ArgumentPromotion.cpp revision 32f5cb23caae91a35c354496a9dd3edddbafbc17
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If it can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then it can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// by default it refuses to scalarize aggregates which would require passing in
21// more than three operands to the function, because passing thousands of
22// operands for a large array or structure is unprofitable! This limit can be
23// configured or disabled, however.
24//
25// Note that this transformation could also be done for arguments that are only
26// stored to (returning the value instead), but does not currently.  This case
27// would be best handled when and if LLVM begins supporting multiple return
28// values from functions.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "argpromotion"
33#include "llvm/Transforms/IPO.h"
34#include "llvm/Constants.h"
35#include "llvm/DerivedTypes.h"
36#include "llvm/Module.h"
37#include "llvm/CallGraphSCCPass.h"
38#include "llvm/Instructions.h"
39#include "llvm/LLVMContext.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/CallGraph.h"
42#include "llvm/Target/TargetData.h"
43#include "llvm/Support/CallSite.h"
44#include "llvm/Support/CFG.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/ADT/DepthFirstIterator.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/ADT/StringExtras.h"
50#include <set>
51using namespace llvm;
52
53STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
54STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
55STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
56STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
57
58namespace {
59  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
60  ///
61  struct ArgPromotion : public CallGraphSCCPass {
62    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63      AU.addRequired<AliasAnalysis>();
64      CallGraphSCCPass::getAnalysisUsage(AU);
65    }
66
67    virtual bool runOnSCC(CallGraphSCC &SCC);
68    static char ID; // Pass identification, replacement for typeid
69    explicit ArgPromotion(unsigned maxElements = 3)
70        : CallGraphSCCPass(ID), maxElements(maxElements) {
71      initializeArgPromotionPass(*PassRegistry::getPassRegistry());
72    }
73
74    /// A vector used to hold the indices of a single GEP instruction
75    typedef std::vector<uint64_t> IndicesVector;
76
77  private:
78    CallGraphNode *PromoteArguments(CallGraphNode *CGN);
79    bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
80    CallGraphNode *DoPromotion(Function *F,
81                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
82                               SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
83    /// The maximum number of elements to expand, or 0 for unlimited.
84    unsigned maxElements;
85  };
86}
87
88char ArgPromotion::ID = 0;
89INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
90                "Promote 'by reference' arguments to scalars", false, false)
91INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
92INITIALIZE_AG_DEPENDENCY(CallGraph)
93INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
94                "Promote 'by reference' arguments to scalars", false, false)
95
96Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
97  return new ArgPromotion(maxElements);
98}
99
100bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
101  bool Changed = false, LocalChange;
102
103  do {  // Iterate until we stop promoting from this SCC.
104    LocalChange = false;
105    // Attempt to promote arguments from all functions in this SCC.
106    for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
107      if (CallGraphNode *CGN = PromoteArguments(*I)) {
108        LocalChange = true;
109        SCC.ReplaceNode(*I, CGN);
110      }
111    }
112    Changed |= LocalChange;               // Remember that we changed something.
113  } while (LocalChange);
114
115  return Changed;
116}
117
118/// PromoteArguments - This method checks the specified function to see if there
119/// are any promotable arguments and if it is safe to promote the function (for
120/// example, all callers are direct).  If safe to promote some arguments, it
121/// calls the DoPromotion method.
122///
123CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
124  Function *F = CGN->getFunction();
125
126  // Make sure that it is local to this module.
127  if (!F || !F->hasLocalLinkage()) return 0;
128
129  // First check: see if there are any pointer arguments!  If not, quick exit.
130  SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
131  unsigned ArgNo = 0;
132  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
133       I != E; ++I, ++ArgNo)
134    if (I->getType()->isPointerTy())
135      PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
136  if (PointerArgs.empty()) return 0;
137
138  // Second check: make sure that all callers are direct callers.  We can't
139  // transform functions that have indirect callers.
140  if (F->hasAddressTaken())
141    return 0;
142
143  // Check to see which arguments are promotable.  If an argument is promotable,
144  // add it to ArgsToPromote.
145  SmallPtrSet<Argument*, 8> ArgsToPromote;
146  SmallPtrSet<Argument*, 8> ByValArgsToTransform;
147  for (unsigned i = 0; i != PointerArgs.size(); ++i) {
148    bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal);
149
150    // If this is a byval argument, and if the aggregate type is small, just
151    // pass the elements, which is always safe.
152    Argument *PtrArg = PointerArgs[i].first;
153    if (isByVal) {
154      const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
155      if (const StructType *STy = dyn_cast<StructType>(AgTy)) {
156        if (maxElements > 0 && STy->getNumElements() > maxElements) {
157          DEBUG(dbgs() << "argpromotion disable promoting argument '"
158                << PtrArg->getName() << "' because it would require adding more"
159                << " than " << maxElements << " arguments to the function.\n");
160        } else {
161          // If all the elements are single-value types, we can promote it.
162          bool AllSimple = true;
163          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
164            if (!STy->getElementType(i)->isSingleValueType()) {
165              AllSimple = false;
166              break;
167            }
168
169          // Safe to transform, don't even bother trying to "promote" it.
170          // Passing the elements as a scalar will allow scalarrepl to hack on
171          // the new alloca we introduce.
172          if (AllSimple) {
173            ByValArgsToTransform.insert(PtrArg);
174            continue;
175          }
176        }
177      }
178    }
179
180    // Otherwise, see if we can promote the pointer to its value.
181    if (isSafeToPromoteArgument(PtrArg, isByVal))
182      ArgsToPromote.insert(PtrArg);
183  }
184
185  // No promotable pointer arguments.
186  if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
187    return 0;
188
189  return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
190}
191
192/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
193/// to load.
194static bool IsAlwaysValidPointer(Value *V) {
195  if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
196  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
197    return IsAlwaysValidPointer(GEP->getOperand(0));
198  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
199    if (CE->getOpcode() == Instruction::GetElementPtr)
200      return IsAlwaysValidPointer(CE->getOperand(0));
201
202  return false;
203}
204
205/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
206/// all callees pass in a valid pointer for the specified function argument.
207static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
208  Function *Callee = Arg->getParent();
209
210  unsigned ArgNo = std::distance(Callee->arg_begin(),
211                                 Function::arg_iterator(Arg));
212
213  // Look at all call sites of the function.  At this pointer we know we only
214  // have direct callees.
215  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
216       UI != E; ++UI) {
217    CallSite CS(*UI);
218    assert(CS && "Should only have direct calls!");
219
220    if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
221      return false;
222  }
223  return true;
224}
225
226/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
227/// that is greater than or equal to the size of prefix, and each of the
228/// elements in Prefix is the same as the corresponding elements in Longer.
229///
230/// This means it also returns true when Prefix and Longer are equal!
231static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
232                     const ArgPromotion::IndicesVector &Longer) {
233  if (Prefix.size() > Longer.size())
234    return false;
235  for (unsigned i = 0, e = Prefix.size(); i != e; ++i)
236    if (Prefix[i] != Longer[i])
237      return false;
238  return true;
239}
240
241
242/// Checks if Indices, or a prefix of Indices, is in Set.
243static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
244                     std::set<ArgPromotion::IndicesVector> &Set) {
245    std::set<ArgPromotion::IndicesVector>::iterator Low;
246    Low = Set.upper_bound(Indices);
247    if (Low != Set.begin())
248      Low--;
249    // Low is now the last element smaller than or equal to Indices. This means
250    // it points to a prefix of Indices (possibly Indices itself), if such
251    // prefix exists.
252    //
253    // This load is safe if any prefix of its operands is safe to load.
254    return Low != Set.end() && IsPrefix(*Low, Indices);
255}
256
257/// Mark the given indices (ToMark) as safe in the given set of indices
258/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
259/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
260/// already. Furthermore, any indices that Indices is itself a prefix of, are
261/// removed from Safe (since they are implicitely safe because of Indices now).
262static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
263                            std::set<ArgPromotion::IndicesVector> &Safe) {
264  std::set<ArgPromotion::IndicesVector>::iterator Low;
265  Low = Safe.upper_bound(ToMark);
266  // Guard against the case where Safe is empty
267  if (Low != Safe.begin())
268    Low--;
269  // Low is now the last element smaller than or equal to Indices. This
270  // means it points to a prefix of Indices (possibly Indices itself), if
271  // such prefix exists.
272  if (Low != Safe.end()) {
273    if (IsPrefix(*Low, ToMark))
274      // If there is already a prefix of these indices (or exactly these
275      // indices) marked a safe, don't bother adding these indices
276      return;
277
278    // Increment Low, so we can use it as a "insert before" hint
279    ++Low;
280  }
281  // Insert
282  Low = Safe.insert(Low, ToMark);
283  ++Low;
284  // If there we're a prefix of longer index list(s), remove those
285  std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
286  while (Low != End && IsPrefix(ToMark, *Low)) {
287    std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
288    ++Low;
289    Safe.erase(Remove);
290  }
291}
292
293/// isSafeToPromoteArgument - As you might guess from the name of this method,
294/// it checks to see if it is both safe and useful to promote the argument.
295/// This method limits promotion of aggregates to only promote up to three
296/// elements of the aggregate in order to avoid exploding the number of
297/// arguments passed in.
298bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
299  typedef std::set<IndicesVector> GEPIndicesSet;
300
301  // Quick exit for unused arguments
302  if (Arg->use_empty())
303    return true;
304
305  // We can only promote this argument if all of the uses are loads, or are GEP
306  // instructions (with constant indices) that are subsequently loaded.
307  //
308  // Promoting the argument causes it to be loaded in the caller
309  // unconditionally. This is only safe if we can prove that either the load
310  // would have happened in the callee anyway (ie, there is a load in the entry
311  // block) or the pointer passed in at every call site is guaranteed to be
312  // valid.
313  // In the former case, invalid loads can happen, but would have happened
314  // anyway, in the latter case, invalid loads won't happen. This prevents us
315  // from introducing an invalid load that wouldn't have happened in the
316  // original code.
317  //
318  // This set will contain all sets of indices that are loaded in the entry
319  // block, and thus are safe to unconditionally load in the caller.
320  GEPIndicesSet SafeToUnconditionallyLoad;
321
322  // This set contains all the sets of indices that we are planning to promote.
323  // This makes it possible to limit the number of arguments added.
324  GEPIndicesSet ToPromote;
325
326  // If the pointer is always valid, any load with first index 0 is valid.
327  if (isByVal || AllCalleesPassInValidPointerForArgument(Arg))
328    SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
329
330  // First, iterate the entry block and mark loads of (geps of) arguments as
331  // safe.
332  BasicBlock *EntryBlock = Arg->getParent()->begin();
333  // Declare this here so we can reuse it
334  IndicesVector Indices;
335  for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
336       I != E; ++I)
337    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
338      Value *V = LI->getPointerOperand();
339      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
340        V = GEP->getPointerOperand();
341        if (V == Arg) {
342          // This load actually loads (part of) Arg? Check the indices then.
343          Indices.reserve(GEP->getNumIndices());
344          for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
345               II != IE; ++II)
346            if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
347              Indices.push_back(CI->getSExtValue());
348            else
349              // We found a non-constant GEP index for this argument? Bail out
350              // right away, can't promote this argument at all.
351              return false;
352
353          // Indices checked out, mark them as safe
354          MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
355          Indices.clear();
356        }
357      } else if (V == Arg) {
358        // Direct loads are equivalent to a GEP with a single 0 index.
359        MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
360      }
361    }
362
363  // Now, iterate all uses of the argument to see if there are any uses that are
364  // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
365  SmallVector<LoadInst*, 16> Loads;
366  IndicesVector Operands;
367  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
368       UI != E; ++UI) {
369    User *U = *UI;
370    Operands.clear();
371    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
372      if (LI->isVolatile()) return false;  // Don't hack volatile loads
373      Loads.push_back(LI);
374      // Direct loads are equivalent to a GEP with a zero index and then a load.
375      Operands.push_back(0);
376    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
377      if (GEP->use_empty()) {
378        // Dead GEP's cause trouble later.  Just remove them if we run into
379        // them.
380        getAnalysis<AliasAnalysis>().deleteValue(GEP);
381        GEP->eraseFromParent();
382        // TODO: This runs the above loop over and over again for dead GEPs
383        // Couldn't we just do increment the UI iterator earlier and erase the
384        // use?
385        return isSafeToPromoteArgument(Arg, isByVal);
386      }
387
388      // Ensure that all of the indices are constants.
389      for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
390        i != e; ++i)
391        if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
392          Operands.push_back(C->getSExtValue());
393        else
394          return false;  // Not a constant operand GEP!
395
396      // Ensure that the only users of the GEP are load instructions.
397      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
398           UI != E; ++UI)
399        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
400          if (LI->isVolatile()) return false;  // Don't hack volatile loads
401          Loads.push_back(LI);
402        } else {
403          // Other uses than load?
404          return false;
405        }
406    } else {
407      return false;  // Not a load or a GEP.
408    }
409
410    // Now, see if it is safe to promote this load / loads of this GEP. Loading
411    // is safe if Operands, or a prefix of Operands, is marked as safe.
412    if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
413      return false;
414
415    // See if we are already promoting a load with these indices. If not, check
416    // to make sure that we aren't promoting too many elements.  If so, nothing
417    // to do.
418    if (ToPromote.find(Operands) == ToPromote.end()) {
419      if (maxElements > 0 && ToPromote.size() == maxElements) {
420        DEBUG(dbgs() << "argpromotion not promoting argument '"
421              << Arg->getName() << "' because it would require adding more "
422              << "than " << maxElements << " arguments to the function.\n");
423        // We limit aggregate promotion to only promoting up to a fixed number
424        // of elements of the aggregate.
425        return false;
426      }
427      ToPromote.insert(Operands);
428    }
429  }
430
431  if (Loads.empty()) return true;  // No users, this is a dead argument.
432
433  // Okay, now we know that the argument is only used by load instructions and
434  // it is safe to unconditionally perform all of them. Use alias analysis to
435  // check to see if the pointer is guaranteed to not be modified from entry of
436  // the function to each of the load instructions.
437
438  // Because there could be several/many load instructions, remember which
439  // blocks we know to be transparent to the load.
440  SmallPtrSet<BasicBlock*, 16> TranspBlocks;
441
442  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
443  TargetData *TD = getAnalysisIfAvailable<TargetData>();
444  if (!TD) return false; // Without TargetData, assume the worst.
445
446  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
447    // Check to see if the load is invalidated from the start of the block to
448    // the load itself.
449    LoadInst *Load = Loads[i];
450    BasicBlock *BB = Load->getParent();
451
452    const PointerType *LoadTy =
453      cast<PointerType>(Load->getPointerOperand()->getType());
454    uint64_t LoadSize = TD->getTypeStoreSize(LoadTy->getElementType());
455
456    if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
457      return false;  // Pointer is invalidated!
458
459    // Now check every path from the entry block to the load for transparency.
460    // To do this, we perform a depth first search on the inverse CFG from the
461    // loading block.
462    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
463      BasicBlock *P = *PI;
464      for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
465             I = idf_ext_begin(P, TranspBlocks),
466             E = idf_ext_end(P, TranspBlocks); I != E; ++I)
467        if (AA.canBasicBlockModify(**I, Arg, LoadSize))
468          return false;
469    }
470  }
471
472  // If the path from the entry of the function to each load is free of
473  // instructions that potentially invalidate the load, we can make the
474  // transformation!
475  return true;
476}
477
478/// DoPromotion - This method actually performs the promotion of the specified
479/// arguments, and returns the new function.  At this point, we know that it's
480/// safe to do so.
481CallGraphNode *ArgPromotion::DoPromotion(Function *F,
482                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
483                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
484
485  // Start by computing a new prototype for the function, which is the same as
486  // the old function, but has modified arguments.
487  const FunctionType *FTy = F->getFunctionType();
488  std::vector<const Type*> Params;
489
490  typedef std::set<IndicesVector> ScalarizeTable;
491
492  // ScalarizedElements - If we are promoting a pointer that has elements
493  // accessed out of it, keep track of which elements are accessed so that we
494  // can add one argument for each.
495  //
496  // Arguments that are directly loaded will have a zero element value here, to
497  // handle cases where there are both a direct load and GEP accesses.
498  //
499  std::map<Argument*, ScalarizeTable> ScalarizedElements;
500
501  // OriginalLoads - Keep track of a representative load instruction from the
502  // original function so that we can tell the alias analysis implementation
503  // what the new GEP/Load instructions we are inserting look like.
504  std::map<IndicesVector, LoadInst*> OriginalLoads;
505
506  // Attributes - Keep track of the parameter attributes for the arguments
507  // that we are *not* promoting. For the ones that we do promote, the parameter
508  // attributes are lost
509  SmallVector<AttributeWithIndex, 8> AttributesVec;
510  const AttrListPtr &PAL = F->getAttributes();
511
512  // Add any return attributes.
513  if (Attributes attrs = PAL.getRetAttributes())
514    AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
515
516  // First, determine the new argument list
517  unsigned ArgIndex = 1;
518  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
519       ++I, ++ArgIndex) {
520    if (ByValArgsToTransform.count(I)) {
521      // Simple byval argument? Just add all the struct element types.
522      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
523      const StructType *STy = cast<StructType>(AgTy);
524      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
525        Params.push_back(STy->getElementType(i));
526      ++NumByValArgsPromoted;
527    } else if (!ArgsToPromote.count(I)) {
528      // Unchanged argument
529      Params.push_back(I->getType());
530      if (Attributes attrs = PAL.getParamAttributes(ArgIndex))
531        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
532    } else if (I->use_empty()) {
533      // Dead argument (which are always marked as promotable)
534      ++NumArgumentsDead;
535    } else {
536      // Okay, this is being promoted. This means that the only uses are loads
537      // or GEPs which are only used by loads
538
539      // In this table, we will track which indices are loaded from the argument
540      // (where direct loads are tracked as no indices).
541      ScalarizeTable &ArgIndices = ScalarizedElements[I];
542      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
543           ++UI) {
544        Instruction *User = cast<Instruction>(*UI);
545        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
546        IndicesVector Indices;
547        Indices.reserve(User->getNumOperands() - 1);
548        // Since loads will only have a single operand, and GEPs only a single
549        // non-index operand, this will record direct loads without any indices,
550        // and gep+loads with the GEP indices.
551        for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
552             II != IE; ++II)
553          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
554        // GEPs with a single 0 index can be merged with direct loads
555        if (Indices.size() == 1 && Indices.front() == 0)
556          Indices.clear();
557        ArgIndices.insert(Indices);
558        LoadInst *OrigLoad;
559        if (LoadInst *L = dyn_cast<LoadInst>(User))
560          OrigLoad = L;
561        else
562          // Take any load, we will use it only to update Alias Analysis
563          OrigLoad = cast<LoadInst>(User->use_back());
564        OriginalLoads[Indices] = OrigLoad;
565      }
566
567      // Add a parameter to the function for each element passed in.
568      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
569             E = ArgIndices.end(); SI != E; ++SI) {
570        // not allowed to dereference ->begin() if size() is 0
571        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(),
572                                                           SI->begin(),
573                                                           SI->end()));
574        assert(Params.back());
575      }
576
577      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
578        ++NumArgumentsPromoted;
579      else
580        ++NumAggregatesPromoted;
581    }
582  }
583
584  // Add any function attributes.
585  if (Attributes attrs = PAL.getFnAttributes())
586    AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
587
588  const Type *RetTy = FTy->getReturnType();
589
590  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
591  // have zero fixed arguments.
592  bool ExtraArgHack = false;
593  if (Params.empty() && FTy->isVarArg()) {
594    ExtraArgHack = true;
595    Params.push_back(Type::getInt32Ty(F->getContext()));
596  }
597
598  // Construct the new function type using the new arguments.
599  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
600
601  // Create the new function body and insert it into the module.
602  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
603  NF->copyAttributesFrom(F);
604
605
606  DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
607        << "From: " << *F);
608
609  // Recompute the parameter attributes list based on the new arguments for
610  // the function.
611  NF->setAttributes(AttrListPtr::get(AttributesVec.begin(),
612                                     AttributesVec.end()));
613  AttributesVec.clear();
614
615  F->getParent()->getFunctionList().insert(F, NF);
616  NF->takeName(F);
617
618  // Get the alias analysis information that we need to update to reflect our
619  // changes.
620  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
621
622  // Get the callgraph information that we need to update to reflect our
623  // changes.
624  CallGraph &CG = getAnalysis<CallGraph>();
625
626  // Get a new callgraph node for NF.
627  CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
628
629  // Loop over all of the callers of the function, transforming the call sites
630  // to pass in the loaded pointers.
631  //
632  SmallVector<Value*, 16> Args;
633  while (!F->use_empty()) {
634    CallSite CS(F->use_back());
635    assert(CS.getCalledFunction() == F);
636    Instruction *Call = CS.getInstruction();
637    const AttrListPtr &CallPAL = CS.getAttributes();
638
639    // Add any return attributes.
640    if (Attributes attrs = CallPAL.getRetAttributes())
641      AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
642
643    // Loop over the operands, inserting GEP and loads in the caller as
644    // appropriate.
645    CallSite::arg_iterator AI = CS.arg_begin();
646    ArgIndex = 1;
647    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
648         I != E; ++I, ++AI, ++ArgIndex)
649      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
650        Args.push_back(*AI);          // Unmodified argument
651
652        if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
653          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
654
655      } else if (ByValArgsToTransform.count(I)) {
656        // Emit a GEP and load for each element of the struct.
657        const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
658        const StructType *STy = cast<StructType>(AgTy);
659        Value *Idxs[2] = {
660              ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
661        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
662          Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
663          Value *Idx = GetElementPtrInst::Create(*AI, Idxs, Idxs+2,
664                                                 (*AI)->getName()+"."+utostr(i),
665                                                 Call);
666          // TODO: Tell AA about the new values?
667          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
668        }
669      } else if (!I->use_empty()) {
670        // Non-dead argument: insert GEPs and loads as appropriate.
671        ScalarizeTable &ArgIndices = ScalarizedElements[I];
672        // Store the Value* version of the indices in here, but declare it now
673        // for reuse.
674        std::vector<Value*> Ops;
675        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
676               E = ArgIndices.end(); SI != E; ++SI) {
677          Value *V = *AI;
678          LoadInst *OrigLoad = OriginalLoads[*SI];
679          if (!SI->empty()) {
680            Ops.reserve(SI->size());
681            const Type *ElTy = V->getType();
682            for (IndicesVector::const_iterator II = SI->begin(),
683                 IE = SI->end(); II != IE; ++II) {
684              // Use i32 to index structs, and i64 for others (pointers/arrays).
685              // This satisfies GEP constraints.
686              const Type *IdxTy = (ElTy->isStructTy() ?
687                    Type::getInt32Ty(F->getContext()) :
688                    Type::getInt64Ty(F->getContext()));
689              Ops.push_back(ConstantInt::get(IdxTy, *II));
690              // Keep track of the type we're currently indexing.
691              ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
692            }
693            // And create a GEP to extract those indices.
694            V = GetElementPtrInst::Create(V, Ops.begin(), Ops.end(),
695                                          V->getName()+".idx", Call);
696            Ops.clear();
697            AA.copyValue(OrigLoad->getOperand(0), V);
698          }
699          // Since we're replacing a load make sure we take the alignment
700          // of the previous load.
701          LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
702          newLoad->setAlignment(OrigLoad->getAlignment());
703          Args.push_back(newLoad);
704          AA.copyValue(OrigLoad, Args.back());
705        }
706      }
707
708    if (ExtraArgHack)
709      Args.push_back(Constant::getNullValue(Type::getInt32Ty(F->getContext())));
710
711    // Push any varargs arguments on the list.
712    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
713      Args.push_back(*AI);
714      if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
715        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
716    }
717
718    // Add any function attributes.
719    if (Attributes attrs = CallPAL.getFnAttributes())
720      AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
721
722    Instruction *New;
723    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
724      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
725                               Args.begin(), Args.end(), "", Call);
726      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
727      cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
728                                                          AttributesVec.end()));
729    } else {
730      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
731      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
732      cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
733                                                        AttributesVec.end()));
734      if (cast<CallInst>(Call)->isTailCall())
735        cast<CallInst>(New)->setTailCall();
736    }
737    Args.clear();
738    AttributesVec.clear();
739
740    // Update the alias analysis implementation to know that we are replacing
741    // the old call with a new one.
742    AA.replaceWithNewValue(Call, New);
743
744    // Update the callgraph to know that the callsite has been transformed.
745    CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
746    CalleeNode->replaceCallEdge(Call, New, NF_CGN);
747
748    if (!Call->use_empty()) {
749      Call->replaceAllUsesWith(New);
750      New->takeName(Call);
751    }
752
753    // Finally, remove the old call from the program, reducing the use-count of
754    // F.
755    Call->eraseFromParent();
756  }
757
758  // Since we have now created the new function, splice the body of the old
759  // function right into the new function, leaving the old rotting hulk of the
760  // function empty.
761  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
762
763  // Loop over the argument list, transfering uses of the old arguments over to
764  // the new arguments, also transfering over the names as well.
765  //
766  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
767       I2 = NF->arg_begin(); I != E; ++I) {
768    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
769      // If this is an unmodified argument, move the name and users over to the
770      // new version.
771      I->replaceAllUsesWith(I2);
772      I2->takeName(I);
773      AA.replaceWithNewValue(I, I2);
774      ++I2;
775      continue;
776    }
777
778    if (ByValArgsToTransform.count(I)) {
779      // In the callee, we create an alloca, and store each of the new incoming
780      // arguments into the alloca.
781      Instruction *InsertPt = NF->begin()->begin();
782
783      // Just add all the struct element types.
784      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
785      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
786      const StructType *STy = cast<StructType>(AgTy);
787      Value *Idxs[2] = {
788            ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
789
790      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
791        Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
792        Value *Idx =
793          GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2,
794                                    TheAlloca->getName()+"."+Twine(i),
795                                    InsertPt);
796        I2->setName(I->getName()+"."+Twine(i));
797        new StoreInst(I2++, Idx, InsertPt);
798      }
799
800      // Anything that used the arg should now use the alloca.
801      I->replaceAllUsesWith(TheAlloca);
802      TheAlloca->takeName(I);
803      AA.replaceWithNewValue(I, TheAlloca);
804      continue;
805    }
806
807    if (I->use_empty()) {
808      AA.deleteValue(I);
809      continue;
810    }
811
812    // Otherwise, if we promoted this argument, then all users are load
813    // instructions (or GEPs with only load users), and all loads should be
814    // using the new argument that we added.
815    ScalarizeTable &ArgIndices = ScalarizedElements[I];
816
817    while (!I->use_empty()) {
818      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
819        assert(ArgIndices.begin()->empty() &&
820               "Load element should sort to front!");
821        I2->setName(I->getName()+".val");
822        LI->replaceAllUsesWith(I2);
823        AA.replaceWithNewValue(LI, I2);
824        LI->eraseFromParent();
825        DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
826              << "' in function '" << F->getName() << "'\n");
827      } else {
828        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
829        IndicesVector Operands;
830        Operands.reserve(GEP->getNumIndices());
831        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
832             II != IE; ++II)
833          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
834
835        // GEPs with a single 0 index can be merged with direct loads
836        if (Operands.size() == 1 && Operands.front() == 0)
837          Operands.clear();
838
839        Function::arg_iterator TheArg = I2;
840        for (ScalarizeTable::iterator It = ArgIndices.begin();
841             *It != Operands; ++It, ++TheArg) {
842          assert(It != ArgIndices.end() && "GEP not handled??");
843        }
844
845        std::string NewName = I->getName();
846        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
847            NewName += "." + utostr(Operands[i]);
848        }
849        NewName += ".val";
850        TheArg->setName(NewName);
851
852        DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
853              << "' of function '" << NF->getName() << "'\n");
854
855        // All of the uses must be load instructions.  Replace them all with
856        // the argument specified by ArgNo.
857        while (!GEP->use_empty()) {
858          LoadInst *L = cast<LoadInst>(GEP->use_back());
859          L->replaceAllUsesWith(TheArg);
860          AA.replaceWithNewValue(L, TheArg);
861          L->eraseFromParent();
862        }
863        AA.deleteValue(GEP);
864        GEP->eraseFromParent();
865      }
866    }
867
868    // Increment I2 past all of the arguments added for this promoted pointer.
869    for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
870      ++I2;
871  }
872
873  // Notify the alias analysis implementation that we inserted a new argument.
874  if (ExtraArgHack)
875    AA.copyValue(Constant::getNullValue(Type::getInt32Ty(F->getContext())),
876                 NF->arg_begin());
877
878
879  // Tell the alias analysis that the old function is about to disappear.
880  AA.replaceWithNewValue(F, NF);
881
882
883  NF_CGN->stealCalledFunctionsFrom(CG[F]);
884
885  // Now that the old function is dead, delete it.  If there is a dangling
886  // reference to the CallgraphNode, just leave the dead function around for
887  // someone else to nuke.
888  CallGraphNode *CGN = CG[F];
889  if (CGN->getNumReferences() == 0)
890    delete CG.removeFunctionFromModule(CGN);
891  else
892    F->setLinkage(Function::ExternalLinkage);
893
894  return NF_CGN;
895}
896