ArgumentPromotion.cpp revision ac0b6ae358944ae8b2b5a11dc08f52c3ed89f2da
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If we can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then we can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// we refuse to scalarize aggregates which would require passing in more than
21// three operands to the function, because we don't want to pass thousands of
22// operands for a large array or structure!
23//
24// Note that this transformation could also be done for arguments that are only
25// stored to (returning the value instead), but we do not currently handle that
26// case.  This case would be best handled when and if we start supporting
27// multiple return values from functions.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "argpromotion"
32#include "llvm/Transforms/IPO.h"
33#include "llvm/Constants.h"
34#include "llvm/DerivedTypes.h"
35#include "llvm/Module.h"
36#include "llvm/CallGraphSCCPass.h"
37#include "llvm/Instructions.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Analysis/CallGraph.h"
40#include "llvm/Target/TargetData.h"
41#include "llvm/Support/CallSite.h"
42#include "llvm/Support/CFG.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/ADT/DepthFirstIterator.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include <set>
48using namespace llvm;
49
50namespace {
51  Statistic NumArgumentsPromoted("argpromotion",
52                                   "Number of pointer arguments promoted");
53  Statistic NumAggregatesPromoted("argpromotion",
54                                    "Number of aggregate arguments promoted");
55  Statistic NumArgumentsDead("argpromotion",
56                               "Number of dead pointer args eliminated");
57
58  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
59  ///
60  struct ArgPromotion : public CallGraphSCCPass {
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
62      AU.addRequired<AliasAnalysis>();
63      AU.addRequired<TargetData>();
64      CallGraphSCCPass::getAnalysisUsage(AU);
65    }
66
67    virtual bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
68  private:
69    bool PromoteArguments(CallGraphNode *CGN);
70    bool isSafeToPromoteArgument(Argument *Arg) const;
71    Function *DoPromotion(Function *F, std::vector<Argument*> &ArgsToPromote);
72  };
73
74  RegisterPass<ArgPromotion> X("argpromotion",
75                               "Promote 'by reference' arguments to scalars");
76}
77
78ModulePass *llvm::createArgumentPromotionPass() {
79  return new ArgPromotion();
80}
81
82bool ArgPromotion::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
83  bool Changed = false, LocalChange;
84
85  do {  // Iterate until we stop promoting from this SCC.
86    LocalChange = false;
87    // Attempt to promote arguments from all functions in this SCC.
88    for (unsigned i = 0, e = SCC.size(); i != e; ++i)
89      LocalChange |= PromoteArguments(SCC[i]);
90    Changed |= LocalChange;               // Remember that we changed something.
91  } while (LocalChange);
92
93  return Changed;
94}
95
96/// PromoteArguments - This method checks the specified function to see if there
97/// are any promotable arguments and if it is safe to promote the function (for
98/// example, all callers are direct).  If safe to promote some arguments, it
99/// calls the DoPromotion method.
100///
101bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
102  Function *F = CGN->getFunction();
103
104  // Make sure that it is local to this module.
105  if (!F || !F->hasInternalLinkage()) return false;
106
107  // First check: see if there are any pointer arguments!  If not, quick exit.
108  std::vector<Argument*> PointerArgs;
109  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
110    if (isa<PointerType>(I->getType()))
111      PointerArgs.push_back(I);
112  if (PointerArgs.empty()) return false;
113
114  // Second check: make sure that all callers are direct callers.  We can't
115  // transform functions that have indirect callers.
116  for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
117       UI != E; ++UI) {
118    CallSite CS = CallSite::get(*UI);
119    if (!CS.getInstruction())       // "Taking the address" of the function
120      return false;
121
122    // Ensure that this call site is CALLING the function, not passing it as
123    // an argument.
124    for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
125         AI != E; ++AI)
126      if (*AI == F) return false;   // Passing the function address in!
127  }
128
129  // Check to see which arguments are promotable.  If an argument is not
130  // promotable, remove it from the PointerArgs vector.
131  for (unsigned i = 0; i != PointerArgs.size(); ++i)
132    if (!isSafeToPromoteArgument(PointerArgs[i])) {
133      std::swap(PointerArgs[i--], PointerArgs.back());
134      PointerArgs.pop_back();
135    }
136
137  // No promotable pointer arguments.
138  if (PointerArgs.empty()) return false;
139
140  // Okay, promote all of the arguments are rewrite the callees!
141  Function *NewF = DoPromotion(F, PointerArgs);
142
143  // Update the call graph to know that the old function is gone.
144  getAnalysis<CallGraph>().changeFunction(F, NewF);
145  return true;
146}
147
148/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
149/// to load.
150static bool IsAlwaysValidPointer(Value *V) {
151  if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
152  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
153    return IsAlwaysValidPointer(GEP->getOperand(0));
154  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
155    if (CE->getOpcode() == Instruction::GetElementPtr)
156      return IsAlwaysValidPointer(CE->getOperand(0));
157
158  return false;
159}
160
161/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
162/// all callees pass in a valid pointer for the specified function argument.
163static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
164  Function *Callee = Arg->getParent();
165
166  unsigned ArgNo = std::distance(Callee->arg_begin(), Function::arg_iterator(Arg));
167
168  // Look at all call sites of the function.  At this pointer we know we only
169  // have direct callees.
170  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
171       UI != E; ++UI) {
172    CallSite CS = CallSite::get(*UI);
173    assert(CS.getInstruction() && "Should only have direct calls!");
174
175    if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
176      return false;
177  }
178  return true;
179}
180
181
182/// isSafeToPromoteArgument - As you might guess from the name of this method,
183/// it checks to see if it is both safe and useful to promote the argument.
184/// This method limits promotion of aggregates to only promote up to three
185/// elements of the aggregate in order to avoid exploding the number of
186/// arguments passed in.
187bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg) const {
188  // We can only promote this argument if all of the uses are loads, or are GEP
189  // instructions (with constant indices) that are subsequently loaded.
190  bool HasLoadInEntryBlock = false;
191  BasicBlock *EntryBlock = Arg->getParent()->begin();
192  std::vector<LoadInst*> Loads;
193  std::vector<std::vector<ConstantInt*> > GEPIndices;
194  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
195       UI != E; ++UI)
196    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
197      if (LI->isVolatile()) return false;  // Don't hack volatile loads
198      Loads.push_back(LI);
199      HasLoadInEntryBlock |= LI->getParent() == EntryBlock;
200    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
201      if (GEP->use_empty()) {
202        // Dead GEP's cause trouble later.  Just remove them if we run into
203        // them.
204        getAnalysis<AliasAnalysis>().deleteValue(GEP);
205        GEP->getParent()->getInstList().erase(GEP);
206        return isSafeToPromoteArgument(Arg);
207      }
208      // Ensure that all of the indices are constants.
209      std::vector<ConstantInt*> Operands;
210      for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
211        if (ConstantInt *C = dyn_cast<ConstantInt>(GEP->getOperand(i)))
212          Operands.push_back(C);
213        else
214          return false;  // Not a constant operand GEP!
215
216      // Ensure that the only users of the GEP are load instructions.
217      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
218           UI != E; ++UI)
219        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
220          if (LI->isVolatile()) return false;  // Don't hack volatile loads
221          Loads.push_back(LI);
222          HasLoadInEntryBlock |= LI->getParent() == EntryBlock;
223        } else {
224          return false;
225        }
226
227      // See if there is already a GEP with these indices.  If not, check to
228      // make sure that we aren't promoting too many elements.  If so, nothing
229      // to do.
230      if (std::find(GEPIndices.begin(), GEPIndices.end(), Operands) ==
231          GEPIndices.end()) {
232        if (GEPIndices.size() == 3) {
233          DOUT << "argpromotion disable promoting argument '"
234               << Arg->getName() << "' because it would require adding more "
235               << "than 3 arguments to the function.\n";
236          // We limit aggregate promotion to only promoting up to three elements
237          // of the aggregate.
238          return false;
239        }
240        GEPIndices.push_back(Operands);
241      }
242    } else {
243      return false;  // Not a load or a GEP.
244    }
245
246  if (Loads.empty()) return true;  // No users, this is a dead argument.
247
248  // If we decide that we want to promote this argument, the value is going to
249  // be unconditionally loaded in all callees.  This is only safe to do if the
250  // pointer was going to be unconditionally loaded anyway (i.e. there is a load
251  // of the pointer in the entry block of the function) or if we can prove that
252  // all pointers passed in are always to legal locations (for example, no null
253  // pointers are passed in, no pointers to free'd memory, etc).
254  if (!HasLoadInEntryBlock && !AllCalleesPassInValidPointerForArgument(Arg))
255    return false;   // Cannot prove that this is safe!!
256
257  // Okay, now we know that the argument is only used by load instructions and
258  // it is safe to unconditionally load the pointer.  Use alias analysis to
259  // check to see if the pointer is guaranteed to not be modified from entry of
260  // the function to each of the load instructions.
261
262  // Because there could be several/many load instructions, remember which
263  // blocks we know to be transparent to the load.
264  std::set<BasicBlock*> TranspBlocks;
265
266  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
267  TargetData &TD = getAnalysis<TargetData>();
268
269  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
270    // Check to see if the load is invalidated from the start of the block to
271    // the load itself.
272    LoadInst *Load = Loads[i];
273    BasicBlock *BB = Load->getParent();
274
275    const PointerType *LoadTy =
276      cast<PointerType>(Load->getOperand(0)->getType());
277    unsigned LoadSize = (unsigned)TD.getTypeSize(LoadTy->getElementType());
278
279    if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
280      return false;  // Pointer is invalidated!
281
282    // Now check every path from the entry block to the load for transparency.
283    // To do this, we perform a depth first search on the inverse CFG from the
284    // loading block.
285    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
286      for (idf_ext_iterator<BasicBlock*> I = idf_ext_begin(*PI, TranspBlocks),
287             E = idf_ext_end(*PI, TranspBlocks); I != E; ++I)
288        if (AA.canBasicBlockModify(**I, Arg, LoadSize))
289          return false;
290  }
291
292  // If the path from the entry of the function to each load is free of
293  // instructions that potentially invalidate the load, we can make the
294  // transformation!
295  return true;
296}
297
298namespace {
299  /// GEPIdxComparator - Provide a strong ordering for GEP indices.  All Value*
300  /// elements are instances of ConstantInt.
301  ///
302  struct GEPIdxComparator {
303    bool operator()(const std::vector<Value*> &LHS,
304                    const std::vector<Value*> &RHS) const {
305      unsigned idx = 0;
306      for (; idx < LHS.size() && idx < RHS.size(); ++idx) {
307        if (LHS[idx] != RHS[idx]) {
308          return cast<ConstantInt>(LHS[idx])->getZExtValue() <
309                 cast<ConstantInt>(RHS[idx])->getZExtValue();
310        }
311      }
312
313      // Return less than if we ran out of stuff in LHS and we didn't run out of
314      // stuff in RHS.
315      return idx == LHS.size() && idx != RHS.size();
316    }
317  };
318}
319
320
321/// DoPromotion - This method actually performs the promotion of the specified
322/// arguments, and returns the new function.  At this point, we know that it's
323/// safe to do so.
324Function *ArgPromotion::DoPromotion(Function *F,
325                                    std::vector<Argument*> &Args2Prom) {
326  std::set<Argument*> ArgsToPromote(Args2Prom.begin(), Args2Prom.end());
327
328  // Start by computing a new prototype for the function, which is the same as
329  // the old function, but has modified arguments.
330  const FunctionType *FTy = F->getFunctionType();
331  std::vector<const Type*> Params;
332
333  typedef std::set<std::vector<Value*>, GEPIdxComparator> ScalarizeTable;
334
335  // ScalarizedElements - If we are promoting a pointer that has elements
336  // accessed out of it, keep track of which elements are accessed so that we
337  // can add one argument for each.
338  //
339  // Arguments that are directly loaded will have a zero element value here, to
340  // handle cases where there are both a direct load and GEP accesses.
341  //
342  std::map<Argument*, ScalarizeTable> ScalarizedElements;
343
344  // OriginalLoads - Keep track of a representative load instruction from the
345  // original function so that we can tell the alias analysis implementation
346  // what the new GEP/Load instructions we are inserting look like.
347  std::map<std::vector<Value*>, LoadInst*> OriginalLoads;
348
349  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
350    if (!ArgsToPromote.count(I)) {
351      Params.push_back(I->getType());
352    } else if (I->use_empty()) {
353      ++NumArgumentsDead;
354    } else {
355      // Okay, this is being promoted.  Check to see if there are any GEP uses
356      // of the argument.
357      ScalarizeTable &ArgIndices = ScalarizedElements[I];
358      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
359           ++UI) {
360        Instruction *User = cast<Instruction>(*UI);
361        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
362        std::vector<Value*> Indices(User->op_begin()+1, User->op_end());
363        ArgIndices.insert(Indices);
364        LoadInst *OrigLoad;
365        if (LoadInst *L = dyn_cast<LoadInst>(User))
366          OrigLoad = L;
367        else
368          OrigLoad = cast<LoadInst>(User->use_back());
369        OriginalLoads[Indices] = OrigLoad;
370      }
371
372      // Add a parameter to the function for each element passed in.
373      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
374             E = ArgIndices.end(); SI != E; ++SI)
375        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI));
376
377      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
378        ++NumArgumentsPromoted;
379      else
380        ++NumAggregatesPromoted;
381    }
382
383  const Type *RetTy = FTy->getReturnType();
384
385  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
386  // have zero fixed arguments.
387  bool ExtraArgHack = false;
388  if (Params.empty() && FTy->isVarArg()) {
389    ExtraArgHack = true;
390    Params.push_back(Type::IntTy);
391  }
392  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
393
394   // Create the new function body and insert it into the module...
395  Function *NF = new Function(NFTy, F->getLinkage(), F->getName());
396  NF->setCallingConv(F->getCallingConv());
397  F->getParent()->getFunctionList().insert(F, NF);
398
399  // Get the alias analysis information that we need to update to reflect our
400  // changes.
401  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
402
403  // Loop over all of the callers of the function, transforming the call sites
404  // to pass in the loaded pointers.
405  //
406  std::vector<Value*> Args;
407  while (!F->use_empty()) {
408    CallSite CS = CallSite::get(F->use_back());
409    Instruction *Call = CS.getInstruction();
410
411    // Loop over the operands, inserting GEP and loads in the caller as
412    // appropriate.
413    CallSite::arg_iterator AI = CS.arg_begin();
414    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
415         I != E; ++I, ++AI)
416      if (!ArgsToPromote.count(I))
417        Args.push_back(*AI);          // Unmodified argument
418      else if (!I->use_empty()) {
419        // Non-dead argument: insert GEPs and loads as appropriate.
420        ScalarizeTable &ArgIndices = ScalarizedElements[I];
421        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
422               E = ArgIndices.end(); SI != E; ++SI) {
423          Value *V = *AI;
424          LoadInst *OrigLoad = OriginalLoads[*SI];
425          if (!SI->empty()) {
426            V = new GetElementPtrInst(V, *SI, V->getName()+".idx", Call);
427            AA.copyValue(OrigLoad->getOperand(0), V);
428          }
429          Args.push_back(new LoadInst(V, V->getName()+".val", Call));
430          AA.copyValue(OrigLoad, Args.back());
431        }
432      }
433
434    if (ExtraArgHack)
435      Args.push_back(Constant::getNullValue(Type::IntTy));
436
437    // Push any varargs arguments on the list
438    for (; AI != CS.arg_end(); ++AI)
439      Args.push_back(*AI);
440
441    Instruction *New;
442    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
443      New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(),
444                           Args, "", Call);
445      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
446    } else {
447      New = new CallInst(NF, Args, "", Call);
448      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
449      if (cast<CallInst>(Call)->isTailCall())
450        cast<CallInst>(New)->setTailCall();
451    }
452    Args.clear();
453
454    // Update the alias analysis implementation to know that we are replacing
455    // the old call with a new one.
456    AA.replaceWithNewValue(Call, New);
457
458    if (!Call->use_empty()) {
459      Call->replaceAllUsesWith(New);
460      std::string Name = Call->getName();
461      Call->setName("");
462      New->setName(Name);
463    }
464
465    // Finally, remove the old call from the program, reducing the use-count of
466    // F.
467    Call->getParent()->getInstList().erase(Call);
468  }
469
470  // Since we have now created the new function, splice the body of the old
471  // function right into the new function, leaving the old rotting hulk of the
472  // function empty.
473  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
474
475  // Loop over the argument list, transfering uses of the old arguments over to
476  // the new arguments, also transfering over the names as well.
477  //
478  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), I2 = NF->arg_begin();
479       I != E; ++I)
480    if (!ArgsToPromote.count(I)) {
481      // If this is an unmodified argument, move the name and users over to the
482      // new version.
483      I->replaceAllUsesWith(I2);
484      I2->setName(I->getName());
485      AA.replaceWithNewValue(I, I2);
486      ++I2;
487    } else if (I->use_empty()) {
488      AA.deleteValue(I);
489    } else {
490      // Otherwise, if we promoted this argument, then all users are load
491      // instructions, and all loads should be using the new argument that we
492      // added.
493      ScalarizeTable &ArgIndices = ScalarizedElements[I];
494
495      while (!I->use_empty()) {
496        if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
497          assert(ArgIndices.begin()->empty() &&
498                 "Load element should sort to front!");
499          I2->setName(I->getName()+".val");
500          LI->replaceAllUsesWith(I2);
501          AA.replaceWithNewValue(LI, I2);
502          LI->getParent()->getInstList().erase(LI);
503          DOUT << "*** Promoted load of argument '" << I->getName()
504               << "' in function '" << F->getName() << "'\n";
505        } else {
506          GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
507          std::vector<Value*> Operands(GEP->op_begin()+1, GEP->op_end());
508
509          Function::arg_iterator TheArg = I2;
510          for (ScalarizeTable::iterator It = ArgIndices.begin();
511               *It != Operands; ++It, ++TheArg) {
512            assert(It != ArgIndices.end() && "GEP not handled??");
513          }
514
515          std::string NewName = I->getName();
516          for (unsigned i = 0, e = Operands.size(); i != e; ++i)
517            if (ConstantInt *CI = dyn_cast<ConstantInt>(Operands[i]))
518              NewName += "."+itostr((int64_t)CI->getZExtValue());
519            else
520              NewName += ".x";
521          TheArg->setName(NewName+".val");
522
523          DOUT << "*** Promoted agg argument '" << TheArg->getName()
524               << "' of function '" << F->getName() << "'\n";
525
526          // All of the uses must be load instructions.  Replace them all with
527          // the argument specified by ArgNo.
528          while (!GEP->use_empty()) {
529            LoadInst *L = cast<LoadInst>(GEP->use_back());
530            L->replaceAllUsesWith(TheArg);
531            AA.replaceWithNewValue(L, TheArg);
532            L->getParent()->getInstList().erase(L);
533          }
534          AA.deleteValue(GEP);
535          GEP->getParent()->getInstList().erase(GEP);
536        }
537      }
538
539      // Increment I2 past all of the arguments added for this promoted pointer.
540      for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
541        ++I2;
542    }
543
544  // Notify the alias analysis implementation that we inserted a new argument.
545  if (ExtraArgHack)
546    AA.copyValue(Constant::getNullValue(Type::IntTy), NF->arg_begin());
547
548
549  // Tell the alias analysis that the old function is about to disappear.
550  AA.replaceWithNewValue(F, NF);
551
552  // Now that the old function is dead, delete it.
553  F->getParent()->getFunctionList().erase(F);
554  return NF;
555}
556