ArgumentPromotion.cpp revision 68101eff9191d7610ff708821e2a3ab8366f06b9
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If it can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then it can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// by default it refuses to scalarize aggregates which would require passing in
21// more than three operands to the function, because passing thousands of
22// operands for a large array or structure is unprofitable! This limit can be
23// configured or disabled, however.
24//
25// Note that this transformation could also be done for arguments that are only
26// stored to (returning the value instead), but does not currently.  This case
27// would be best handled when and if LLVM begins supporting multiple return
28// values from functions.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "argpromotion"
33#include "llvm/Transforms/IPO.h"
34#include "llvm/Constants.h"
35#include "llvm/DerivedTypes.h"
36#include "llvm/Module.h"
37#include "llvm/CallGraphSCCPass.h"
38#include "llvm/Instructions.h"
39#include "llvm/LLVMContext.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/CallGraph.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/CFG.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/ADT/DepthFirstIterator.h"
47#include "llvm/ADT/Statistic.h"
48#include "llvm/ADT/StringExtras.h"
49#include <set>
50using namespace llvm;
51
52STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
53STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
54STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
55STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
56
57namespace {
58  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
59  ///
60  struct ArgPromotion : public CallGraphSCCPass {
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
62      AU.addRequired<AliasAnalysis>();
63      CallGraphSCCPass::getAnalysisUsage(AU);
64    }
65
66    virtual bool runOnSCC(CallGraphSCC &SCC);
67    static char ID; // Pass identification, replacement for typeid
68    explicit ArgPromotion(unsigned maxElements = 3)
69        : CallGraphSCCPass(ID), maxElements(maxElements) {
70      initializeArgPromotionPass(*PassRegistry::getPassRegistry());
71    }
72
73    /// A vector used to hold the indices of a single GEP instruction
74    typedef std::vector<uint64_t> IndicesVector;
75
76  private:
77    CallGraphNode *PromoteArguments(CallGraphNode *CGN);
78    bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
79    CallGraphNode *DoPromotion(Function *F,
80                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
81                               SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
82    /// The maximum number of elements to expand, or 0 for unlimited.
83    unsigned maxElements;
84  };
85}
86
87char ArgPromotion::ID = 0;
88INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
89                "Promote 'by reference' arguments to scalars", false, false)
90INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
91INITIALIZE_AG_DEPENDENCY(CallGraph)
92INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
93                "Promote 'by reference' arguments to scalars", false, false)
94
95Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
96  return new ArgPromotion(maxElements);
97}
98
99bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
100  bool Changed = false, LocalChange;
101
102  do {  // Iterate until we stop promoting from this SCC.
103    LocalChange = false;
104    // Attempt to promote arguments from all functions in this SCC.
105    for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
106      if (CallGraphNode *CGN = PromoteArguments(*I)) {
107        LocalChange = true;
108        SCC.ReplaceNode(*I, CGN);
109      }
110    }
111    Changed |= LocalChange;               // Remember that we changed something.
112  } while (LocalChange);
113
114  return Changed;
115}
116
117/// PromoteArguments - This method checks the specified function to see if there
118/// are any promotable arguments and if it is safe to promote the function (for
119/// example, all callers are direct).  If safe to promote some arguments, it
120/// calls the DoPromotion method.
121///
122CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
123  Function *F = CGN->getFunction();
124
125  // Make sure that it is local to this module.
126  if (!F || !F->hasLocalLinkage()) return 0;
127
128  // First check: see if there are any pointer arguments!  If not, quick exit.
129  SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
130  unsigned ArgNo = 0;
131  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
132       I != E; ++I, ++ArgNo)
133    if (I->getType()->isPointerTy())
134      PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
135  if (PointerArgs.empty()) return 0;
136
137  // Second check: make sure that all callers are direct callers.  We can't
138  // transform functions that have indirect callers.
139  if (F->hasAddressTaken())
140    return 0;
141
142  // Check to see which arguments are promotable.  If an argument is promotable,
143  // add it to ArgsToPromote.
144  SmallPtrSet<Argument*, 8> ArgsToPromote;
145  SmallPtrSet<Argument*, 8> ByValArgsToTransform;
146  for (unsigned i = 0; i != PointerArgs.size(); ++i) {
147    bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal);
148
149    // If this is a byval argument, and if the aggregate type is small, just
150    // pass the elements, which is always safe.
151    Argument *PtrArg = PointerArgs[i].first;
152    if (isByVal) {
153      const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
154      if (const StructType *STy = dyn_cast<StructType>(AgTy)) {
155        if (maxElements > 0 && STy->getNumElements() > maxElements) {
156          DEBUG(dbgs() << "argpromotion disable promoting argument '"
157                << PtrArg->getName() << "' because it would require adding more"
158                << " than " << maxElements << " arguments to the function.\n");
159        } else {
160          // If all the elements are single-value types, we can promote it.
161          bool AllSimple = true;
162          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
163            if (!STy->getElementType(i)->isSingleValueType()) {
164              AllSimple = false;
165              break;
166            }
167
168          // Safe to transform, don't even bother trying to "promote" it.
169          // Passing the elements as a scalar will allow scalarrepl to hack on
170          // the new alloca we introduce.
171          if (AllSimple) {
172            ByValArgsToTransform.insert(PtrArg);
173            continue;
174          }
175        }
176      }
177    }
178
179    // Otherwise, see if we can promote the pointer to its value.
180    if (isSafeToPromoteArgument(PtrArg, isByVal))
181      ArgsToPromote.insert(PtrArg);
182  }
183
184  // No promotable pointer arguments.
185  if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
186    return 0;
187
188  return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
189}
190
191/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
192/// all callees pass in a valid pointer for the specified function argument.
193static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
194  Function *Callee = Arg->getParent();
195
196  unsigned ArgNo = std::distance(Callee->arg_begin(),
197                                 Function::arg_iterator(Arg));
198
199  // Look at all call sites of the function.  At this pointer we know we only
200  // have direct callees.
201  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
202       UI != E; ++UI) {
203    CallSite CS(*UI);
204    assert(CS && "Should only have direct calls!");
205
206    if (!CS.getArgument(ArgNo)->isDereferenceablePointer())
207      return false;
208  }
209  return true;
210}
211
212/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
213/// that is greater than or equal to the size of prefix, and each of the
214/// elements in Prefix is the same as the corresponding elements in Longer.
215///
216/// This means it also returns true when Prefix and Longer are equal!
217static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
218                     const ArgPromotion::IndicesVector &Longer) {
219  if (Prefix.size() > Longer.size())
220    return false;
221  for (unsigned i = 0, e = Prefix.size(); i != e; ++i)
222    if (Prefix[i] != Longer[i])
223      return false;
224  return true;
225}
226
227
228/// Checks if Indices, or a prefix of Indices, is in Set.
229static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
230                     std::set<ArgPromotion::IndicesVector> &Set) {
231    std::set<ArgPromotion::IndicesVector>::iterator Low;
232    Low = Set.upper_bound(Indices);
233    if (Low != Set.begin())
234      Low--;
235    // Low is now the last element smaller than or equal to Indices. This means
236    // it points to a prefix of Indices (possibly Indices itself), if such
237    // prefix exists.
238    //
239    // This load is safe if any prefix of its operands is safe to load.
240    return Low != Set.end() && IsPrefix(*Low, Indices);
241}
242
243/// Mark the given indices (ToMark) as safe in the given set of indices
244/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
245/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
246/// already. Furthermore, any indices that Indices is itself a prefix of, are
247/// removed from Safe (since they are implicitely safe because of Indices now).
248static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
249                            std::set<ArgPromotion::IndicesVector> &Safe) {
250  std::set<ArgPromotion::IndicesVector>::iterator Low;
251  Low = Safe.upper_bound(ToMark);
252  // Guard against the case where Safe is empty
253  if (Low != Safe.begin())
254    Low--;
255  // Low is now the last element smaller than or equal to Indices. This
256  // means it points to a prefix of Indices (possibly Indices itself), if
257  // such prefix exists.
258  if (Low != Safe.end()) {
259    if (IsPrefix(*Low, ToMark))
260      // If there is already a prefix of these indices (or exactly these
261      // indices) marked a safe, don't bother adding these indices
262      return;
263
264    // Increment Low, so we can use it as a "insert before" hint
265    ++Low;
266  }
267  // Insert
268  Low = Safe.insert(Low, ToMark);
269  ++Low;
270  // If there we're a prefix of longer index list(s), remove those
271  std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
272  while (Low != End && IsPrefix(ToMark, *Low)) {
273    std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
274    ++Low;
275    Safe.erase(Remove);
276  }
277}
278
279/// isSafeToPromoteArgument - As you might guess from the name of this method,
280/// it checks to see if it is both safe and useful to promote the argument.
281/// This method limits promotion of aggregates to only promote up to three
282/// elements of the aggregate in order to avoid exploding the number of
283/// arguments passed in.
284bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
285  typedef std::set<IndicesVector> GEPIndicesSet;
286
287  // Quick exit for unused arguments
288  if (Arg->use_empty())
289    return true;
290
291  // We can only promote this argument if all of the uses are loads, or are GEP
292  // instructions (with constant indices) that are subsequently loaded.
293  //
294  // Promoting the argument causes it to be loaded in the caller
295  // unconditionally. This is only safe if we can prove that either the load
296  // would have happened in the callee anyway (ie, there is a load in the entry
297  // block) or the pointer passed in at every call site is guaranteed to be
298  // valid.
299  // In the former case, invalid loads can happen, but would have happened
300  // anyway, in the latter case, invalid loads won't happen. This prevents us
301  // from introducing an invalid load that wouldn't have happened in the
302  // original code.
303  //
304  // This set will contain all sets of indices that are loaded in the entry
305  // block, and thus are safe to unconditionally load in the caller.
306  GEPIndicesSet SafeToUnconditionallyLoad;
307
308  // This set contains all the sets of indices that we are planning to promote.
309  // This makes it possible to limit the number of arguments added.
310  GEPIndicesSet ToPromote;
311
312  // If the pointer is always valid, any load with first index 0 is valid.
313  if (isByVal || AllCalleesPassInValidPointerForArgument(Arg))
314    SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
315
316  // First, iterate the entry block and mark loads of (geps of) arguments as
317  // safe.
318  BasicBlock *EntryBlock = Arg->getParent()->begin();
319  // Declare this here so we can reuse it
320  IndicesVector Indices;
321  for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
322       I != E; ++I)
323    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
324      Value *V = LI->getPointerOperand();
325      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
326        V = GEP->getPointerOperand();
327        if (V == Arg) {
328          // This load actually loads (part of) Arg? Check the indices then.
329          Indices.reserve(GEP->getNumIndices());
330          for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
331               II != IE; ++II)
332            if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
333              Indices.push_back(CI->getSExtValue());
334            else
335              // We found a non-constant GEP index for this argument? Bail out
336              // right away, can't promote this argument at all.
337              return false;
338
339          // Indices checked out, mark them as safe
340          MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
341          Indices.clear();
342        }
343      } else if (V == Arg) {
344        // Direct loads are equivalent to a GEP with a single 0 index.
345        MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
346      }
347    }
348
349  // Now, iterate all uses of the argument to see if there are any uses that are
350  // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
351  SmallVector<LoadInst*, 16> Loads;
352  IndicesVector Operands;
353  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
354       UI != E; ++UI) {
355    User *U = *UI;
356    Operands.clear();
357    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
358      if (LI->isVolatile()) return false;  // Don't hack volatile loads
359      Loads.push_back(LI);
360      // Direct loads are equivalent to a GEP with a zero index and then a load.
361      Operands.push_back(0);
362    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
363      if (GEP->use_empty()) {
364        // Dead GEP's cause trouble later.  Just remove them if we run into
365        // them.
366        getAnalysis<AliasAnalysis>().deleteValue(GEP);
367        GEP->eraseFromParent();
368        // TODO: This runs the above loop over and over again for dead GEPs
369        // Couldn't we just do increment the UI iterator earlier and erase the
370        // use?
371        return isSafeToPromoteArgument(Arg, isByVal);
372      }
373
374      // Ensure that all of the indices are constants.
375      for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
376        i != e; ++i)
377        if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
378          Operands.push_back(C->getSExtValue());
379        else
380          return false;  // Not a constant operand GEP!
381
382      // Ensure that the only users of the GEP are load instructions.
383      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
384           UI != E; ++UI)
385        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
386          if (LI->isVolatile()) return false;  // Don't hack volatile loads
387          Loads.push_back(LI);
388        } else {
389          // Other uses than load?
390          return false;
391        }
392    } else {
393      return false;  // Not a load or a GEP.
394    }
395
396    // Now, see if it is safe to promote this load / loads of this GEP. Loading
397    // is safe if Operands, or a prefix of Operands, is marked as safe.
398    if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
399      return false;
400
401    // See if we are already promoting a load with these indices. If not, check
402    // to make sure that we aren't promoting too many elements.  If so, nothing
403    // to do.
404    if (ToPromote.find(Operands) == ToPromote.end()) {
405      if (maxElements > 0 && ToPromote.size() == maxElements) {
406        DEBUG(dbgs() << "argpromotion not promoting argument '"
407              << Arg->getName() << "' because it would require adding more "
408              << "than " << maxElements << " arguments to the function.\n");
409        // We limit aggregate promotion to only promoting up to a fixed number
410        // of elements of the aggregate.
411        return false;
412      }
413      ToPromote.insert(Operands);
414    }
415  }
416
417  if (Loads.empty()) return true;  // No users, this is a dead argument.
418
419  // Okay, now we know that the argument is only used by load instructions and
420  // it is safe to unconditionally perform all of them. Use alias analysis to
421  // check to see if the pointer is guaranteed to not be modified from entry of
422  // the function to each of the load instructions.
423
424  // Because there could be several/many load instructions, remember which
425  // blocks we know to be transparent to the load.
426  SmallPtrSet<BasicBlock*, 16> TranspBlocks;
427
428  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
429
430  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
431    // Check to see if the load is invalidated from the start of the block to
432    // the load itself.
433    LoadInst *Load = Loads[i];
434    BasicBlock *BB = Load->getParent();
435
436    AliasAnalysis::Location Loc(Load->getPointerOperand(),
437                                AA.getTypeStoreSize(Load->getType()),
438                                Load->getMetadata(LLVMContext::MD_tbaa));
439
440    if (AA.canInstructionRangeModify(BB->front(), *Load, Loc))
441      return false;  // Pointer is invalidated!
442
443    // Now check every path from the entry block to the load for transparency.
444    // To do this, we perform a depth first search on the inverse CFG from the
445    // loading block.
446    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
447      BasicBlock *P = *PI;
448      for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
449             I = idf_ext_begin(P, TranspBlocks),
450             E = idf_ext_end(P, TranspBlocks); I != E; ++I)
451        if (AA.canBasicBlockModify(**I, Loc))
452          return false;
453    }
454  }
455
456  // If the path from the entry of the function to each load is free of
457  // instructions that potentially invalidate the load, we can make the
458  // transformation!
459  return true;
460}
461
462/// DoPromotion - This method actually performs the promotion of the specified
463/// arguments, and returns the new function.  At this point, we know that it's
464/// safe to do so.
465CallGraphNode *ArgPromotion::DoPromotion(Function *F,
466                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
467                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
468
469  // Start by computing a new prototype for the function, which is the same as
470  // the old function, but has modified arguments.
471  const FunctionType *FTy = F->getFunctionType();
472  std::vector<const Type*> Params;
473
474  typedef std::set<IndicesVector> ScalarizeTable;
475
476  // ScalarizedElements - If we are promoting a pointer that has elements
477  // accessed out of it, keep track of which elements are accessed so that we
478  // can add one argument for each.
479  //
480  // Arguments that are directly loaded will have a zero element value here, to
481  // handle cases where there are both a direct load and GEP accesses.
482  //
483  std::map<Argument*, ScalarizeTable> ScalarizedElements;
484
485  // OriginalLoads - Keep track of a representative load instruction from the
486  // original function so that we can tell the alias analysis implementation
487  // what the new GEP/Load instructions we are inserting look like.
488  std::map<IndicesVector, LoadInst*> OriginalLoads;
489
490  // Attributes - Keep track of the parameter attributes for the arguments
491  // that we are *not* promoting. For the ones that we do promote, the parameter
492  // attributes are lost
493  SmallVector<AttributeWithIndex, 8> AttributesVec;
494  const AttrListPtr &PAL = F->getAttributes();
495
496  // Add any return attributes.
497  if (Attributes attrs = PAL.getRetAttributes())
498    AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
499
500  // First, determine the new argument list
501  unsigned ArgIndex = 1;
502  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
503       ++I, ++ArgIndex) {
504    if (ByValArgsToTransform.count(I)) {
505      // Simple byval argument? Just add all the struct element types.
506      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
507      const StructType *STy = cast<StructType>(AgTy);
508      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
509        Params.push_back(STy->getElementType(i));
510      ++NumByValArgsPromoted;
511    } else if (!ArgsToPromote.count(I)) {
512      // Unchanged argument
513      Params.push_back(I->getType());
514      if (Attributes attrs = PAL.getParamAttributes(ArgIndex))
515        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
516    } else if (I->use_empty()) {
517      // Dead argument (which are always marked as promotable)
518      ++NumArgumentsDead;
519    } else {
520      // Okay, this is being promoted. This means that the only uses are loads
521      // or GEPs which are only used by loads
522
523      // In this table, we will track which indices are loaded from the argument
524      // (where direct loads are tracked as no indices).
525      ScalarizeTable &ArgIndices = ScalarizedElements[I];
526      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
527           ++UI) {
528        Instruction *User = cast<Instruction>(*UI);
529        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
530        IndicesVector Indices;
531        Indices.reserve(User->getNumOperands() - 1);
532        // Since loads will only have a single operand, and GEPs only a single
533        // non-index operand, this will record direct loads without any indices,
534        // and gep+loads with the GEP indices.
535        for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
536             II != IE; ++II)
537          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
538        // GEPs with a single 0 index can be merged with direct loads
539        if (Indices.size() == 1 && Indices.front() == 0)
540          Indices.clear();
541        ArgIndices.insert(Indices);
542        LoadInst *OrigLoad;
543        if (LoadInst *L = dyn_cast<LoadInst>(User))
544          OrigLoad = L;
545        else
546          // Take any load, we will use it only to update Alias Analysis
547          OrigLoad = cast<LoadInst>(User->use_back());
548        OriginalLoads[Indices] = OrigLoad;
549      }
550
551      // Add a parameter to the function for each element passed in.
552      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
553             E = ArgIndices.end(); SI != E; ++SI) {
554        // not allowed to dereference ->begin() if size() is 0
555        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(),
556                                                           SI->begin(),
557                                                           SI->end()));
558        assert(Params.back());
559      }
560
561      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
562        ++NumArgumentsPromoted;
563      else
564        ++NumAggregatesPromoted;
565    }
566  }
567
568  // Add any function attributes.
569  if (Attributes attrs = PAL.getFnAttributes())
570    AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
571
572  const Type *RetTy = FTy->getReturnType();
573
574  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
575  // have zero fixed arguments.
576  bool ExtraArgHack = false;
577  if (Params.empty() && FTy->isVarArg()) {
578    ExtraArgHack = true;
579    Params.push_back(Type::getInt32Ty(F->getContext()));
580  }
581
582  // Construct the new function type using the new arguments.
583  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
584
585  // Create the new function body and insert it into the module.
586  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
587  NF->copyAttributesFrom(F);
588
589
590  DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
591        << "From: " << *F);
592
593  // Recompute the parameter attributes list based on the new arguments for
594  // the function.
595  NF->setAttributes(AttrListPtr::get(AttributesVec.begin(),
596                                     AttributesVec.end()));
597  AttributesVec.clear();
598
599  F->getParent()->getFunctionList().insert(F, NF);
600  NF->takeName(F);
601
602  // Get the alias analysis information that we need to update to reflect our
603  // changes.
604  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
605
606  // Get the callgraph information that we need to update to reflect our
607  // changes.
608  CallGraph &CG = getAnalysis<CallGraph>();
609
610  // Get a new callgraph node for NF.
611  CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
612
613  // Loop over all of the callers of the function, transforming the call sites
614  // to pass in the loaded pointers.
615  //
616  SmallVector<Value*, 16> Args;
617  while (!F->use_empty()) {
618    CallSite CS(F->use_back());
619    assert(CS.getCalledFunction() == F);
620    Instruction *Call = CS.getInstruction();
621    const AttrListPtr &CallPAL = CS.getAttributes();
622
623    // Add any return attributes.
624    if (Attributes attrs = CallPAL.getRetAttributes())
625      AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
626
627    // Loop over the operands, inserting GEP and loads in the caller as
628    // appropriate.
629    CallSite::arg_iterator AI = CS.arg_begin();
630    ArgIndex = 1;
631    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
632         I != E; ++I, ++AI, ++ArgIndex)
633      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
634        Args.push_back(*AI);          // Unmodified argument
635
636        if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
637          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
638
639      } else if (ByValArgsToTransform.count(I)) {
640        // Emit a GEP and load for each element of the struct.
641        const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
642        const StructType *STy = cast<StructType>(AgTy);
643        Value *Idxs[2] = {
644              ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
645        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
646          Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
647          Value *Idx = GetElementPtrInst::Create(*AI, Idxs, Idxs+2,
648                                                 (*AI)->getName()+"."+utostr(i),
649                                                 Call);
650          // TODO: Tell AA about the new values?
651          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
652        }
653      } else if (!I->use_empty()) {
654        // Non-dead argument: insert GEPs and loads as appropriate.
655        ScalarizeTable &ArgIndices = ScalarizedElements[I];
656        // Store the Value* version of the indices in here, but declare it now
657        // for reuse.
658        std::vector<Value*> Ops;
659        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
660               E = ArgIndices.end(); SI != E; ++SI) {
661          Value *V = *AI;
662          LoadInst *OrigLoad = OriginalLoads[*SI];
663          if (!SI->empty()) {
664            Ops.reserve(SI->size());
665            const Type *ElTy = V->getType();
666            for (IndicesVector::const_iterator II = SI->begin(),
667                 IE = SI->end(); II != IE; ++II) {
668              // Use i32 to index structs, and i64 for others (pointers/arrays).
669              // This satisfies GEP constraints.
670              const Type *IdxTy = (ElTy->isStructTy() ?
671                    Type::getInt32Ty(F->getContext()) :
672                    Type::getInt64Ty(F->getContext()));
673              Ops.push_back(ConstantInt::get(IdxTy, *II));
674              // Keep track of the type we're currently indexing.
675              ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
676            }
677            // And create a GEP to extract those indices.
678            V = GetElementPtrInst::Create(V, Ops.begin(), Ops.end(),
679                                          V->getName()+".idx", Call);
680            Ops.clear();
681            AA.copyValue(OrigLoad->getOperand(0), V);
682          }
683          // Since we're replacing a load make sure we take the alignment
684          // of the previous load.
685          LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
686          newLoad->setAlignment(OrigLoad->getAlignment());
687          // Transfer the TBAA info too.
688          newLoad->setMetadata(LLVMContext::MD_tbaa,
689                               OrigLoad->getMetadata(LLVMContext::MD_tbaa));
690          Args.push_back(newLoad);
691          AA.copyValue(OrigLoad, Args.back());
692        }
693      }
694
695    if (ExtraArgHack)
696      Args.push_back(Constant::getNullValue(Type::getInt32Ty(F->getContext())));
697
698    // Push any varargs arguments on the list.
699    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
700      Args.push_back(*AI);
701      if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
702        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
703    }
704
705    // Add any function attributes.
706    if (Attributes attrs = CallPAL.getFnAttributes())
707      AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
708
709    Instruction *New;
710    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
711      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
712                               Args.begin(), Args.end(), "", Call);
713      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
714      cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
715                                                          AttributesVec.end()));
716    } else {
717      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
718      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
719      cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
720                                                        AttributesVec.end()));
721      if (cast<CallInst>(Call)->isTailCall())
722        cast<CallInst>(New)->setTailCall();
723    }
724    Args.clear();
725    AttributesVec.clear();
726
727    // Update the alias analysis implementation to know that we are replacing
728    // the old call with a new one.
729    AA.replaceWithNewValue(Call, New);
730
731    // Update the callgraph to know that the callsite has been transformed.
732    CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
733    CalleeNode->replaceCallEdge(Call, New, NF_CGN);
734
735    if (!Call->use_empty()) {
736      Call->replaceAllUsesWith(New);
737      New->takeName(Call);
738    }
739
740    // Finally, remove the old call from the program, reducing the use-count of
741    // F.
742    Call->eraseFromParent();
743  }
744
745  // Since we have now created the new function, splice the body of the old
746  // function right into the new function, leaving the old rotting hulk of the
747  // function empty.
748  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
749
750  // Loop over the argument list, transfering uses of the old arguments over to
751  // the new arguments, also transfering over the names as well.
752  //
753  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
754       I2 = NF->arg_begin(); I != E; ++I) {
755    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
756      // If this is an unmodified argument, move the name and users over to the
757      // new version.
758      I->replaceAllUsesWith(I2);
759      I2->takeName(I);
760      AA.replaceWithNewValue(I, I2);
761      ++I2;
762      continue;
763    }
764
765    if (ByValArgsToTransform.count(I)) {
766      // In the callee, we create an alloca, and store each of the new incoming
767      // arguments into the alloca.
768      Instruction *InsertPt = NF->begin()->begin();
769
770      // Just add all the struct element types.
771      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
772      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
773      const StructType *STy = cast<StructType>(AgTy);
774      Value *Idxs[2] = {
775            ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
776
777      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
778        Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
779        Value *Idx =
780          GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2,
781                                    TheAlloca->getName()+"."+Twine(i),
782                                    InsertPt);
783        I2->setName(I->getName()+"."+Twine(i));
784        new StoreInst(I2++, Idx, InsertPt);
785      }
786
787      // Anything that used the arg should now use the alloca.
788      I->replaceAllUsesWith(TheAlloca);
789      TheAlloca->takeName(I);
790      AA.replaceWithNewValue(I, TheAlloca);
791      continue;
792    }
793
794    if (I->use_empty()) {
795      AA.deleteValue(I);
796      continue;
797    }
798
799    // Otherwise, if we promoted this argument, then all users are load
800    // instructions (or GEPs with only load users), and all loads should be
801    // using the new argument that we added.
802    ScalarizeTable &ArgIndices = ScalarizedElements[I];
803
804    while (!I->use_empty()) {
805      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
806        assert(ArgIndices.begin()->empty() &&
807               "Load element should sort to front!");
808        I2->setName(I->getName()+".val");
809        LI->replaceAllUsesWith(I2);
810        AA.replaceWithNewValue(LI, I2);
811        LI->eraseFromParent();
812        DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
813              << "' in function '" << F->getName() << "'\n");
814      } else {
815        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
816        IndicesVector Operands;
817        Operands.reserve(GEP->getNumIndices());
818        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
819             II != IE; ++II)
820          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
821
822        // GEPs with a single 0 index can be merged with direct loads
823        if (Operands.size() == 1 && Operands.front() == 0)
824          Operands.clear();
825
826        Function::arg_iterator TheArg = I2;
827        for (ScalarizeTable::iterator It = ArgIndices.begin();
828             *It != Operands; ++It, ++TheArg) {
829          assert(It != ArgIndices.end() && "GEP not handled??");
830        }
831
832        std::string NewName = I->getName();
833        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
834            NewName += "." + utostr(Operands[i]);
835        }
836        NewName += ".val";
837        TheArg->setName(NewName);
838
839        DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
840              << "' of function '" << NF->getName() << "'\n");
841
842        // All of the uses must be load instructions.  Replace them all with
843        // the argument specified by ArgNo.
844        while (!GEP->use_empty()) {
845          LoadInst *L = cast<LoadInst>(GEP->use_back());
846          L->replaceAllUsesWith(TheArg);
847          AA.replaceWithNewValue(L, TheArg);
848          L->eraseFromParent();
849        }
850        AA.deleteValue(GEP);
851        GEP->eraseFromParent();
852      }
853    }
854
855    // Increment I2 past all of the arguments added for this promoted pointer.
856    for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
857      ++I2;
858  }
859
860  // Notify the alias analysis implementation that we inserted a new argument.
861  if (ExtraArgHack)
862    AA.copyValue(Constant::getNullValue(Type::getInt32Ty(F->getContext())),
863                 NF->arg_begin());
864
865
866  // Tell the alias analysis that the old function is about to disappear.
867  AA.replaceWithNewValue(F, NF);
868
869
870  NF_CGN->stealCalledFunctionsFrom(CG[F]);
871
872  // Now that the old function is dead, delete it.  If there is a dangling
873  // reference to the CallgraphNode, just leave the dead function around for
874  // someone else to nuke.
875  CallGraphNode *CGN = CG[F];
876  if (CGN->getNumReferences() == 0)
877    delete CG.removeFunctionFromModule(CGN);
878  else
879    F->setLinkage(Function::ExternalLinkage);
880
881  return NF_CGN;
882}
883