ArgumentPromotion.cpp revision 3ac79e213ac085a189fae7c7f3591577321307bd
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If it can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then it can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// by default it refuses to scalarize aggregates which would require passing in
21// more than three operands to the function, because passing thousands of
22// operands for a large array or structure is unprofitable! This limit can be
23// configured or disabled, however.
24//
25// Note that this transformation could also be done for arguments that are only
26// stored to (returning the value instead), but does not currently.  This case
27// would be best handled when and if LLVM begins supporting multiple return
28// values from functions.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "argpromotion"
33#include "llvm/Transforms/IPO.h"
34#include "llvm/Constants.h"
35#include "llvm/DerivedTypes.h"
36#include "llvm/Module.h"
37#include "llvm/CallGraphSCCPass.h"
38#include "llvm/Instructions.h"
39#include "llvm/LLVMContext.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/CallGraph.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/CFG.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/ADT/DepthFirstIterator.h"
47#include "llvm/ADT/Statistic.h"
48#include "llvm/ADT/StringExtras.h"
49#include <set>
50using namespace llvm;
51
52STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
53STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
54STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
55STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
56
57namespace {
58  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
59  ///
60  struct ArgPromotion : public CallGraphSCCPass {
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
62      AU.addRequired<AliasAnalysis>();
63      CallGraphSCCPass::getAnalysisUsage(AU);
64    }
65
66    virtual bool runOnSCC(CallGraphSCC &SCC);
67    static char ID; // Pass identification, replacement for typeid
68    explicit ArgPromotion(unsigned maxElements = 3)
69        : CallGraphSCCPass(ID), maxElements(maxElements) {
70      initializeArgPromotionPass(*PassRegistry::getPassRegistry());
71    }
72
73    /// A vector used to hold the indices of a single GEP instruction
74    typedef std::vector<uint64_t> IndicesVector;
75
76  private:
77    CallGraphNode *PromoteArguments(CallGraphNode *CGN);
78    bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
79    CallGraphNode *DoPromotion(Function *F,
80                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
81                               SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
82    /// The maximum number of elements to expand, or 0 for unlimited.
83    unsigned maxElements;
84  };
85}
86
87char ArgPromotion::ID = 0;
88INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
89                "Promote 'by reference' arguments to scalars", false, false)
90INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
91INITIALIZE_AG_DEPENDENCY(CallGraph)
92INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
93                "Promote 'by reference' arguments to scalars", false, false)
94
95Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
96  return new ArgPromotion(maxElements);
97}
98
99bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
100  bool Changed = false, LocalChange;
101
102  do {  // Iterate until we stop promoting from this SCC.
103    LocalChange = false;
104    // Attempt to promote arguments from all functions in this SCC.
105    for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
106      if (CallGraphNode *CGN = PromoteArguments(*I)) {
107        LocalChange = true;
108        SCC.ReplaceNode(*I, CGN);
109      }
110    }
111    Changed |= LocalChange;               // Remember that we changed something.
112  } while (LocalChange);
113
114  return Changed;
115}
116
117/// PromoteArguments - This method checks the specified function to see if there
118/// are any promotable arguments and if it is safe to promote the function (for
119/// example, all callers are direct).  If safe to promote some arguments, it
120/// calls the DoPromotion method.
121///
122CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
123  Function *F = CGN->getFunction();
124
125  // Make sure that it is local to this module.
126  if (!F || !F->hasLocalLinkage()) return 0;
127
128  // First check: see if there are any pointer arguments!  If not, quick exit.
129  SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
130  unsigned ArgNo = 0;
131  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
132       I != E; ++I, ++ArgNo)
133    if (I->getType()->isPointerTy())
134      PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
135  if (PointerArgs.empty()) return 0;
136
137  // Second check: make sure that all callers are direct callers.  We can't
138  // transform functions that have indirect callers.
139  if (F->hasAddressTaken())
140    return 0;
141
142  // Check to see which arguments are promotable.  If an argument is promotable,
143  // add it to ArgsToPromote.
144  SmallPtrSet<Argument*, 8> ArgsToPromote;
145  SmallPtrSet<Argument*, 8> ByValArgsToTransform;
146  for (unsigned i = 0; i != PointerArgs.size(); ++i) {
147    bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal);
148
149    // If this is a byval argument, and if the aggregate type is small, just
150    // pass the elements, which is always safe.
151    Argument *PtrArg = PointerArgs[i].first;
152    if (isByVal) {
153      const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
154      if (const StructType *STy = dyn_cast<StructType>(AgTy)) {
155        if (maxElements > 0 && STy->getNumElements() > maxElements) {
156          DEBUG(dbgs() << "argpromotion disable promoting argument '"
157                << PtrArg->getName() << "' because it would require adding more"
158                << " than " << maxElements << " arguments to the function.\n");
159        } else {
160          // If all the elements are single-value types, we can promote it.
161          bool AllSimple = true;
162          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
163            if (!STy->getElementType(i)->isSingleValueType()) {
164              AllSimple = false;
165              break;
166            }
167
168          // Safe to transform, don't even bother trying to "promote" it.
169          // Passing the elements as a scalar will allow scalarrepl to hack on
170          // the new alloca we introduce.
171          if (AllSimple) {
172            ByValArgsToTransform.insert(PtrArg);
173            continue;
174          }
175        }
176      }
177    }
178
179    // Otherwise, see if we can promote the pointer to its value.
180    if (isSafeToPromoteArgument(PtrArg, isByVal))
181      ArgsToPromote.insert(PtrArg);
182  }
183
184  // No promotable pointer arguments.
185  if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
186    return 0;
187
188  return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
189}
190
191/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
192/// to load.
193static bool IsAlwaysValidPointer(Value *V) {
194  if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
195  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
196    return IsAlwaysValidPointer(GEP->getOperand(0));
197  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
198    if (CE->getOpcode() == Instruction::GetElementPtr)
199      return IsAlwaysValidPointer(CE->getOperand(0));
200
201  return false;
202}
203
204/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
205/// all callees pass in a valid pointer for the specified function argument.
206static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
207  Function *Callee = Arg->getParent();
208
209  unsigned ArgNo = std::distance(Callee->arg_begin(),
210                                 Function::arg_iterator(Arg));
211
212  // Look at all call sites of the function.  At this pointer we know we only
213  // have direct callees.
214  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
215       UI != E; ++UI) {
216    CallSite CS(*UI);
217    assert(CS && "Should only have direct calls!");
218
219    if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
220      return false;
221  }
222  return true;
223}
224
225/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
226/// that is greater than or equal to the size of prefix, and each of the
227/// elements in Prefix is the same as the corresponding elements in Longer.
228///
229/// This means it also returns true when Prefix and Longer are equal!
230static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
231                     const ArgPromotion::IndicesVector &Longer) {
232  if (Prefix.size() > Longer.size())
233    return false;
234  for (unsigned i = 0, e = Prefix.size(); i != e; ++i)
235    if (Prefix[i] != Longer[i])
236      return false;
237  return true;
238}
239
240
241/// Checks if Indices, or a prefix of Indices, is in Set.
242static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
243                     std::set<ArgPromotion::IndicesVector> &Set) {
244    std::set<ArgPromotion::IndicesVector>::iterator Low;
245    Low = Set.upper_bound(Indices);
246    if (Low != Set.begin())
247      Low--;
248    // Low is now the last element smaller than or equal to Indices. This means
249    // it points to a prefix of Indices (possibly Indices itself), if such
250    // prefix exists.
251    //
252    // This load is safe if any prefix of its operands is safe to load.
253    return Low != Set.end() && IsPrefix(*Low, Indices);
254}
255
256/// Mark the given indices (ToMark) as safe in the given set of indices
257/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
258/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
259/// already. Furthermore, any indices that Indices is itself a prefix of, are
260/// removed from Safe (since they are implicitely safe because of Indices now).
261static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
262                            std::set<ArgPromotion::IndicesVector> &Safe) {
263  std::set<ArgPromotion::IndicesVector>::iterator Low;
264  Low = Safe.upper_bound(ToMark);
265  // Guard against the case where Safe is empty
266  if (Low != Safe.begin())
267    Low--;
268  // Low is now the last element smaller than or equal to Indices. This
269  // means it points to a prefix of Indices (possibly Indices itself), if
270  // such prefix exists.
271  if (Low != Safe.end()) {
272    if (IsPrefix(*Low, ToMark))
273      // If there is already a prefix of these indices (or exactly these
274      // indices) marked a safe, don't bother adding these indices
275      return;
276
277    // Increment Low, so we can use it as a "insert before" hint
278    ++Low;
279  }
280  // Insert
281  Low = Safe.insert(Low, ToMark);
282  ++Low;
283  // If there we're a prefix of longer index list(s), remove those
284  std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
285  while (Low != End && IsPrefix(ToMark, *Low)) {
286    std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
287    ++Low;
288    Safe.erase(Remove);
289  }
290}
291
292/// isSafeToPromoteArgument - As you might guess from the name of this method,
293/// it checks to see if it is both safe and useful to promote the argument.
294/// This method limits promotion of aggregates to only promote up to three
295/// elements of the aggregate in order to avoid exploding the number of
296/// arguments passed in.
297bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
298  typedef std::set<IndicesVector> GEPIndicesSet;
299
300  // Quick exit for unused arguments
301  if (Arg->use_empty())
302    return true;
303
304  // We can only promote this argument if all of the uses are loads, or are GEP
305  // instructions (with constant indices) that are subsequently loaded.
306  //
307  // Promoting the argument causes it to be loaded in the caller
308  // unconditionally. This is only safe if we can prove that either the load
309  // would have happened in the callee anyway (ie, there is a load in the entry
310  // block) or the pointer passed in at every call site is guaranteed to be
311  // valid.
312  // In the former case, invalid loads can happen, but would have happened
313  // anyway, in the latter case, invalid loads won't happen. This prevents us
314  // from introducing an invalid load that wouldn't have happened in the
315  // original code.
316  //
317  // This set will contain all sets of indices that are loaded in the entry
318  // block, and thus are safe to unconditionally load in the caller.
319  GEPIndicesSet SafeToUnconditionallyLoad;
320
321  // This set contains all the sets of indices that we are planning to promote.
322  // This makes it possible to limit the number of arguments added.
323  GEPIndicesSet ToPromote;
324
325  // If the pointer is always valid, any load with first index 0 is valid.
326  if (isByVal || AllCalleesPassInValidPointerForArgument(Arg))
327    SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
328
329  // First, iterate the entry block and mark loads of (geps of) arguments as
330  // safe.
331  BasicBlock *EntryBlock = Arg->getParent()->begin();
332  // Declare this here so we can reuse it
333  IndicesVector Indices;
334  for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
335       I != E; ++I)
336    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
337      Value *V = LI->getPointerOperand();
338      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
339        V = GEP->getPointerOperand();
340        if (V == Arg) {
341          // This load actually loads (part of) Arg? Check the indices then.
342          Indices.reserve(GEP->getNumIndices());
343          for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
344               II != IE; ++II)
345            if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
346              Indices.push_back(CI->getSExtValue());
347            else
348              // We found a non-constant GEP index for this argument? Bail out
349              // right away, can't promote this argument at all.
350              return false;
351
352          // Indices checked out, mark them as safe
353          MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
354          Indices.clear();
355        }
356      } else if (V == Arg) {
357        // Direct loads are equivalent to a GEP with a single 0 index.
358        MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
359      }
360    }
361
362  // Now, iterate all uses of the argument to see if there are any uses that are
363  // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
364  SmallVector<LoadInst*, 16> Loads;
365  IndicesVector Operands;
366  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
367       UI != E; ++UI) {
368    User *U = *UI;
369    Operands.clear();
370    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
371      if (LI->isVolatile()) return false;  // Don't hack volatile loads
372      Loads.push_back(LI);
373      // Direct loads are equivalent to a GEP with a zero index and then a load.
374      Operands.push_back(0);
375    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
376      if (GEP->use_empty()) {
377        // Dead GEP's cause trouble later.  Just remove them if we run into
378        // them.
379        getAnalysis<AliasAnalysis>().deleteValue(GEP);
380        GEP->eraseFromParent();
381        // TODO: This runs the above loop over and over again for dead GEPs
382        // Couldn't we just do increment the UI iterator earlier and erase the
383        // use?
384        return isSafeToPromoteArgument(Arg, isByVal);
385      }
386
387      // Ensure that all of the indices are constants.
388      for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
389        i != e; ++i)
390        if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
391          Operands.push_back(C->getSExtValue());
392        else
393          return false;  // Not a constant operand GEP!
394
395      // Ensure that the only users of the GEP are load instructions.
396      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
397           UI != E; ++UI)
398        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
399          if (LI->isVolatile()) return false;  // Don't hack volatile loads
400          Loads.push_back(LI);
401        } else {
402          // Other uses than load?
403          return false;
404        }
405    } else {
406      return false;  // Not a load or a GEP.
407    }
408
409    // Now, see if it is safe to promote this load / loads of this GEP. Loading
410    // is safe if Operands, or a prefix of Operands, is marked as safe.
411    if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
412      return false;
413
414    // See if we are already promoting a load with these indices. If not, check
415    // to make sure that we aren't promoting too many elements.  If so, nothing
416    // to do.
417    if (ToPromote.find(Operands) == ToPromote.end()) {
418      if (maxElements > 0 && ToPromote.size() == maxElements) {
419        DEBUG(dbgs() << "argpromotion not promoting argument '"
420              << Arg->getName() << "' because it would require adding more "
421              << "than " << maxElements << " arguments to the function.\n");
422        // We limit aggregate promotion to only promoting up to a fixed number
423        // of elements of the aggregate.
424        return false;
425      }
426      ToPromote.insert(Operands);
427    }
428  }
429
430  if (Loads.empty()) return true;  // No users, this is a dead argument.
431
432  // Okay, now we know that the argument is only used by load instructions and
433  // it is safe to unconditionally perform all of them. Use alias analysis to
434  // check to see if the pointer is guaranteed to not be modified from entry of
435  // the function to each of the load instructions.
436
437  // Because there could be several/many load instructions, remember which
438  // blocks we know to be transparent to the load.
439  SmallPtrSet<BasicBlock*, 16> TranspBlocks;
440
441  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
442
443  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
444    // Check to see if the load is invalidated from the start of the block to
445    // the load itself.
446    LoadInst *Load = Loads[i];
447    BasicBlock *BB = Load->getParent();
448
449    AliasAnalysis::Location Loc(Load->getPointerOperand(),
450                                AA.getTypeStoreSize(Load->getType()),
451                                Load->getMetadata(LLVMContext::MD_tbaa));
452
453    if (AA.canInstructionRangeModify(BB->front(), *Load, Loc))
454      return false;  // Pointer is invalidated!
455
456    // Now check every path from the entry block to the load for transparency.
457    // To do this, we perform a depth first search on the inverse CFG from the
458    // loading block.
459    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
460      BasicBlock *P = *PI;
461      for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
462             I = idf_ext_begin(P, TranspBlocks),
463             E = idf_ext_end(P, TranspBlocks); I != E; ++I)
464        if (AA.canBasicBlockModify(**I, Loc))
465          return false;
466    }
467  }
468
469  // If the path from the entry of the function to each load is free of
470  // instructions that potentially invalidate the load, we can make the
471  // transformation!
472  return true;
473}
474
475/// DoPromotion - This method actually performs the promotion of the specified
476/// arguments, and returns the new function.  At this point, we know that it's
477/// safe to do so.
478CallGraphNode *ArgPromotion::DoPromotion(Function *F,
479                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
480                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
481
482  // Start by computing a new prototype for the function, which is the same as
483  // the old function, but has modified arguments.
484  const FunctionType *FTy = F->getFunctionType();
485  std::vector<const Type*> Params;
486
487  typedef std::set<IndicesVector> ScalarizeTable;
488
489  // ScalarizedElements - If we are promoting a pointer that has elements
490  // accessed out of it, keep track of which elements are accessed so that we
491  // can add one argument for each.
492  //
493  // Arguments that are directly loaded will have a zero element value here, to
494  // handle cases where there are both a direct load and GEP accesses.
495  //
496  std::map<Argument*, ScalarizeTable> ScalarizedElements;
497
498  // OriginalLoads - Keep track of a representative load instruction from the
499  // original function so that we can tell the alias analysis implementation
500  // what the new GEP/Load instructions we are inserting look like.
501  std::map<IndicesVector, LoadInst*> OriginalLoads;
502
503  // Attributes - Keep track of the parameter attributes for the arguments
504  // that we are *not* promoting. For the ones that we do promote, the parameter
505  // attributes are lost
506  SmallVector<AttributeWithIndex, 8> AttributesVec;
507  const AttrListPtr &PAL = F->getAttributes();
508
509  // Add any return attributes.
510  if (Attributes attrs = PAL.getRetAttributes())
511    AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
512
513  // First, determine the new argument list
514  unsigned ArgIndex = 1;
515  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
516       ++I, ++ArgIndex) {
517    if (ByValArgsToTransform.count(I)) {
518      // Simple byval argument? Just add all the struct element types.
519      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
520      const StructType *STy = cast<StructType>(AgTy);
521      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
522        Params.push_back(STy->getElementType(i));
523      ++NumByValArgsPromoted;
524    } else if (!ArgsToPromote.count(I)) {
525      // Unchanged argument
526      Params.push_back(I->getType());
527      if (Attributes attrs = PAL.getParamAttributes(ArgIndex))
528        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
529    } else if (I->use_empty()) {
530      // Dead argument (which are always marked as promotable)
531      ++NumArgumentsDead;
532    } else {
533      // Okay, this is being promoted. This means that the only uses are loads
534      // or GEPs which are only used by loads
535
536      // In this table, we will track which indices are loaded from the argument
537      // (where direct loads are tracked as no indices).
538      ScalarizeTable &ArgIndices = ScalarizedElements[I];
539      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
540           ++UI) {
541        Instruction *User = cast<Instruction>(*UI);
542        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
543        IndicesVector Indices;
544        Indices.reserve(User->getNumOperands() - 1);
545        // Since loads will only have a single operand, and GEPs only a single
546        // non-index operand, this will record direct loads without any indices,
547        // and gep+loads with the GEP indices.
548        for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
549             II != IE; ++II)
550          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
551        // GEPs with a single 0 index can be merged with direct loads
552        if (Indices.size() == 1 && Indices.front() == 0)
553          Indices.clear();
554        ArgIndices.insert(Indices);
555        LoadInst *OrigLoad;
556        if (LoadInst *L = dyn_cast<LoadInst>(User))
557          OrigLoad = L;
558        else
559          // Take any load, we will use it only to update Alias Analysis
560          OrigLoad = cast<LoadInst>(User->use_back());
561        OriginalLoads[Indices] = OrigLoad;
562      }
563
564      // Add a parameter to the function for each element passed in.
565      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
566             E = ArgIndices.end(); SI != E; ++SI) {
567        // not allowed to dereference ->begin() if size() is 0
568        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(),
569                                                           SI->begin(),
570                                                           SI->end()));
571        assert(Params.back());
572      }
573
574      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
575        ++NumArgumentsPromoted;
576      else
577        ++NumAggregatesPromoted;
578    }
579  }
580
581  // Add any function attributes.
582  if (Attributes attrs = PAL.getFnAttributes())
583    AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
584
585  const Type *RetTy = FTy->getReturnType();
586
587  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
588  // have zero fixed arguments.
589  bool ExtraArgHack = false;
590  if (Params.empty() && FTy->isVarArg()) {
591    ExtraArgHack = true;
592    Params.push_back(Type::getInt32Ty(F->getContext()));
593  }
594
595  // Construct the new function type using the new arguments.
596  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
597
598  // Create the new function body and insert it into the module.
599  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
600  NF->copyAttributesFrom(F);
601
602
603  DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
604        << "From: " << *F);
605
606  // Recompute the parameter attributes list based on the new arguments for
607  // the function.
608  NF->setAttributes(AttrListPtr::get(AttributesVec.begin(),
609                                     AttributesVec.end()));
610  AttributesVec.clear();
611
612  F->getParent()->getFunctionList().insert(F, NF);
613  NF->takeName(F);
614
615  // Get the alias analysis information that we need to update to reflect our
616  // changes.
617  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
618
619  // Get the callgraph information that we need to update to reflect our
620  // changes.
621  CallGraph &CG = getAnalysis<CallGraph>();
622
623  // Get a new callgraph node for NF.
624  CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
625
626  // Loop over all of the callers of the function, transforming the call sites
627  // to pass in the loaded pointers.
628  //
629  SmallVector<Value*, 16> Args;
630  while (!F->use_empty()) {
631    CallSite CS(F->use_back());
632    assert(CS.getCalledFunction() == F);
633    Instruction *Call = CS.getInstruction();
634    const AttrListPtr &CallPAL = CS.getAttributes();
635
636    // Add any return attributes.
637    if (Attributes attrs = CallPAL.getRetAttributes())
638      AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
639
640    // Loop over the operands, inserting GEP and loads in the caller as
641    // appropriate.
642    CallSite::arg_iterator AI = CS.arg_begin();
643    ArgIndex = 1;
644    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
645         I != E; ++I, ++AI, ++ArgIndex)
646      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
647        Args.push_back(*AI);          // Unmodified argument
648
649        if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
650          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
651
652      } else if (ByValArgsToTransform.count(I)) {
653        // Emit a GEP and load for each element of the struct.
654        const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
655        const StructType *STy = cast<StructType>(AgTy);
656        Value *Idxs[2] = {
657              ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
658        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
659          Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
660          Value *Idx = GetElementPtrInst::Create(*AI, Idxs, Idxs+2,
661                                                 (*AI)->getName()+"."+utostr(i),
662                                                 Call);
663          // TODO: Tell AA about the new values?
664          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
665        }
666      } else if (!I->use_empty()) {
667        // Non-dead argument: insert GEPs and loads as appropriate.
668        ScalarizeTable &ArgIndices = ScalarizedElements[I];
669        // Store the Value* version of the indices in here, but declare it now
670        // for reuse.
671        std::vector<Value*> Ops;
672        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
673               E = ArgIndices.end(); SI != E; ++SI) {
674          Value *V = *AI;
675          LoadInst *OrigLoad = OriginalLoads[*SI];
676          if (!SI->empty()) {
677            Ops.reserve(SI->size());
678            const Type *ElTy = V->getType();
679            for (IndicesVector::const_iterator II = SI->begin(),
680                 IE = SI->end(); II != IE; ++II) {
681              // Use i32 to index structs, and i64 for others (pointers/arrays).
682              // This satisfies GEP constraints.
683              const Type *IdxTy = (ElTy->isStructTy() ?
684                    Type::getInt32Ty(F->getContext()) :
685                    Type::getInt64Ty(F->getContext()));
686              Ops.push_back(ConstantInt::get(IdxTy, *II));
687              // Keep track of the type we're currently indexing.
688              ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
689            }
690            // And create a GEP to extract those indices.
691            V = GetElementPtrInst::Create(V, Ops.begin(), Ops.end(),
692                                          V->getName()+".idx", Call);
693            Ops.clear();
694            AA.copyValue(OrigLoad->getOperand(0), V);
695          }
696          // Since we're replacing a load make sure we take the alignment
697          // of the previous load.
698          LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
699          newLoad->setAlignment(OrigLoad->getAlignment());
700          // Transfer the TBAA info too.
701          newLoad->setMetadata(LLVMContext::MD_tbaa,
702                               OrigLoad->getMetadata(LLVMContext::MD_tbaa));
703          Args.push_back(newLoad);
704          AA.copyValue(OrigLoad, Args.back());
705        }
706      }
707
708    if (ExtraArgHack)
709      Args.push_back(Constant::getNullValue(Type::getInt32Ty(F->getContext())));
710
711    // Push any varargs arguments on the list.
712    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
713      Args.push_back(*AI);
714      if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
715        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
716    }
717
718    // Add any function attributes.
719    if (Attributes attrs = CallPAL.getFnAttributes())
720      AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
721
722    Instruction *New;
723    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
724      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
725                               Args.begin(), Args.end(), "", Call);
726      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
727      cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
728                                                          AttributesVec.end()));
729    } else {
730      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
731      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
732      cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
733                                                        AttributesVec.end()));
734      if (cast<CallInst>(Call)->isTailCall())
735        cast<CallInst>(New)->setTailCall();
736    }
737    Args.clear();
738    AttributesVec.clear();
739
740    // Update the alias analysis implementation to know that we are replacing
741    // the old call with a new one.
742    AA.replaceWithNewValue(Call, New);
743
744    // Update the callgraph to know that the callsite has been transformed.
745    CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
746    CalleeNode->replaceCallEdge(Call, New, NF_CGN);
747
748    if (!Call->use_empty()) {
749      Call->replaceAllUsesWith(New);
750      New->takeName(Call);
751    }
752
753    // Finally, remove the old call from the program, reducing the use-count of
754    // F.
755    Call->eraseFromParent();
756  }
757
758  // Since we have now created the new function, splice the body of the old
759  // function right into the new function, leaving the old rotting hulk of the
760  // function empty.
761  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
762
763  // Loop over the argument list, transfering uses of the old arguments over to
764  // the new arguments, also transfering over the names as well.
765  //
766  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
767       I2 = NF->arg_begin(); I != E; ++I) {
768    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
769      // If this is an unmodified argument, move the name and users over to the
770      // new version.
771      I->replaceAllUsesWith(I2);
772      I2->takeName(I);
773      AA.replaceWithNewValue(I, I2);
774      ++I2;
775      continue;
776    }
777
778    if (ByValArgsToTransform.count(I)) {
779      // In the callee, we create an alloca, and store each of the new incoming
780      // arguments into the alloca.
781      Instruction *InsertPt = NF->begin()->begin();
782
783      // Just add all the struct element types.
784      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
785      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
786      const StructType *STy = cast<StructType>(AgTy);
787      Value *Idxs[2] = {
788            ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
789
790      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
791        Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
792        Value *Idx =
793          GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2,
794                                    TheAlloca->getName()+"."+Twine(i),
795                                    InsertPt);
796        I2->setName(I->getName()+"."+Twine(i));
797        new StoreInst(I2++, Idx, InsertPt);
798      }
799
800      // Anything that used the arg should now use the alloca.
801      I->replaceAllUsesWith(TheAlloca);
802      TheAlloca->takeName(I);
803      AA.replaceWithNewValue(I, TheAlloca);
804      continue;
805    }
806
807    if (I->use_empty()) {
808      AA.deleteValue(I);
809      continue;
810    }
811
812    // Otherwise, if we promoted this argument, then all users are load
813    // instructions (or GEPs with only load users), and all loads should be
814    // using the new argument that we added.
815    ScalarizeTable &ArgIndices = ScalarizedElements[I];
816
817    while (!I->use_empty()) {
818      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
819        assert(ArgIndices.begin()->empty() &&
820               "Load element should sort to front!");
821        I2->setName(I->getName()+".val");
822        LI->replaceAllUsesWith(I2);
823        AA.replaceWithNewValue(LI, I2);
824        LI->eraseFromParent();
825        DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
826              << "' in function '" << F->getName() << "'\n");
827      } else {
828        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
829        IndicesVector Operands;
830        Operands.reserve(GEP->getNumIndices());
831        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
832             II != IE; ++II)
833          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
834
835        // GEPs with a single 0 index can be merged with direct loads
836        if (Operands.size() == 1 && Operands.front() == 0)
837          Operands.clear();
838
839        Function::arg_iterator TheArg = I2;
840        for (ScalarizeTable::iterator It = ArgIndices.begin();
841             *It != Operands; ++It, ++TheArg) {
842          assert(It != ArgIndices.end() && "GEP not handled??");
843        }
844
845        std::string NewName = I->getName();
846        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
847            NewName += "." + utostr(Operands[i]);
848        }
849        NewName += ".val";
850        TheArg->setName(NewName);
851
852        DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
853              << "' of function '" << NF->getName() << "'\n");
854
855        // All of the uses must be load instructions.  Replace them all with
856        // the argument specified by ArgNo.
857        while (!GEP->use_empty()) {
858          LoadInst *L = cast<LoadInst>(GEP->use_back());
859          L->replaceAllUsesWith(TheArg);
860          AA.replaceWithNewValue(L, TheArg);
861          L->eraseFromParent();
862        }
863        AA.deleteValue(GEP);
864        GEP->eraseFromParent();
865      }
866    }
867
868    // Increment I2 past all of the arguments added for this promoted pointer.
869    for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
870      ++I2;
871  }
872
873  // Notify the alias analysis implementation that we inserted a new argument.
874  if (ExtraArgHack)
875    AA.copyValue(Constant::getNullValue(Type::getInt32Ty(F->getContext())),
876                 NF->arg_begin());
877
878
879  // Tell the alias analysis that the old function is about to disappear.
880  AA.replaceWithNewValue(F, NF);
881
882
883  NF_CGN->stealCalledFunctionsFrom(CG[F]);
884
885  // Now that the old function is dead, delete it.  If there is a dangling
886  // reference to the CallgraphNode, just leave the dead function around for
887  // someone else to nuke.
888  CallGraphNode *CGN = CG[F];
889  if (CGN->getNumReferences() == 0)
890    delete CG.removeFunctionFromModule(CGN);
891  else
892    F->setLinkage(Function::ExternalLinkage);
893
894  return NF_CGN;
895}
896