ArgumentPromotion.cpp revision 7be7848e17f60825f5fbc177b8a25909a30ddb00
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If it can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then it can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// by default it refuses to scalarize aggregates which would require passing in
21// more than three operands to the function, because passing thousands of
22// operands for a large array or structure is unprofitable! This limit can be
23// configured or disabled, however.
24//
25// Note that this transformation could also be done for arguments that are only
26// stored to (returning the value instead), but does not currently.  This case
27// would be best handled when and if LLVM begins supporting multiple return
28// values from functions.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "argpromotion"
33#include "llvm/Transforms/IPO.h"
34#include "llvm/Constants.h"
35#include "llvm/DerivedTypes.h"
36#include "llvm/Module.h"
37#include "llvm/CallGraphSCCPass.h"
38#include "llvm/Instructions.h"
39#include "llvm/LLVMContext.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/CallGraph.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/CFG.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/ADT/DepthFirstIterator.h"
47#include "llvm/ADT/Statistic.h"
48#include "llvm/ADT/StringExtras.h"
49#include <set>
50using namespace llvm;
51
52STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
53STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
54STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
55STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
56
57namespace {
58  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
59  ///
60  struct ArgPromotion : public CallGraphSCCPass {
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
62      AU.addRequired<AliasAnalysis>();
63      CallGraphSCCPass::getAnalysisUsage(AU);
64    }
65
66    virtual bool runOnSCC(CallGraphSCC &SCC);
67    static char ID; // Pass identification, replacement for typeid
68    explicit ArgPromotion(unsigned maxElements = 3)
69        : CallGraphSCCPass(ID), maxElements(maxElements) {
70      initializeArgPromotionPass(*PassRegistry::getPassRegistry());
71    }
72
73    /// A vector used to hold the indices of a single GEP instruction
74    typedef std::vector<uint64_t> IndicesVector;
75
76  private:
77    CallGraphNode *PromoteArguments(CallGraphNode *CGN);
78    bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
79    CallGraphNode *DoPromotion(Function *F,
80                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
81                               SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
82    /// The maximum number of elements to expand, or 0 for unlimited.
83    unsigned maxElements;
84  };
85}
86
87char ArgPromotion::ID = 0;
88INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
89                "Promote 'by reference' arguments to scalars", false, false)
90INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
91INITIALIZE_AG_DEPENDENCY(CallGraph)
92INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
93                "Promote 'by reference' arguments to scalars", false, false)
94
95Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
96  return new ArgPromotion(maxElements);
97}
98
99bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
100  bool Changed = false, LocalChange;
101
102  do {  // Iterate until we stop promoting from this SCC.
103    LocalChange = false;
104    // Attempt to promote arguments from all functions in this SCC.
105    for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
106      if (CallGraphNode *CGN = PromoteArguments(*I)) {
107        LocalChange = true;
108        SCC.ReplaceNode(*I, CGN);
109      }
110    }
111    Changed |= LocalChange;               // Remember that we changed something.
112  } while (LocalChange);
113
114  return Changed;
115}
116
117/// PromoteArguments - This method checks the specified function to see if there
118/// are any promotable arguments and if it is safe to promote the function (for
119/// example, all callers are direct).  If safe to promote some arguments, it
120/// calls the DoPromotion method.
121///
122CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
123  Function *F = CGN->getFunction();
124
125  // Make sure that it is local to this module.
126  if (!F || !F->hasLocalLinkage()) return 0;
127
128  // First check: see if there are any pointer arguments!  If not, quick exit.
129  SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
130  unsigned ArgNo = 0;
131  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
132       I != E; ++I, ++ArgNo)
133    if (I->getType()->isPointerTy())
134      PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
135  if (PointerArgs.empty()) return 0;
136
137  // Second check: make sure that all callers are direct callers.  We can't
138  // transform functions that have indirect callers.  Also see if the function
139  // is self-recursive.
140  bool isSelfRecursive = false;
141  for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
142       UI != E; ++UI) {
143    CallSite CS(*UI);
144    // Must be a direct call.
145    if (CS.getInstruction() == 0 || !CS.isCallee(UI)) return 0;
146
147    if (CS.getInstruction()->getParent()->getParent() == F)
148      isSelfRecursive = true;
149  }
150
151  // Check to see which arguments are promotable.  If an argument is promotable,
152  // add it to ArgsToPromote.
153  SmallPtrSet<Argument*, 8> ArgsToPromote;
154  SmallPtrSet<Argument*, 8> ByValArgsToTransform;
155  for (unsigned i = 0; i != PointerArgs.size(); ++i) {
156    bool isByVal=F->getParamAttributes(PointerArgs[i].second+1).
157      hasAttribute(Attributes::ByVal);
158    Argument *PtrArg = PointerArgs[i].first;
159    Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
160
161    // If this is a byval argument, and if the aggregate type is small, just
162    // pass the elements, which is always safe.
163    if (isByVal) {
164      if (StructType *STy = dyn_cast<StructType>(AgTy)) {
165        if (maxElements > 0 && STy->getNumElements() > maxElements) {
166          DEBUG(dbgs() << "argpromotion disable promoting argument '"
167                << PtrArg->getName() << "' because it would require adding more"
168                << " than " << maxElements << " arguments to the function.\n");
169          continue;
170        }
171
172        // If all the elements are single-value types, we can promote it.
173        bool AllSimple = true;
174        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
175          if (!STy->getElementType(i)->isSingleValueType()) {
176            AllSimple = false;
177            break;
178          }
179        }
180
181        // Safe to transform, don't even bother trying to "promote" it.
182        // Passing the elements as a scalar will allow scalarrepl to hack on
183        // the new alloca we introduce.
184        if (AllSimple) {
185          ByValArgsToTransform.insert(PtrArg);
186          continue;
187        }
188      }
189    }
190
191    // If the argument is a recursive type and we're in a recursive
192    // function, we could end up infinitely peeling the function argument.
193    if (isSelfRecursive) {
194      if (StructType *STy = dyn_cast<StructType>(AgTy)) {
195        bool RecursiveType = false;
196        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
197          if (STy->getElementType(i) == PtrArg->getType()) {
198            RecursiveType = true;
199            break;
200          }
201        }
202        if (RecursiveType)
203          continue;
204      }
205    }
206
207    // Otherwise, see if we can promote the pointer to its value.
208    if (isSafeToPromoteArgument(PtrArg, isByVal))
209      ArgsToPromote.insert(PtrArg);
210  }
211
212  // No promotable pointer arguments.
213  if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
214    return 0;
215
216  return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
217}
218
219/// AllCallersPassInValidPointerForArgument - Return true if we can prove that
220/// all callees pass in a valid pointer for the specified function argument.
221static bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
222  Function *Callee = Arg->getParent();
223
224  unsigned ArgNo = std::distance(Callee->arg_begin(),
225                                 Function::arg_iterator(Arg));
226
227  // Look at all call sites of the function.  At this pointer we know we only
228  // have direct callees.
229  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
230       UI != E; ++UI) {
231    CallSite CS(*UI);
232    assert(CS && "Should only have direct calls!");
233
234    if (!CS.getArgument(ArgNo)->isDereferenceablePointer())
235      return false;
236  }
237  return true;
238}
239
240/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
241/// that is greater than or equal to the size of prefix, and each of the
242/// elements in Prefix is the same as the corresponding elements in Longer.
243///
244/// This means it also returns true when Prefix and Longer are equal!
245static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
246                     const ArgPromotion::IndicesVector &Longer) {
247  if (Prefix.size() > Longer.size())
248    return false;
249  return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
250}
251
252
253/// Checks if Indices, or a prefix of Indices, is in Set.
254static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
255                     std::set<ArgPromotion::IndicesVector> &Set) {
256    std::set<ArgPromotion::IndicesVector>::iterator Low;
257    Low = Set.upper_bound(Indices);
258    if (Low != Set.begin())
259      Low--;
260    // Low is now the last element smaller than or equal to Indices. This means
261    // it points to a prefix of Indices (possibly Indices itself), if such
262    // prefix exists.
263    //
264    // This load is safe if any prefix of its operands is safe to load.
265    return Low != Set.end() && IsPrefix(*Low, Indices);
266}
267
268/// Mark the given indices (ToMark) as safe in the given set of indices
269/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
270/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
271/// already. Furthermore, any indices that Indices is itself a prefix of, are
272/// removed from Safe (since they are implicitely safe because of Indices now).
273static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
274                            std::set<ArgPromotion::IndicesVector> &Safe) {
275  std::set<ArgPromotion::IndicesVector>::iterator Low;
276  Low = Safe.upper_bound(ToMark);
277  // Guard against the case where Safe is empty
278  if (Low != Safe.begin())
279    Low--;
280  // Low is now the last element smaller than or equal to Indices. This
281  // means it points to a prefix of Indices (possibly Indices itself), if
282  // such prefix exists.
283  if (Low != Safe.end()) {
284    if (IsPrefix(*Low, ToMark))
285      // If there is already a prefix of these indices (or exactly these
286      // indices) marked a safe, don't bother adding these indices
287      return;
288
289    // Increment Low, so we can use it as a "insert before" hint
290    ++Low;
291  }
292  // Insert
293  Low = Safe.insert(Low, ToMark);
294  ++Low;
295  // If there we're a prefix of longer index list(s), remove those
296  std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
297  while (Low != End && IsPrefix(ToMark, *Low)) {
298    std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
299    ++Low;
300    Safe.erase(Remove);
301  }
302}
303
304/// isSafeToPromoteArgument - As you might guess from the name of this method,
305/// it checks to see if it is both safe and useful to promote the argument.
306/// This method limits promotion of aggregates to only promote up to three
307/// elements of the aggregate in order to avoid exploding the number of
308/// arguments passed in.
309bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
310  typedef std::set<IndicesVector> GEPIndicesSet;
311
312  // Quick exit for unused arguments
313  if (Arg->use_empty())
314    return true;
315
316  // We can only promote this argument if all of the uses are loads, or are GEP
317  // instructions (with constant indices) that are subsequently loaded.
318  //
319  // Promoting the argument causes it to be loaded in the caller
320  // unconditionally. This is only safe if we can prove that either the load
321  // would have happened in the callee anyway (ie, there is a load in the entry
322  // block) or the pointer passed in at every call site is guaranteed to be
323  // valid.
324  // In the former case, invalid loads can happen, but would have happened
325  // anyway, in the latter case, invalid loads won't happen. This prevents us
326  // from introducing an invalid load that wouldn't have happened in the
327  // original code.
328  //
329  // This set will contain all sets of indices that are loaded in the entry
330  // block, and thus are safe to unconditionally load in the caller.
331  GEPIndicesSet SafeToUnconditionallyLoad;
332
333  // This set contains all the sets of indices that we are planning to promote.
334  // This makes it possible to limit the number of arguments added.
335  GEPIndicesSet ToPromote;
336
337  // If the pointer is always valid, any load with first index 0 is valid.
338  if (isByVal || AllCallersPassInValidPointerForArgument(Arg))
339    SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
340
341  // First, iterate the entry block and mark loads of (geps of) arguments as
342  // safe.
343  BasicBlock *EntryBlock = Arg->getParent()->begin();
344  // Declare this here so we can reuse it
345  IndicesVector Indices;
346  for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
347       I != E; ++I)
348    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
349      Value *V = LI->getPointerOperand();
350      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
351        V = GEP->getPointerOperand();
352        if (V == Arg) {
353          // This load actually loads (part of) Arg? Check the indices then.
354          Indices.reserve(GEP->getNumIndices());
355          for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
356               II != IE; ++II)
357            if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
358              Indices.push_back(CI->getSExtValue());
359            else
360              // We found a non-constant GEP index for this argument? Bail out
361              // right away, can't promote this argument at all.
362              return false;
363
364          // Indices checked out, mark them as safe
365          MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
366          Indices.clear();
367        }
368      } else if (V == Arg) {
369        // Direct loads are equivalent to a GEP with a single 0 index.
370        MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
371      }
372    }
373
374  // Now, iterate all uses of the argument to see if there are any uses that are
375  // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
376  SmallVector<LoadInst*, 16> Loads;
377  IndicesVector Operands;
378  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
379       UI != E; ++UI) {
380    User *U = *UI;
381    Operands.clear();
382    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
383      // Don't hack volatile/atomic loads
384      if (!LI->isSimple()) return false;
385      Loads.push_back(LI);
386      // Direct loads are equivalent to a GEP with a zero index and then a load.
387      Operands.push_back(0);
388    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
389      if (GEP->use_empty()) {
390        // Dead GEP's cause trouble later.  Just remove them if we run into
391        // them.
392        getAnalysis<AliasAnalysis>().deleteValue(GEP);
393        GEP->eraseFromParent();
394        // TODO: This runs the above loop over and over again for dead GEPs
395        // Couldn't we just do increment the UI iterator earlier and erase the
396        // use?
397        return isSafeToPromoteArgument(Arg, isByVal);
398      }
399
400      // Ensure that all of the indices are constants.
401      for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
402        i != e; ++i)
403        if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
404          Operands.push_back(C->getSExtValue());
405        else
406          return false;  // Not a constant operand GEP!
407
408      // Ensure that the only users of the GEP are load instructions.
409      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
410           UI != E; ++UI)
411        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
412          // Don't hack volatile/atomic loads
413          if (!LI->isSimple()) return false;
414          Loads.push_back(LI);
415        } else {
416          // Other uses than load?
417          return false;
418        }
419    } else {
420      return false;  // Not a load or a GEP.
421    }
422
423    // Now, see if it is safe to promote this load / loads of this GEP. Loading
424    // is safe if Operands, or a prefix of Operands, is marked as safe.
425    if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
426      return false;
427
428    // See if we are already promoting a load with these indices. If not, check
429    // to make sure that we aren't promoting too many elements.  If so, nothing
430    // to do.
431    if (ToPromote.find(Operands) == ToPromote.end()) {
432      if (maxElements > 0 && ToPromote.size() == maxElements) {
433        DEBUG(dbgs() << "argpromotion not promoting argument '"
434              << Arg->getName() << "' because it would require adding more "
435              << "than " << maxElements << " arguments to the function.\n");
436        // We limit aggregate promotion to only promoting up to a fixed number
437        // of elements of the aggregate.
438        return false;
439      }
440      ToPromote.insert(Operands);
441    }
442  }
443
444  if (Loads.empty()) return true;  // No users, this is a dead argument.
445
446  // Okay, now we know that the argument is only used by load instructions and
447  // it is safe to unconditionally perform all of them. Use alias analysis to
448  // check to see if the pointer is guaranteed to not be modified from entry of
449  // the function to each of the load instructions.
450
451  // Because there could be several/many load instructions, remember which
452  // blocks we know to be transparent to the load.
453  SmallPtrSet<BasicBlock*, 16> TranspBlocks;
454
455  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
456
457  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
458    // Check to see if the load is invalidated from the start of the block to
459    // the load itself.
460    LoadInst *Load = Loads[i];
461    BasicBlock *BB = Load->getParent();
462
463    AliasAnalysis::Location Loc = AA.getLocation(Load);
464    if (AA.canInstructionRangeModify(BB->front(), *Load, Loc))
465      return false;  // Pointer is invalidated!
466
467    // Now check every path from the entry block to the load for transparency.
468    // To do this, we perform a depth first search on the inverse CFG from the
469    // loading block.
470    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
471      BasicBlock *P = *PI;
472      for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
473             I = idf_ext_begin(P, TranspBlocks),
474             E = idf_ext_end(P, TranspBlocks); I != E; ++I)
475        if (AA.canBasicBlockModify(**I, Loc))
476          return false;
477    }
478  }
479
480  // If the path from the entry of the function to each load is free of
481  // instructions that potentially invalidate the load, we can make the
482  // transformation!
483  return true;
484}
485
486/// DoPromotion - This method actually performs the promotion of the specified
487/// arguments, and returns the new function.  At this point, we know that it's
488/// safe to do so.
489CallGraphNode *ArgPromotion::DoPromotion(Function *F,
490                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
491                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
492
493  // Start by computing a new prototype for the function, which is the same as
494  // the old function, but has modified arguments.
495  FunctionType *FTy = F->getFunctionType();
496  std::vector<Type*> Params;
497
498  typedef std::set<IndicesVector> ScalarizeTable;
499
500  // ScalarizedElements - If we are promoting a pointer that has elements
501  // accessed out of it, keep track of which elements are accessed so that we
502  // can add one argument for each.
503  //
504  // Arguments that are directly loaded will have a zero element value here, to
505  // handle cases where there are both a direct load and GEP accesses.
506  //
507  std::map<Argument*, ScalarizeTable> ScalarizedElements;
508
509  // OriginalLoads - Keep track of a representative load instruction from the
510  // original function so that we can tell the alias analysis implementation
511  // what the new GEP/Load instructions we are inserting look like.
512  std::map<IndicesVector, LoadInst*> OriginalLoads;
513
514  // Attributes - Keep track of the parameter attributes for the arguments
515  // that we are *not* promoting. For the ones that we do promote, the parameter
516  // attributes are lost
517  SmallVector<AttributeWithIndex, 8> AttributesVec;
518  const AttrListPtr &PAL = F->getAttributes();
519
520  // Add any return attributes.
521  Attributes attrs = PAL.getRetAttributes();
522  if (attrs.hasAttributes())
523    AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
524
525  // First, determine the new argument list
526  unsigned ArgIndex = 1;
527  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
528       ++I, ++ArgIndex) {
529    if (ByValArgsToTransform.count(I)) {
530      // Simple byval argument? Just add all the struct element types.
531      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
532      StructType *STy = cast<StructType>(AgTy);
533      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
534        Params.push_back(STy->getElementType(i));
535      ++NumByValArgsPromoted;
536    } else if (!ArgsToPromote.count(I)) {
537      // Unchanged argument
538      Params.push_back(I->getType());
539      Attributes attrs = PAL.getParamAttributes(ArgIndex);
540      if (attrs.hasAttributes())
541        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
542    } else if (I->use_empty()) {
543      // Dead argument (which are always marked as promotable)
544      ++NumArgumentsDead;
545    } else {
546      // Okay, this is being promoted. This means that the only uses are loads
547      // or GEPs which are only used by loads
548
549      // In this table, we will track which indices are loaded from the argument
550      // (where direct loads are tracked as no indices).
551      ScalarizeTable &ArgIndices = ScalarizedElements[I];
552      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
553           ++UI) {
554        Instruction *User = cast<Instruction>(*UI);
555        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
556        IndicesVector Indices;
557        Indices.reserve(User->getNumOperands() - 1);
558        // Since loads will only have a single operand, and GEPs only a single
559        // non-index operand, this will record direct loads without any indices,
560        // and gep+loads with the GEP indices.
561        for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
562             II != IE; ++II)
563          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
564        // GEPs with a single 0 index can be merged with direct loads
565        if (Indices.size() == 1 && Indices.front() == 0)
566          Indices.clear();
567        ArgIndices.insert(Indices);
568        LoadInst *OrigLoad;
569        if (LoadInst *L = dyn_cast<LoadInst>(User))
570          OrigLoad = L;
571        else
572          // Take any load, we will use it only to update Alias Analysis
573          OrigLoad = cast<LoadInst>(User->use_back());
574        OriginalLoads[Indices] = OrigLoad;
575      }
576
577      // Add a parameter to the function for each element passed in.
578      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
579             E = ArgIndices.end(); SI != E; ++SI) {
580        // not allowed to dereference ->begin() if size() is 0
581        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI));
582        assert(Params.back());
583      }
584
585      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
586        ++NumArgumentsPromoted;
587      else
588        ++NumAggregatesPromoted;
589    }
590  }
591
592  // Add any function attributes.
593  attrs = PAL.getFnAttributes();
594  if (attrs.hasAttributes())
595    AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
596
597  Type *RetTy = FTy->getReturnType();
598
599  // Construct the new function type using the new arguments.
600  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
601
602  // Create the new function body and insert it into the module.
603  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
604  NF->copyAttributesFrom(F);
605
606
607  DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
608        << "From: " << *F);
609
610  // Recompute the parameter attributes list based on the new arguments for
611  // the function.
612  NF->setAttributes(AttrListPtr::get(AttributesVec));
613  AttributesVec.clear();
614
615  F->getParent()->getFunctionList().insert(F, NF);
616  NF->takeName(F);
617
618  // Get the alias analysis information that we need to update to reflect our
619  // changes.
620  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
621
622  // Get the callgraph information that we need to update to reflect our
623  // changes.
624  CallGraph &CG = getAnalysis<CallGraph>();
625
626  // Get a new callgraph node for NF.
627  CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
628
629  // Loop over all of the callers of the function, transforming the call sites
630  // to pass in the loaded pointers.
631  //
632  SmallVector<Value*, 16> Args;
633  while (!F->use_empty()) {
634    CallSite CS(F->use_back());
635    assert(CS.getCalledFunction() == F);
636    Instruction *Call = CS.getInstruction();
637    const AttrListPtr &CallPAL = CS.getAttributes();
638
639    // Add any return attributes.
640    Attributes attrs = CallPAL.getRetAttributes();
641    if (attrs.hasAttributes())
642      AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
643
644    // Loop over the operands, inserting GEP and loads in the caller as
645    // appropriate.
646    CallSite::arg_iterator AI = CS.arg_begin();
647    ArgIndex = 1;
648    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
649         I != E; ++I, ++AI, ++ArgIndex)
650      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
651        Args.push_back(*AI);          // Unmodified argument
652
653        Attributes Attrs = CallPAL.getParamAttributes(ArgIndex);
654        if (Attrs.hasAttributes())
655          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
656
657      } else if (ByValArgsToTransform.count(I)) {
658        // Emit a GEP and load for each element of the struct.
659        Type *AgTy = cast<PointerType>(I->getType())->getElementType();
660        StructType *STy = cast<StructType>(AgTy);
661        Value *Idxs[2] = {
662              ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
663        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
664          Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
665          Value *Idx = GetElementPtrInst::Create(*AI, Idxs,
666                                                 (*AI)->getName()+"."+utostr(i),
667                                                 Call);
668          // TODO: Tell AA about the new values?
669          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
670        }
671      } else if (!I->use_empty()) {
672        // Non-dead argument: insert GEPs and loads as appropriate.
673        ScalarizeTable &ArgIndices = ScalarizedElements[I];
674        // Store the Value* version of the indices in here, but declare it now
675        // for reuse.
676        std::vector<Value*> Ops;
677        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
678               E = ArgIndices.end(); SI != E; ++SI) {
679          Value *V = *AI;
680          LoadInst *OrigLoad = OriginalLoads[*SI];
681          if (!SI->empty()) {
682            Ops.reserve(SI->size());
683            Type *ElTy = V->getType();
684            for (IndicesVector::const_iterator II = SI->begin(),
685                 IE = SI->end(); II != IE; ++II) {
686              // Use i32 to index structs, and i64 for others (pointers/arrays).
687              // This satisfies GEP constraints.
688              Type *IdxTy = (ElTy->isStructTy() ?
689                    Type::getInt32Ty(F->getContext()) :
690                    Type::getInt64Ty(F->getContext()));
691              Ops.push_back(ConstantInt::get(IdxTy, *II));
692              // Keep track of the type we're currently indexing.
693              ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
694            }
695            // And create a GEP to extract those indices.
696            V = GetElementPtrInst::Create(V, Ops, V->getName()+".idx", Call);
697            Ops.clear();
698            AA.copyValue(OrigLoad->getOperand(0), V);
699          }
700          // Since we're replacing a load make sure we take the alignment
701          // of the previous load.
702          LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
703          newLoad->setAlignment(OrigLoad->getAlignment());
704          // Transfer the TBAA info too.
705          newLoad->setMetadata(LLVMContext::MD_tbaa,
706                               OrigLoad->getMetadata(LLVMContext::MD_tbaa));
707          Args.push_back(newLoad);
708          AA.copyValue(OrigLoad, Args.back());
709        }
710      }
711
712    // Push any varargs arguments on the list.
713    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
714      Args.push_back(*AI);
715      Attributes Attrs = CallPAL.getParamAttributes(ArgIndex);
716      if (Attrs.hasAttributes())
717        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
718    }
719
720    // Add any function attributes.
721    attrs = CallPAL.getFnAttributes();
722    if (attrs.hasAttributes())
723      AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
724
725    Instruction *New;
726    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
727      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
728                               Args, "", Call);
729      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
730      cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec));
731    } else {
732      New = CallInst::Create(NF, Args, "", Call);
733      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
734      cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec));
735      if (cast<CallInst>(Call)->isTailCall())
736        cast<CallInst>(New)->setTailCall();
737    }
738    Args.clear();
739    AttributesVec.clear();
740
741    // Update the alias analysis implementation to know that we are replacing
742    // the old call with a new one.
743    AA.replaceWithNewValue(Call, New);
744
745    // Update the callgraph to know that the callsite has been transformed.
746    CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
747    CalleeNode->replaceCallEdge(Call, New, NF_CGN);
748
749    if (!Call->use_empty()) {
750      Call->replaceAllUsesWith(New);
751      New->takeName(Call);
752    }
753
754    // Finally, remove the old call from the program, reducing the use-count of
755    // F.
756    Call->eraseFromParent();
757  }
758
759  // Since we have now created the new function, splice the body of the old
760  // function right into the new function, leaving the old rotting hulk of the
761  // function empty.
762  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
763
764  // Loop over the argument list, transferring uses of the old arguments over to
765  // the new arguments, also transferring over the names as well.
766  //
767  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
768       I2 = NF->arg_begin(); I != E; ++I) {
769    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
770      // If this is an unmodified argument, move the name and users over to the
771      // new version.
772      I->replaceAllUsesWith(I2);
773      I2->takeName(I);
774      AA.replaceWithNewValue(I, I2);
775      ++I2;
776      continue;
777    }
778
779    if (ByValArgsToTransform.count(I)) {
780      // In the callee, we create an alloca, and store each of the new incoming
781      // arguments into the alloca.
782      Instruction *InsertPt = NF->begin()->begin();
783
784      // Just add all the struct element types.
785      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
786      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
787      StructType *STy = cast<StructType>(AgTy);
788      Value *Idxs[2] = {
789            ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
790
791      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
792        Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
793        Value *Idx =
794          GetElementPtrInst::Create(TheAlloca, Idxs,
795                                    TheAlloca->getName()+"."+Twine(i),
796                                    InsertPt);
797        I2->setName(I->getName()+"."+Twine(i));
798        new StoreInst(I2++, Idx, InsertPt);
799      }
800
801      // Anything that used the arg should now use the alloca.
802      I->replaceAllUsesWith(TheAlloca);
803      TheAlloca->takeName(I);
804      AA.replaceWithNewValue(I, TheAlloca);
805      continue;
806    }
807
808    if (I->use_empty()) {
809      AA.deleteValue(I);
810      continue;
811    }
812
813    // Otherwise, if we promoted this argument, then all users are load
814    // instructions (or GEPs with only load users), and all loads should be
815    // using the new argument that we added.
816    ScalarizeTable &ArgIndices = ScalarizedElements[I];
817
818    while (!I->use_empty()) {
819      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
820        assert(ArgIndices.begin()->empty() &&
821               "Load element should sort to front!");
822        I2->setName(I->getName()+".val");
823        LI->replaceAllUsesWith(I2);
824        AA.replaceWithNewValue(LI, I2);
825        LI->eraseFromParent();
826        DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
827              << "' in function '" << F->getName() << "'\n");
828      } else {
829        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
830        IndicesVector Operands;
831        Operands.reserve(GEP->getNumIndices());
832        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
833             II != IE; ++II)
834          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
835
836        // GEPs with a single 0 index can be merged with direct loads
837        if (Operands.size() == 1 && Operands.front() == 0)
838          Operands.clear();
839
840        Function::arg_iterator TheArg = I2;
841        for (ScalarizeTable::iterator It = ArgIndices.begin();
842             *It != Operands; ++It, ++TheArg) {
843          assert(It != ArgIndices.end() && "GEP not handled??");
844        }
845
846        std::string NewName = I->getName();
847        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
848            NewName += "." + utostr(Operands[i]);
849        }
850        NewName += ".val";
851        TheArg->setName(NewName);
852
853        DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
854              << "' of function '" << NF->getName() << "'\n");
855
856        // All of the uses must be load instructions.  Replace them all with
857        // the argument specified by ArgNo.
858        while (!GEP->use_empty()) {
859          LoadInst *L = cast<LoadInst>(GEP->use_back());
860          L->replaceAllUsesWith(TheArg);
861          AA.replaceWithNewValue(L, TheArg);
862          L->eraseFromParent();
863        }
864        AA.deleteValue(GEP);
865        GEP->eraseFromParent();
866      }
867    }
868
869    // Increment I2 past all of the arguments added for this promoted pointer.
870    std::advance(I2, ArgIndices.size());
871  }
872
873  // Tell the alias analysis that the old function is about to disappear.
874  AA.replaceWithNewValue(F, NF);
875
876
877  NF_CGN->stealCalledFunctionsFrom(CG[F]);
878
879  // Now that the old function is dead, delete it.  If there is a dangling
880  // reference to the CallgraphNode, just leave the dead function around for
881  // someone else to nuke.
882  CallGraphNode *CGN = CG[F];
883  if (CGN->getNumReferences() == 0)
884    delete CG.removeFunctionFromModule(CGN);
885  else
886    F->setLinkage(Function::ExternalLinkage);
887
888  return NF_CGN;
889}
890