ArgumentPromotion.cpp revision 72f0976c1b91c7ba50dce4d0ad0289dc14d37f81
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If it can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then it can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// by default it refuses to scalarize aggregates which would require passing in
21// more than three operands to the function, because passing thousands of
22// operands for a large array or structure is unprofitable! This limit can be
23// configured or disabled, however.
24//
25// Note that this transformation could also be done for arguments that are only
26// stored to (returning the value instead), but does not currently.  This case
27// would be best handled when and if LLVM begins supporting multiple return
28// values from functions.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "argpromotion"
33#include "llvm/Transforms/IPO.h"
34#include "llvm/Constants.h"
35#include "llvm/DerivedTypes.h"
36#include "llvm/Module.h"
37#include "llvm/CallGraphSCCPass.h"
38#include "llvm/Instructions.h"
39#include "llvm/LLVMContext.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/CallGraph.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/CFG.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/ADT/DepthFirstIterator.h"
47#include "llvm/ADT/Statistic.h"
48#include "llvm/ADT/StringExtras.h"
49#include <set>
50using namespace llvm;
51
52STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
53STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
54STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
55STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
56
57namespace {
58  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
59  ///
60  struct ArgPromotion : public CallGraphSCCPass {
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
62      AU.addRequired<AliasAnalysis>();
63      CallGraphSCCPass::getAnalysisUsage(AU);
64    }
65
66    virtual bool runOnSCC(CallGraphSCC &SCC);
67    static char ID; // Pass identification, replacement for typeid
68    explicit ArgPromotion(unsigned maxElements = 3)
69        : CallGraphSCCPass(ID), maxElements(maxElements) {
70      initializeArgPromotionPass(*PassRegistry::getPassRegistry());
71    }
72
73    /// A vector used to hold the indices of a single GEP instruction
74    typedef std::vector<uint64_t> IndicesVector;
75
76  private:
77    CallGraphNode *PromoteArguments(CallGraphNode *CGN);
78    bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
79    CallGraphNode *DoPromotion(Function *F,
80                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
81                               SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
82    /// The maximum number of elements to expand, or 0 for unlimited.
83    unsigned maxElements;
84  };
85}
86
87char ArgPromotion::ID = 0;
88INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
89                "Promote 'by reference' arguments to scalars", false, false)
90INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
91INITIALIZE_AG_DEPENDENCY(CallGraph)
92INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
93                "Promote 'by reference' arguments to scalars", false, false)
94
95Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
96  return new ArgPromotion(maxElements);
97}
98
99bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
100  bool Changed = false, LocalChange;
101
102  do {  // Iterate until we stop promoting from this SCC.
103    LocalChange = false;
104    // Attempt to promote arguments from all functions in this SCC.
105    for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
106      if (CallGraphNode *CGN = PromoteArguments(*I)) {
107        LocalChange = true;
108        SCC.ReplaceNode(*I, CGN);
109      }
110    }
111    Changed |= LocalChange;               // Remember that we changed something.
112  } while (LocalChange);
113
114  return Changed;
115}
116
117/// PromoteArguments - This method checks the specified function to see if there
118/// are any promotable arguments and if it is safe to promote the function (for
119/// example, all callers are direct).  If safe to promote some arguments, it
120/// calls the DoPromotion method.
121///
122CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
123  Function *F = CGN->getFunction();
124
125  // Make sure that it is local to this module.
126  if (!F || !F->hasLocalLinkage()) return 0;
127
128  // First check: see if there are any pointer arguments!  If not, quick exit.
129  SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
130  unsigned ArgNo = 0;
131  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
132       I != E; ++I, ++ArgNo)
133    if (I->getType()->isPointerTy())
134      PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
135  if (PointerArgs.empty()) return 0;
136
137  // Second check: make sure that all callers are direct callers.  We can't
138  // transform functions that have indirect callers.  Also see if the function
139  // is self-recursive.
140  bool isSelfRecursive = false;
141  for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
142       UI != E; ++UI) {
143    CallSite CS(*UI);
144    // Must be a direct call.
145    if (CS.getInstruction() == 0 || !CS.isCallee(UI)) return 0;
146
147    if (CS.getInstruction()->getParent()->getParent() == F)
148      isSelfRecursive = true;
149  }
150
151  // Check to see which arguments are promotable.  If an argument is promotable,
152  // add it to ArgsToPromote.
153  SmallPtrSet<Argument*, 8> ArgsToPromote;
154  SmallPtrSet<Argument*, 8> ByValArgsToTransform;
155  for (unsigned i = 0; i != PointerArgs.size(); ++i) {
156    bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal);
157    Argument *PtrArg = PointerArgs[i].first;
158    Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
159
160    // If this is a byval argument, and if the aggregate type is small, just
161    // pass the elements, which is always safe.
162    if (isByVal) {
163      if (StructType *STy = dyn_cast<StructType>(AgTy)) {
164        if (maxElements > 0 && STy->getNumElements() > maxElements) {
165          DEBUG(dbgs() << "argpromotion disable promoting argument '"
166                << PtrArg->getName() << "' because it would require adding more"
167                << " than " << maxElements << " arguments to the function.\n");
168          continue;
169        }
170
171        // If all the elements are single-value types, we can promote it.
172        bool AllSimple = true;
173        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
174          if (!STy->getElementType(i)->isSingleValueType()) {
175            AllSimple = false;
176            break;
177          }
178        }
179
180        // Safe to transform, don't even bother trying to "promote" it.
181        // Passing the elements as a scalar will allow scalarrepl to hack on
182        // the new alloca we introduce.
183        if (AllSimple) {
184          ByValArgsToTransform.insert(PtrArg);
185          continue;
186        }
187      }
188    }
189
190    // If the argument is a recursive type and we're in a recursive
191    // function, we could end up infinitely peeling the function argument.
192    if (isSelfRecursive) {
193      if (StructType *STy = dyn_cast<StructType>(AgTy)) {
194        bool RecursiveType = false;
195        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
196          if (STy->getElementType(i) == PtrArg->getType()) {
197            RecursiveType = true;
198            break;
199          }
200        }
201        if (RecursiveType)
202          continue;
203      }
204    }
205
206    // Otherwise, see if we can promote the pointer to its value.
207    if (isSafeToPromoteArgument(PtrArg, isByVal))
208      ArgsToPromote.insert(PtrArg);
209  }
210
211  // No promotable pointer arguments.
212  if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
213    return 0;
214
215  return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
216}
217
218/// AllCallersPassInValidPointerForArgument - Return true if we can prove that
219/// all callees pass in a valid pointer for the specified function argument.
220static bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
221  Function *Callee = Arg->getParent();
222
223  unsigned ArgNo = std::distance(Callee->arg_begin(),
224                                 Function::arg_iterator(Arg));
225
226  // Look at all call sites of the function.  At this pointer we know we only
227  // have direct callees.
228  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
229       UI != E; ++UI) {
230    CallSite CS(*UI);
231    assert(CS && "Should only have direct calls!");
232
233    if (!CS.getArgument(ArgNo)->isDereferenceablePointer())
234      return false;
235  }
236  return true;
237}
238
239/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
240/// that is greater than or equal to the size of prefix, and each of the
241/// elements in Prefix is the same as the corresponding elements in Longer.
242///
243/// This means it also returns true when Prefix and Longer are equal!
244static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
245                     const ArgPromotion::IndicesVector &Longer) {
246  if (Prefix.size() > Longer.size())
247    return false;
248  return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
249}
250
251
252/// Checks if Indices, or a prefix of Indices, is in Set.
253static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
254                     std::set<ArgPromotion::IndicesVector> &Set) {
255    std::set<ArgPromotion::IndicesVector>::iterator Low;
256    Low = Set.upper_bound(Indices);
257    if (Low != Set.begin())
258      Low--;
259    // Low is now the last element smaller than or equal to Indices. This means
260    // it points to a prefix of Indices (possibly Indices itself), if such
261    // prefix exists.
262    //
263    // This load is safe if any prefix of its operands is safe to load.
264    return Low != Set.end() && IsPrefix(*Low, Indices);
265}
266
267/// Mark the given indices (ToMark) as safe in the given set of indices
268/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
269/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
270/// already. Furthermore, any indices that Indices is itself a prefix of, are
271/// removed from Safe (since they are implicitely safe because of Indices now).
272static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
273                            std::set<ArgPromotion::IndicesVector> &Safe) {
274  std::set<ArgPromotion::IndicesVector>::iterator Low;
275  Low = Safe.upper_bound(ToMark);
276  // Guard against the case where Safe is empty
277  if (Low != Safe.begin())
278    Low--;
279  // Low is now the last element smaller than or equal to Indices. This
280  // means it points to a prefix of Indices (possibly Indices itself), if
281  // such prefix exists.
282  if (Low != Safe.end()) {
283    if (IsPrefix(*Low, ToMark))
284      // If there is already a prefix of these indices (or exactly these
285      // indices) marked a safe, don't bother adding these indices
286      return;
287
288    // Increment Low, so we can use it as a "insert before" hint
289    ++Low;
290  }
291  // Insert
292  Low = Safe.insert(Low, ToMark);
293  ++Low;
294  // If there we're a prefix of longer index list(s), remove those
295  std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
296  while (Low != End && IsPrefix(ToMark, *Low)) {
297    std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
298    ++Low;
299    Safe.erase(Remove);
300  }
301}
302
303/// isSafeToPromoteArgument - As you might guess from the name of this method,
304/// it checks to see if it is both safe and useful to promote the argument.
305/// This method limits promotion of aggregates to only promote up to three
306/// elements of the aggregate in order to avoid exploding the number of
307/// arguments passed in.
308bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
309  typedef std::set<IndicesVector> GEPIndicesSet;
310
311  // Quick exit for unused arguments
312  if (Arg->use_empty())
313    return true;
314
315  // We can only promote this argument if all of the uses are loads, or are GEP
316  // instructions (with constant indices) that are subsequently loaded.
317  //
318  // Promoting the argument causes it to be loaded in the caller
319  // unconditionally. This is only safe if we can prove that either the load
320  // would have happened in the callee anyway (ie, there is a load in the entry
321  // block) or the pointer passed in at every call site is guaranteed to be
322  // valid.
323  // In the former case, invalid loads can happen, but would have happened
324  // anyway, in the latter case, invalid loads won't happen. This prevents us
325  // from introducing an invalid load that wouldn't have happened in the
326  // original code.
327  //
328  // This set will contain all sets of indices that are loaded in the entry
329  // block, and thus are safe to unconditionally load in the caller.
330  GEPIndicesSet SafeToUnconditionallyLoad;
331
332  // This set contains all the sets of indices that we are planning to promote.
333  // This makes it possible to limit the number of arguments added.
334  GEPIndicesSet ToPromote;
335
336  // If the pointer is always valid, any load with first index 0 is valid.
337  if (isByVal || AllCallersPassInValidPointerForArgument(Arg))
338    SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
339
340  // First, iterate the entry block and mark loads of (geps of) arguments as
341  // safe.
342  BasicBlock *EntryBlock = Arg->getParent()->begin();
343  // Declare this here so we can reuse it
344  IndicesVector Indices;
345  for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
346       I != E; ++I)
347    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
348      Value *V = LI->getPointerOperand();
349      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
350        V = GEP->getPointerOperand();
351        if (V == Arg) {
352          // This load actually loads (part of) Arg? Check the indices then.
353          Indices.reserve(GEP->getNumIndices());
354          for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
355               II != IE; ++II)
356            if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
357              Indices.push_back(CI->getSExtValue());
358            else
359              // We found a non-constant GEP index for this argument? Bail out
360              // right away, can't promote this argument at all.
361              return false;
362
363          // Indices checked out, mark them as safe
364          MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
365          Indices.clear();
366        }
367      } else if (V == Arg) {
368        // Direct loads are equivalent to a GEP with a single 0 index.
369        MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
370      }
371    }
372
373  // Now, iterate all uses of the argument to see if there are any uses that are
374  // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
375  SmallVector<LoadInst*, 16> Loads;
376  IndicesVector Operands;
377  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
378       UI != E; ++UI) {
379    User *U = *UI;
380    Operands.clear();
381    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
382      // Don't hack volatile/atomic loads
383      if (!LI->isSimple()) return false;
384      Loads.push_back(LI);
385      // Direct loads are equivalent to a GEP with a zero index and then a load.
386      Operands.push_back(0);
387    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
388      if (GEP->use_empty()) {
389        // Dead GEP's cause trouble later.  Just remove them if we run into
390        // them.
391        getAnalysis<AliasAnalysis>().deleteValue(GEP);
392        GEP->eraseFromParent();
393        // TODO: This runs the above loop over and over again for dead GEPs
394        // Couldn't we just do increment the UI iterator earlier and erase the
395        // use?
396        return isSafeToPromoteArgument(Arg, isByVal);
397      }
398
399      // Ensure that all of the indices are constants.
400      for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
401        i != e; ++i)
402        if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
403          Operands.push_back(C->getSExtValue());
404        else
405          return false;  // Not a constant operand GEP!
406
407      // Ensure that the only users of the GEP are load instructions.
408      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
409           UI != E; ++UI)
410        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
411          // Don't hack volatile/atomic loads
412          if (!LI->isSimple()) return false;
413          Loads.push_back(LI);
414        } else {
415          // Other uses than load?
416          return false;
417        }
418    } else {
419      return false;  // Not a load or a GEP.
420    }
421
422    // Now, see if it is safe to promote this load / loads of this GEP. Loading
423    // is safe if Operands, or a prefix of Operands, is marked as safe.
424    if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
425      return false;
426
427    // See if we are already promoting a load with these indices. If not, check
428    // to make sure that we aren't promoting too many elements.  If so, nothing
429    // to do.
430    if (ToPromote.find(Operands) == ToPromote.end()) {
431      if (maxElements > 0 && ToPromote.size() == maxElements) {
432        DEBUG(dbgs() << "argpromotion not promoting argument '"
433              << Arg->getName() << "' because it would require adding more "
434              << "than " << maxElements << " arguments to the function.\n");
435        // We limit aggregate promotion to only promoting up to a fixed number
436        // of elements of the aggregate.
437        return false;
438      }
439      ToPromote.insert(Operands);
440    }
441  }
442
443  if (Loads.empty()) return true;  // No users, this is a dead argument.
444
445  // Okay, now we know that the argument is only used by load instructions and
446  // it is safe to unconditionally perform all of them. Use alias analysis to
447  // check to see if the pointer is guaranteed to not be modified from entry of
448  // the function to each of the load instructions.
449
450  // Because there could be several/many load instructions, remember which
451  // blocks we know to be transparent to the load.
452  SmallPtrSet<BasicBlock*, 16> TranspBlocks;
453
454  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
455
456  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
457    // Check to see if the load is invalidated from the start of the block to
458    // the load itself.
459    LoadInst *Load = Loads[i];
460    BasicBlock *BB = Load->getParent();
461
462    AliasAnalysis::Location Loc = AA.getLocation(Load);
463    if (AA.canInstructionRangeModify(BB->front(), *Load, Loc))
464      return false;  // Pointer is invalidated!
465
466    // Now check every path from the entry block to the load for transparency.
467    // To do this, we perform a depth first search on the inverse CFG from the
468    // loading block.
469    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
470      BasicBlock *P = *PI;
471      for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
472             I = idf_ext_begin(P, TranspBlocks),
473             E = idf_ext_end(P, TranspBlocks); I != E; ++I)
474        if (AA.canBasicBlockModify(**I, Loc))
475          return false;
476    }
477  }
478
479  // If the path from the entry of the function to each load is free of
480  // instructions that potentially invalidate the load, we can make the
481  // transformation!
482  return true;
483}
484
485/// DoPromotion - This method actually performs the promotion of the specified
486/// arguments, and returns the new function.  At this point, we know that it's
487/// safe to do so.
488CallGraphNode *ArgPromotion::DoPromotion(Function *F,
489                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
490                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
491
492  // Start by computing a new prototype for the function, which is the same as
493  // the old function, but has modified arguments.
494  FunctionType *FTy = F->getFunctionType();
495  std::vector<Type*> Params;
496
497  typedef std::set<IndicesVector> ScalarizeTable;
498
499  // ScalarizedElements - If we are promoting a pointer that has elements
500  // accessed out of it, keep track of which elements are accessed so that we
501  // can add one argument for each.
502  //
503  // Arguments that are directly loaded will have a zero element value here, to
504  // handle cases where there are both a direct load and GEP accesses.
505  //
506  std::map<Argument*, ScalarizeTable> ScalarizedElements;
507
508  // OriginalLoads - Keep track of a representative load instruction from the
509  // original function so that we can tell the alias analysis implementation
510  // what the new GEP/Load instructions we are inserting look like.
511  std::map<IndicesVector, LoadInst*> OriginalLoads;
512
513  // Attributes - Keep track of the parameter attributes for the arguments
514  // that we are *not* promoting. For the ones that we do promote, the parameter
515  // attributes are lost
516  SmallVector<AttributeWithIndex, 8> AttributesVec;
517  const AttrListPtr &PAL = F->getAttributes();
518
519  // Add any return attributes.
520  if (Attributes attrs = PAL.getRetAttributes())
521    AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
522
523  // First, determine the new argument list
524  unsigned ArgIndex = 1;
525  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
526       ++I, ++ArgIndex) {
527    if (ByValArgsToTransform.count(I)) {
528      // Simple byval argument? Just add all the struct element types.
529      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
530      StructType *STy = cast<StructType>(AgTy);
531      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
532        Params.push_back(STy->getElementType(i));
533      ++NumByValArgsPromoted;
534    } else if (!ArgsToPromote.count(I)) {
535      // Unchanged argument
536      Params.push_back(I->getType());
537      if (Attributes attrs = PAL.getParamAttributes(ArgIndex))
538        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
539    } else if (I->use_empty()) {
540      // Dead argument (which are always marked as promotable)
541      ++NumArgumentsDead;
542    } else {
543      // Okay, this is being promoted. This means that the only uses are loads
544      // or GEPs which are only used by loads
545
546      // In this table, we will track which indices are loaded from the argument
547      // (where direct loads are tracked as no indices).
548      ScalarizeTable &ArgIndices = ScalarizedElements[I];
549      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
550           ++UI) {
551        Instruction *User = cast<Instruction>(*UI);
552        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
553        IndicesVector Indices;
554        Indices.reserve(User->getNumOperands() - 1);
555        // Since loads will only have a single operand, and GEPs only a single
556        // non-index operand, this will record direct loads without any indices,
557        // and gep+loads with the GEP indices.
558        for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
559             II != IE; ++II)
560          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
561        // GEPs with a single 0 index can be merged with direct loads
562        if (Indices.size() == 1 && Indices.front() == 0)
563          Indices.clear();
564        ArgIndices.insert(Indices);
565        LoadInst *OrigLoad;
566        if (LoadInst *L = dyn_cast<LoadInst>(User))
567          OrigLoad = L;
568        else
569          // Take any load, we will use it only to update Alias Analysis
570          OrigLoad = cast<LoadInst>(User->use_back());
571        OriginalLoads[Indices] = OrigLoad;
572      }
573
574      // Add a parameter to the function for each element passed in.
575      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
576             E = ArgIndices.end(); SI != E; ++SI) {
577        // not allowed to dereference ->begin() if size() is 0
578        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI));
579        assert(Params.back());
580      }
581
582      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
583        ++NumArgumentsPromoted;
584      else
585        ++NumAggregatesPromoted;
586    }
587  }
588
589  // Add any function attributes.
590  if (Attributes attrs = PAL.getFnAttributes())
591    AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
592
593  Type *RetTy = FTy->getReturnType();
594
595  // Construct the new function type using the new arguments.
596  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
597
598  // Create the new function body and insert it into the module.
599  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
600  NF->copyAttributesFrom(F);
601
602
603  DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
604        << "From: " << *F);
605
606  // Recompute the parameter attributes list based on the new arguments for
607  // the function.
608  NF->setAttributes(AttrListPtr::get(AttributesVec));
609  AttributesVec.clear();
610
611  F->getParent()->getFunctionList().insert(F, NF);
612  NF->takeName(F);
613
614  // Get the alias analysis information that we need to update to reflect our
615  // changes.
616  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
617
618  // Get the callgraph information that we need to update to reflect our
619  // changes.
620  CallGraph &CG = getAnalysis<CallGraph>();
621
622  // Get a new callgraph node for NF.
623  CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
624
625  // Loop over all of the callers of the function, transforming the call sites
626  // to pass in the loaded pointers.
627  //
628  SmallVector<Value*, 16> Args;
629  while (!F->use_empty()) {
630    CallSite CS(F->use_back());
631    assert(CS.getCalledFunction() == F);
632    Instruction *Call = CS.getInstruction();
633    const AttrListPtr &CallPAL = CS.getAttributes();
634
635    // Add any return attributes.
636    if (Attributes attrs = CallPAL.getRetAttributes())
637      AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
638
639    // Loop over the operands, inserting GEP and loads in the caller as
640    // appropriate.
641    CallSite::arg_iterator AI = CS.arg_begin();
642    ArgIndex = 1;
643    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
644         I != E; ++I, ++AI, ++ArgIndex)
645      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
646        Args.push_back(*AI);          // Unmodified argument
647
648        if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
649          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
650
651      } else if (ByValArgsToTransform.count(I)) {
652        // Emit a GEP and load for each element of the struct.
653        Type *AgTy = cast<PointerType>(I->getType())->getElementType();
654        StructType *STy = cast<StructType>(AgTy);
655        Value *Idxs[2] = {
656              ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
657        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
658          Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
659          Value *Idx = GetElementPtrInst::Create(*AI, Idxs,
660                                                 (*AI)->getName()+"."+utostr(i),
661                                                 Call);
662          // TODO: Tell AA about the new values?
663          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
664        }
665      } else if (!I->use_empty()) {
666        // Non-dead argument: insert GEPs and loads as appropriate.
667        ScalarizeTable &ArgIndices = ScalarizedElements[I];
668        // Store the Value* version of the indices in here, but declare it now
669        // for reuse.
670        std::vector<Value*> Ops;
671        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
672               E = ArgIndices.end(); SI != E; ++SI) {
673          Value *V = *AI;
674          LoadInst *OrigLoad = OriginalLoads[*SI];
675          if (!SI->empty()) {
676            Ops.reserve(SI->size());
677            Type *ElTy = V->getType();
678            for (IndicesVector::const_iterator II = SI->begin(),
679                 IE = SI->end(); II != IE; ++II) {
680              // Use i32 to index structs, and i64 for others (pointers/arrays).
681              // This satisfies GEP constraints.
682              Type *IdxTy = (ElTy->isStructTy() ?
683                    Type::getInt32Ty(F->getContext()) :
684                    Type::getInt64Ty(F->getContext()));
685              Ops.push_back(ConstantInt::get(IdxTy, *II));
686              // Keep track of the type we're currently indexing.
687              ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
688            }
689            // And create a GEP to extract those indices.
690            V = GetElementPtrInst::Create(V, Ops, V->getName()+".idx", Call);
691            Ops.clear();
692            AA.copyValue(OrigLoad->getOperand(0), V);
693          }
694          // Since we're replacing a load make sure we take the alignment
695          // of the previous load.
696          LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
697          newLoad->setAlignment(OrigLoad->getAlignment());
698          // Transfer the TBAA info too.
699          newLoad->setMetadata(LLVMContext::MD_tbaa,
700                               OrigLoad->getMetadata(LLVMContext::MD_tbaa));
701          Args.push_back(newLoad);
702          AA.copyValue(OrigLoad, Args.back());
703        }
704      }
705
706    // Push any varargs arguments on the list.
707    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
708      Args.push_back(*AI);
709      if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
710        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
711    }
712
713    // Add any function attributes.
714    if (Attributes attrs = CallPAL.getFnAttributes())
715      AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
716
717    Instruction *New;
718    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
719      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
720                               Args, "", Call);
721      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
722      cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec));
723    } else {
724      New = CallInst::Create(NF, Args, "", Call);
725      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
726      cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec));
727      if (cast<CallInst>(Call)->isTailCall())
728        cast<CallInst>(New)->setTailCall();
729    }
730    Args.clear();
731    AttributesVec.clear();
732
733    // Update the alias analysis implementation to know that we are replacing
734    // the old call with a new one.
735    AA.replaceWithNewValue(Call, New);
736
737    // Update the callgraph to know that the callsite has been transformed.
738    CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
739    CalleeNode->replaceCallEdge(Call, New, NF_CGN);
740
741    if (!Call->use_empty()) {
742      Call->replaceAllUsesWith(New);
743      New->takeName(Call);
744    }
745
746    // Finally, remove the old call from the program, reducing the use-count of
747    // F.
748    Call->eraseFromParent();
749  }
750
751  // Since we have now created the new function, splice the body of the old
752  // function right into the new function, leaving the old rotting hulk of the
753  // function empty.
754  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
755
756  // Loop over the argument list, transferring uses of the old arguments over to
757  // the new arguments, also transferring over the names as well.
758  //
759  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
760       I2 = NF->arg_begin(); I != E; ++I) {
761    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
762      // If this is an unmodified argument, move the name and users over to the
763      // new version.
764      I->replaceAllUsesWith(I2);
765      I2->takeName(I);
766      AA.replaceWithNewValue(I, I2);
767      ++I2;
768      continue;
769    }
770
771    if (ByValArgsToTransform.count(I)) {
772      // In the callee, we create an alloca, and store each of the new incoming
773      // arguments into the alloca.
774      Instruction *InsertPt = NF->begin()->begin();
775
776      // Just add all the struct element types.
777      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
778      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
779      StructType *STy = cast<StructType>(AgTy);
780      Value *Idxs[2] = {
781            ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
782
783      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
784        Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
785        Value *Idx =
786          GetElementPtrInst::Create(TheAlloca, Idxs,
787                                    TheAlloca->getName()+"."+Twine(i),
788                                    InsertPt);
789        I2->setName(I->getName()+"."+Twine(i));
790        new StoreInst(I2++, Idx, InsertPt);
791      }
792
793      // Anything that used the arg should now use the alloca.
794      I->replaceAllUsesWith(TheAlloca);
795      TheAlloca->takeName(I);
796      AA.replaceWithNewValue(I, TheAlloca);
797      continue;
798    }
799
800    if (I->use_empty()) {
801      AA.deleteValue(I);
802      continue;
803    }
804
805    // Otherwise, if we promoted this argument, then all users are load
806    // instructions (or GEPs with only load users), and all loads should be
807    // using the new argument that we added.
808    ScalarizeTable &ArgIndices = ScalarizedElements[I];
809
810    while (!I->use_empty()) {
811      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
812        assert(ArgIndices.begin()->empty() &&
813               "Load element should sort to front!");
814        I2->setName(I->getName()+".val");
815        LI->replaceAllUsesWith(I2);
816        AA.replaceWithNewValue(LI, I2);
817        LI->eraseFromParent();
818        DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
819              << "' in function '" << F->getName() << "'\n");
820      } else {
821        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
822        IndicesVector Operands;
823        Operands.reserve(GEP->getNumIndices());
824        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
825             II != IE; ++II)
826          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
827
828        // GEPs with a single 0 index can be merged with direct loads
829        if (Operands.size() == 1 && Operands.front() == 0)
830          Operands.clear();
831
832        Function::arg_iterator TheArg = I2;
833        for (ScalarizeTable::iterator It = ArgIndices.begin();
834             *It != Operands; ++It, ++TheArg) {
835          assert(It != ArgIndices.end() && "GEP not handled??");
836        }
837
838        std::string NewName = I->getName();
839        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
840            NewName += "." + utostr(Operands[i]);
841        }
842        NewName += ".val";
843        TheArg->setName(NewName);
844
845        DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
846              << "' of function '" << NF->getName() << "'\n");
847
848        // All of the uses must be load instructions.  Replace them all with
849        // the argument specified by ArgNo.
850        while (!GEP->use_empty()) {
851          LoadInst *L = cast<LoadInst>(GEP->use_back());
852          L->replaceAllUsesWith(TheArg);
853          AA.replaceWithNewValue(L, TheArg);
854          L->eraseFromParent();
855        }
856        AA.deleteValue(GEP);
857        GEP->eraseFromParent();
858      }
859    }
860
861    // Increment I2 past all of the arguments added for this promoted pointer.
862    std::advance(I2, ArgIndices.size());
863  }
864
865  // Tell the alias analysis that the old function is about to disappear.
866  AA.replaceWithNewValue(F, NF);
867
868
869  NF_CGN->stealCalledFunctionsFrom(CG[F]);
870
871  // Now that the old function is dead, delete it.  If there is a dangling
872  // reference to the CallgraphNode, just leave the dead function around for
873  // someone else to nuke.
874  CallGraphNode *CGN = CG[F];
875  if (CGN->getNumReferences() == 0)
876    delete CG.removeFunctionFromModule(CGN);
877  else
878    F->setLinkage(Function::ExternalLinkage);
879
880  return NF_CGN;
881}
882