ArgumentPromotion.cpp revision b83eb6447ba155342598f0fabe1f08f5baa9164a
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If we can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then we can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// we refuse to scalarize aggregates which would require passing in more than
21// three operands to the function, because we don't want to pass thousands of
22// operands for a large array or structure!
23//
24// Note that this transformation could also be done for arguments that are only
25// stored to (returning the value instead), but we do not currently handle that
26// case.  This case would be best handled when and if we start supporting
27// multiple return values from functions.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "argpromotion"
32#include "llvm/Transforms/IPO.h"
33#include "llvm/Constants.h"
34#include "llvm/DerivedTypes.h"
35#include "llvm/Module.h"
36#include "llvm/CallGraphSCCPass.h"
37#include "llvm/Instructions.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Analysis/CallGraph.h"
40#include "llvm/Target/TargetData.h"
41#include "llvm/Support/CallSite.h"
42#include "llvm/Support/CFG.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/ADT/DepthFirstIterator.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include <iostream>
48#include <set>
49using namespace llvm;
50
51namespace {
52  Statistic<> NumArgumentsPromoted("argpromotion",
53                                   "Number of pointer arguments promoted");
54  Statistic<> NumAggregatesPromoted("argpromotion",
55                                    "Number of aggregate arguments promoted");
56  Statistic<> NumArgumentsDead("argpromotion",
57                               "Number of dead pointer args eliminated");
58
59  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
60  ///
61  struct ArgPromotion : public CallGraphSCCPass {
62    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63      AU.addRequired<AliasAnalysis>();
64      AU.addRequired<TargetData>();
65      CallGraphSCCPass::getAnalysisUsage(AU);
66    }
67
68    virtual bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
69  private:
70    bool PromoteArguments(CallGraphNode *CGN);
71    bool isSafeToPromoteArgument(Argument *Arg) const;
72    Function *DoPromotion(Function *F, std::vector<Argument*> &ArgsToPromote);
73  };
74
75  RegisterPass<ArgPromotion> X("argpromotion",
76                               "Promote 'by reference' arguments to scalars");
77}
78
79ModulePass *llvm::createArgumentPromotionPass() {
80  return new ArgPromotion();
81}
82
83bool ArgPromotion::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
84  bool Changed = false, LocalChange;
85
86  do {  // Iterate until we stop promoting from this SCC.
87    LocalChange = false;
88    // Attempt to promote arguments from all functions in this SCC.
89    for (unsigned i = 0, e = SCC.size(); i != e; ++i)
90      LocalChange |= PromoteArguments(SCC[i]);
91    Changed |= LocalChange;               // Remember that we changed something.
92  } while (LocalChange);
93
94  return Changed;
95}
96
97/// PromoteArguments - This method checks the specified function to see if there
98/// are any promotable arguments and if it is safe to promote the function (for
99/// example, all callers are direct).  If safe to promote some arguments, it
100/// calls the DoPromotion method.
101///
102bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
103  Function *F = CGN->getFunction();
104
105  // Make sure that it is local to this module.
106  if (!F || !F->hasInternalLinkage()) return false;
107
108  // First check: see if there are any pointer arguments!  If not, quick exit.
109  std::vector<Argument*> PointerArgs;
110  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
111    if (isa<PointerType>(I->getType()))
112      PointerArgs.push_back(I);
113  if (PointerArgs.empty()) return false;
114
115  // Second check: make sure that all callers are direct callers.  We can't
116  // transform functions that have indirect callers.
117  for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
118       UI != E; ++UI) {
119    CallSite CS = CallSite::get(*UI);
120    if (!CS.getInstruction())       // "Taking the address" of the function
121      return false;
122
123    // Ensure that this call site is CALLING the function, not passing it as
124    // an argument.
125    for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
126         AI != E; ++AI)
127      if (*AI == F) return false;   // Passing the function address in!
128  }
129
130  // Check to see which arguments are promotable.  If an argument is not
131  // promotable, remove it from the PointerArgs vector.
132  for (unsigned i = 0; i != PointerArgs.size(); ++i)
133    if (!isSafeToPromoteArgument(PointerArgs[i])) {
134      std::swap(PointerArgs[i--], PointerArgs.back());
135      PointerArgs.pop_back();
136    }
137
138  // No promotable pointer arguments.
139  if (PointerArgs.empty()) return false;
140
141  // Okay, promote all of the arguments are rewrite the callees!
142  Function *NewF = DoPromotion(F, PointerArgs);
143
144  // Update the call graph to know that the old function is gone.
145  getAnalysis<CallGraph>().changeFunction(F, NewF);
146  return true;
147}
148
149/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
150/// to load.
151static bool IsAlwaysValidPointer(Value *V) {
152  if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
153  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
154    return IsAlwaysValidPointer(GEP->getOperand(0));
155  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
156    if (CE->getOpcode() == Instruction::GetElementPtr)
157      return IsAlwaysValidPointer(CE->getOperand(0));
158
159  return false;
160}
161
162/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
163/// all callees pass in a valid pointer for the specified function argument.
164static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
165  Function *Callee = Arg->getParent();
166
167  unsigned ArgNo = std::distance(Callee->arg_begin(), Function::arg_iterator(Arg));
168
169  // Look at all call sites of the function.  At this pointer we know we only
170  // have direct callees.
171  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
172       UI != E; ++UI) {
173    CallSite CS = CallSite::get(*UI);
174    assert(CS.getInstruction() && "Should only have direct calls!");
175
176    if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
177      return false;
178  }
179  return true;
180}
181
182
183/// isSafeToPromoteArgument - As you might guess from the name of this method,
184/// it checks to see if it is both safe and useful to promote the argument.
185/// This method limits promotion of aggregates to only promote up to three
186/// elements of the aggregate in order to avoid exploding the number of
187/// arguments passed in.
188bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg) const {
189  // We can only promote this argument if all of the uses are loads, or are GEP
190  // instructions (with constant indices) that are subsequently loaded.
191  bool HasLoadInEntryBlock = false;
192  BasicBlock *EntryBlock = Arg->getParent()->begin();
193  std::vector<LoadInst*> Loads;
194  std::vector<std::vector<ConstantInt*> > GEPIndices;
195  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
196       UI != E; ++UI)
197    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
198      if (LI->isVolatile()) return false;  // Don't hack volatile loads
199      Loads.push_back(LI);
200      HasLoadInEntryBlock |= LI->getParent() == EntryBlock;
201    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
202      if (GEP->use_empty()) {
203        // Dead GEP's cause trouble later.  Just remove them if we run into
204        // them.
205        getAnalysis<AliasAnalysis>().deleteValue(GEP);
206        GEP->getParent()->getInstList().erase(GEP);
207        return isSafeToPromoteArgument(Arg);
208      }
209      // Ensure that all of the indices are constants.
210      std::vector<ConstantInt*> Operands;
211      for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
212        if (ConstantInt *C = dyn_cast<ConstantInt>(GEP->getOperand(i)))
213          Operands.push_back(C);
214        else
215          return false;  // Not a constant operand GEP!
216
217      // Ensure that the only users of the GEP are load instructions.
218      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
219           UI != E; ++UI)
220        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
221          if (LI->isVolatile()) return false;  // Don't hack volatile loads
222          Loads.push_back(LI);
223          HasLoadInEntryBlock |= LI->getParent() == EntryBlock;
224        } else {
225          return false;
226        }
227
228      // See if there is already a GEP with these indices.  If not, check to
229      // make sure that we aren't promoting too many elements.  If so, nothing
230      // to do.
231      if (std::find(GEPIndices.begin(), GEPIndices.end(), Operands) ==
232          GEPIndices.end()) {
233        if (GEPIndices.size() == 3) {
234          DEBUG(std::cerr << "argpromotion disable promoting argument '"
235                << Arg->getName() << "' because it would require adding more "
236                << "than 3 arguments to the function.\n");
237          // We limit aggregate promotion to only promoting up to three elements
238          // of the aggregate.
239          return false;
240        }
241        GEPIndices.push_back(Operands);
242      }
243    } else {
244      return false;  // Not a load or a GEP.
245    }
246
247  if (Loads.empty()) return true;  // No users, this is a dead argument.
248
249  // If we decide that we want to promote this argument, the value is going to
250  // be unconditionally loaded in all callees.  This is only safe to do if the
251  // pointer was going to be unconditionally loaded anyway (i.e. there is a load
252  // of the pointer in the entry block of the function) or if we can prove that
253  // all pointers passed in are always to legal locations (for example, no null
254  // pointers are passed in, no pointers to free'd memory, etc).
255  if (!HasLoadInEntryBlock && !AllCalleesPassInValidPointerForArgument(Arg))
256    return false;   // Cannot prove that this is safe!!
257
258  // Okay, now we know that the argument is only used by load instructions and
259  // it is safe to unconditionally load the pointer.  Use alias analysis to
260  // check to see if the pointer is guaranteed to not be modified from entry of
261  // the function to each of the load instructions.
262  Function &F = *Arg->getParent();
263
264  // Because there could be several/many load instructions, remember which
265  // blocks we know to be transparent to the load.
266  std::set<BasicBlock*> TranspBlocks;
267
268  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
269  TargetData &TD = getAnalysis<TargetData>();
270
271  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
272    // Check to see if the load is invalidated from the start of the block to
273    // the load itself.
274    LoadInst *Load = Loads[i];
275    BasicBlock *BB = Load->getParent();
276
277    const PointerType *LoadTy =
278      cast<PointerType>(Load->getOperand(0)->getType());
279    unsigned LoadSize = (unsigned)TD.getTypeSize(LoadTy->getElementType());
280
281    if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
282      return false;  // Pointer is invalidated!
283
284    // Now check every path from the entry block to the load for transparency.
285    // To do this, we perform a depth first search on the inverse CFG from the
286    // loading block.
287    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
288      for (idf_ext_iterator<BasicBlock*> I = idf_ext_begin(*PI, TranspBlocks),
289             E = idf_ext_end(*PI, TranspBlocks); I != E; ++I)
290        if (AA.canBasicBlockModify(**I, Arg, LoadSize))
291          return false;
292  }
293
294  // If the path from the entry of the function to each load is free of
295  // instructions that potentially invalidate the load, we can make the
296  // transformation!
297  return true;
298}
299
300namespace {
301  /// GEPIdxComparator - Provide a strong ordering for GEP indices.  All Value*
302  /// elements are instances of ConstantInt.
303  ///
304  struct GEPIdxComparator {
305    bool operator()(const std::vector<Value*> &LHS,
306                    const std::vector<Value*> &RHS) const {
307      unsigned idx = 0;
308      for (; idx < LHS.size() && idx < RHS.size(); ++idx) {
309        if (LHS[idx] != RHS[idx]) {
310          return cast<ConstantInt>(LHS[idx])->getZExtValue() <
311                 cast<ConstantInt>(RHS[idx])->getZExtValue();
312        }
313      }
314
315      // Return less than if we ran out of stuff in LHS and we didn't run out of
316      // stuff in RHS.
317      return idx == LHS.size() && idx != RHS.size();
318    }
319  };
320}
321
322
323/// DoPromotion - This method actually performs the promotion of the specified
324/// arguments, and returns the new function.  At this point, we know that it's
325/// safe to do so.
326Function *ArgPromotion::DoPromotion(Function *F,
327                                    std::vector<Argument*> &Args2Prom) {
328  std::set<Argument*> ArgsToPromote(Args2Prom.begin(), Args2Prom.end());
329
330  // Start by computing a new prototype for the function, which is the same as
331  // the old function, but has modified arguments.
332  const FunctionType *FTy = F->getFunctionType();
333  std::vector<const Type*> Params;
334
335  typedef std::set<std::vector<Value*>, GEPIdxComparator> ScalarizeTable;
336
337  // ScalarizedElements - If we are promoting a pointer that has elements
338  // accessed out of it, keep track of which elements are accessed so that we
339  // can add one argument for each.
340  //
341  // Arguments that are directly loaded will have a zero element value here, to
342  // handle cases where there are both a direct load and GEP accesses.
343  //
344  std::map<Argument*, ScalarizeTable> ScalarizedElements;
345
346  // OriginalLoads - Keep track of a representative load instruction from the
347  // original function so that we can tell the alias analysis implementation
348  // what the new GEP/Load instructions we are inserting look like.
349  std::map<std::vector<Value*>, LoadInst*> OriginalLoads;
350
351  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
352    if (!ArgsToPromote.count(I)) {
353      Params.push_back(I->getType());
354    } else if (I->use_empty()) {
355      ++NumArgumentsDead;
356    } else {
357      // Okay, this is being promoted.  Check to see if there are any GEP uses
358      // of the argument.
359      ScalarizeTable &ArgIndices = ScalarizedElements[I];
360      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
361           ++UI) {
362        Instruction *User = cast<Instruction>(*UI);
363        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
364        std::vector<Value*> Indices(User->op_begin()+1, User->op_end());
365        ArgIndices.insert(Indices);
366        LoadInst *OrigLoad;
367        if (LoadInst *L = dyn_cast<LoadInst>(User))
368          OrigLoad = L;
369        else
370          OrigLoad = cast<LoadInst>(User->use_back());
371        OriginalLoads[Indices] = OrigLoad;
372      }
373
374      // Add a parameter to the function for each element passed in.
375      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
376             E = ArgIndices.end(); SI != E; ++SI)
377        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI));
378
379      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
380        ++NumArgumentsPromoted;
381      else
382        ++NumAggregatesPromoted;
383    }
384
385  const Type *RetTy = FTy->getReturnType();
386
387  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
388  // have zero fixed arguments.
389  bool ExtraArgHack = false;
390  if (Params.empty() && FTy->isVarArg()) {
391    ExtraArgHack = true;
392    Params.push_back(Type::IntTy);
393  }
394  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
395
396   // Create the new function body and insert it into the module...
397  Function *NF = new Function(NFTy, F->getLinkage(), F->getName());
398  NF->setCallingConv(F->getCallingConv());
399  F->getParent()->getFunctionList().insert(F, NF);
400
401  // Get the alias analysis information that we need to update to reflect our
402  // changes.
403  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
404
405  // Loop over all of the callers of the function, transforming the call sites
406  // to pass in the loaded pointers.
407  //
408  std::vector<Value*> Args;
409  while (!F->use_empty()) {
410    CallSite CS = CallSite::get(F->use_back());
411    Instruction *Call = CS.getInstruction();
412
413    // Loop over the operands, inserting GEP and loads in the caller as
414    // appropriate.
415    CallSite::arg_iterator AI = CS.arg_begin();
416    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
417         I != E; ++I, ++AI)
418      if (!ArgsToPromote.count(I))
419        Args.push_back(*AI);          // Unmodified argument
420      else if (!I->use_empty()) {
421        // Non-dead argument: insert GEPs and loads as appropriate.
422        ScalarizeTable &ArgIndices = ScalarizedElements[I];
423        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
424               E = ArgIndices.end(); SI != E; ++SI) {
425          Value *V = *AI;
426          LoadInst *OrigLoad = OriginalLoads[*SI];
427          if (!SI->empty()) {
428            V = new GetElementPtrInst(V, *SI, V->getName()+".idx", Call);
429            AA.copyValue(OrigLoad->getOperand(0), V);
430          }
431          Args.push_back(new LoadInst(V, V->getName()+".val", Call));
432          AA.copyValue(OrigLoad, Args.back());
433        }
434      }
435
436    if (ExtraArgHack)
437      Args.push_back(Constant::getNullValue(Type::IntTy));
438
439    // Push any varargs arguments on the list
440    for (; AI != CS.arg_end(); ++AI)
441      Args.push_back(*AI);
442
443    Instruction *New;
444    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
445      New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(),
446                           Args, "", Call);
447      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
448    } else {
449      New = new CallInst(NF, Args, "", Call);
450      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
451      if (cast<CallInst>(Call)->isTailCall())
452        cast<CallInst>(New)->setTailCall();
453    }
454    Args.clear();
455
456    // Update the alias analysis implementation to know that we are replacing
457    // the old call with a new one.
458    AA.replaceWithNewValue(Call, New);
459
460    if (!Call->use_empty()) {
461      Call->replaceAllUsesWith(New);
462      std::string Name = Call->getName();
463      Call->setName("");
464      New->setName(Name);
465    }
466
467    // Finally, remove the old call from the program, reducing the use-count of
468    // F.
469    Call->getParent()->getInstList().erase(Call);
470  }
471
472  // Since we have now created the new function, splice the body of the old
473  // function right into the new function, leaving the old rotting hulk of the
474  // function empty.
475  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
476
477  // Loop over the argument list, transfering uses of the old arguments over to
478  // the new arguments, also transfering over the names as well.
479  //
480  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), I2 = NF->arg_begin();
481       I != E; ++I)
482    if (!ArgsToPromote.count(I)) {
483      // If this is an unmodified argument, move the name and users over to the
484      // new version.
485      I->replaceAllUsesWith(I2);
486      I2->setName(I->getName());
487      AA.replaceWithNewValue(I, I2);
488      ++I2;
489    } else if (I->use_empty()) {
490      AA.deleteValue(I);
491    } else {
492      // Otherwise, if we promoted this argument, then all users are load
493      // instructions, and all loads should be using the new argument that we
494      // added.
495      ScalarizeTable &ArgIndices = ScalarizedElements[I];
496
497      while (!I->use_empty()) {
498        if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
499          assert(ArgIndices.begin()->empty() &&
500                 "Load element should sort to front!");
501          I2->setName(I->getName()+".val");
502          LI->replaceAllUsesWith(I2);
503          AA.replaceWithNewValue(LI, I2);
504          LI->getParent()->getInstList().erase(LI);
505          DEBUG(std::cerr << "*** Promoted load of argument '" << I->getName()
506                          << "' in function '" << F->getName() << "'\n");
507        } else {
508          GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
509          std::vector<Value*> Operands(GEP->op_begin()+1, GEP->op_end());
510
511          unsigned ArgNo = 0;
512          Function::arg_iterator TheArg = I2;
513          for (ScalarizeTable::iterator It = ArgIndices.begin();
514               *It != Operands; ++It, ++TheArg) {
515            assert(It != ArgIndices.end() && "GEP not handled??");
516          }
517
518          std::string NewName = I->getName();
519          for (unsigned i = 0, e = Operands.size(); i != e; ++i)
520            if (ConstantInt *CI = dyn_cast<ConstantInt>(Operands[i]))
521              NewName += "."+itostr((int64_t)CI->getZExtValue());
522            else
523              NewName += ".x";
524          TheArg->setName(NewName+".val");
525
526          DEBUG(std::cerr << "*** Promoted agg argument '" << TheArg->getName()
527                          << "' of function '" << F->getName() << "'\n");
528
529          // All of the uses must be load instructions.  Replace them all with
530          // the argument specified by ArgNo.
531          while (!GEP->use_empty()) {
532            LoadInst *L = cast<LoadInst>(GEP->use_back());
533            L->replaceAllUsesWith(TheArg);
534            AA.replaceWithNewValue(L, TheArg);
535            L->getParent()->getInstList().erase(L);
536          }
537          AA.deleteValue(GEP);
538          GEP->getParent()->getInstList().erase(GEP);
539        }
540      }
541
542      // Increment I2 past all of the arguments added for this promoted pointer.
543      for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
544        ++I2;
545    }
546
547  // Notify the alias analysis implementation that we inserted a new argument.
548  if (ExtraArgHack)
549    AA.copyValue(Constant::getNullValue(Type::IntTy), NF->arg_begin());
550
551
552  // Tell the alias analysis that the old function is about to disappear.
553  AA.replaceWithNewValue(F, NF);
554
555  // Now that the old function is dead, delete it.
556  F->getParent()->getFunctionList().erase(F);
557  return NF;
558}
559