ArgumentPromotion.cpp revision 089efffd7d1ca0d10522ace38d36e0a67f4fac2d
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If it can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then it can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// by default it refuses to scalarize aggregates which would require passing in more than
21// three operands to the function, because passing thousands of operands for a
22// large array or structure is unprofitable! This limit is can be configured or
23// disabled, however.
24//
25// Note that this transformation could also be done for arguments that are only
26// stored to (returning the value instead), but does not currently.  This case
27// would be best handled when and if LLVM begins supporting multiple return
28// values from functions.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "argpromotion"
33#include "llvm/Transforms/IPO.h"
34#include "llvm/Constants.h"
35#include "llvm/DerivedTypes.h"
36#include "llvm/Module.h"
37#include "llvm/CallGraphSCCPass.h"
38#include "llvm/Instructions.h"
39#include "llvm/Analysis/AliasAnalysis.h"
40#include "llvm/Analysis/CallGraph.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/CFG.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/ADT/DepthFirstIterator.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/ADT/StringExtras.h"
48#include "llvm/Support/Compiler.h"
49#include <set>
50using namespace llvm;
51
52STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
53STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
54STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
55STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
56
57namespace {
58  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
59  ///
60  struct VISIBILITY_HIDDEN ArgPromotion : public CallGraphSCCPass {
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
62      AU.addRequired<AliasAnalysis>();
63      AU.addRequired<TargetData>();
64      CallGraphSCCPass::getAnalysisUsage(AU);
65    }
66
67    virtual bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
68    static char ID; // Pass identification, replacement for typeid
69    ArgPromotion(unsigned maxElements = 3) : CallGraphSCCPass((intptr_t)&ID), maxElements(maxElements) {}
70
71  private:
72    bool PromoteArguments(CallGraphNode *CGN);
73    bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
74    Function *DoPromotion(Function *F,
75                          SmallPtrSet<Argument*, 8> &ArgsToPromote,
76                          SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
77	/// The maximum number of elements to expand, or 0 for unlimited.
78	unsigned maxElements;
79  };
80}
81
82char ArgPromotion::ID = 0;
83static RegisterPass<ArgPromotion>
84X("argpromotion", "Promote 'by reference' arguments to scalars");
85
86Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
87  return new ArgPromotion(maxElements);
88}
89
90bool ArgPromotion::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
91  bool Changed = false, LocalChange;
92
93  do {  // Iterate until we stop promoting from this SCC.
94    LocalChange = false;
95    // Attempt to promote arguments from all functions in this SCC.
96    for (unsigned i = 0, e = SCC.size(); i != e; ++i)
97      LocalChange |= PromoteArguments(SCC[i]);
98    Changed |= LocalChange;               // Remember that we changed something.
99  } while (LocalChange);
100
101  return Changed;
102}
103
104/// PromoteArguments - This method checks the specified function to see if there
105/// are any promotable arguments and if it is safe to promote the function (for
106/// example, all callers are direct).  If safe to promote some arguments, it
107/// calls the DoPromotion method.
108///
109bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
110  Function *F = CGN->getFunction();
111
112  // Make sure that it is local to this module.
113  if (!F || !F->hasInternalLinkage()) return false;
114
115  // First check: see if there are any pointer arguments!  If not, quick exit.
116  SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
117  unsigned ArgNo = 0;
118  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
119       I != E; ++I, ++ArgNo)
120    if (isa<PointerType>(I->getType()))
121      PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
122  if (PointerArgs.empty()) return false;
123
124  // Second check: make sure that all callers are direct callers.  We can't
125  // transform functions that have indirect callers.
126  for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
127       UI != E; ++UI) {
128    CallSite CS = CallSite::get(*UI);
129    if (!CS.getInstruction())       // "Taking the address" of the function
130      return false;
131
132    // Ensure that this call site is CALLING the function, not passing it as
133    // an argument.
134    if (UI.getOperandNo() != 0)
135      return false;
136  }
137
138  // Check to see which arguments are promotable.  If an argument is promotable,
139  // add it to ArgsToPromote.
140  SmallPtrSet<Argument*, 8> ArgsToPromote;
141  SmallPtrSet<Argument*, 8> ByValArgsToTransform;
142  for (unsigned i = 0; i != PointerArgs.size(); ++i) {
143    bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, ParamAttr::ByVal);
144
145    // If this is a byval argument, and if the aggregate type is small, just
146    // pass the elements, which is always safe.
147    Argument *PtrArg = PointerArgs[i].first;
148    if (isByVal) {
149      const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
150      if (const StructType *STy = dyn_cast<StructType>(AgTy))
151        if (maxElements > 0 && STy->getNumElements() > maxElements) {
152          DOUT << "argpromotion disable promoting argument '"
153               << PtrArg->getName() << "' because it would require adding more "
154               << "than " << maxElements << " arguments to the function.\n";
155        } else {
156          // If all the elements are first class types, we can promote it.
157          bool AllSimple = true;
158          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
159            if (!STy->getElementType(i)->isFirstClassType()) {
160              AllSimple = false;
161              break;
162            }
163
164          // Safe to transform, don't even bother trying to "promote" it.
165          // Passing the elements as a scalar will allow scalarrepl to hack on
166          // the new alloca we introduce.
167          if (AllSimple) {
168            ByValArgsToTransform.insert(PtrArg);
169            continue;
170          }
171        }
172    }
173
174    // Otherwise, see if we can promote the pointer to its value.
175    if (isSafeToPromoteArgument(PtrArg, isByVal))
176      ArgsToPromote.insert(PtrArg);
177  }
178
179  // No promotable pointer arguments.
180  if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) return false;
181
182  Function *NewF = DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
183
184  // Update the call graph to know that the function has been transformed.
185  getAnalysis<CallGraph>().changeFunction(F, NewF);
186  return true;
187}
188
189/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
190/// to load.
191static bool IsAlwaysValidPointer(Value *V) {
192  if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
193  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
194    return IsAlwaysValidPointer(GEP->getOperand(0));
195  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
196    if (CE->getOpcode() == Instruction::GetElementPtr)
197      return IsAlwaysValidPointer(CE->getOperand(0));
198
199  return false;
200}
201
202/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
203/// all callees pass in a valid pointer for the specified function argument.
204static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
205  Function *Callee = Arg->getParent();
206
207  unsigned ArgNo = std::distance(Callee->arg_begin(),
208                                 Function::arg_iterator(Arg));
209
210  // Look at all call sites of the function.  At this pointer we know we only
211  // have direct callees.
212  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
213       UI != E; ++UI) {
214    CallSite CS = CallSite::get(*UI);
215    assert(CS.getInstruction() && "Should only have direct calls!");
216
217    if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
218      return false;
219  }
220  return true;
221}
222
223
224/// isSafeToPromoteArgument - As you might guess from the name of this method,
225/// it checks to see if it is both safe and useful to promote the argument.
226/// This method limits promotion of aggregates to only promote up to three
227/// elements of the aggregate in order to avoid exploding the number of
228/// arguments passed in.
229bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
230  // We can only promote this argument if all of the uses are loads, or are GEP
231  // instructions (with constant indices) that are subsequently loaded.
232
233  // We can also only promote the load if we can guarantee that it will happen.
234  // Promoting a load causes the load to be unconditionally executed in the
235  // caller, so we can't turn a conditional load into an unconditional load in
236  // general.
237  bool SafeToUnconditionallyLoad = false;
238  if (isByVal)   // ByVal arguments are always safe to load from.
239    SafeToUnconditionallyLoad = true;
240
241  BasicBlock *EntryBlock = Arg->getParent()->begin();
242  SmallVector<LoadInst*, 16> Loads;
243  std::vector<SmallVector<ConstantInt*, 8> > GEPIndices;
244  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
245       UI != E; ++UI)
246    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
247      if (LI->isVolatile()) return false;  // Don't hack volatile loads
248      Loads.push_back(LI);
249
250      // If this load occurs in the entry block, then the pointer is
251      // unconditionally loaded.
252      SafeToUnconditionallyLoad |= LI->getParent() == EntryBlock;
253    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
254      if (GEP->use_empty()) {
255        // Dead GEP's cause trouble later.  Just remove them if we run into
256        // them.
257        getAnalysis<AliasAnalysis>().deleteValue(GEP);
258        GEP->eraseFromParent();
259        return isSafeToPromoteArgument(Arg, isByVal);
260      }
261      // Ensure that all of the indices are constants.
262      SmallVector<ConstantInt*, 8> Operands;
263      for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
264        if (ConstantInt *C = dyn_cast<ConstantInt>(GEP->getOperand(i)))
265          Operands.push_back(C);
266        else
267          return false;  // Not a constant operand GEP!
268
269      // Ensure that the only users of the GEP are load instructions.
270      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
271           UI != E; ++UI)
272        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
273          if (LI->isVolatile()) return false;  // Don't hack volatile loads
274          Loads.push_back(LI);
275
276          // If this load occurs in the entry block, then the pointer is
277          // unconditionally loaded.
278          SafeToUnconditionallyLoad |= LI->getParent() == EntryBlock;
279        } else {
280          return false;
281        }
282
283      // See if there is already a GEP with these indices.  If not, check to
284      // make sure that we aren't promoting too many elements.  If so, nothing
285      // to do.
286      if (std::find(GEPIndices.begin(), GEPIndices.end(), Operands) ==
287          GEPIndices.end()) {
288        if (maxElements > 0 && GEPIndices.size() == maxElements) {
289          DOUT << "argpromotion disable promoting argument '"
290               << Arg->getName() << "' because it would require adding more "
291               << "than " << maxElements << " arguments to the function.\n";
292          // We limit aggregate promotion to only promoting up to a fixed number
293		  // of elements of the aggregate.
294          return false;
295        }
296        GEPIndices.push_back(Operands);
297      }
298    } else {
299      return false;  // Not a load or a GEP.
300    }
301
302  if (Loads.empty()) return true;  // No users, this is a dead argument.
303
304  // If we decide that we want to promote this argument, the value is going to
305  // be unconditionally loaded in all callees.  This is only safe to do if the
306  // pointer was going to be unconditionally loaded anyway (i.e. there is a load
307  // of the pointer in the entry block of the function) or if we can prove that
308  // all pointers passed in are always to legal locations (for example, no null
309  // pointers are passed in, no pointers to free'd memory, etc).
310  if (!SafeToUnconditionallyLoad &&
311      !AllCalleesPassInValidPointerForArgument(Arg))
312    return false;   // Cannot prove that this is safe!!
313
314  // Okay, now we know that the argument is only used by load instructions and
315  // it is safe to unconditionally load the pointer.  Use alias analysis to
316  // check to see if the pointer is guaranteed to not be modified from entry of
317  // the function to each of the load instructions.
318
319  // Because there could be several/many load instructions, remember which
320  // blocks we know to be transparent to the load.
321  SmallPtrSet<BasicBlock*, 16> TranspBlocks;
322
323  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
324  TargetData &TD = getAnalysis<TargetData>();
325
326  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
327    // Check to see if the load is invalidated from the start of the block to
328    // the load itself.
329    LoadInst *Load = Loads[i];
330    BasicBlock *BB = Load->getParent();
331
332    const PointerType *LoadTy =
333      cast<PointerType>(Load->getOperand(0)->getType());
334    unsigned LoadSize = (unsigned)TD.getTypeStoreSize(LoadTy->getElementType());
335
336    if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
337      return false;  // Pointer is invalidated!
338
339    // Now check every path from the entry block to the load for transparency.
340    // To do this, we perform a depth first search on the inverse CFG from the
341    // loading block.
342    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
343      for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
344             I = idf_ext_begin(*PI, TranspBlocks),
345             E = idf_ext_end(*PI, TranspBlocks); I != E; ++I)
346        if (AA.canBasicBlockModify(**I, Arg, LoadSize))
347          return false;
348  }
349
350  // If the path from the entry of the function to each load is free of
351  // instructions that potentially invalidate the load, we can make the
352  // transformation!
353  return true;
354}
355
356namespace {
357  /// GEPIdxComparator - Provide a strong ordering for GEP indices.  All Value*
358  /// elements are instances of ConstantInt.
359  ///
360  struct GEPIdxComparator {
361    bool operator()(const std::vector<Value*> &LHS,
362                    const std::vector<Value*> &RHS) const {
363      unsigned idx = 0;
364      for (; idx < LHS.size() && idx < RHS.size(); ++idx) {
365        if (LHS[idx] != RHS[idx]) {
366          return cast<ConstantInt>(LHS[idx])->getZExtValue() <
367                 cast<ConstantInt>(RHS[idx])->getZExtValue();
368        }
369      }
370
371      // Return less than if we ran out of stuff in LHS and we didn't run out of
372      // stuff in RHS.
373      return idx == LHS.size() && idx != RHS.size();
374    }
375  };
376}
377
378
379/// DoPromotion - This method actually performs the promotion of the specified
380/// arguments, and returns the new function.  At this point, we know that it's
381/// safe to do so.
382Function *ArgPromotion::DoPromotion(Function *F,
383                                    SmallPtrSet<Argument*, 8> &ArgsToPromote,
384                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
385
386  // Start by computing a new prototype for the function, which is the same as
387  // the old function, but has modified arguments.
388  const FunctionType *FTy = F->getFunctionType();
389  std::vector<const Type*> Params;
390
391  typedef std::set<std::vector<Value*>, GEPIdxComparator> ScalarizeTable;
392
393  // ScalarizedElements - If we are promoting a pointer that has elements
394  // accessed out of it, keep track of which elements are accessed so that we
395  // can add one argument for each.
396  //
397  // Arguments that are directly loaded will have a zero element value here, to
398  // handle cases where there are both a direct load and GEP accesses.
399  //
400  std::map<Argument*, ScalarizeTable> ScalarizedElements;
401
402  // OriginalLoads - Keep track of a representative load instruction from the
403  // original function so that we can tell the alias analysis implementation
404  // what the new GEP/Load instructions we are inserting look like.
405  std::map<std::vector<Value*>, LoadInst*> OriginalLoads;
406
407  // ParamAttrs - Keep track of the parameter attributes for the arguments
408  // that we are *not* promoting. For the ones that we do promote, the parameter
409  // attributes are lost
410  SmallVector<ParamAttrsWithIndex, 8> ParamAttrsVec;
411  const PAListPtr &PAL = F->getParamAttrs();
412
413  // Add any return attributes.
414  if (ParameterAttributes attrs = PAL.getParamAttrs(0))
415    ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, attrs));
416
417  unsigned ArgIndex = 1;
418  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
419       ++I, ++ArgIndex) {
420    if (ByValArgsToTransform.count(I)) {
421      // Just add all the struct element types.
422      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
423      const StructType *STy = cast<StructType>(AgTy);
424      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
425        Params.push_back(STy->getElementType(i));
426      ++NumByValArgsPromoted;
427    } else if (!ArgsToPromote.count(I)) {
428      Params.push_back(I->getType());
429      if (ParameterAttributes attrs = PAL.getParamAttrs(ArgIndex))
430        ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Params.size(), attrs));
431    } else if (I->use_empty()) {
432      ++NumArgumentsDead;
433    } else {
434      // Okay, this is being promoted.  Check to see if there are any GEP uses
435      // of the argument.
436      ScalarizeTable &ArgIndices = ScalarizedElements[I];
437      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
438           ++UI) {
439        Instruction *User = cast<Instruction>(*UI);
440        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
441        std::vector<Value*> Indices(User->op_begin()+1, User->op_end());
442        ArgIndices.insert(Indices);
443        LoadInst *OrigLoad;
444        if (LoadInst *L = dyn_cast<LoadInst>(User))
445          OrigLoad = L;
446        else
447          OrigLoad = cast<LoadInst>(User->use_back());
448        OriginalLoads[Indices] = OrigLoad;
449      }
450
451      // Add a parameter to the function for each element passed in.
452      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
453             E = ArgIndices.end(); SI != E; ++SI)
454        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(),
455                                                           SI->begin(),
456                                                           SI->end()));
457
458      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
459        ++NumArgumentsPromoted;
460      else
461        ++NumAggregatesPromoted;
462    }
463  }
464
465  const Type *RetTy = FTy->getReturnType();
466
467  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
468  // have zero fixed arguments.
469  bool ExtraArgHack = false;
470  if (Params.empty() && FTy->isVarArg()) {
471    ExtraArgHack = true;
472    Params.push_back(Type::Int32Ty);
473  }
474
475  // Construct the new function type using the new arguments.
476  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
477
478  // Create the new function body and insert it into the module...
479  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
480  NF->setCallingConv(F->getCallingConv());
481
482  // Recompute the parameter attributes list based on the new arguments for
483  // the function.
484  NF->setParamAttrs(PAListPtr::get(ParamAttrsVec.begin(), ParamAttrsVec.end()));
485  ParamAttrsVec.clear();
486
487  if (F->hasCollector())
488    NF->setCollector(F->getCollector());
489  F->getParent()->getFunctionList().insert(F, NF);
490  NF->takeName(F);
491
492  // Get the alias analysis information that we need to update to reflect our
493  // changes.
494  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
495
496  // Loop over all of the callers of the function, transforming the call sites
497  // to pass in the loaded pointers.
498  //
499  SmallVector<Value*, 16> Args;
500  while (!F->use_empty()) {
501    CallSite CS = CallSite::get(F->use_back());
502    Instruction *Call = CS.getInstruction();
503    const PAListPtr &CallPAL = CS.getParamAttrs();
504
505    // Add any return attributes.
506    if (ParameterAttributes attrs = CallPAL.getParamAttrs(0))
507      ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, attrs));
508
509    // Loop over the operands, inserting GEP and loads in the caller as
510    // appropriate.
511    CallSite::arg_iterator AI = CS.arg_begin();
512    ArgIndex = 1;
513    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
514         I != E; ++I, ++AI, ++ArgIndex)
515      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
516        Args.push_back(*AI);          // Unmodified argument
517
518        if (ParameterAttributes Attrs = CallPAL.getParamAttrs(ArgIndex))
519          ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
520
521      } else if (ByValArgsToTransform.count(I)) {
522        // Emit a GEP and load for each element of the struct.
523        const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
524        const StructType *STy = cast<StructType>(AgTy);
525        Value *Idxs[2] = { ConstantInt::get(Type::Int32Ty, 0), 0 };
526        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
527          Idxs[1] = ConstantInt::get(Type::Int32Ty, i);
528          Value *Idx = GetElementPtrInst::Create(*AI, Idxs, Idxs+2,
529                                                 (*AI)->getName()+"."+utostr(i),
530                                                 Call);
531          // TODO: Tell AA about the new values?
532          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
533        }
534      } else if (!I->use_empty()) {
535        // Non-dead argument: insert GEPs and loads as appropriate.
536        ScalarizeTable &ArgIndices = ScalarizedElements[I];
537        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
538               E = ArgIndices.end(); SI != E; ++SI) {
539          Value *V = *AI;
540          LoadInst *OrigLoad = OriginalLoads[*SI];
541          if (!SI->empty()) {
542            V = GetElementPtrInst::Create(V, SI->begin(), SI->end(),
543                                          V->getName()+".idx", Call);
544            AA.copyValue(OrigLoad->getOperand(0), V);
545          }
546          Args.push_back(new LoadInst(V, V->getName()+".val", Call));
547          AA.copyValue(OrigLoad, Args.back());
548        }
549      }
550
551    if (ExtraArgHack)
552      Args.push_back(Constant::getNullValue(Type::Int32Ty));
553
554    // Push any varargs arguments on the list
555    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
556      Args.push_back(*AI);
557      if (ParameterAttributes Attrs = CallPAL.getParamAttrs(ArgIndex))
558        ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
559    }
560
561    Instruction *New;
562    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
563      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
564                               Args.begin(), Args.end(), "", Call);
565      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
566      cast<InvokeInst>(New)->setParamAttrs(PAListPtr::get(ParamAttrsVec.begin(),
567                                                          ParamAttrsVec.end()));
568    } else {
569      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
570      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
571      cast<CallInst>(New)->setParamAttrs(PAListPtr::get(ParamAttrsVec.begin(),
572                                                        ParamAttrsVec.end()));
573      if (cast<CallInst>(Call)->isTailCall())
574        cast<CallInst>(New)->setTailCall();
575    }
576    Args.clear();
577    ParamAttrsVec.clear();
578
579    // Update the alias analysis implementation to know that we are replacing
580    // the old call with a new one.
581    AA.replaceWithNewValue(Call, New);
582
583    if (!Call->use_empty()) {
584      Call->replaceAllUsesWith(New);
585      New->takeName(Call);
586    }
587
588    // Finally, remove the old call from the program, reducing the use-count of
589    // F.
590    Call->eraseFromParent();
591  }
592
593  // Since we have now created the new function, splice the body of the old
594  // function right into the new function, leaving the old rotting hulk of the
595  // function empty.
596  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
597
598  // Loop over the argument list, transfering uses of the old arguments over to
599  // the new arguments, also transfering over the names as well.
600  //
601  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
602       I2 = NF->arg_begin(); I != E; ++I) {
603    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
604      // If this is an unmodified argument, move the name and users over to the
605      // new version.
606      I->replaceAllUsesWith(I2);
607      I2->takeName(I);
608      AA.replaceWithNewValue(I, I2);
609      ++I2;
610      continue;
611    }
612
613    if (ByValArgsToTransform.count(I)) {
614      // In the callee, we create an alloca, and store each of the new incoming
615      // arguments into the alloca.
616      Instruction *InsertPt = NF->begin()->begin();
617
618      // Just add all the struct element types.
619      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
620      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
621      const StructType *STy = cast<StructType>(AgTy);
622      Value *Idxs[2] = { ConstantInt::get(Type::Int32Ty, 0), 0 };
623
624      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
625        Idxs[1] = ConstantInt::get(Type::Int32Ty, i);
626        Value *Idx = GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2,
627                                               TheAlloca->getName()+"."+utostr(i),
628                                               InsertPt);
629        I2->setName(I->getName()+"."+utostr(i));
630        new StoreInst(I2++, Idx, InsertPt);
631      }
632
633      // Anything that used the arg should now use the alloca.
634      I->replaceAllUsesWith(TheAlloca);
635      TheAlloca->takeName(I);
636      AA.replaceWithNewValue(I, TheAlloca);
637      continue;
638    }
639
640    if (I->use_empty()) {
641      AA.deleteValue(I);
642      continue;
643    }
644
645    // Otherwise, if we promoted this argument, then all users are load
646    // instructions, and all loads should be using the new argument that we
647    // added.
648    ScalarizeTable &ArgIndices = ScalarizedElements[I];
649
650    while (!I->use_empty()) {
651      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
652        assert(ArgIndices.begin()->empty() &&
653               "Load element should sort to front!");
654        I2->setName(I->getName()+".val");
655        LI->replaceAllUsesWith(I2);
656        AA.replaceWithNewValue(LI, I2);
657        LI->eraseFromParent();
658        DOUT << "*** Promoted load of argument '" << I->getName()
659             << "' in function '" << F->getName() << "'\n";
660      } else {
661        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
662        std::vector<Value*> Operands(GEP->op_begin()+1, GEP->op_end());
663
664        Function::arg_iterator TheArg = I2;
665        for (ScalarizeTable::iterator It = ArgIndices.begin();
666             *It != Operands; ++It, ++TheArg) {
667          assert(It != ArgIndices.end() && "GEP not handled??");
668        }
669
670        std::string NewName = I->getName();
671        for (unsigned i = 0, e = Operands.size(); i != e; ++i)
672          if (ConstantInt *CI = dyn_cast<ConstantInt>(Operands[i]))
673            NewName += "." + CI->getValue().toStringUnsigned(10);
674          else
675            NewName += ".x";
676        TheArg->setName(NewName+".val");
677
678        DOUT << "*** Promoted agg argument '" << TheArg->getName()
679             << "' of function '" << F->getName() << "'\n";
680
681        // All of the uses must be load instructions.  Replace them all with
682        // the argument specified by ArgNo.
683        while (!GEP->use_empty()) {
684          LoadInst *L = cast<LoadInst>(GEP->use_back());
685          L->replaceAllUsesWith(TheArg);
686          AA.replaceWithNewValue(L, TheArg);
687          L->eraseFromParent();
688        }
689        AA.deleteValue(GEP);
690        GEP->eraseFromParent();
691      }
692    }
693
694    // Increment I2 past all of the arguments added for this promoted pointer.
695    for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
696      ++I2;
697  }
698
699  // Notify the alias analysis implementation that we inserted a new argument.
700  if (ExtraArgHack)
701    AA.copyValue(Constant::getNullValue(Type::Int32Ty), NF->arg_begin());
702
703
704  // Tell the alias analysis that the old function is about to disappear.
705  AA.replaceWithNewValue(F, NF);
706
707  // Now that the old function is dead, delete it.
708  F->eraseFromParent();
709  return NF;
710}
711