ArgumentPromotion.cpp revision 1c8733e1fd69e634daaa7fefd0d1436b846a8eb3
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If it can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then it can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// it refuses to scalarize aggregates which would require passing in more than
21// three operands to the function, because passing thousands of operands for a
22// large array or structure is unprofitable!
23//
24// Note that this transformation could also be done for arguments that are only
25// stored to (returning the value instead), but does not currently.  This case
26// would be best handled when and if LLVM begins supporting multiple return
27// values from functions.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "argpromotion"
32#include "llvm/Transforms/IPO.h"
33#include "llvm/Constants.h"
34#include "llvm/DerivedTypes.h"
35#include "llvm/Module.h"
36#include "llvm/CallGraphSCCPass.h"
37#include "llvm/Instructions.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Analysis/CallGraph.h"
40#include "llvm/Target/TargetData.h"
41#include "llvm/Support/CallSite.h"
42#include "llvm/Support/CFG.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/ADT/DepthFirstIterator.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/Support/Compiler.h"
48#include <set>
49using namespace llvm;
50
51STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
52STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
53STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
54STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
55
56namespace {
57  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
58  ///
59  struct VISIBILITY_HIDDEN ArgPromotion : public CallGraphSCCPass {
60    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
61      AU.addRequired<AliasAnalysis>();
62      AU.addRequired<TargetData>();
63      CallGraphSCCPass::getAnalysisUsage(AU);
64    }
65
66    virtual bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
67    static char ID; // Pass identification, replacement for typeid
68    ArgPromotion() : CallGraphSCCPass((intptr_t)&ID) {}
69
70  private:
71    bool PromoteArguments(CallGraphNode *CGN);
72    bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
73    Function *DoPromotion(Function *F,
74                          SmallPtrSet<Argument*, 8> &ArgsToPromote,
75                          SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
76  };
77
78  char ArgPromotion::ID = 0;
79  RegisterPass<ArgPromotion> X("argpromotion",
80                               "Promote 'by reference' arguments to scalars");
81}
82
83Pass *llvm::createArgumentPromotionPass() {
84  return new ArgPromotion();
85}
86
87bool ArgPromotion::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
88  bool Changed = false, LocalChange;
89
90  do {  // Iterate until we stop promoting from this SCC.
91    LocalChange = false;
92    // Attempt to promote arguments from all functions in this SCC.
93    for (unsigned i = 0, e = SCC.size(); i != e; ++i)
94      LocalChange |= PromoteArguments(SCC[i]);
95    Changed |= LocalChange;               // Remember that we changed something.
96  } while (LocalChange);
97
98  return Changed;
99}
100
101/// PromoteArguments - This method checks the specified function to see if there
102/// are any promotable arguments and if it is safe to promote the function (for
103/// example, all callers are direct).  If safe to promote some arguments, it
104/// calls the DoPromotion method.
105///
106bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
107  Function *F = CGN->getFunction();
108
109  // Make sure that it is local to this module.
110  if (!F || !F->hasInternalLinkage()) return false;
111
112  // First check: see if there are any pointer arguments!  If not, quick exit.
113  SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
114  unsigned ArgNo = 0;
115  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
116       I != E; ++I, ++ArgNo)
117    if (isa<PointerType>(I->getType()))
118      PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
119  if (PointerArgs.empty()) return false;
120
121  // Second check: make sure that all callers are direct callers.  We can't
122  // transform functions that have indirect callers.
123  for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
124       UI != E; ++UI) {
125    CallSite CS = CallSite::get(*UI);
126    if (!CS.getInstruction())       // "Taking the address" of the function
127      return false;
128
129    // Ensure that this call site is CALLING the function, not passing it as
130    // an argument.
131    if (UI.getOperandNo() != 0)
132      return false;
133  }
134
135  // Check to see which arguments are promotable.  If an argument is promotable,
136  // add it to ArgsToPromote.
137  SmallPtrSet<Argument*, 8> ArgsToPromote;
138  SmallPtrSet<Argument*, 8> ByValArgsToTransform;
139  for (unsigned i = 0; i != PointerArgs.size(); ++i) {
140    bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, ParamAttr::ByVal);
141
142    // If this is a byval argument, and if the aggregate type is small, just
143    // pass the elements, which is always safe.
144    Argument *PtrArg = PointerArgs[i].first;
145    if (isByVal) {
146      const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
147      if (const StructType *STy = dyn_cast<StructType>(AgTy))
148        if (STy->getNumElements() <= 3) {
149          // If all the elements are first class types, we can promote it.
150          bool AllSimple = true;
151          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
152            if (!STy->getElementType(i)->isFirstClassType()) {
153              AllSimple = false;
154              break;
155            }
156
157          // Safe to transform, don't even bother trying to "promote" it.
158          // Passing the elements as a scalar will allow scalarrepl to hack on
159          // the new alloca we introduce.
160          if (AllSimple) {
161            ByValArgsToTransform.insert(PtrArg);
162            continue;
163          }
164        }
165    }
166
167    // Otherwise, see if we can promote the pointer to its value.
168    if (isSafeToPromoteArgument(PtrArg, isByVal))
169      ArgsToPromote.insert(PtrArg);
170  }
171
172  // No promotable pointer arguments.
173  if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) return false;
174
175  Function *NewF = DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
176
177  // Update the call graph to know that the function has been transformed.
178  getAnalysis<CallGraph>().changeFunction(F, NewF);
179  return true;
180}
181
182/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
183/// to load.
184static bool IsAlwaysValidPointer(Value *V) {
185  if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
186  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
187    return IsAlwaysValidPointer(GEP->getOperand(0));
188  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
189    if (CE->getOpcode() == Instruction::GetElementPtr)
190      return IsAlwaysValidPointer(CE->getOperand(0));
191
192  return false;
193}
194
195/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
196/// all callees pass in a valid pointer for the specified function argument.
197static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
198  Function *Callee = Arg->getParent();
199
200  unsigned ArgNo = std::distance(Callee->arg_begin(),
201                                 Function::arg_iterator(Arg));
202
203  // Look at all call sites of the function.  At this pointer we know we only
204  // have direct callees.
205  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
206       UI != E; ++UI) {
207    CallSite CS = CallSite::get(*UI);
208    assert(CS.getInstruction() && "Should only have direct calls!");
209
210    if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
211      return false;
212  }
213  return true;
214}
215
216
217/// isSafeToPromoteArgument - As you might guess from the name of this method,
218/// it checks to see if it is both safe and useful to promote the argument.
219/// This method limits promotion of aggregates to only promote up to three
220/// elements of the aggregate in order to avoid exploding the number of
221/// arguments passed in.
222bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
223  // We can only promote this argument if all of the uses are loads, or are GEP
224  // instructions (with constant indices) that are subsequently loaded.
225
226  // We can also only promote the load if we can guarantee that it will happen.
227  // Promoting a load causes the load to be unconditionally executed in the
228  // caller, so we can't turn a conditional load into an unconditional load in
229  // general.
230  bool SafeToUnconditionallyLoad = false;
231  if (isByVal)   // ByVal arguments are always safe to load from.
232    SafeToUnconditionallyLoad = true;
233
234  BasicBlock *EntryBlock = Arg->getParent()->begin();
235  SmallVector<LoadInst*, 16> Loads;
236  std::vector<SmallVector<ConstantInt*, 8> > GEPIndices;
237  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
238       UI != E; ++UI)
239    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
240      if (LI->isVolatile()) return false;  // Don't hack volatile loads
241      Loads.push_back(LI);
242
243      // If this load occurs in the entry block, then the pointer is
244      // unconditionally loaded.
245      SafeToUnconditionallyLoad |= LI->getParent() == EntryBlock;
246    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
247      if (GEP->use_empty()) {
248        // Dead GEP's cause trouble later.  Just remove them if we run into
249        // them.
250        getAnalysis<AliasAnalysis>().deleteValue(GEP);
251        GEP->eraseFromParent();
252        return isSafeToPromoteArgument(Arg, isByVal);
253      }
254      // Ensure that all of the indices are constants.
255      SmallVector<ConstantInt*, 8> Operands;
256      for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
257        if (ConstantInt *C = dyn_cast<ConstantInt>(GEP->getOperand(i)))
258          Operands.push_back(C);
259        else
260          return false;  // Not a constant operand GEP!
261
262      // Ensure that the only users of the GEP are load instructions.
263      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
264           UI != E; ++UI)
265        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
266          if (LI->isVolatile()) return false;  // Don't hack volatile loads
267          Loads.push_back(LI);
268
269          // If this load occurs in the entry block, then the pointer is
270          // unconditionally loaded.
271          SafeToUnconditionallyLoad |= LI->getParent() == EntryBlock;
272        } else {
273          return false;
274        }
275
276      // See if there is already a GEP with these indices.  If not, check to
277      // make sure that we aren't promoting too many elements.  If so, nothing
278      // to do.
279      if (std::find(GEPIndices.begin(), GEPIndices.end(), Operands) ==
280          GEPIndices.end()) {
281        if (GEPIndices.size() == 3) {
282          DOUT << "argpromotion disable promoting argument '"
283               << Arg->getName() << "' because it would require adding more "
284               << "than 3 arguments to the function.\n";
285          // We limit aggregate promotion to only promoting up to three elements
286          // of the aggregate.
287          return false;
288        }
289        GEPIndices.push_back(Operands);
290      }
291    } else {
292      return false;  // Not a load or a GEP.
293    }
294
295  if (Loads.empty()) return true;  // No users, this is a dead argument.
296
297  // If we decide that we want to promote this argument, the value is going to
298  // be unconditionally loaded in all callees.  This is only safe to do if the
299  // pointer was going to be unconditionally loaded anyway (i.e. there is a load
300  // of the pointer in the entry block of the function) or if we can prove that
301  // all pointers passed in are always to legal locations (for example, no null
302  // pointers are passed in, no pointers to free'd memory, etc).
303  if (!SafeToUnconditionallyLoad &&
304      !AllCalleesPassInValidPointerForArgument(Arg))
305    return false;   // Cannot prove that this is safe!!
306
307  // Okay, now we know that the argument is only used by load instructions and
308  // it is safe to unconditionally load the pointer.  Use alias analysis to
309  // check to see if the pointer is guaranteed to not be modified from entry of
310  // the function to each of the load instructions.
311
312  // Because there could be several/many load instructions, remember which
313  // blocks we know to be transparent to the load.
314  SmallPtrSet<BasicBlock*, 16> TranspBlocks;
315
316  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
317  TargetData &TD = getAnalysis<TargetData>();
318
319  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
320    // Check to see if the load is invalidated from the start of the block to
321    // the load itself.
322    LoadInst *Load = Loads[i];
323    BasicBlock *BB = Load->getParent();
324
325    const PointerType *LoadTy =
326      cast<PointerType>(Load->getOperand(0)->getType());
327    unsigned LoadSize = (unsigned)TD.getTypeStoreSize(LoadTy->getElementType());
328
329    if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
330      return false;  // Pointer is invalidated!
331
332    // Now check every path from the entry block to the load for transparency.
333    // To do this, we perform a depth first search on the inverse CFG from the
334    // loading block.
335    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
336      for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
337             I = idf_ext_begin(*PI, TranspBlocks),
338             E = idf_ext_end(*PI, TranspBlocks); I != E; ++I)
339        if (AA.canBasicBlockModify(**I, Arg, LoadSize))
340          return false;
341  }
342
343  // If the path from the entry of the function to each load is free of
344  // instructions that potentially invalidate the load, we can make the
345  // transformation!
346  return true;
347}
348
349namespace {
350  /// GEPIdxComparator - Provide a strong ordering for GEP indices.  All Value*
351  /// elements are instances of ConstantInt.
352  ///
353  struct GEPIdxComparator {
354    bool operator()(const std::vector<Value*> &LHS,
355                    const std::vector<Value*> &RHS) const {
356      unsigned idx = 0;
357      for (; idx < LHS.size() && idx < RHS.size(); ++idx) {
358        if (LHS[idx] != RHS[idx]) {
359          return cast<ConstantInt>(LHS[idx])->getZExtValue() <
360                 cast<ConstantInt>(RHS[idx])->getZExtValue();
361        }
362      }
363
364      // Return less than if we ran out of stuff in LHS and we didn't run out of
365      // stuff in RHS.
366      return idx == LHS.size() && idx != RHS.size();
367    }
368  };
369}
370
371
372/// DoPromotion - This method actually performs the promotion of the specified
373/// arguments, and returns the new function.  At this point, we know that it's
374/// safe to do so.
375Function *ArgPromotion::DoPromotion(Function *F,
376                                    SmallPtrSet<Argument*, 8> &ArgsToPromote,
377                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
378
379  // Start by computing a new prototype for the function, which is the same as
380  // the old function, but has modified arguments.
381  const FunctionType *FTy = F->getFunctionType();
382  std::vector<const Type*> Params;
383
384  typedef std::set<std::vector<Value*>, GEPIdxComparator> ScalarizeTable;
385
386  // ScalarizedElements - If we are promoting a pointer that has elements
387  // accessed out of it, keep track of which elements are accessed so that we
388  // can add one argument for each.
389  //
390  // Arguments that are directly loaded will have a zero element value here, to
391  // handle cases where there are both a direct load and GEP accesses.
392  //
393  std::map<Argument*, ScalarizeTable> ScalarizedElements;
394
395  // OriginalLoads - Keep track of a representative load instruction from the
396  // original function so that we can tell the alias analysis implementation
397  // what the new GEP/Load instructions we are inserting look like.
398  std::map<std::vector<Value*>, LoadInst*> OriginalLoads;
399
400  // ParamAttrs - Keep track of the parameter attributes for the arguments
401  // that we are *not* promoting. For the ones that we do promote, the parameter
402  // attributes are lost
403  SmallVector<ParamAttrsWithIndex, 8> ParamAttrsVec;
404  const PAListPtr &PAL = F->getParamAttrs();
405
406  // Add any return attributes.
407  if (ParameterAttributes attrs = PAL.getParamAttrs(0))
408    ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, attrs));
409
410  unsigned ArgIndex = 1;
411  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
412       ++I, ++ArgIndex) {
413    if (ByValArgsToTransform.count(I)) {
414      // Just add all the struct element types.
415      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
416      const StructType *STy = cast<StructType>(AgTy);
417      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
418        Params.push_back(STy->getElementType(i));
419      ++NumByValArgsPromoted;
420    } else if (!ArgsToPromote.count(I)) {
421      Params.push_back(I->getType());
422      if (ParameterAttributes attrs = PAL.getParamAttrs(ArgIndex))
423        ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Params.size(), attrs));
424    } else if (I->use_empty()) {
425      ++NumArgumentsDead;
426    } else {
427      // Okay, this is being promoted.  Check to see if there are any GEP uses
428      // of the argument.
429      ScalarizeTable &ArgIndices = ScalarizedElements[I];
430      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
431           ++UI) {
432        Instruction *User = cast<Instruction>(*UI);
433        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
434        std::vector<Value*> Indices(User->op_begin()+1, User->op_end());
435        ArgIndices.insert(Indices);
436        LoadInst *OrigLoad;
437        if (LoadInst *L = dyn_cast<LoadInst>(User))
438          OrigLoad = L;
439        else
440          OrigLoad = cast<LoadInst>(User->use_back());
441        OriginalLoads[Indices] = OrigLoad;
442      }
443
444      // Add a parameter to the function for each element passed in.
445      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
446             E = ArgIndices.end(); SI != E; ++SI)
447        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(),
448                                                           SI->begin(),
449                                                           SI->end()));
450
451      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
452        ++NumArgumentsPromoted;
453      else
454        ++NumAggregatesPromoted;
455    }
456  }
457
458  const Type *RetTy = FTy->getReturnType();
459
460  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
461  // have zero fixed arguments.
462  bool ExtraArgHack = false;
463  if (Params.empty() && FTy->isVarArg()) {
464    ExtraArgHack = true;
465    Params.push_back(Type::Int32Ty);
466  }
467
468  // Construct the new function type using the new arguments.
469  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
470
471  // Create the new function body and insert it into the module...
472  Function *NF = new Function(NFTy, F->getLinkage(), F->getName());
473  NF->setCallingConv(F->getCallingConv());
474
475  // Recompute the parameter attributes list based on the new arguments for
476  // the function.
477  NF->setParamAttrs(PAListPtr::get(ParamAttrsVec.begin(), ParamAttrsVec.end()));
478  ParamAttrsVec.clear();
479
480  if (F->hasCollector())
481    NF->setCollector(F->getCollector());
482  F->getParent()->getFunctionList().insert(F, NF);
483
484  // Get the alias analysis information that we need to update to reflect our
485  // changes.
486  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
487
488  // Loop over all of the callers of the function, transforming the call sites
489  // to pass in the loaded pointers.
490  //
491  SmallVector<Value*, 16> Args;
492  while (!F->use_empty()) {
493    CallSite CS = CallSite::get(F->use_back());
494    Instruction *Call = CS.getInstruction();
495    const PAListPtr &CallPAL = CS.getParamAttrs();
496
497    // Add any return attributes.
498    if (ParameterAttributes attrs = CallPAL.getParamAttrs(0))
499      ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, attrs));
500
501    // Loop over the operands, inserting GEP and loads in the caller as
502    // appropriate.
503    CallSite::arg_iterator AI = CS.arg_begin();
504    ArgIndex = 1;
505    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
506         I != E; ++I, ++AI, ++ArgIndex)
507      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
508        Args.push_back(*AI);          // Unmodified argument
509
510        if (ParameterAttributes Attrs = CallPAL.getParamAttrs(ArgIndex))
511          ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
512
513      } else if (ByValArgsToTransform.count(I)) {
514        // Emit a GEP and load for each element of the struct.
515        const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
516        const StructType *STy = cast<StructType>(AgTy);
517        Value *Idxs[2] = { ConstantInt::get(Type::Int32Ty, 0), 0 };
518        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
519          Idxs[1] = ConstantInt::get(Type::Int32Ty, i);
520          Value *Idx = new GetElementPtrInst(*AI, Idxs, Idxs+2,
521                                             (*AI)->getName()+"."+utostr(i),
522                                             Call);
523          // TODO: Tell AA about the new values?
524          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
525        }
526      } else if (!I->use_empty()) {
527        // Non-dead argument: insert GEPs and loads as appropriate.
528        ScalarizeTable &ArgIndices = ScalarizedElements[I];
529        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
530               E = ArgIndices.end(); SI != E; ++SI) {
531          Value *V = *AI;
532          LoadInst *OrigLoad = OriginalLoads[*SI];
533          if (!SI->empty()) {
534            V = new GetElementPtrInst(V, SI->begin(), SI->end(),
535                                      V->getName()+".idx", Call);
536            AA.copyValue(OrigLoad->getOperand(0), V);
537          }
538          Args.push_back(new LoadInst(V, V->getName()+".val", Call));
539          AA.copyValue(OrigLoad, Args.back());
540        }
541      }
542
543    if (ExtraArgHack)
544      Args.push_back(Constant::getNullValue(Type::Int32Ty));
545
546    // Push any varargs arguments on the list
547    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
548      Args.push_back(*AI);
549      if (ParameterAttributes Attrs = CallPAL.getParamAttrs(ArgIndex))
550        ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
551    }
552
553    Instruction *New;
554    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
555      New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(),
556                           Args.begin(), Args.end(), "", Call);
557      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
558      cast<InvokeInst>(New)->setParamAttrs(PAListPtr::get(ParamAttrsVec.begin(),
559                                                          ParamAttrsVec.end()));
560    } else {
561      New = new CallInst(NF, Args.begin(), Args.end(), "", Call);
562      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
563      cast<CallInst>(New)->setParamAttrs(PAListPtr::get(ParamAttrsVec.begin(),
564                                                        ParamAttrsVec.end()));
565      if (cast<CallInst>(Call)->isTailCall())
566        cast<CallInst>(New)->setTailCall();
567    }
568    Args.clear();
569    ParamAttrsVec.clear();
570
571    // Update the alias analysis implementation to know that we are replacing
572    // the old call with a new one.
573    AA.replaceWithNewValue(Call, New);
574
575    if (!Call->use_empty()) {
576      Call->replaceAllUsesWith(New);
577      New->takeName(Call);
578    }
579
580    // Finally, remove the old call from the program, reducing the use-count of
581    // F.
582    Call->eraseFromParent();
583  }
584
585  // Since we have now created the new function, splice the body of the old
586  // function right into the new function, leaving the old rotting hulk of the
587  // function empty.
588  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
589
590  // Loop over the argument list, transfering uses of the old arguments over to
591  // the new arguments, also transfering over the names as well.
592  //
593  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
594       I2 = NF->arg_begin(); I != E; ++I) {
595    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
596      // If this is an unmodified argument, move the name and users over to the
597      // new version.
598      I->replaceAllUsesWith(I2);
599      I2->takeName(I);
600      AA.replaceWithNewValue(I, I2);
601      ++I2;
602      continue;
603    }
604
605    if (ByValArgsToTransform.count(I)) {
606      // In the callee, we create an alloca, and store each of the new incoming
607      // arguments into the alloca.
608      Instruction *InsertPt = NF->begin()->begin();
609
610      // Just add all the struct element types.
611      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
612      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
613      const StructType *STy = cast<StructType>(AgTy);
614      Value *Idxs[2] = { ConstantInt::get(Type::Int32Ty, 0), 0 };
615
616      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
617        Idxs[1] = ConstantInt::get(Type::Int32Ty, i);
618        Value *Idx = new GetElementPtrInst(TheAlloca, Idxs, Idxs+2,
619                                           TheAlloca->getName()+"."+utostr(i),
620                                           InsertPt);
621        I2->setName(I->getName()+"."+utostr(i));
622        new StoreInst(I2++, Idx, InsertPt);
623      }
624
625      // Anything that used the arg should now use the alloca.
626      I->replaceAllUsesWith(TheAlloca);
627      TheAlloca->takeName(I);
628      AA.replaceWithNewValue(I, TheAlloca);
629      continue;
630    }
631
632    if (I->use_empty()) {
633      AA.deleteValue(I);
634      continue;
635    }
636
637    // Otherwise, if we promoted this argument, then all users are load
638    // instructions, and all loads should be using the new argument that we
639    // added.
640    ScalarizeTable &ArgIndices = ScalarizedElements[I];
641
642    while (!I->use_empty()) {
643      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
644        assert(ArgIndices.begin()->empty() &&
645               "Load element should sort to front!");
646        I2->setName(I->getName()+".val");
647        LI->replaceAllUsesWith(I2);
648        AA.replaceWithNewValue(LI, I2);
649        LI->eraseFromParent();
650        DOUT << "*** Promoted load of argument '" << I->getName()
651             << "' in function '" << F->getName() << "'\n";
652      } else {
653        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
654        std::vector<Value*> Operands(GEP->op_begin()+1, GEP->op_end());
655
656        Function::arg_iterator TheArg = I2;
657        for (ScalarizeTable::iterator It = ArgIndices.begin();
658             *It != Operands; ++It, ++TheArg) {
659          assert(It != ArgIndices.end() && "GEP not handled??");
660        }
661
662        std::string NewName = I->getName();
663        for (unsigned i = 0, e = Operands.size(); i != e; ++i)
664          if (ConstantInt *CI = dyn_cast<ConstantInt>(Operands[i]))
665            NewName += "." + CI->getValue().toStringUnsigned(10);
666          else
667            NewName += ".x";
668        TheArg->setName(NewName+".val");
669
670        DOUT << "*** Promoted agg argument '" << TheArg->getName()
671             << "' of function '" << F->getName() << "'\n";
672
673        // All of the uses must be load instructions.  Replace them all with
674        // the argument specified by ArgNo.
675        while (!GEP->use_empty()) {
676          LoadInst *L = cast<LoadInst>(GEP->use_back());
677          L->replaceAllUsesWith(TheArg);
678          AA.replaceWithNewValue(L, TheArg);
679          L->eraseFromParent();
680        }
681        AA.deleteValue(GEP);
682        GEP->eraseFromParent();
683      }
684    }
685
686    // Increment I2 past all of the arguments added for this promoted pointer.
687    for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
688      ++I2;
689  }
690
691  // Notify the alias analysis implementation that we inserted a new argument.
692  if (ExtraArgHack)
693    AA.copyValue(Constant::getNullValue(Type::Int32Ty), NF->arg_begin());
694
695
696  // Tell the alias analysis that the old function is about to disappear.
697  AA.replaceWithNewValue(F, NF);
698
699  // Now that the old function is dead, delete it.
700  F->eraseFromParent();
701  return NF;
702}
703