of bytes of stack required.
1149  CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1150                    getTargetMachine(), RVLocs, *DAG.getContext());
1151  RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
1152  RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1153
1154  // Get a count of how many bytes are to be pushed on the stack.
1155  unsigned NumBytes = RetCCInfo.getNextStackOffset();
1156
1157  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes,
1158                                 getPointerTy(), true), dl);
1159
1160  SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1161  SmallVector<SDValue, 12> MemOpChains;
1162
1163  // Walk the register/memloc assignments, inserting copies/loads.
1164  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1165    CCValAssign &VA = ArgLocs[i];
1166    SDValue Arg = OutVals[i];
1167
1168    // Promote the value if needed.
1169    switch (VA.getLocInfo()) {
1170      default: llvm_unreachable("Unknown loc info!");
1171      case CCValAssign::Full: break;
1172      case CCValAssign::SExt:
1173        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1174        break;
1175      case CCValAssign::ZExt:
1176        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1177        break;
1178      case CCValAssign::AExt:
1179        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1180        break;
1181    }
1182
1183    // Arguments that can be passed on register must be kept at
1184    // RegsToPass vector
1185    if (VA.isRegLoc()) {
1186      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1187    } else {
1188      assert(VA.isMemLoc());
1189
1190      int Offset = VA.getLocMemOffset();
1191
1192      MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1193                                        Chain, Arg,
1194                                        DAG.getConstant(Offset/4, MVT::i32)));
1195    }
1196  }
1197
1198  // Transform all store nodes into one single node because
1199  // all store nodes are independent of each other.
1200  if (!MemOpChains.empty())
1201    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1202
1203  // Build a sequence of copy-to-reg nodes chained together with token
1204  // chain and flag operands which copy the outgoing args into registers.
1205  // The InFlag in necessary since all emitted instructions must be
1206  // stuck together.
1207  SDValue InFlag;
1208  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1209    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1210                             RegsToPass[i].second, InFlag);
1211    InFlag = Chain.getValue(1);
1212  }
1213
1214  // If the callee is a GlobalAddress node (quite common, every direct call is)
1215  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1216  // Likewise ExternalSymbol -> TargetExternalSymbol.
1217  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1218    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1219  else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1220    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1221
1222  // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1223  //             = Chain, Callee, Reg#1, Reg#2, ...
1224  //
1225  // Returns a chain & a flag for retval copy to use.
1226  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1227  SmallVector<SDValue, 8> Ops;
1228  Ops.push_back(Chain);
1229  Ops.push_back(Callee);
1230
1231  // Add argument registers to the end of the list so that they are
1232  // known live into the call.
1233  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1234    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1235                                  RegsToPass[i].second.getValueType()));
1236
1237  if (InFlag.getNode())
1238    Ops.push_back(InFlag);
1239
1240  Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1241  InFlag = Chain.getValue(1);
1242
1243  // Create the CALLSEQ_END node.
1244  Chain = DAG.getCALLSEQ_END(Chain,
1245                             DAG.getConstant(NumBytes, getPointerTy(), true),
1246                             DAG.getConstant(0, getPointerTy(), true),
1247                             InFlag, dl);
1248  InFlag = Chain.getValue(1);
1249
1250  // Handle result values, copying them out of physregs into vregs that we
1251  // return.
1252  return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1253}
1254
1255//===----------------------------------------------------------------------===//
1256//             Formal Arguments Calling Convention Implementation
1257//===----------------------------------------------------------------------===//
1258
1259namespace {
1260  struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1261}
1262
1263/// XCore formal arguments implementation
1264SDValue
1265XCoreTargetLowering::LowerFormalArguments(SDValue Chain,
1266                                          CallingConv::ID CallConv,
1267                                          bool isVarArg,
1268                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1269                                          SDLoc dl,
1270                                          SelectionDAG &DAG,
1271                                          SmallVectorImpl<SDValue> &InVals)
1272                                            const {
1273  switch (CallConv)
1274  {
1275    default:
1276      llvm_unreachable("Unsupported calling convention");
1277    case CallingConv::C:
1278    case CallingConv::Fast:
1279      return LowerCCCArguments(Chain, CallConv, isVarArg,
1280                               Ins, dl, DAG, InVals);
1281  }
1282}
1283
1284/// LowerCCCArguments - transform physical registers into
1285/// virtual registers and generate load operations for
1286/// arguments places on the stack.
1287/// TODO: sret
1288SDValue
1289XCoreTargetLowering::LowerCCCArguments(SDValue Chain,
1290                                       CallingConv::ID CallConv,
1291                                       bool isVarArg,
1292                                       const SmallVectorImpl<ISD::InputArg>
1293                                         &Ins,
1294                                       SDLoc dl,
1295                                       SelectionDAG &DAG,
1296                                       SmallVectorImpl<SDValue> &InVals) const {
1297  MachineFunction &MF = DAG.getMachineFunction();
1298  MachineFrameInfo *MFI = MF.getFrameInfo();
1299  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1300  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1301
1302  // Assign locations to all of the incoming arguments.
1303  SmallVector<CCValAssign, 16> ArgLocs;
1304  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1305                 getTargetMachine(), ArgLocs, *DAG.getContext());
1306
1307  CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1308
1309  unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1310
1311  unsigned LRSaveSize = StackSlotSize;
1312
1313  if (!isVarArg)
1314    XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1315
1316  // All getCopyFromReg ops must precede any getMemcpys to prevent the
1317  // scheduler clobbering a register before it has been copied.
1318  // The stages are:
1319  // 1. CopyFromReg (and load) arg & vararg registers.
1320  // 2. Chain CopyFromReg nodes into a TokenFactor.
1321  // 3. Memcpy 'byVal' args & push final InVals.
1322  // 4. Chain mem ops nodes into a TokenFactor.
1323  SmallVector<SDValue, 4> CFRegNode;
1324  SmallVector<ArgDataPair, 4> ArgData;
1325  SmallVector<SDValue, 4> MemOps;
1326
1327  // 1a. CopyFromReg (and load) arg registers.
1328  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1329
1330    CCValAssign &VA = ArgLocs[i];
1331    SDValue ArgIn;
1332
1333    if (VA.isRegLoc()) {
1334      // Arguments passed in registers
1335      EVT RegVT = VA.getLocVT();
1336      switch (RegVT.getSimpleVT().SimpleTy) {
1337      default:
1338        {
1339#ifndef NDEBUG
1340          errs() << "LowerFormalArguments Unhandled argument type: "
1341                 << RegVT.getSimpleVT().SimpleTy << "\n";
1342#endif
1343          llvm_unreachable(nullptr);
1344        }
1345      case MVT::i32:
1346        unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1347        RegInfo.addLiveIn(VA.getLocReg(), VReg);
1348        ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1349        CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1350      }
1351    } else {
1352      // sanity check
1353      assert(VA.isMemLoc());
1354      // Load the argument to a virtual register
1355      unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1356      if (ObjSize > StackSlotSize) {
1357        errs() << "LowerFormalArguments Unhandled argument type: "
1358               << EVT(VA.getLocVT()).getEVTString()
1359               << "\n";
1360      }
1361      // Create the frame index object for this incoming parameter...
1362      int FI = MFI->CreateFixedObject(ObjSize,
1363                                      LRSaveSize + VA.getLocMemOffset(),
1364                                      true);
1365
1366      // Create the SelectionDAG nodes corresponding to a load
1367      //from this parameter
1368      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1369      ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1370                          MachinePointerInfo::getFixedStack(FI),
1371                          false, false, false, 0);
1372    }
1373    const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1374    ArgData.push_back(ADP);
1375  }
1376
1377  // 1b. CopyFromReg vararg registers.
1378  if (isVarArg) {
1379    // Argument registers
1380    static const MCPhysReg ArgRegs[] = {
1381      XCore::R0, XCore::R1, XCore::R2, XCore::R3
1382    };
1383    XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1384    unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs,
1385                                                     array_lengthof(ArgRegs));
1386    if (FirstVAReg < array_lengthof(ArgRegs)) {
1387      int offset = 0;
1388      // Save remaining registers, storing higher register numbers at a higher
1389      // address
1390      for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1391        // Create a stack slot
1392        int FI = MFI->CreateFixedObject(4, offset, true);
1393        if (i == (int)FirstVAReg) {
1394          XFI->setVarArgsFrameIndex(FI);
1395        }
1396        offset -= StackSlotSize;
1397        SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1398        // Move argument from phys reg -> virt reg
1399        unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1400        RegInfo.addLiveIn(ArgRegs[i], VReg);
1401        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1402        CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1403        // Move argument from virt reg -> stack
1404        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1405                                     MachinePointerInfo(), false, false, 0);
1406        MemOps.push_back(Store);
1407      }
1408    } else {
1409      // This will point to the next argument passed via stack.
1410      XFI->setVarArgsFrameIndex(
1411        MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1412                               true));
1413    }
1414  }
1415
1416  // 2. chain CopyFromReg nodes into a TokenFactor.
1417  if (!CFRegNode.empty())
1418    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1419
1420  // 3. Memcpy 'byVal' args & push final InVals.
1421  // Aggregates passed "byVal" need to be copied by the callee.
1422  // The callee will use a pointer to this copy, rather than the original
1423  // pointer.
1424  for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1425                                                    ArgDE = ArgData.end();
1426       ArgDI != ArgDE; ++ArgDI) {
1427    if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1428      unsigned Size = ArgDI->Flags.getByValSize();
1429      unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
1430      // Create a new object on the stack and copy the pointee into it.
1431      int FI = MFI->CreateStackObject(Size, Align, false);
1432      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1433      InVals.push_back(FIN);
1434      MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
1435                                     DAG.getConstant(Size, MVT::i32),
1436                                     Align, false, false,
1437                                     MachinePointerInfo(),
1438                                     MachinePointerInfo()));
1439    } else {
1440      InVals.push_back(ArgDI->SDV);
1441    }
1442  }
1443
1444  // 4, chain mem ops nodes into a TokenFactor.
1445  if (!MemOps.empty()) {
1446    MemOps.push_back(Chain);
1447    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1448  }
1449
1450  return Chain;
1451}
1452
1453//===----------------------------------------------------------------------===//
1454//               Return Value Calling Convention Implementation
1455//===----------------------------------------------------------------------===//
1456
1457bool XCoreTargetLowering::
1458CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1459               bool isVarArg,
1460               const SmallVectorImpl<ISD::OutputArg> &Outs,
1461               LLVMContext &Context) const {
1462  SmallVector<CCValAssign, 16> RVLocs;
1463  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
1464  if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1465    return false;
1466  if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1467    return false;
1468  return true;
1469}
1470
1471SDValue
1472XCoreTargetLowering::LowerReturn(SDValue Chain,
1473                                 CallingConv::ID CallConv, bool isVarArg,
1474                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
1475                                 const SmallVectorImpl<SDValue> &OutVals,
1476                                 SDLoc dl, SelectionDAG &DAG) const {
1477
1478  XCoreFunctionInfo *XFI =
1479    DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1480  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1481
1482  // CCValAssign - represent the assignment of
1483  // the return value to a location
1484  SmallVector<CCValAssign, 16> RVLocs;
1485
1486  // CCState - Info about the registers and stack slot.
1487  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1488                 getTargetMachine(), RVLocs, *DAG.getContext());
1489
1490  // Analyze return values.
1491  if (!isVarArg)
1492    CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
1493
1494  CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1495
1496  SDValue Flag;
1497  SmallVector<SDValue, 4> RetOps(1, Chain);
1498
1499  // Return on XCore is always a "retsp 0"
1500  RetOps.push_back(DAG.getConstant(0, MVT::i32));
1501
1502  SmallVector<SDValue, 4> MemOpChains;
1503  // Handle return values that must be copied to memory.
1504  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1505    CCValAssign &VA = RVLocs[i];
1506    if (VA.isRegLoc())
1507      continue;
1508    assert(VA.isMemLoc());
1509    if (isVarArg) {
1510      report_fatal_error("Can't return value from vararg function in memory");
1511    }
1512
1513    int Offset = VA.getLocMemOffset();
1514    unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1515    // Create the frame index object for the memory location.
1516    int FI = MFI->CreateFixedObject(ObjSize, Offset, false);
1517
1518    // Create a SelectionDAG node corresponding to a store
1519    // to this memory location.
1520    SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1521    MemOpChains.push_back(DAG.getStore(Chain, dl, OutVals[i], FIN,
1522                          MachinePointerInfo::getFixedStack(FI), false, false,
1523                          0));
1524  }
1525
1526  // Transform all store nodes into one single node because
1527  // all stores are independent of each other.
1528  if (!MemOpChains.empty())
1529    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1530
1531  // Now handle return values copied to registers.
1532  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1533    CCValAssign &VA = RVLocs[i];
1534    if (!VA.isRegLoc())
1535      continue;
1536    // Copy the result values into the output registers.
1537    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1538
1539    // guarantee that all emitted copies are
1540    // stuck together, avoiding something bad
1541    Flag = Chain.getValue(1);
1542    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1543  }
1544
1545  RetOps[0] = Chain;  // Update chain.
1546
1547  // Add the flag if we have it.
1548  if (Flag.getNode())
1549    RetOps.push_back(Flag);
1550
1551  return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1552}
1553
1554//===----------------------------------------------------------------------===//
1555//  Other Lowering Code
1556//===----------------------------------------------------------------------===//
1557
1558MachineBasicBlock *
1559XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1560                                                 MachineBasicBlock *BB) const {
1561  const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
1562  DebugLoc dl = MI->getDebugLoc();
1563  assert((MI->getOpcode() == XCore::SELECT_CC) &&
1564         "Unexpected instr type to insert");
1565
1566  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1567  // control-flow pattern.  The incoming instruction knows the destination vreg
1568  // to set, the condition code register to branch on, the true/false values to
1569  // select between, and a branch opcode to use.
1570  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1571  MachineFunction::iterator It = BB;
1572  ++It;
1573
1574  //  thisMBB:
1575  //  ...
1576  //   TrueVal = ...
1577  //   cmpTY ccX, r1, r2
1578  //   bCC copy1MBB
1579  //   fallthrough --> copy0MBB
1580  MachineBasicBlock *thisMBB = BB;
1581  MachineFunction *F = BB->getParent();
1582  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1583  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1584  F->insert(It, copy0MBB);
1585  F->insert(It, sinkMBB);
1586
1587  // Transfer the remainder of BB and its successor edges to sinkMBB.
1588  sinkMBB->splice(sinkMBB->begin(), BB,
1589                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1590  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1591
1592  // Next, add the true and fallthrough blocks as its successors.
1593  BB->addSuccessor(copy0MBB);
1594  BB->addSuccessor(sinkMBB);
1595
1596  BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1597    .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
1598
1599  //  copy0MBB:
1600  //   %FalseValue = ...
1601  //   # fallthrough to sinkMBB
1602  BB = copy0MBB;
1603
1604  // Update machine-CFG edges
1605  BB->addSuccessor(sinkMBB);
1606
1607  //  sinkMBB:
1608  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1609  //  ...
1610  BB = sinkMBB;
1611  BuildMI(*BB, BB->begin(), dl,
1612          TII.get(XCore::PHI), MI->getOperand(0).getReg())
1613    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
1614    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
1615
1616  MI->eraseFromParent();   // The pseudo instruction is gone now.
1617  return BB;
1618}
1619
1620//===----------------------------------------------------------------------===//
1621// Target Optimization Hooks
1622//===----------------------------------------------------------------------===//
1623
1624SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1625                                             DAGCombinerInfo &DCI) const {
1626  SelectionDAG &DAG = DCI.DAG;
1627  SDLoc dl(N);
1628  switch (N->getOpcode()) {
1629  default: break;
1630  case ISD::INTRINSIC_VOID:
1631    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1632    case Intrinsic::xcore_outt:
1633    case Intrinsic::xcore_outct:
1634    case Intrinsic::xcore_chkct: {
1635      SDValue OutVal = N->getOperand(3);
1636      // These instructions ignore the high bits.
1637      if (OutVal.hasOneUse()) {
1638        unsigned BitWidth = OutVal.getValueSizeInBits();
1639        APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1640        APInt KnownZero, KnownOne;
1641        TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1642                                              !DCI.isBeforeLegalizeOps());
1643        const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1644        if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) ||
1645            TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne,
1646                                     TLO))
1647          DCI.CommitTargetLoweringOpt(TLO);
1648      }
1649      break;
1650    }
1651    case Intrinsic::xcore_setpt: {
1652      SDValue Time = N->getOperand(3);
1653      // This instruction ignores the high bits.
1654      if (Time.hasOneUse()) {
1655        unsigned BitWidth = Time.getValueSizeInBits();
1656        APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1657        APInt KnownZero, KnownOne;
1658        TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1659                                              !DCI.isBeforeLegalizeOps());
1660        const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1661        if (TLO.ShrinkDemandedConstant(Time, DemandedMask) ||
1662            TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne,
1663                                     TLO))
1664          DCI.CommitTargetLoweringOpt(TLO);
1665      }
1666      break;
1667    }
1668    }
1669    break;
1670  case XCoreISD::LADD: {
1671    SDValue N0 = N->getOperand(0);
1672    SDValue N1 = N->getOperand(1);
1673    SDValue N2 = N->getOperand(2);
1674    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1675    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1676    EVT VT = N0.getValueType();
1677
1678    // canonicalize constant to RHS
1679    if (N0C && !N1C)
1680      return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1681
1682    // fold (ladd 0, 0, x) -> 0, x & 1
1683    if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1684      SDValue Carry = DAG.getConstant(0, VT);
1685      SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1686                                   DAG.getConstant(1, VT));
1687      SDValue Ops[] = { Result, Carry };
1688      return DAG.getMergeValues(Ops, dl);
1689    }
1690
1691    // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1692    // low bit set
1693    if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1694      APInt KnownZero, KnownOne;
1695      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1696                                         VT.getSizeInBits() - 1);
1697      DAG.computeKnownBits(N2, KnownZero, KnownOne);
1698      if ((KnownZero & Mask) == Mask) {
1699        SDValue Carry = DAG.getConstant(0, VT);
1700        SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1701        SDValue Ops[] = { Result, Carry };
1702        return DAG.getMergeValues(Ops, dl);
1703      }
1704    }
1705  }
1706  break;
1707  case XCoreISD::LSUB: {
1708    SDValue N0 = N->getOperand(0);
1709    SDValue N1 = N->getOperand(1);
1710    SDValue N2 = N->getOperand(2);
1711    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1712    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1713    EVT VT = N0.getValueType();
1714
1715    // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1716    if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1717      APInt KnownZero, KnownOne;
1718      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1719                                         VT.getSizeInBits() - 1);
1720      DAG.computeKnownBits(N2, KnownZero, KnownOne);
1721      if ((KnownZero & Mask) == Mask) {
1722        SDValue Borrow = N2;
1723        SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1724                                     DAG.getConstant(0, VT), N2);
1725        SDValue Ops[] = { Result, Borrow };
1726        return DAG.getMergeValues(Ops, dl);
1727      }
1728    }
1729
1730    // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1731    // low bit set
1732    if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1733      APInt KnownZero, KnownOne;
1734      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1735                                         VT.getSizeInBits() - 1);
1736      DAG.computeKnownBits(N2, KnownZero, KnownOne);
1737      if ((KnownZero & Mask) == Mask) {
1738        SDValue Borrow = DAG.getConstant(0, VT);
1739        SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1740        SDValue Ops[] = { Result, Borrow };
1741        return DAG.getMergeValues(Ops, dl);
1742      }
1743    }
1744  }
1745  break;
1746  case XCoreISD::LMUL: {
1747    SDValue N0 = N->getOperand(0);
1748    SDValue N1 = N->getOperand(1);
1749    SDValue N2 = N->getOperand(2);
1750    SDValue N3 = N->getOperand(3);
1751    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1752    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1753    EVT VT = N0.getValueType();
1754    // Canonicalize multiplicative constant to RHS. If both multiplicative
1755    // operands are constant canonicalize smallest to RHS.
1756    if ((N0C && !N1C) ||
1757        (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1758      return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1759                         N1, N0, N2, N3);
1760
1761    // lmul(x, 0, a, b)
1762    if (N1C && N1C->isNullValue()) {
1763      // If the high result is unused fold to add(a, b)
1764      if (N->hasNUsesOfValue(0, 0)) {
1765        SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1766        SDValue Ops[] = { Lo, Lo };
1767        return DAG.getMergeValues(Ops, dl);
1768      }
1769      // Otherwise fold to ladd(a, b, 0)
1770      SDValue Result =
1771        DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1772      SDValue Carry(Result.getNode(), 1);
1773      SDValue Ops[] = { Carry, Result };
1774      return DAG.getMergeValues(Ops, dl);
1775    }
1776  }
1777  break;
1778  case ISD::ADD: {
1779    // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1780    // lmul(x, y, a, b). The high result of lmul will be ignored.
1781    // This is only profitable if the intermediate results are unused
1782    // elsewhere.
1783    SDValue Mul0, Mul1, Addend0, Addend1;
1784    if (N->getValueType(0) == MVT::i32 &&
1785        isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1786      SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1787                                    DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1788                                    Mul1, Addend0, Addend1);
1789      SDValue Result(Ignored.getNode(), 1);
1790      return Result;
1791    }
1792    APInt HighMask = APInt::getHighBitsSet(64, 32);
1793    // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1794    // lmul(x, y, a, b) if all operands are zero-extended. We do this
1795    // before type legalization as it is messy to match the operands after
1796    // that.
1797    if (N->getValueType(0) == MVT::i64 &&
1798        isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1799        DAG.MaskedValueIsZero(Mul0, HighMask) &&
1800        DAG.MaskedValueIsZero(Mul1, HighMask) &&
1801        DAG.MaskedValueIsZero(Addend0, HighMask) &&
1802        DAG.MaskedValueIsZero(Addend1, HighMask)) {
1803      SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1804                                  Mul0, DAG.getConstant(0, MVT::i32));
1805      SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1806                                  Mul1, DAG.getConstant(0, MVT::i32));
1807      SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1808                                     Addend0, DAG.getConstant(0, MVT::i32));
1809      SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1810                                     Addend1, DAG.getConstant(0, MVT::i32));
1811      SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1812                               DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1813                               Addend0L, Addend1L);
1814      SDValue Lo(Hi.getNode(), 1);
1815      return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1816    }
1817  }
1818  break;
1819  case ISD::STORE: {
1820    // Replace unaligned store of unaligned load with memmove.
1821    StoreSDNode *ST  = cast<StoreSDNode>(N);
1822    if (!DCI.isBeforeLegalize() ||
1823        allowsUnalignedMemoryAccesses(ST->getMemoryVT()) ||
1824        ST->isVolatile() || ST->isIndexed()) {
1825      break;
1826    }
1827    SDValue Chain = ST->getChain();
1828
1829    unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1830    if (StoreBits % 8) {
1831      break;
1832    }
1833    unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(
1834        ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
1835    unsigned Alignment = ST->getAlignment();
1836    if (Alignment >= ABIAlignment) {
1837      break;
1838    }
1839
1840    if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1841      if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1842        LD->getAlignment() == Alignment &&
1843        !LD->isVolatile() && !LD->isIndexed() &&
1844        Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1845        return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
1846                              LD->getBasePtr(),
1847                              DAG.getConstant(StoreBits/8, MVT::i32),
1848                              Alignment, false, ST->getPointerInfo(),
1849                              LD->getPointerInfo());
1850      }
1851    }
1852    break;
1853  }
1854  }
1855  return SDValue();
1856}
1857
1858void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1859                                                        APInt &KnownZero,
1860                                                        APInt &KnownOne,
1861                                                        const SelectionDAG &DAG,
1862                                                        unsigned Depth) const {
1863  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
1864  switch (Op.getOpcode()) {
1865  default: break;
1866  case XCoreISD::LADD:
1867  case XCoreISD::LSUB:
1868    if (Op.getResNo() == 1) {
1869      // Top bits of carry / borrow are clear.
1870      KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1871                                        KnownZero.getBitWidth() - 1);
1872    }
1873    break;
1874  case ISD::INTRINSIC_W_CHAIN:
1875    {
1876      unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1877      switch (IntNo) {
1878      case Intrinsic::xcore_getts:
1879        // High bits are known to be zero.
1880        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1881                                          KnownZero.getBitWidth() - 16);
1882        break;
1883      case Intrinsic::xcore_int:
1884      case Intrinsic::xcore_inct:
1885        // High bits are known to be zero.
1886        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1887                                          KnownZero.getBitWidth() - 8);
1888        break;
1889      case Intrinsic::xcore_testct:
1890        // Result is either 0 or 1.
1891        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1892                                          KnownZero.getBitWidth() - 1);
1893        break;
1894      case Intrinsic::xcore_testwct:
1895        // Result is in the range 0 - 4.
1896        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1897                                          KnownZero.getBitWidth() - 3);
1898        break;
1899      }
1900    }
1901    break;
1902  }
1903}
1904
1905//===----------------------------------------------------------------------===//
1906//  Addressing mode description hooks
1907//===----------------------------------------------------------------------===//
1908
1909static inline bool isImmUs(int64_t val)
1910{
1911  return (val >= 0 && val <= 11);
1912}
1913
1914static inline bool isImmUs2(int64_t val)
1915{
1916  return (val%2 == 0 && isImmUs(val/2));
1917}
1918
1919static inline bool isImmUs4(int64_t val)
1920{
1921  return (val%4 == 0 && isImmUs(val/4));
1922}
1923
1924/// isLegalAddressingMode - Return true if the addressing mode represented
1925/// by AM is legal for this target, for a load/store of the specified type.
1926bool
1927XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM,
1928                                              Type *Ty) const {
1929  if (Ty->getTypeID() == Type::VoidTyID)
1930    return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1931
1932  const DataLayout *TD = TM.getDataLayout();
1933  unsigned Size = TD->getTypeAllocSize(Ty);
1934  if (AM.BaseGV) {
1935    return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1936                 AM.BaseOffs%4 == 0;
1937  }
1938
1939  switch (Size) {
1940  case 1:
1941    // reg + imm
1942    if (AM.Scale == 0) {
1943      return isImmUs(AM.BaseOffs);
1944    }
1945    // reg + reg
1946    return AM.Scale == 1 && AM.BaseOffs == 0;
1947  case 2:
1948  case 3:
1949    // reg + imm
1950    if (AM.Scale == 0) {
1951      return isImmUs2(AM.BaseOffs);
1952    }
1953    // reg + reg<<1
1954    return AM.Scale == 2 && AM.BaseOffs == 0;
1955  default:
1956    // reg + imm
1957    if (AM.Scale == 0) {
1958      return isImmUs4(AM.BaseOffs);
1959    }
1960    // reg + reg<<2
1961    return AM.Scale == 4 && AM.BaseOffs == 0;
1962  }
1963}
1964
1965//===----------------------------------------------------------------------===//
1966//                           XCore Inline Assembly Support
1967//===----------------------------------------------------------------------===//
1968
1969std::pair<unsigned, const TargetRegisterClass*>
1970XCoreTargetLowering::
1971getRegForInlineAsmConstraint(const std::string &Constraint,
1972                             MVT VT) const {
1973  if (Constraint.size() == 1) {
1974    switch (Constraint[0]) {
1975    default : break;
1976    case 'r':
1977      return std::make_pair(0U, &XCore::GRRegsRegClass);
1978    }
1979  }
1980  // Use the default implementation in TargetLowering to convert the register
1981  // constraint into a member of a register class.
1982  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
1983}
1984